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This paper discusses the first experiment in a series designed to systematically understand the 
different characteristics of an automated system that lead to trust in automation. We also discuss a 
simple process model, which helps us understand the results. Our experimental paradigm suggests 
that participants are agnostic to the automation’s behavior; instead, they merely focus on alarm 
rate. A process model suggests this is the result of a simple reward structure and a non-explicit 
cost of trusting the automation. 
 

INTRODUCTION 

 

Trust in automation is important because it 
guides understanding of user interactions with sys-
tems. Trust has been linked with user reliance on 
automation; it has also been connected with differ-
ent types of errors such as misuse, disuse, and abuse 
(Parasuraman & Riley, 1997). Discussions of trust 
in automation inevitably involve its performance in 
the environment (Lee & See, 2004; Parasuraman & 
Riley, 1997; Wickens & Dixon, 2007; Yeh & 
Wickens, 2001). This performance is generally 
communicated in terms of correctness (Muir & 
Moray, 1996; Parasuraman & Miller, 2004; 
Wiegmann, Rich, & Zhang, 2001), but it is partly 
dependent on the exact types of behaviors that the 
automation exhibits (Dixon, Wickens, & McCarley, 
2007; Meyer, 2001), such as the types of errors it 
makes. 

In fact, automation performance can be 
characterized in terms of signal detection theory 
(SDT; Green & Swets, 1966). From this perspec-
tive, correct behaviors by the system are analogous 
to hits and correct rejections, whereas errors can be 
identified as misses or false alarms (FA). For exam-
ple, computer-aided diagnosis (CAD) helps radiolo-
gists identify tumors or other diseases in the radiol-
ogy industry. But what happens when CAD fails to 
identify a tumor (miss), or tells the radiologists that 
a tumor is present when it is not (false alarm)? The 
cost of failing to identify cancer early is often times 
lethal; while prescribing unneeded treatment is cost-
ly and often times also dangerous. The dangers of 
misuse, disuse, or abuse (Parasuraman & Riley, 
1997) of automation are clear. Paramount to under-

standing what drives these sources of error is trust 
calibration.  

Dixon et al. (2007) explored differences in 
user behaviors closely tied with trust calibration. 
They compared no automation, perfect automation, 
and two types of error-prone systems. One was 
miss-prone which had a 20% hit rate, but exhibited 
perfect FA behavior (0% FA). The other system 
was FA-prone automation, that system made 80% 
FA, but exhibited perfect hits (100% hits). They 
measured reliance (in our example: agreeing when 
CAD identifies a tumor), as well as, compliance (in 
our example: agreeing with CAD when it suggests 
there is no tumor). Dixon et al. (2007) found that 
FA-prone automation negatively affects both reli-
ance and compliance while miss-prone automation 
only affected compliance.  

While we also manipulated misses and false 
alarms in our research, we were more interested in 
how users would change their behaviors when faced 
with equally imperfect types of automation. Are 
participants more attuned to misses than FA? What 
dictates whether a user will start paying attention to 
FA over hits? SDT allows for the calculation of 
sensitivity (d’). Sensitivity is a measure of the com-
bined rate of hits and FAs of a system; it communi-
cates the accuracy of the system in identifying the 
signal from the noise. However, it is possible to 
create equally sensitive systems with vastly differ-
ent behavior patterns.  

Table 1 Each system presented here represents a condition in our 
experiment. 
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We designed four different automated sys-
tems. All four systems were equally sensitive (d’ = 
2.32), and ranged from low hit rate/low false alarm 
rate, to high hit rate/high false alarm rate (see Table 
1). This approach allows us to identify what charac-
teristic of the system users are attuned to by analyz-
ing the effects of each type of equally sensitive sys-
tem on user’s patterns of responses to the automa-
tion (Table 2). 

  
Cognitive Model 

 
In addition to conducting an experiment we 

also built a process model of the task using the 
ACT-R (Adaptive Control of Thought-Rational) 
cognitive modeling architecture (Anderson, 2007). 
ACT-R is a theoretically grounded cognitive archi-
tecture that allows researchers to create process 
models that are able to mimic human cognition.  
ACT-R allows researchers to model the internal 
process which are being used by a user as they per-
form a task. This approach has been used in the past 
to better understand other cognitive processes such 
as errors, vigilance, and driving (Gunzelmann, Byr-
ne, Gluck, & Moore Jr, 2009; Salvucci, 2006; 
Trafton, Altmann, & Ratwani, 2011). ACT-R is di-
vided into several modules, which can be equated to 
different parts of information processing theory. For 
this task we primarily took advantage of one of the 
learning components of ACT-R (utility learning) 
which is based on the difference learning equation 

(Fu & Anderson, 2006). It is also very similar to the 
Rescorla-Wagner learning rule (Rescorla & Wag-
ner, 1972). 

 
METHODS 

 

Participants 

  
Sixty George Mason University undergradu-

ate students participated in this study. They received 
course credit for their participation. 
 
Task and Materials  

 

Participants were told that they were inter-
acting with a simulated mining environment. They 
engaged in a dual-task paradigm in which they had 
to operate a drill and send the minerals they collect-
ed to a warehouse by monitoring and responding to 
the appropriate color of a cart in a secondary hidden 
window. They were assisted by an automated cue-
ing system. The main task consisted of tracking a 
moving box with the mouse as it traveled around 

Table 1 

Breakdown of Automated systems 

System True Positive Rate False Positive Rate 
91/15 97% 15% 
85/10 85% 10% 
75/5 75% 5% 
67/3 67% 3% 

Table 2 

Hypothesis Table 

 If Participants are sensitive to… 

 Hits FA Misses d' Alarms 

Cued Switch (CS) More CS with 
higher hits 

Less CS with 
higher FA 

Less CS 
with lower 

hits 

No pat-
tern 

More CS with 
higher Alarm rates 

Uncued Switch (US) 
Less US higher hits More CS with 

higher FA 

More  US 
with lower 

hits 

No pat-
tern 

Less US with low-
er Alarm rates 

Reaction Time to Cue Faster with higher 
hits 

Slower with 
higher FA 

Slower with 
higher hits 

No pat-
tern No Pattern 

Ignored Cue (IC) Less IC with higher 
hits 

Increased IC 
with higher 

FA 
No Pattern No pat-

tern No Pattern 

Table 2 Cued switches represent checking the cart whenever the automation suggested. Uncued switches are when users 
switched without being prompted by the automation. Ignored cues are when the automation suggested switching but users did not 
do so. Finally, reaction time is the time it took the participant to switch after the automation suggested that they switch 



the screen (the drill), while having to monitor a sec-
ondary hidden window for a changing color box 
(the cart) as a secondary task. Participants switched 
windows by clicking on any one of four buttons lo-
cated on the corners of the screen. The buttons 
switched back and forth between both windows.  

The goal of the task was to maximize the 
amount of minerals collected. Keeping the mouse 
inside the moving box accrued minerals at a rate of 
3 minerals per second. Additionally, participants 
had the opportunity of earning 100 extra minerals 
by responding, using the spacebar, whenever the 
box in the secondary window turned red; however, 
if they pressed the spacebar when it was blue they 
lost 50 minerals. Participants had to switch to the 
cart view before making a response. The cost of in-
correct response was set up in order to ensure par-
ticipants actually looked at the cart before respond-
ing.  

An automated system alerted participants of 
a cart that was ready by chiming an audible tone. 
Participants were instructed that the tone was indic-
ative of the automated system sensing the cart was 
ready to go. However, this automated system was 
not perfect in that while keeping d’ constant at 2.32, 
we manipulated the exhibited behavior of the auto-
mated system as shown in Table 1.  For example, in 
the 91/15 condition the automated system was accu-
rate in sounding the cue to a full cart 91% of the 
time (hit), however, 15% of the time that the cart 
was not full it also presented the cue (FA).  

The task ran on a Dell laptop (Intel i7-3520 
@ 2.90 MHz, 4GB RAM, Win7 32bit) with a Dell 
P2210 22” monitor at 1680 x 1050 resolution. 
 
Design and Procedure  

 

This was a between subjects design. Partici-
pants were first told their goal in the task (to max-
imize minerals) and then exposed to the interface 
through screenshots. They were then introduced to 
the automated system and the possible behaviors it 
could exhibit (hits, misses and FA) through a brief 3 
trial introductory session. All participants first expe-
rienced a hit, then a false alarm, and finally a miss. 
After this brief introduction, participants engaged in 
a 3 minute training session. All participants inter-
acted with an 80% hit rate and 30% false alarm rate 
automation during the training. Participants then 

began the main task and the experimenter exited the 
room. After the main session was over, participants 
had the opportunity to provide comments, after 
which they were debriefed and thanked for partici-
pating.  

We measured how many times participants 
exhibited each of 3 different types of behaviors. 
Cued switches are times in which participants 
switched after an alarm had sounded. Uncued 
switches are any times that participants switched to 
the cart without any alarm from the automated sys-
tem. Ignored Cues were any time that the alarm was 
sounded by the automation but the participant did 
not respond. Finally, Reaction Time was also meas-
ured as the time between the automation alarm and 
the time when the participant clicked the button to 
switch, it was only calculated for cued switches.  
 

RESULTS AND DISCUSSION 

 
For ease of understanding we will discuss 

conditions in terms of their hit rate and false alarm 
rate, e.g. the condition with 91% hits and 15% false 
alarms will be referred to as condition “91/15”. We 
compared mean Cued Switch behavior over the dif-
ferent condition using a one way ANOVA. There 
was a main effect for condition, F(3, 56) = 17.98, 
MSE = 203, p <.0.001, η2 = .49. Tukey’s HSD test 

shows significant differences between all the condi-
tions except for between condition 85/10 - 91/15, 
and 67/3 - 75/5. As can be seen in Figure 1 there 
was an overall trend of increasing cued switches 
with increasing alarm (Hit + FA) rates. Had the par-
ticipants been impacted by the increasing number of 
FA, we would see a decreasing trend of switching to 
the cue. However, this trend does provide some 
support for participants being impacted by hits just 
overall alarm rate, which we discuss further along 
in the paper. 



 
Figure 1 Bars depict empirical results. Error bars show a 95% 
confidence interval. Model fits are depicted by the black 
points. 

We were also interested in analyzing the 
switching behavior when there was no automation 
cue. A one-way ANOVA revealed no significant 
differences in mean Uncued switches based on con-
dition, F(3, 56) = .35, MSE = 1501.4, p > .05 (Error! 

Reference source not found.). This indicates that partic-
ipants were not attuned to misses, if they were we 
would see an increasing trend of uncued switches as 
the hit rate decreased. 

 
Figure 2 Bars depict empirical results. Error bars show a 95% confi-
dence interval. Model fits are depicted by the black points. 

We also explored how often participants re-
sponded to the alarm. The overall mean response 
rate to alarm was 0.968, and did not differ by condi-
tion (Table 3). The response rate results suggest that 
participants were merely responding when they 
heard the cue from the automation. Reaction time 
showed no effect by condition, F(3, 56) = .552, 
MSE = 119373, p > .05. This also suggests partici-
pants focused on the overall alarms, because if par-
ticipants had focused on hits, they should have re-

acted faster overall when they heard the alarm, yet 
they did not. Finally, Ignored Cues showed no sig-
nificant difference either, F(3, 56) = 1.02, MSE = 
38.77, p > .05. . While null results cannot be inter-
preted strongly, this also suggests that participants 
were not impacted by FA, as we would expect to 
see an increasing trend in ignoring the cue as FA 
rates increased. 

 
Table 3 

Mean Response rate and SD 

Condition Mean SD 
91/15 .99 .02 
85/10 .94 .15 
75/5 .95 .2 
67/3 .99 .02 

Table 3 This table depicts the response rate to alarms in each 
condition. 

Process Model 

 

Description. As mentioned earlier this mod-
el primarily took advantage of the utility learning 
mechanism in ACT-R. The model performs the 
same task as the participants. It also has to alternate 
between two windows that are only visible one at a 
time. It generally maintains attention on the primary 
screen, but it has two mechanisms for switching to 
the secondary screen. It can either decide to wait for 
the alarm and then switch, or it can decide to switch 
without hearing an alarm. Initiating a switch sets off 
a series of actions that lead to switching to the hid-
den secondary window. Once on the secondary 
screen it moves attention to the color box that repre-
sents the cart and responds accordingly. At this 
point if the cart is full, a reward is issued which af-
fects the whole model.  

The reward follows a differential propaga-
tion mechanism in which actions occurring more 
proximally in time receive a higher reward. This 
reward propagation is calculated using a mathemat-
ical formula which essentially works like the 
Rescorla-Wagner learning rule (Rescorla & Wag-
ner, 1972). As such the decision to either switch or 
wait for the alarm receives a small reward when the 
secondary window displays a full cart, and it is in 
this way that the model learns to either to switch on 
its own or wait for the alarm. Details of the learning 
equation can be found in Fu & Anderson, (2006). 



Model Fit. The model fit the Cued Switches 
data strongly, R2 = .98 and RMSD = 3.5, and the 
Uncued Switches well, R2 = .79 and RMSD = 13.4.    

Discussion. The cognitive model helps us 
understand participants’ behavior. The simple re-
ward system changes the likelihood that different 
decision will be made as the model learns about the 
automation. In this case the cart being ready (red) 
rewarded whichever choice the model had made. In 
all the conditions the alarm was correct more often 
than not, as such the choice to wait for the alarm 
received more rewards and continued to be rein-
forced. Thus we see the same trend of cued switches 
in the model as in the participant data.  

However, switching without a cue was also 
rewarded often enough that the model (and also the 
participants) continued to exhibit this behavior. The 
lack of cost is likely a part of the reason why we 
saw no tuning to the false alarm rate either. There 
was no significant penalty for the automation incor-
rectly cueing a switch, thus its mistakes did not af-
fect participants trust enough to change their behav-
ior. To look at the results another way, because 
there was no tangible cost to switching to the cart 
without a cue the model (and participants) contin-
ued to do so regardless of the automation character-
istics. 

 

CONSIDERATIONS 

  
The model also makes some interesting as-

sumptions about the process used which warrant 
exploration. The current model does not use a de-
clarative component in learning about the system. It 
is generally supported that as people engage in trust 
development they form memories and take previous 
experiences with the system into consideration 
when making judgments about trust (Lee & See, 
2004). ACT-R is able to accumulate memories and 
based on frequency of use, it makes those memories 
more or less available (Anderson, 2007, pp. 95–

104). However, the current model does not current-
ly employ that module. The fact that we were able 
to get strong fits without explicitly modeling the 
memory component of trust does suggest that at 
least for this task it may not be part of the process. 
Another possibility is that memory for this task is a 
reflective component, i.e. participants only form 
explicit memories of their trust with regards to the 

automation after they are done with the task, in par-
ticular if they are asked about trust. 

Another interesting issue concerns the dif-
ference between explicitly or implicitly communi-
cating misses. In the current experimental design, 
participants are not explicitly notified of automation 
misses. Making miss information more explicit may 
result in more tuning to the miss behavior of the au-
tomation. If participants are attuned to misses, it 
would result in a pattern of increasing uncued 
switches as hit rate falls while maintaining a con-
stantly high cued switch response.  

We are currently exploring the effects of in-
creasing the cost of switching to check the cart as 
we believe this to be the main driver for participants 
largely ignoring the automation behavior.  
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