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Abstract 15

This paper outlines the model-based theory of causal reasoning.  It postulates that the core meanings 16
of causal assertions are deterministic and refer to temporally-ordered sets of possibilities: A causes B 17
to occur means that given A, B occurs, whereas A enables B to occur means that given A, it is 18
possible for B to occur. The paper shows how mental models represent such assertions, and how 19
these models underlie deductive, inductive, and abductive reasoning yielding explanations. It reviews 20
evidence both to corroborate the theory and to account for phenomena sometimes taken to be 21
incompatible with it. Finally, it reviews neuroscience evidence indicating that mental models for 22
causal inference are implemented within lateral prefrontal cortex. 23

1. Introduction 24

All reasonings concerning matter of fact seem to 25
be founded on the relation of Cause and Effect. 26

David Hume (1748/1988) 27

In An Enemy of the People, the protagonist, Dr. Stockmann, discovers that waste runoff from the 28
town tanneries is contaminating the water supply at the public baths, a municipal project that he 29
himself has led with his brother, the mayor. He exclaims: 30

“The whole Bath establishment is a whited, poisoned sepulchre, I tell you—the gravest 31
possible danger to the public health! All the nastiness up at Molledal, all that stinking 32
filth, is infecting the water in the conduit-pipes leading to the reservoir; and the same 33
cursed, filthy poison oozes out on the shore too…” (Act I, An Enemy of the People) 34

Dr. Stockmann acts on his conviction by alerting the mayor to the threat of contamination – and 35
suffers as a result. His actions are based on his causal beliefs: 36
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• The waste from the tanneries causes contamination in the baths. 37
• The townspeople are going to allow tourists at the baths to be at risk. 38
• It is necessary to try to prevent further contamination. 39

Ibsen’s play examines how these beliefs and Stockmann’s consequent actions lead him to become a 40
pariah – an enemy of the people – much as Ibsen perceived himself to be, as a result of his revealing 41
depictions of Norwegian society.   42

Our research is more prosaic: it examines how individuals interpret and represent causal relations, 43
how they reason from them and use them in explanations, and how these mechanisms are 44
implemented in the brain.  This paper brings together these various parts in order to present a unified 45
theory of causal reasoning in which mental models play a central role.  The theory of mental models 46
– the “model theory”, for short – ranges over various sorts of reasoning – deductive, inductive, and 47
abductive, and it applies to causal reasoning and to the creation of causal explanations. 48

The organization of the paper is straightforward.  It begins with a defense of a deterministic theory 49
of the meaning of causal assertions. It explains how mental models represent the meanings of causal 50
assertions. It shows how the model theory provides a framework for an account of causal reasoning 51
at three levels of analysis (Marr, 1982): what the mind computes, how it carries out these 52
computations, and how the relevant mechanisms are realized in the brain, that is, the functional 53
neuroanatomy of the brain mechanisms underlying causal reasoning. 54

 55

2. The meaning of causal relations 56

One billiard ball strikes another, which moves off at speed. If the timing is right, we see a causal 57
relation even when the billiard balls are mere simulacra (Michotte, 1946/1963). Many causal 58
relations, however, cannot be perceived, and so the nature of causation is puzzling. Indo-European 59
languages, such as English, contain many verbs that embody causation. They are highly prevalent 60
because, as Miller and Johnson-Laird (1976) argued, causation is an operator that, like time, space, 61
and intention, occurs in verbs across all semantic domains. Each of the verbs in the following 62
sentences, for example, embodies the notion of cause and effect: 63

The wind pushed the fence down (caused it to fall down). 64
His memory of his behavior embarrassed him (caused him to feel embarrassed). 65
She showed the ring to her friends (caused it to be visible to them). 66

Scholars in many disciplines have studied causation, but they disagree about its philosophical 67
foundations, about its meaning, and about causal reasoning. For Hume (1748/1888), causation was an 68
observed regularity between the occurrence of the cause and the occurrence of the effect.  As he 69
wrote (p. 115): “We may define a cause to be an object followed by another, and where all the 70
objects, similar to the first, are followed by objects similar to the second.”  For Kant (1781/1934), 71
however, a necessary connection held between cause and effect, and he took this component to be a 72
part of an innate conception of causality. What is common to both views is that causal relations are, 73
not probabilistic, but deterministic, and the same claim is echoed in Mill (1874). Our chief concern 74
rests not in philosophical controversies, but rather the everyday psychological understanding of 75
causal assertions, and reasoning from them. The psychological literature is divided on whether the 76
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meanings of causal assertions are deterministic or probabilistic.  Our aim is to decide between the 77
two accounts. 78

2.1. Do causes concern possibilities or probabilities? 79

 For many proponents of a deterministic psychological conception of causality, causal claims 80
concern what is possible, and what is impossible (Goldvarg & Johnson-Laird, 2001; Frosch & 81
Johnson-Laird, 2011). The assertion: 82

Runoff causes contamination to occur. 83

means that runoff suffices for contamination to occur, though it may occur for other reasons; and the 84
relation is false in case there is runoff without contamination.  Hence, the claim can be paraphrased in 85
a conditional assertion that would be false in case its antecedent is true and its consequent is false:  86

If runoff occurs then contamination occurs. 87

A categorical assertion such as: 88

Runoff caused contamination to occur. 89

can also be paraphrased in a conditional, but one that is counterfactual: 90

 If runoff hadn’t occurred then contamination wouldn’t have occurred. 91

The conditional refers to the case in which neither the cause nor its effect occurred.  At one time this 92
state was a future possibility, but after the fact it is a possibility that did not occur – it is 93
counterfactual possibility (Johnson-Laird & Byrne, 2002; Byrne, 2005).  A more plausible and 94
weaker claim is expressed in a counterfactual conditional allowing that the contamination might have 95
occurred for other reasons: 96

 If runoff hadn’t occurred then there mightn’t have been contamination. 97

Not all conditionals express causal relations, so we can ask what else is at stake. One prerequisite is 98
that causes precede their effects, or at least do not occur after them. The two states might be 99
simultaneous in the case of a billiard ball causing a dent in the cushion that it rests on.  But, physical 100
contact is not part of the core meaning of a causal relation (cf. Michotte, 1946/1963; Geminiani, 101
Carassa, and Bara, 1996), because causal assertions can violate it, as in: The moon causes tides.  102
Claims about action at a distance may be false, but their falsity is not merely because they are 103
inconsistent with the meaning of A causes B.  Likewise, contiguity seems irrelevant to causal 104
assertions about psychological matters, such as: His memory of his behavior embarrassed him. 105

Many factors – the existence of known mechanisms, causal powers, forces, structures – can be 106
important in inferring a cause (e.g., Ahn & Bailenson, 1996; Koslowski, 1996; White, 1995), and 107
they can be incorporated into the interpretation of a causal assertion or its conditional paraphrase (see 108
Johnson-Laird & Byrne, 1991, for an account of this process, which they refer to as modulation).  109
None of them, however, is part of the core meaning of A causes B. Consider mechanistic accounts of 110
causal systems, e.g., how sewing machines work (Miyake, 1986). Experts who use sewing machines 111
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can explain their underlying components. However, there comes a point in any such explanation, 112
when everyone must make an assertion equivalent to: 113

A causes B, and that’s that. 114

This cause has no support. Mechanisms cannot go all the way down – no more than the turtles 115
supporting the earth in primitive cosmology can go all the way down. Hence, mechanisms and their 116
cognates, such as forces and powers, cannot be part of the core meaning of causal assertions. 117

Granted that causal assertions and their corresponding conditionals concern possibilities, their 118
meaning is deterministic rather than probabilistic. However, some twentieth century theorists, from 119
Russell (1912-13) to Salsburg (2001, p. 185-6), denied the existence of a coherent notion of 120
causation. Russell was influenced by quantum mechanics, and argued that causation should be 121
replaced by probabilistic considerations.  One reason for such skepticism is a failure to divorce 122
beliefs from meanings. Beliefs about causation are often incoherent. For example, some people 123
believe that it is possible to initiate a causal chain, and that every event has a cause.  Both beliefs 124
can’t be right, because if every event has a cause, an action to initiate a causal chain has itself a 125
cause, and so it doesn’t really initiate the chain.  Such beliefs, however, should not be confused with 126
the core meaning of causes, which does not legislate about them: we understand both the preceding 127
assertions that yield the inconsistency.  Neither of them seems internally inconsistent. 128

Other theorists, also inspired by quantum mechanics, have maintained causation but rejected 129
determinism (e.g., Reichenbach, 1956; Salmon, 1980; Suppes, 1970). A cause and its effect are 130
related probabilistically.  Reichenbach (1956) argued that a causal assertion, such as: 131

Runoff causes contamination to occur  132

means that contamination is more probable given that runoff occurs than given that it does not occur.  133
Hence, a causal claim holds provided that the following relation holds between the two conditional 134
probabilities: 135

P(contamination | runoff) > P(contamination | no runoff) 136

The philosophical controversy between determinism and probabilism has spilled over into 137
psychology.  Some psychological theories are probabilistic both for causation (e.g., Cheng, 1997, 138
2000) and for conditionals (Oaksford & Chater, 2007). The case for probabilistic meanings rests in 139
part on causal assertions such as: 140

Cars cause accidents. 141

Such assertions tolerate exceptions, which do not refute them, and which therefore imply a 142
probabilistic relation.   But, it is the form of the generalization rather than its causal content that 143
enables it to tolerate exceptions.   It is a generic assertion akin to: 144

 Cars have radios. 145

A generic assertion is defined as a generalization with a subject, such as a noun phrase or a gerund, 146
lacking an explicit quantifier (Leslie, 2008).  Certain sorts of generic, e.g., snow storms close schools, 147
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imply a causal connection between their subject, snow storms, and their predicate, close schools. The 148
meaning of the verb, “close,” is causal, and individuals readily infer that snow storms cause an agent 149
to act to close schools (see Prasada, Khemlani, Leslie, & Glucksberg, 2013). Hence, generics tolerate 150
exceptions.  In contrast, if the subjects of assertions contain explicit quantifiers as in: 151

 Some snow storms cause schools to close. 152

and: 153

 All snow storms cause schools to close. 154

then the assertions have a deterministic meaning, and the first of these assertions is true as a matter of 155
fact and the second of them is false. 156

2.2. Evidence against probabilistic accounts of causation 157

Several arguments count against probabilistic meanings for everyday causal assertions.  A major 158
historical problem is to explain why no one proposed such an analysis prior to the formulation of 159
quantum mechanics.  Moreover, a singular claim about causation, such as: 160

 The runoff caused contamination to occur 161

is false if the runoff occurred without contamination. This factual relation is deterministic, and to 162
introduce probabilities into the interpretation of counterfactual conditionals is problematic. 163

Individuals, as we show later, recognize the difference in meaning between causes and enabling 164
conditions, such as, The runoff allowed contamination to occur. But, both increase the conditional 165
probability of an effect given the antecedent, and so the difference in meanings between causes and 166
enabling conditions is impossible to make in probabilistic accounts (Wolff, 2007; pace Cheng, 2000; 167
Cheng & Novick, 1991). The same problem arises in implementing causation in Bayesian networks 168
(Glymour, 2001; Gopnik et al., 2004; Pearl, 2000; Tenenbaum & Griffiths, 2001). 169

Reasoners often infer a causal relation from a single observation (e.g., Ahn & Kalish, 2000; 170
Schlottman & Shanks, 1992; Sloman, 2005; White, 1999). But, if causal assertions are probabilistic, 171
no single observation could suffice to establish cause and effect, because probabilistic interpretations 172
tolerate exceptions. Lien and Cheng (2000) proposed instead that single observations can refer to 173
previously established causal relations. Repeated observations of billiard balls, for example, establish 174
causal relations about their collisions, which individuals can then use to infer a causal relation from a 175
single new observation. However, as Fair (1979) anticipated, this proposal implies that individuals 176
could never establish causal relations contrary to their expectations. 177

Interventions that initiate a causal chain are a feature of Bayesian networks (see, e.g., Pearl, 2000; 178
Woodward, 2003), and evidence corroborates their psychological importance (Sloman, 2005; Sloman 179
& Lagnado, 2005).  As an example, suppose that the following claim is true: 180

Overeating causes indigestion.    181

If we then observe that Max doesn’t have indigestion, we can infer that he hasn’t overeaten.   But, 182
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Max could have intervened to prevent indigestion: he could have taken an anti-indigestion pill.  In 183
this case, we would no longer make the inference. No special logic or probabilistic considerations are 184
needed to handle these cases (pace Sloman, 2005).  Our initial claim is an idealization expressed in a 185
generic, and so it tolerates exceptions. 186

In summary, the evidence seems to be decisive: causal relations in everyday life have 187
deterministic meanings unless they make explicit reference to probabilities, as in: 188

Keeping to this diet probably causes you to lose weight. 189

Moreover, if causation were intrinsically probabilistic, there would be no need for the qualification in 190
this example. Its effect is to weaken the causal claim. Studies of inferences from causal assertions, 191
which we describe below, further bolster their deterministic meanings. 192

 193

3. Mental models of causal assertions 194

We now turn to the model theory of mental representations, which we outline before we consider 195
its application to reasoning. The theory goes back to Craik (1943) and has still earlier antecedents in 196
philosophy. Its more recent development gives a general account of how individuals understand 197
assertions, how they represent them, and how they reason from them (see, e.g., Johnson-Laird, 1983; 198
Johnson-Laird & Byrne, 1991; Johnson-Laird & Khemlani, 2014).  The theory has been implemented 199
computationally, its predictions have been corroborated in psychological experiments and in recent 200
neuroimaging results (e.g., Kroger, et al., 2008).  And it is of sufficient maturity that given the 201
semantics of a domain such as causation, it calls for few new assumptions in order to account for 202
representation and reasoning.  203

The first step in understanding an assertion is to parse it in order to construct a representation of its 204
meaning.  The theory postulates that the parser’s output (an intensional representation) is composed 205
out of the meanings of its parts according to the grammatical relations amongst them.  The 206
intensional representation is used to construct, to update, to manipulate, or to interrogate, mental 207
models of the situation under description (an extensional representation).  The theory rests on three 208
fundamental principles: 209

1. Mental models represent possibilities: each model captures a distinct set of possibilities to 210
which the current description refers.  211

2. Mental models are iconic: the structure of a model corresponds to the structure of what it 212
represents (see Peirce, 1931-1958, Vol. 4).  Hence, kinematic models unfold in time to 213
represent a temporal sequence of events (Khemlani, Mackiewicz, Bucciarelli, & Johnson-214
Laird, 2013).  However, models can also include certain abstract symbols, such as one for 215
negation (Khemlani, Orenes, & Johnson-Laird, 2012). 216

3. The principle of truth: Mental models represent only what is true, not what is false, in each 217
possibility.  They yield rapid intuitions.  In contrast, fully explicit models represent what is 218
false too, but their construction calls for deliberation and access to working memory. 219

The model theory implements the deterministic meanings of causal relations described in the 220
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previous section. An assertion such as: 221

Runoff causes contamination to occur 222

has two mental models, one is an explicit model representing the case in which the cause and its 223
effect both occur, and the other is an implicit mental model representing at least one other possibility 224
in which the cause does not occur: 225

 runoff contamination 226
 . . . 227

The rows in this schematic diagram represent two distinct possibilities. In fact, mental models do not 228
consist of words and phrases, which we use for convenience, but of representations of the objects and 229
events to which the words refer.    The ellipsis denotes the other possibilities in which the cause does 230
not occur.  These possibilities are not immediately accessible, i.e., one has to work them out.  We 231
have omitted from the diagram the temporal relation between cause and effect: the cause cannot 232
come after the effect, and by default comes before it. 233

The model theory draws a distinction in meaning between causes and enabling conditions 234
(contrary to a tradition going back to Mill, 1874). An enabling condition makes its effect possible: it 235
allows it to happen.  The assertion: 236

Runoff allows contamination to occur. 237

has a core meaning that is a tautology in which all things are possible provided they are in the correct 238
temporal sequence.  Like its corresponding conditional: 239

 If runoff occurs then contamination may occur. 240

it is possible for runoff to occur, or not to occur, and in either case, with or without contamination.  241
Such assertions are nearly vacuous, and so an obvious implication – an implicature from Grice’s 242
(1975) conversational conventions – is that only runoff allows contamination to occur.  There are 243
then just three possibilities: with runoff, contamination does or does not occur; but without it, runoff 244
does not occur. The mental models of an enabling assertion are identical to those of a causal 245
assertion. One mental model represents the possibility in which both runoff and contamination occur, 246
and the implicit model represents the other possibilities.  A consequence of this identity is that people 247
have difficulty in grasping that causal and enabling assertions differ in meaning. This difficulty has 248
infected the legal systems of both the US and the UK, which make no distinction between the two 249
sorts of causal relation (Johnson-Laird, 1999), though people judge those who cause harmful 250
outcomes as more culpable than those who enable them (Frosch, Johnson-Laird, & Cowley, 2007). 251

When reasoners have to enumerate the possibilities consistent with an assertion, they are able to 252
deliberate and to flesh out their mental models into fully explicit models.  The difference between 253
causing and enabling now becomes evident.  The fully explicit models of the causal assertion, runoff 254
causes contamination to occur, are: 255

    runoff  contamination 256
   ¬ runoff  contamination 257
   ¬ runoff ¬ contamination 258
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where “¬” is a symbol corresponding to a mental token for negation (Khemlani, Orenes, & Johnson-259
Laird, 2012).  What the assertion rules out is the possibility that runoff occurs without contamination.  260
In contrast, the fully explicit models of the enabling assertion, runoff allows contamination to occur, 261
and its implicature are: 262

    runoff  contamination 263
    runoff ¬ contamination 264
   ¬ runoff ¬ contamination 265

Some causal claims are stronger than the one above: they assert that the cause is the only way to 266
bring about the effect.   The only way to get cholera, for example, is to be infected by the bacterium 267
Vibrio cholerae.  The corresponding assertion has only two fully explicit models, one in which the 268
cause and effect both occur – the bacterium and the infection, and one in which neither of them 269
occurs.  There are also weaker enabling assertions than the one above, that is, ones in which all 270
appropriately temporally-ordered possibilities occur, including the possibility that the effect occurs in 271
the absence of the enabling condition, i.e., the implicature does not occur. 272

When individuals have to list what is possible, and what is impossible, given each of the main 273
sorts of causal relation, their listings tend to corroborate the model theory (Goldvarg & Johnson-274
Laird, 2001).  Participants list either the three possibilities for causes or the two for its stronger 275
interpretation.  They are more confused by enables, but list the three possibilities above more often 276
than chance, and likewise the four possibilities for its weaker interpretation.  They list the three 277
possibilities and the two possibilities for A prevents B from occurring, which is synonymous with A 278
causes B not to occur.  279

One attempt to distinguish between causing and enabling in a probabilistic framework is to argue 280
that an enabling condition is constant in the situation, whereas a cause is not (Cheng & Novick, 281
1991).  This difference does occur, but it is not essential according to the model theory. A crucial test 282
used scenarios in which neither the causes nor the enabling conditions were constant (Goldvarg & 283
Johnson-Laird, 2001).  Readers may like to try to identify the cause and the enabler in each of the 284
following scenarios: 285

Given that there is good sunlight, if a certain new fertilizer is used on poor flowers, 286
then they grow remarkably well. However, if there is not good sunlight, poor 287
flowers do not grow well even if the fertilizer is used on them.  288

and: 289

Given the use of a certain new fertilizer on poor flowers, if there is good sunlight 290
then the flowers grow remarkably well. However, if the new fertilizer is not used on 291
poor flowers, they do not grow well even if there is good sunlight. 292

In the first scenario, sunlight is the enabling condition, and the fertilizer is the cause; in the second 293
scenario, the two swap roles.  These roles derive from the possibilities to which the respective 294
scenarios refer.  In the first scenario, the possibilities are as follows: 295

   sunlight:   fertilizer    growth 296
   ¬ fertilizer    growth 297
   ¬ fertilizer  ¬ growth 298
 ¬ sunlight:               ¬ growth 299
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As they show, sunlight enables the fertilizer to cause the flowers to grow.  Their roles swap in the 300
possibilities for the second scenario.  In an experiment, the participants were told that a cause brings 301
about an event whereas an enabling condition makes it possible, and that they had to identify the 302
cause and the enabling condition in sets of scenarios.  The order of mention of the cause and enabler 303
was counterbalanced over the scenarios, and each participant saw only one of the four versions of 304
each content.  The twenty participants made correct identifications on 85% of the trials, and each of 305
them was right more often than not (Goldvarg & Johnson-Laird, 2001).   306

These phenomena account against rival accounts of the difference between causes and enabling 307
conditions.  The distinction between them is neither capricious nor unsystematic (Mill, 1874; 308
Kuhnmünch & Beller, 2005).  It is contrary to the claim that a cause violates a norm assumed by 309
default whereas an enabling condition does not (Einhorn and Hogarth, 1986; Kahneman and Miller, 310
1986).  And the cause need not be conversationally relevant in explanations (Hilton and Erb, 1996; 311
Mackie, 1980; Turnbull and Slugoski, 1988).  In sum, the difference in meaning between the two 312
principal sorts of causal assertion is real (see also Sloman, Barbey, & Hotaling, 2009; and Wolff & 313
Song, 2003).  314

 315

4. Models and causal deductions 316

How do naïve individuals make causal deductions?   One answer is that they rely on the laws of 317
thought, that is, on formal rules of inference akin to those of logic.  Indeed, Rips (1994, p. 336) has 318
proposed that formal rules could be extended to deal with causal reasoning.   Pure logic makes no 319
reference to specific contents, and so its application to causation depends on the introduction of 320
axioms (or “meaning postulates”), such as: 321

If A causes B, and B prevents C, then A prevents C  322

where A, B, and C, are variables that take states or events as their values (von Wright, 1973).  Logic, 323
however, has several critical problems in coping with everyday reasoning.  One is that infinitely 324
many conclusions follow in logic from any set of premises, and most of them are trivial or silly, such 325
as conjunction of a premise with itself.  Another problem is that logic means never having to 326
withdraw the conclusion of a valid inference, even if its conclusion turns out to be false.  In jargon, 327
logic is monotonic – as you accrue more premises, so you are able to draw more conclusions and 328
never have a warrant for withdrawing any of them.  In contrast, everyday reasoning is nonmonotonic.  329
You withdraw a conclusion if the facts show it to be wrong. 330

Another theory is that causal inferences depend on pragmatic reasoning schemas (e.g. Cheng, 331
Holyoak, Nisbett, and Oliver, 1986).   In other words, the axiom above is framed instead as a rule of 332
inference: 333

A causes B. 334
B prevents C. 335
Therefore, A prevents C. 336

This idea goes back to Kelley’s (1973) theory of causal attribution, which postulates such schemas 337
for checking causal relations.   Similarly, Morris and Nisbett (1993) proposed a schema including the 338
following two rules: 339
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If cause C is present then effect E occurs. 340
Cause C is present. 341
Therefore, Effect E occurs. 342

and: 343

If cause C is present then effect E occurs. 344
Effect E does not occur. 345
Therefore, Cause C is not present. 346

In contrast, the model theory makes no use of formal rules of inference, and no use of axioms, 347
meaning postulates, or schemas concerning causation.  It simply applies its general principles of 348
reasoning to mental models of causal assertions. 349

Theorists distinguish among three main sorts of reasoning: deduction, induction, and abduction, 350
which creates hypotheses or explanations. We shall do so too, but with the caveat that human 351
reasoners make inferences without normally concerning themselves about such niceties.  To make 352
deductions, individuals draw conclusions that hold in all their models of the premises. To make 353
inductions, they use their knowledge to build models going beyond the information given in the 354
premises, and then infer corresponding conclusions, such as generalizations (Johnson-Laird, 2006).  355
To make abductions, they use their knowledge to incorporate new concepts – those not in the 356
premises – in order to yield causal explanations of everyday events (Johnson-Laird, et al., 2004).   357
We will describe the model theory for each of these three sorts of reasoning, starting with deduction 358
here, and we will show that the evidence corroborates its account rather than the alternatives.   359

At the computational level, the model theory postulates three constraints on everyday reasoning 360
(Johnson-Laird & Byrne, 1991, Ch. 2). First, inferences do not throw away semantic information (see 361
Bar-Hillel & Carnap, 1953). That is, people do not spontaneously make inferences, such as: 362

Runoff causes contamination. 363
Therefore, runoff causes contamination or inoculations prevent disease, or both. 364

The inference is valid, because its conclusion must be true if its premise is true. But, its conclusion is 365
less informative (e.g., by a measure of semantic information) than its premise, because the former is 366
compatible with more possibilities than the latter. In contrast, induction and abduction increase 367
semantic information. Second, inferences are parsimonious. For example, a conclusion does not 368
merely consist of a conjunction of all the premises, even though such a conclusion is valid and 369
maintains semantic information. Third, a conclusion should assert something new, and not repeat 370
what is explicit in the premises. If no conclusion meets these three constraints, then individuals 371
respond that nothing follows from the premises – a response that violates logic, but that is perfectly 372
rational. Consider this inference, for instance: 373

 Runoff causes contamination to occur. 374
 Three is a prime number. 375
 What follows? 376

A logician should respond: infinitely many conclusions, including a conjunction of the first premise 377
with itself 101 times. A more sensible response is: nothing. In short, human reasoners aim not to lose 378
information, to simplify where possible, and to infer something new whether they are making 379
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deductive, inductive, or abductive inferences. 380

The model theory copes with the main sorts of non-monotonicity. It allows for information to be 381
assumed by default, and to be overruled by subsequent information, as when individuals infer that a 382
dog has four legs only to discover that a particular pet is three-legged. It also allows for deductions to 383
be made in an experimental mode ignorant of the facts of the matter, so that when a conclusion turns 384
out to be false, it can be withdrawn without cost. We illustrate such cases in the section below on 385
explanations. It also diverges slightly from logic in its basic assumption about validity. In logic, a 386
valid deduction is one that holds in every case in which the premises hold (Jeffrey, 1981, p. 1).  387
Hence, any conclusion whatsoever follows from inconsistent premises, because there is no case in 388
which the premises hold. The model theory adds a rider for everyday reasoning: there is at least one 389
non-null model in which the premises hold. This proviso blocks valid inferences from inconsistent 390
premises. 391

At the algorithmic level, the theory postulates that individuals build mental models of premises – 392
they simulate the world under description. They use the information in the premises, their general 393
knowledge, and their knowledge of the context.  The system searches for a conclusion that holds in 394
the models and that doesn’t merely echo an explicit premise – a principle that holds for conversation 395
in general (Grice, 1975). But, the system can also evaluate given conclusions. A conclusion that 396
holds in all the models of the premises follows of necessity, but if there is a model of the premises in 397
which it does not hold – a counterexample – it does not follow of necessity.  Yet, if it holds in most 398
models, it is probable. And if it holds in at least one model, it is possible. Because inferences are 399
based on models of the premises, the resulting conclusions cannot throw semantic information away 400
by adding disjunctive alternatives, or consist of a premise conjoined with itself, 401

Mental models can be three-dimensional in order to represent spatial relations, and they can be 402
kinematic, unfolding in time to represent a temporal sequence of events (Johnson-Laird, 1983).  403
Evidence supports these hypotheses in the use of mental simulations to deduce the consequences of 404
informal algorithms (Khemlani, et al., 2013).  Temporal order, however, can also be represented by 405
an axis in a static model.   406

The  “force dynamics” theory of causal reasoning (Barbey & Wolff, 2007; Wolff, 2007) makes 407
analogous claims.  It assumes that individuals envisage interacting entities in iconic models in which 408
vectors represent the directions and magnitudes of forces.  The theory explains the interpretations of 409
such assertions as:  410

Pressure will cause the water to remain below 0°C.  411
Small ridges cause water to stand on the concrete.  412
The pole will prevent the tent from collapsing.  413

Each assertion refers to a configuration of forces.  The third assertion, for instance, refers to a 414
configuration in which the pole acts against the tendency of the tent to collapse.  These tendencies are 415
represented in a vector model.  We simplify the diagrams illustrating these models: arrows denote 416
vectors corresponding to the direction and magnitude of forces, and the box denotes the point of 417
stasis, which is the origin of all vectors.  The tendency of the tent to collapse is diagramed here, 418
where the two overlaid vectors represent the tent (one vector) heading towards collapse (another 419
vector): 420

o--->----> collapse 421
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   tent 422

The pole provides a countervailing force, and so its vector is in the opposite direction: 423

  <----------o 424
pole 425

Because the magnitude of the pole’s vector is larger than the magnitude of the tent’s vector, the 426
combination of the two yields a small magnitude in the direction away from collapse: 427

     <----o 428
 pole+tent 429

So, the diagram representing all the interacting vectors is as follows: 430

   pole+tent 431
 <-----<----o--->----> collapse 432
pole           tent 433

Such diagrams represent a relation in which A prevents B.  Hence, the force theory, like the model 434
theory, postulates that reasoners build up a mental model of causal relations, which can then be 435
scanned to yield inferences.  The model theory has not hitherto been formulated to represent forces or 436
the interactions amongst them, and so the force theory contributes an important and hitherto missing 437
component. The resulting models can also underlie kinematic mental simulations of sequences of 438
events. 439

The model theory can represent probabilities.  It uses proportions of models to draw conclusions 440
about most entities or few of them.  These proportions are used to make inferences about 441
probabilities.  Individual models can also be tagged with numerals to represent their relative 442
frequencies or probabilities.   This algorithmic account unifies deductive and probabilistic reasoning, 443
and it is implemented in an computer program, mReasoner, which we continue to develop, and its 444
source code is available at: http://mentalmodels.princeton.edu/models/mreasoner/. 445

In broad terms, three strands of evidence corroborate the model theory of causal deductions.  The 446
first strand of evidence bears out the difference in the possibilities referred to in assertions about 447
causes and assertions about enabling conditions.  Readers might like to consider what response they 448
would make to this problem: 449

Eating protein will cause her to gain weight. 450
She will eat protein.   451
Will she gain weight? 452
Yes, No, and Perhaps yes, perhaps no. 453

Most participants in an experiment (Goldvarg & Johnson-Laird, 2001) responded: yes.  But, when 454
the first premise was instead: 455

 Eating protein will allow her to gain weight 456

as its fully explicit models predict, the majority rejected the “yes” response.  The opposite pattern of 457
results occurred when the second assertion and question were changed to: 458
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 She will not gain weight. 459
 Will she not eat protein? 460

The results therefore bear out the difference in meaning between causing and enabling. 461

The second strand of evidence supports the deterministic interpretation of causal assertions 462
embodied in the model theory.  It rests on the fact that reasoners grasp the force of a counterexample.  463
When they evaluate given inferences, they tend to justify their rejection of an invalid inference by 464
citing a counterexample to its conclusion (Johnson-Laird & Hasson, 2003).  Likewise, consider an 465
assertion, such as: 466

Following this diet causes a person with this sort of metabolism to lose weight. 467

Participants in experiments were asked about what evidence would refute such claims and similar 468
ones about enabling conditions (Frosch & Johnson-Laird, 2011).  In several experiments, every 469
single participant chose a single observation to refute the assertions more often than not, but as the 470
model theory predicts they were more likely to do so for causal assertions than enabling assertions.  471
For both sorts of relation, they chose refutations of the form A and not-B, e.g.: 472

A person with this sort of metabolism followed this diet and yet did not lose  473
weight. 474

But, as the theory predicts, they chose refutations of the form not-A and B, e.g.: 475

A person with this sort of metabolism did not follow this diet and yet lost weight 476

more often to refute enabling assertions than causes. 477

The third strand of evidence concerns the principle of truth and the difference between mental 478
models and fully explicit models.  Most of us usually rely on our intuitions, and they are based on a 479
single mental model, which represents only what is true in the corresponding possibility.  The 480
following problem illustrates one consequence of this bias: 481

One of these assertions is true and one of them is false: 482
            Marrying Evelyn will cause Vivien to relax. 483
            Not marrying Evelyn will cause Vivien to relax. 484
The following assertion is definitely true: 485
            Vivien will marry Evelyn. 486
Will Vivien relax? Yes/No/It’s impossible to know. 487

The initial rubric is equivalent to an exclusive disjunction between the two causal assertions.  It 488
yields the following two mental models: 489

 Vivien:   marries Evelyn relaxes 490
  ¬ marries Evelyn relaxes 491

The final categorical assertion eliminates the second possibility, and so most reasoners infer that 492
Vivien will relax. It seems plausible, but the intuition is wrong. The fully explicit models of the 493
disjunction of the two assertions yield only two possibilities, one in which the first assertion is true 494
and the second assertion is false, and one in which the first assertion is false and the second assertion 495
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is true. But, in the first case, the second assertion is false, and so Vivien doesn’t marry Evelyn and 496
doesn’t relax; and, in the second case, the first assertion is false and so Vivien marries Evelyn but 497
doesn’t relax. So, the fully explicit and correct models are respectively: 498

 Vivien:  ¬ marries Evelyn ¬ relaxes 499
    marries Evelyn ¬ relaxes 500

The final categorical assertion eliminates the first of them, and it follows that Vivien will not relax.  501
None of the participants in an experiment drew this correct conclusion. The majority inferred that 502
Vivien will relax, and the remainder inferred that it was impossible to know (Goldvarg & Johnson-503
Laird, 2001). 504

The model theory makes predictions about causal reasoning that have yet to be tested, though they 505
have been corroborated in other domains. The most important of these predictions are that the more 506
models that have to be taken into account, the more difficult an inference should be, and that a 507
common source of error should be to overlook the model of a possibility.  Yet, the evidence we have 508
described here illustrates the case for the model theory, and the alternative theories that we reviewed 509
at the start of this section offer no account of it. 510

 511

5. The induction of causal relations 512

The vessel, The Herald of Free Enterprise, was a roll-on roll-off car ferry.  Its bow doors were 513
opened in the harbor to allow cars to drive into the ship, and at its destination, the cars drove off the 514
ship the same way.  When it sailed from Zeebrugge in Belgium on March 6th, 1987, the master made 515
the plausible induction about a causal relation, namely, that the assistant bosun had closed the bow 516
doors.  The chief officer made the same inference, and so did the bosun.   But, the assistant bosun 517
hadn’t closed the bow doors: he was asleep in his bunk.  Shortly after the ferry left the calm waters of 518
the harbor, the sea poured in through its open doors, and it capsized with the loss of nearly two 519
hundred lives.  Inductions are risky.  There is no guarantee that they yield the truth, and, as this 520
example also illustrates they can concern an individual event, not just generalizations of the sort in 521
textbook definitions of induction. 522

The risk of inductions arises in part because they go beyond the information in the premises, such 523
as that no-one has reported that the bow doors are open.  As a result, they can eliminate possibilities 524
that the premises imply, and they can add relations, such as a temporal order of events within a model 525
of a situation (Johnson-Laird, 1988).  In all these cases, the inductive operation depends on 526
knowledge or beliefs.  And beliefs are sometimes wrong.  527

Students of induction from Polya (1973) onwards have postulated formal rules of inference to 528
underlie it – to parallel the formal rules of inference used in logic.  These systems have grown ever 529
more sophisticated in programs for machine learning (e.g., Michalski & Wojtusiak, 2007).  The 530
model theory, however, assumes that knowledge and beliefs can themselves be represented in 531
models, and so the essential inductive operation is to conjoin two sets of models: one set represents 532
the possibilities derived from the premises, which may be direct observations, and the other set is part 533
of long-term knowledge and beliefs.  A simple but common example occurs when knowledge 534
modulates the core interpretation of causality, just as it can do in the interpretation of conditionals 535
(Johnson-Laird & Byrne, 2002).  The core meaning of A causes B, as we argued earlier, is consistent 536
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with three possibilities.  Hence, an assertion such as: 537

A deficiency of some sort causes rickets 538

refers to three possibilities in which there is a temporal order from cause to effect:  539

  deficiency  rickets 540
 ¬ deficiency  rickets 541
 ¬ deficiency ¬ rickets 542

Many people know, however, that rickets has a unique cause –a deficiency in vitamin D, and this 543
knowledge blocks the construction of the second model above in which rickets arise in a person with 544
no deficiency.  Modulation in the interpretation of assertions is a bridge from deduction to induction.  545
The resulting models allow one to infer that if a patient has no dietary deficiency, then the patient 546
doesn’t have rickets.  Logicians can argue that the inference is an enthymeme, that is, it is a valid 547
deduction granted the provision of the missing premise that no other cause for rickets exists.  But, 548
one could just as well argue that the inference is an induction, since the conclusion rests on more 549
information than the premises provide.  The reasoning system is not concerned with the correct 550
analysis. It relies on whatever relevant knowledge is available to it. 551

Observations of contingencies can lead to inductive inferences in daily life and in science.  Hence, 552
many theories concern inductions from the frequencies of contingencies (e.g., De Houwer & Beckers, 553
2002; Hattori & Oaksford, 2007; Perales & Shanks, 2007; Shanks, 1995).  The analogy with classical 554
conditioning is close.  The analyses of frequencies can also yield inductions about causation at one 555
level that feed into those at a higher or more abstract level in a hierarchical Bayesian network (e.g., 556
Gopnik et al., 2004; Griffiths & Tenenbaum, 2005; Lu et al., 2008).  Once its structure is established, 557
it can assign values to conditional probabilities that interrelate components in the network, e.g., it can 558
yield the conditional probability of lung cancer given that coughing occurs, and the conditional 559
probability of smoking given lung cancer (see Tenenbaum, Griffiths, & Kemp, 2006, for a review).  560

In contrast, observations can lead to inductions without probabilities.  For instance, Kepler 561
analyzed Tycho Brahe’s astronomical observations, and used them to induce his three laws of 562
planetary motion, of which the best known is his first law: a planet moves in an elliptical orbit around 563
the sun with the sun at one focus.  But, the mind prepared with knowledge can also make an 564
induction from a single observation – a claim supported by considerable evidence (see, e.g., White, 565
2014).  One source of such inferences is knowledge of a potential mechanism, and this knowledge 566
may take the form of a model. 567

Adults induce new concepts throughout their life.  Some are learned from knowledge by 568
acquaintance, others from knowledge by description.  You cannot acquire the full concept of a color, 569
a wine, or a sculpture without a direct acquaintance with them, but you can learn about quarks, genes, 570
and the unconscious, from descriptions of them. Likewise, the induction of a generalization is 571
equivalent to the induction of a concept or of a change to a concept, as in Kepler’s change to the 572
concept of a planetary orbit.  Novel concepts can be put together out of existing concepts.  Hence, 573
causal inductions are part of the acquisition of concepts.  Causes are more important than effects in 574
the features of a concept.  This difference explains why the constituents of natural kinds are 575
important, whereas the functions of artifacts are important (Ahn, 1998).  A genetic code is 576
accordingly more critical to being a goat than that it gives milk, whereas that a mirror reflects an 577
image is more important to a mirror than that it is made of glass.  578
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Knowledge of a category’s causal structure is important in categorization. Objects are classified as 579
members of a category depending on how well their features fit our intuitive theory, or model, of the 580
causal relations amongst the category’s features (see, e.g., Waldmann, Holyoak, & Fratianne, 1995). 581
Reasoners judge an exemplar as a better instance of a category when its features fit the causal 582
structure of the category (Rehder, 2003).  Figure 1 illustrates two contrasting causal structures. In the 583
common-cause structure, one feature is a common cause of three effects, such as the symptoms of a 584
disease, whereas in the common-effect structure, one feature is a common effect of each of three 585
causes, such as a disease that has three independent etiologies.  In Rehder’s experimental study, 586
which used sensible everyday features, the participants rated category-membership depending on an 587
instance’s features, pairs of its features, and high-order relations among its features.  The results 588
showed that the participants were indeed sensitive to the difference between the two sorts of causal 589
structure in Figure 1. 590

At the center of the model theory is the hypothesis that the process of understanding yields a 591
model. In deduction, if a mental model yields a conclusion, its validity can be tested in a search for 592
alternative models. In induction, however, the construction of models increases semantic 593
information. In the case of inductions about specific events in everyday life, this process is part of the 594
normal effort to make sense of the world. Human reasoning relies, wherever possible, on general 595
knowledge. Hence, when the starter won’t turn over your car’s engine, your immediate inference is 596
that the battery is dead. Another role that knowledge plays is to provide interstitial causal relations 597
that make sense of assertions hitherto lacking them – a process that is case of what Clark (1975) 598
refers to as “bridging” inferences. We demonstrated the potency of such inferences in a series of 599
unpublished studies. One study included a condition in which the participants were presented with 600
sets of assertions for which in theory they could infer a causal chain, such as: 601

David put a book on the shelf. 602
The shelf collapsed. 603
The vase broke. 604

In another condition, the participants were presented with sets of assertions for which they could not 605
infer a causal chain, such as: 606

Robert heard a creak in the hall closet. 607
The faucet dripped. 608
The lawn sprinklers started. 609

The theory predicts that individuals should infer the causal relations, and the experiment corroborated 610
this hypothesis. When a further assertion contradicted the first assertion in a set, the consequences 611
were quite different between the two conditions.  In the first condition, the contradictory assertion: 612

 David didn’t put a book on the shelf 613

led to a decline in the participants’ belief in all the subsequent assertions, and so only 30% of them 614
believed that the vase broke.   In the second case, the contradictory assertion: 615

 Robert did not hear a creak in the hall closet 616

had no effect in the participants’ belief in the subsequent assertions.  All of them continued to believe 617
that the lawn sprinklers started. This difference in the propagation of doubt is attributable to the 618
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causal interpretation of the first sort of scenario, and the impossibility of such an interpretation for 619
the second scenario.  This example is close, if not identical, to an abduction, because the attribution 620
of causes explains the sequence of events in the causal scenarios.  It leads us to consider abduction in 621
general. 622

 623

6. Abduction of causal explanations 624

A fundamental aspect of human rationality is the ability to create explanations. Explanations, in 625
turn, depend on understanding: if you don’t understanding something, you can’t explain it. It is easier 626
to state criteria for what counts as understanding than to define it.  If you know what causes 627
something, what results from it, how to intervene to initiate it, how to guide or to govern it, how to 628
predict its occurrence and the course of its events, how it relates to other phenomena, what internal 629
structure is has, how to fix it if it malfunctions, then to some degree you understand it. According to 630
the model theory, “if you understand inflation, a mathematical proof, the way a computer works, 631
DNA or a divorce, then you have a mental representation that serves as a model of an entity in much 632
the same way as, say, a clock functions as a model of the earth’s rotation” (Johnson-Laird, 1983, p. 633
2).  And you can use your model to formulate an explanation.  Such explanations can help others to 634
understand – to make sense of past events and to anticipate future events. Many psychological 635
investigations have focused on explanatory reasoning in the context of specific, applied domains, 636
such as fault diagnosis (e.g., Besnard & Bastien-Toniazzo, 1999) and medical decision-making (e.g., 637
Ramoni, Stefanelli, Magnani, & Barosi, 1992).  But, as Hume (1748/1988) remarks in the epigraph to 638
this paper, most reasoning about factual matters is founded on cause and effect. To illustrate the role 639
of models in causal abductions, consider this problem: 640

If someone pulled the trigger, then the gun fired.  641
Someone pulled the trigger, but the gun did not fire.  642
Why not? 643

Most people presented with the problem offered a causal explanation, such as: 644

 Someone unloaded the gun and so there were no bullets in it. 645

They even rated such an explanation as more probable than either the cause alone or the effect alone 646
(Johnson-Laird et al., 2004). In daily life, explanations tend to explain only what needs to be 647
explained (Khemlani, Sussman, & Oppenheimer, 2011), but, as the case above illustrates, causal 648
relations take priority over parsimony (pace Lombrozo, 2007). In science, Occam’s razor calls for 649
parsimonious explanations.   650

When the preceding problem is couched in these terms: 651

 If someone pulled the trigger, then the gun fired. 652
 The gun did not fire. 653
 Why not? 654

many individuals preferred a causal explanation to a simple deductive one: 655

 No one pulled the trigger. 656
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The bias does not appear to reflect cultural background, and it is much the same for Westerners and 657
East Asians (Lee & Johnson-Laird, 2006), but it is sensitive to personality. Individuals who are, or 658
who feel, open to experience and not so conscientious tend to make the causal explanation, whereas 659
their polar opposites tend to make the deductive explanation (Fumero, Santamaría, & Johnson-Laird, 660
2010).  661

The nonmonotonic retraction of a conclusion and modification of beliefs is a side effect of 662
explanation. When individuals explain what’s going on in a scenario, they then find it harder to 663
detect an inconsistency it contains than when they have not formulated an explanation (Khemlani & 664
Johnson-Laird, 2012).  Conversely, they are faster to revise assertions to make them consistent when 665
they have explained the inconsistency first (Khemlani & Johnson-Laird, 2013).  And they rate 666
explanations as more plausible and probable than modifications to the premises that remove the 667
inconsistency – a pattern of judgments that occurs both in adults (Khemlani & Johnson-Laird, 2011) 668
and in children (Legare, 2012). In short, the priority in coping with inconsistencies is to find a causal 669
explanation that resolves them.  Explanations first, nonmonotonic modifications after. 670

 671

7. The lateral prefrontal cortex and mental models for causal inference 672

A critical brain region underlying mental models for causal inference is the lateral prefrontal 673
cortex, which is known to encode causal representations and to embody the three foundational 674
assumptions of the model theory (see the earlier account of the theory): mental models represent 675
possibilities; their structure can be iconic, mimicking the structure of what they represents; and they 676
represent what is true at the expense of what is false. We now turn to a review of the neuroscience 677
evidence linking each assumption of these principles to core functions of lateral prefrontal cortex. 678

7.1. Mental models represent possibilities 679

The lateral prefrontal cortex is known to play a central role in the representation of behavior-680
guiding principles that support goal-directed thought and action (Miller & Cohen, 2001).  Such top-681
down representations convey information about possible states of the world, representing what goals 682
are available in the current environment and what actions can be performed to achieve them. 683

The lateral prefrontal cortex represents causal relations in the form of learned task contingencies 684
(causal relations, which neuroscientists refer to as if-then rules). Asaad and colleagues trained 685
monkeys to associate each of two cue objects (A and B) with a saccade to the right or a saccade to the 686
left (Asaad et al., 1998).  The authors found relatively few lateral prefrontal cortex neurons whose 687
activity simply reflected a cue (e.g., A) or response (e.g., a saccade to the right). Instead, the modal 688
group of neurons (44% of the population) showed activity that reflected the current association 689
between a visual cue and the directional saccade it instructed. For example, a given cell might be 690
strongly activated only when object A instructed “saccade left” and not when object B instructed the 691
same saccade or when object A instructed another saccade. Likewise, lateral prefrontal cortex 692
neurons acquire selectivity for features to which they are initially insensitive but that are behaviorally 693
important.  For example, Watanabe trained monkeys to recognize that certain visual and auditory 694
stimuli signaled whether or not a reward, a drop of juice, would be delivered (Watanabe, 1990; 695
1992). He found that neurons in the lateral prefrontal cortex came to reflect specific cue-reward 696
dependencies. For example, a given neuron could show strong activation to one of the two auditory 697
(and none of the visual) cues, but only when it signaled reward.   698
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Studies of monkeys and humans with lateral prefrontal cortex damage also suggest that this region 699
is critical for representing causal principles (if-then rules) that underlie goal-directed thought and 700
adaptive behavior. Early studies of the effects of prefrontal cortex damage in humans suggested its 701
role in goal-directed behavior (e.g., Ferrier, 1876) and since then broad consensus in the literature 702
implicates this region in the ability to control lower-level sensory, memory, and motor operations in 703
the service of a common goal (Shallice, 1982; Duncan, 1986; Passingham, 1993; Grafman, 1994; 704
Wise et al., 1996). Contemporary lesion mapping studies in large populations of patients with focal 705
brain damage further indicate that selective damage to the lateral prefrontal cortex produces 706
impairments in the ability to acquire and use behavior-guiding rules (causal relations) that are central 707
to higher cognitive functions, including general intelligence (Barbey et al., 2012b), fluid intelligence 708
(Barbey et al., 2012a, 2014a), cognitive flexibility (Barbey et al. 2013), working memory (Barbey et 709
al., 2011; 2012c), and discourse comprehension (Barbey et al., 2014b). In monkeys, damage to 710
ventrolateral prefrontal cortex also impairs the ability to learn causal relations in tasks (Halsband & 711
Passingham, 1985; Murray et al., 2000; Petrides, 1982, 1985).  Most, if not all, tasks that are 712
disrupted following prefrontal cortex damage rely on mental models that capture the causal structure 713
of experience (cf. Passingham, 1993).  714

Further evidence implicating the lateral prefrontal cortex in causal inference is provided by the 715
fMRI literature (for reviews, see Barbey & Patterson, 2011; Patterson & Barbey, 2012). An important 716
study by Satpute and colleagues demonstrates activity within the dorsolateral prefrontal cortex for the 717
processing of causal versus associative relations (Satpute et al., 2005). Selective activity within the 718
dorsolateral prefrontal cortex for causal (rather than associative) inference provides evidence against 719
associationist accounts of causal representation and instead supports the mental models framework. 720

In sum, the reviewed findings indicate that the lateral prefrontal cortex represents causal relations 721
that establish mappings between possible states of the world, providing the links that bind situations, 722
actions and consequences necessary for goal-directed behavior.  These mappings are believed to bias 723
competition in other parts of the brain responsible for task performance (Miller & Cohen, 2001). 724
Thus, signals in the lateral prefrontal cortex guide activity along pathways that connect task-relevant 725
sensory inputs, memories, and motor outputs, which can be naturally represented in the form of 726
mental models of causal relations.  727

7.2. Mental models are iconic 728

The information processing architecture of the lateral prefrontal cortex supports the iconic nature 729
of mental models: the structure of a model corresponds to the structure of what it represents in the 730
visual, spatial, auditory, motor and kinematic domains. The cytoarchitectonic areas that comprise 731
lateral prefrontal cortex are often grouped into three regional subdivisions that emphasize processing 732
of particular information based on their interconnections with specific cortical sites. Ventrolateral 733
prefrontal cortex is heavily interconnected with cortical regions for processing information about 734
visual form and stimulus identity (inferior temporal cortex), supporting the categorization of 735
environmental stimuli in the service of goal-directed behavior. Dorsolateral prefrontal cortex is 736
interconnected with cortical areas for processing auditory, visuospatial and motor information 737
(parietal cortex), enabling the regulation and control of responses to environmental stimuli. Finally, 738
anterolateral prefrontal cortex is indirectly connected (via the ventromedial prefrontal cortex) with 739
limbic structures that process internal information, such as emotion, memory and reward (Fuster, 740
2008; Goldman-Rakic, 1995; Petrides et al., 2012). The lateral prefrontal cortex is therefore 741
connected with virtually all sensory neocortical and motor systems and a wide range of subcortical 742
structures, supporting the iconic nature of mental models in the visual, spatial, auditory, motor and 743
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kinematic domains. The lateral prefrontal cortex integrates information across this broadly distributed 744
set of systems and is known to support higher-order symbolic representations, such as negation 745
(Tettamanti et al., 2008), that go beyond modality-specific knowledge (Ramnani & Owen, 2004). 746

7.3. Mental models represent only what is true 747

A third property of lateral prefrontal cortex function is that it represents directly experienced (i.e., 748
“true”) events and actively maintains these representations over time in a highly accessible form (i.e., 749
storage of information via sustained neuronal activity patterns). The capacity to support sustained 750
activity in the face of interference is a distinguishing feature of the lateral prefrontal cortex. Sustained 751
neural activity within the lateral prefrontal cortex was first reported by Fuster (1973), who 752
demonstrated that neurons within the lateral prefrontal cortex remain active during the delay between 753
a presented cue and the later execution of a contingent response.  Such sustained neural activity often 754
represents a particular type of information, such as the experienced location or identity of a stimulus 755
(di Pellegrino and Wise, 1991; Funahashi et al., 1989; Fuster, 1973; Fuster & Alexander, 1971; 756
Kubota & Niki, 1971) or a particular relation between a stimulus and its corresponding response 757
(Asaad et al., 1998). 758

7.4. Summary 759

In summary, mental models for causal inference critically depend on the lateral prefrontal cortex, 760
and neuroscience evidence indicates that this region extracts goal-relevant features of experience 761
(causal relations or if-then rules), it can construct iconic representations, and they represent only what 762
is true. 763

8. General discussion 764

In Ibsen’s play, Dr. Stockmann sought to prevent further contamination of the public bath facility 765
by alerting the town to the problem. To prevent an outcome is to cause it not to occur, and so he 766
acted in the hope that his causes would have consequences. The meaning of a causal relation 767
according to the model theory concerns possibilities: a cause suffices to bring about the effect, which 768
does not precede the cause; an enabling condition makes such an effect possible; and a preventative 769
action causes the effect not to occur. We have argued that reasoners interpret causal assertions by 770
simulating the situation, i.e., by building a mental model, to which the assertions refer, and then they 771
inspect that model to draw conclusions from it. Their initial mental models reflect intuitive 772
interpretations of causal relations, e.g., their initial model of runoff causes contamination to occur is 773
identical to that of runoff enables contamination to occur, i.e.: 774

 runoff contamination 775
 . . . 776

The first row of the diagram represents a possibility in which runoff occurs concurrently with 777
contamination, and the second row of the diagram represents that other possibilities are consistent 778
with the assertion. The theory therefore explains why reasoners often conflate causes and enabling 779
conditions, i.e., the mental models of the assertions are the same. When prompted to deliberate about 780
alternative possibilities, however, reasoners are able to flesh out the models and can distinguish 781
causes from enabling conditions (Goldvarg & Johnson-Laird, 2001). 782

The model theory is deterministic. It posits that causal assertions are used to build discrete models 783
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of possibilities. The construction of these discrete models excludes continuous probabilistic 784
information. Three overarching phenomena support a deterministic interpretation of causality:  785

•  reasoners can infer causal relations from single observations;  786
•  they distinguish causes from enabling conditions 787
•  they refute causal assertions with single instances.  788

None of these effects is consistent with a probabilistic interpretation of causality. 789

Reasoners make deductions, inductions, and abductions from causal premises. They base their 790
causal deductions on mental models of the premises; they infer conclusions from the possibilities 791
corresponding to those of the premises. Models can include information about the dynamics of 792
forces. The evidence corroborating the model theory shows that individuals succumb to fallacies – 793
illusory inferences – because mental models do not represent what is false in a possibility (Goldvarg 794
& Johnson-Laird, 2001). Causal induction depends on the use of background knowledge to build 795
models that go beyond the information in the premises. And causal abduction is a complex process in 796
which knowledge is used to introduce new causal relations, which are not part of the premises, in 797
order to provide explanations. Explanation takes priority over the nonmonotonic retraction of 798
conclusions and the editing of propositions to eliminate inconsistencies. 799

The evidence from neuroscience strongly implicates lateral prefrontal cortex as the site of causal 800
processing, and corroborates the principal assumptions of the theory.  Just as there are untested 801
behavioral claims of the theory, so too many aspects of causal processing in the brain have yet to be 802
investigated.  Inferences from causal assertions, for example, should yield a time course reflecting the 803
successive activation of linguistic areas and then prefrontal activation – a time course that has been 804
observed in studies of deduction in other domains (Kroger et al., 2008).  Similarly, materials that 805
elicit visual imagery as opposed to spatial representations impede reasoning, because they elicit 806
irrelevant activity in visual cortex (Knauff, Fangmeier, Ruff & Johnson-Laird, 2003).  Analogous 807
effects may also occur in causal reasoning.  Likewise, recent evidence to support the hierarchical 808
organization of lateral prefrontal cortex function may reflect the complexity of causal representations 809
for goal-directed thought and behavior (for reviews, see Ramnani & Owen, 2004; Badre, 2008).  810

In sum, the model theory provides a comprehensive account of causal reasoning: what causal 811
assertions mean, how they are interpreted to build models, how these models underlie deductive 812
conclusions; how they incorporate background information in inductive inferences and abductive 813
explanations.  814
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11. Figure legends 1080

Figure 1 The common-cause and common-effect causal schemas. Reproduced with permission from 1081
Rehder (2003). 1082


