
Physics-Aware Informative Coverage Planning for Autonomous Vehicles

Michael J. Kuhlman1, Student Member, IEEE, Petr Švec2, Member, IEEE, Krishnanand N. Kaipa2,
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Abstract— Unmanned vehicles are emerging as an attractive
tool for persistent monitoring tasks of a given area, but
need automated planning capabilities for effective unattended
deployment. Such an automated planner needs to generate
collision-free coverage paths by steering waypoints to locations
that both minimize the path length and maximize the amount of
information gathered along the path. The approach presented
in this paper significantly extends prior work and handles
motion uncertainty of an unmanned vehicle and the presence of
obstacles by using a Markov Decision Process based approach
to generate collision-free paths. Simulation results show that the
proposed approach is robust to significant motion uncertainties
and reduces the probability of collision with obstacles in the
environment.

I. INTRODUCTION

There are many applications that need persistent monitor-
ing of a given area, requiring repeated travel over the area to
gather new information. Unmanned vehicles are well-suited
for performing such tasks, but require automated planning.
Moreover, certain locations in the area are designated as key
locations and hence are more valuable from the information
gathering perspective. Surveillance platforms in persistent
monitoring tasks vary from aerial vehicles to surface vehicles
(e.g., boats) depending upon the application.

Consider the use of an unmanned surface vehicle (USV)
conducting harbor patrols to detect intruders. It is reasonable
to assume that possible intruders will enter the harbor (Fig.
1(a)) from certain locations such as harbor entrances and
shipping channels. This suggests the use of an “information
value map” (see Fig. 1(b)) that signifies how some regions
are more dynamic or interesting and should be observed more
often. Though the underlying technical approach developed
in this paper is intended for application to USV harbor
patrolling, it is applicable to many different domains.

The problem of traveling over an area and gathering
information can be viewed as a coverage planning problem
[1]. There are many practical and theoretical challenges in
solving the coverage planning problem in the context of
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Fig. 1. (a) An example of a harbor patrol environment with multiple entry
points for intruders (A harbor in Hollywood, FL; source: Map data c©2013
Google). (b) Obstacle regions (black) and the “information value” map.

regions of varying information value. It is possible for static
obstacles to exist around the harbor, such as shoals. Further,
windy conditions or swift currents can contribute significant
uncertainty to the USV’s location and motion, compounding
the problem. This suggests using a physics-aware planner
that is capable of planning under motion uncertainty while
avoiding obstacles in the environment.

We begin with a short review of existing techniques for
informative path planning for coverage planning problems.
Branch and bound search was used in [2] to maximize the
“informativeness” of a plan. In [3], Fisher information matri-
ces, combined with rapidly-exploring random trees (RRTs),
was used for information-rich path planning.

Persistent sensing approaches [4] model the information
uncertainty in the environment as a field defined over a set
of locations and assume that the field increases linearly at
locations beyond the sensing range of the robot and decreases
linearly at locations within the robot’s range. Control-based
approaches involving locational optimization include [5]–
[7]. There also exist information-theoretic approaches that
specify which areas are of interest and attempt to maximize
the informativeness of a plan. In [8], agents followed the
gradient of mutual information to minimize total entropy. In
[9], a data structure called a probabilistic quad tree was pro-
posed and used to provide a tree structure to the total entropy
in the environment during target search. Other examples of
information-theoretic coverage planning work include [10],
[11]. Another approach to solve the problem of interest is
direct planning using graph search. Conceptually, one could
pick areas of interest in the environment and find the optimal
path connecting fixed nodes, which is equivalent to solving
the Traveling Salesman Problem (TSP). While TSP is an
NP-complete problem, many approximate solutions exist and
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Algorithm 1 COMPUTEINFORMATIVEPATH(Xd,O, φ)

Require: A discrete grid Xd, an obstacle region O ⊂ Xd, and a
sensor function φ.

Ensure: An informative coverage path τ .
1: Run informative path shaping algorithm ICPS(Xd, φ) [5] to

compute an informative coverage path τ that ignores obstacles
O.

2: Run FINDCOLLISIONFREEWAYPOINTS(τ ,O) to find collision-
free neighboring waypoints of the waypoints that are inside O.

3: Run the PBVI algorithm [13] to compute (Φpi , πpi) of each
waypoint pi ∈ τ . Update the informative coverage path τ be-
tween pi and its predecessor pi−1 and add additional waypoints
along the mode path connecting pi and pi−1.

4: Run ELIMINATEWAYPOINTS(τ, φ) to remove redundant (too
close to other waypoints) or uninteresting waypoints (cover a
region of the environment where little information is present).

5: Run ICPS MDP(τ, φ) algorithm to smooth the informative
coverage path.

6: Run ELIMINATEWAYPOINTS(τ, φ) to remove redundant or
uninteresting waypoints.

7: Run ICPS MDP(τ, φ) algorithm to smooth the informative
coverage path.

8: return τ .

Algorithm 2 ICPS MDP(τ, φ)

Require: An informative coverage path τ and a sensor function φ.
Ensure: An informative coverage path τ .
1: while ||u|| > ε do
2: for all pi ∈ τ do
3: Compute Voronoi-like partition Vi using k-nearest-

neighbor (KNN) algorithm for pi.
4: Run PBVI to generate (Φpi , πpi).
5: Integrate the system dynamics of ṗi = ui = f(pi) using

(4) and the Euler approximation [13], i.e. pk+1,i = pk,i+
uk,i ·∆tk

6: end for
7: k ← k + 1
8: end while
9: return τ

Coverage plan τ is executed by starting at one waypoint
pi−1, and using the feedback plan πpi . Once the vehicle
reaches the goal state of pi, then the planner follows the next
waypoint feedback plan πpi+1

. It is important to note that for
Alg. 4, waypoint statistics are correlated with their neighbors,
so eliminating too many waypoints at once may cause entire
sections of the path to disappear. We also typically assume
that q = r.

D. Calculating Plan Execution Success Probabilities

Calculating the probability of collision while executing
coverage plan τ is a nontrivial task, because all possible
trajectories leaving from one waypoint pi to get to the next
waypoint pi+1 must be considered. Given the MDP and its
solution, we define a Markov Chain MC = (Xd, T ) on Xd

with transition probabilities given by Θ(x, π(x)), defining
state transition matrix T = [Ti,j ], where Ti,j = Pr[xk+1 =
j|xk = i]. We further assume that Θ satisfies the property
that if xi ∈ O ∪ Xgoal, then Ti,j = δij , where δij is the
Kronecker delta function. In other words, vehicles that enter
goal or obstacle locations are forever trapped. The stationary

Algorithm 3 FINDCOLLISIONFREEWAYPOINTS(τ,O)

Require: An informative coverage path τ , and an obstacle region
O ⊂ Xd.

Ensure: An informative coverage path τ .
1: Compute OD by dilating O using the convolution mask 13×3,

or a 3× 3 matrix of ones.
2: for all pi ∈ τ do
3: if pi ∈ OD then
4: Eliminate pi if the local direction of τ does not change

more than 5 degrees, i.e., if |θi| < 5◦. Here cos θi =
~pi+1,i−1·~pi,i−1

||~pi+1,i−1||||~pi,i−1||
and ~pi,j = pi − pj is the vector

difference of pj and pi.
5: else
6: if ∃ an adjacent waypoint pj 6∈ OD then
7: Apply a variant of the bisection numerical method to

push pi along the line segment pi, pj the minimum dis-
tance until pi 6∈ OD , or the length of the segment being
divided decreases below a user-specified threshold.

8: else
9: Search for a waypoint pj 6∈ OD along the line seg-

ments pi, pi−1 and pi, pi+1 using the Van Der Corput
sequence [13] until the first pj 6∈ OD is found or
the mesh of points searched decreases below a user-
specified threshold.

10: end if
11: if pj 6∈ OD is not found then
12: Eliminate pi.
13: end if
14: end if
15: end for
16: return τ .

Algorithm 4 ELIMINATEWAYPOINTS(τ, φ)

Require: An informative coverage path τ and a sensor function φ.
Ensure: An informative coverage path τ .
1: Calculate mass and area of each waypoint’s pi ∈ τ Voronoi

partition [13] with respect to the sensor function φ.
2: Select q, r ∈ {0, 1, 2, . . . , |τ | − 1}.
3: Sort the waypoints of the informative coverage path τ in

ascending order with respect to their associated mass and area.
4: Keep any waypoint that exceeds the qth order mass statistic and

the rth order area statistic.
5: return τ .

distribution Y of T (satisfying Y = Y T ) can be used to
calculate the probability of success of a coverage plan being
executed. Y is a probability mass function in the belief space
of Xd, i.e., Y (i) = Pr[X = xi] ∀xi ∈ Xd. The event {xi ∈
O} denotes that a collision occurred, while the event {xi ∈
Xgoal} denotes a successful arrival at the goal waypoint.
Given Y , the probabilities of these events can be calculated.
We approximate Y numerically by executing the fixed point
method Yk+1 = YkT until it converges (T is sparse). Note
that Y exists but is not necessarily unique. However, we are
most concerned with the limiting distribution Y when Y0 is
a delta distribution centered at the previous waypoint. P (i)

succ

is the probability of reaching pi+1 from pi without collision
and Psucc is the probability of successfully executing the
coverage plan τ , i.e., Psucc =

∏N
i=1 P

(i)
succ.






