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A multi-state system with multi-state components is a model of sys-
tems, where performance, capacity, or reliability levels of the systems
are represented as states. It usually has more than two states, and thus
can be considered as a multi-valued function, called a structure func-
tion. Since many structure functions are monotone increasing, their
multi-state systems can be represented compactly by edge-valued multi-
valued decision diagrams (EVMDDs). This paper presents an analy-
sis method of multi-state systems with multi-state components using
EVMDDs. Experimental results show that, by using EVMDDs, struc-
ture functions can be represented more compactly than existing methods
using ordinary MDDs. Further, EVMDDs yield comparable computa-
tion time for system analysis. This paper also proposes a new diagnosis
method using EVMDDs, and shows that the proposed method can infer
the most probable causes for system failures more efficiently than con-
ventional methods based on Bayesian networks.

Keywords: Multi-state systems with multi-state components; fault tolerant sys-
tems; structure functions; system analysis and diagnosis based on decision dia-
grams; EVMDDs.

1 INTRODUCTION

Fault-tolerant techniques have been recently applied to various systems, such
as computer servers, telecommunication equipment, water, gas, and electrical

∗ A preliminary short version of the results of this paper was published at the 42nd International
Symposium on Multiple-Valued Logic [14].
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2 SHINOBU NAGAYAMA et al.

power distribution networks. These systems usually continue working with
an acceptable or degraded performance level even if a fault occurs. Thus,
unlike traditional systems that can be modeled by binary-state representa-
tions, these systems cannot be modeled by only two states: working and fail-
ure. In addition, with advances in technology, each component in a system
also becomes fault tolerant. To model such a system, a multi-state system
with multi-state components is often used [16, 20, 22].

Many fault-tolerance systems are designed by multiplexing components.
However, multiplexing noncritical components to design a fault tolerant sys-
tem is neither efficient nor cost effective. Also, if critical components are not
sufficiently tolerant to faults, fault tolerance of the system is not sufficient.
Thus, identifying which components are critical in achieving fault tolerance
of the system is important, especially for safety-critical systems, such as flight
control and nuclear power plant monitoring systems [2].

To identify critical components and system weaknesses, analyzing
multi-state systems again and again by various assessment measures is
required [16]. Among them, assessing the probability of each state of a multi-
state system is essential to the design of a dependable fault tolerant sys-
tem [20,22]. Various methods to analyze multi-state systems efficiently have
been proposed. Many existing methods are based on the Markov model [3].
However, they are impractical for a large multi-state system, because their
time complexity is O(m3n), where m is the number of states, and n is
the number of components in a multi-state system [2]. To analyze large
multi-state systems efficiently, methods based on binary decision diagrams
(BDDs) [1,2,4,22] and multi-valued decision diagrams (MDDs) [8,15,19,20]
have attracted much attention.

Since multi-state systems with multi-state components can be consid-
ered as multi-valued functions, called structure functions, they can be rep-
resented by BDDs and MDDs. Probabilities of states can be computed using
BDDs and MDDs where the time complexity is proportional to the number
of nodes in a decision diagram. BDDs represent structure functions by con-
verting multi-valued variables and function values into binary vectors using
one-hot encoding [22]. By using BDDs, various analysis methods that are
well-established for binary-state systems can be directly applied to multi-
state systems. However, converting to binary vectors produces many binary
variables and many binary functions, and results in large BDDs. Thus, the use
of MDDs is more natural and more promising for larger multi-state systems.

For recent large and complex multi-state systems, however, decision dia-
grams that represent systems more compactly are desired. Since structure
functions are usually monotone increasing [19], they can be represented com-
pactly using edge-valued MDDs (EVMDDs) [13]. However, analysis and
diagnosis of multi-state systems using EVMDDs are not straightforward. As
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MULTI-STATE SYSTEMS 3

far as we know, analysis and diagnosis methods using EVMDDs have never
been reported. Thus, in this paper, we propose efficient analysis and diagnosis
methods using EVMDDs.

This paper is organized as follows: Section 2 defines multi-state systems,
and EVMDDs. Section 3 shows representations of structure functions using
MDDs and EVMDDs, and in Section 4, we present an analysis method using
EVMDDs. Experimental results for the analysis method are shown in Sec-
tion 5. Section 6 proposes a new EVMDD-based diagnosis method. And, we
make a few concluding remarks in Section 7.

2 PRELIMINARIES

This section defines multi-state systems, structure functions, and MDDs to
represent structure functions.

2.1 Multi-State Systems and Structure Functions

Definition 1. A multi-state system is a model that represents the perfor-
mance, capacity, or reliability levels of the systems as states. It usually has
more than two states, and consists of one or more components that take multi-
state as well.∗

Definition 2. We assume that a state of a multi-state system depends only on
the states of components in the system. Then, a system with n components
can be considered as a multi-valued function f (x1, x2, . . . , xn) : R1 × R2 ×
. . . × Rn → M, where each xi represents a component with ri states, Ri =
{0, 1, . . . , ri − 1} is a set of the states, and M = {0, 1, . . . , m − 1} is a set of
the m system states. This multi-valued function is called a structure function
of the multi-state system.

Definition 3. A multi-valued function f (x1, x2, . . . , xn) is a monotone
increasing function iff for any xi , α ≤ β, where α, β ∈ Ri implies

f (x1, x2, . . . , xi−1, α, xi+1, . . . , xn)

≤ f (x1, x2, . . . , xi−1, β, xi+1, . . . , xn).

In many applications, the states of a system and its components are totally
ordered. That is, the deterioration of a component in the system deterio-
rates (or preserves) the whole system. Thus, structure functions are usually

∗ It is also called a multi-state system with multi-state components.
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(a) Multi-state system.
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(b) Structure function.

FIGURE 1
Multi-state system for an electrical power distribution and its structure function.

monotone increasing when a value is assigned to each state in ascending order
(i.e. the worst state is 0 and the best state is m − 1 or ri − 1).

Example 1. Figure 1(a) shows a multi-state system for an electrical power
distribution system. In this figure, the transformer x1 and the power plants
x2, x3, x4 have three states which correspond to supply levels: 0 (breakdown),
1 (partial supply), and 2 (full supply). And, the system has six states which
correspond to the percentage of area of a town that is blacked out: 0 (com-
plete blackout), 1 (90% blackout), 2 (60% blackout), 3 (30% blackout), 4
(10% blackout), and 5 (0% blackout).

In this way, by assigning a value to each state in ascending order, we
obtain the 6-valued structure function f partially shown in Figure 1(b). This
is a monotone increasing function. Note that a complete specification of this
function can be determined by the function’s representation as an MDD or
EVMDD, as discussed in the next section.

2.2 Multi-Valued Decision Diagrams

Definition 4. A multi-valued decision diagram (MDD) is a rooted directed
acyclic graph representing a multi-valued function f . The MDD is obtained
by repeatedly applying the Shannon expansion to the multi-valued func-
tion [7]. It consists of non-terminal nodes representing sub-functions
obtained from f by assigning values to certain variables. It also has termi-
nal nodes representing function values. Each non-terminal node has multiple
outgoing edges that correspond to the values of multi-valued variable. The
MDD is ordered; i.e., the order of variables along any path from the root
node to a terminal node is the same. When an MDD represents a function for

281i-MVLSC˙V3 4
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FIGURE 2
MDD and EVMDD for the structure function.

which multi-valued variables have different domains, it is a heterogeneous
MDD [11]. In the following, a heterogeneous MDD is also denoted simply as
an MDD.

Definition 5. An edge-valued MDD (EVMDD) [13] is an extension of
the MDD, and represents a multi-valued function. It consists of one termi-
nal node representing 0 and non-terminal nodes with edges having integer
weights; 0-edges always have zero weights. In an EVMDD, the function value
is represented as the sum of weights for edges traversed from the root node
to the terminal node.

Example 2. Figures 2(a) and (b) show an ordinary MDD and an EVMDD
for the structure function of Example 1. For readability, some terminal nodes
in the MDD are not combined.

3 MDDS AND EVMDDS FOR STRUCTURE FUNCTIONS

This section derives upper bounds on the number of nodes in an MDD and an
EVMDD for a structure function. For simplicity, in the following theorems,
we assume that all components xi in a system have the same number r of
states (i.e., all variables xi have the same domain size). However, extending
our results to a case where all variables xi have different domain sizes is
straightforward.

Theorem 1. For a structure function, the number of nodes in an MDD is at
most

U BM (m, n, r ) = rn−l − 1

r − 1
+ mrl

,

281i-MVLSC˙V3 5
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FIGURE 3
Partition of an MDD.

where l is the largest integer satisfying rn−l ≥ mrl
, m is the number of system

states, n is the number of components, and r is the number of states in all
components.

Proof. Suppose that an MDD is partitioned into two parts: an upper part and
a lower part, as shown in Figure 3. In this case, the lower part represents
l-variable multi-valued functions, and the upper part represents the function
that chooses one from them. The upper part has the maximum number of
nodes when it forms a complete multi-valued tree. The number of nodes in the
complete multi-valued tree is 1 + r + r2 + . . . + rn−l−1. Thus, the maximum
number of nodes in the upper part is

rn−l − 1

r − 1
. (1)

The lower part has the maximum number of nodes when it represents all
l-variable multi-valued functions. Since the total number of l-variable multi-
valued functions is

mrl
, (2)

this is the maximum number of nodes in the lower part including terminal
nodes. From (1) and (2), the number of nodes in the MDD is at most

rn−l − 1

r − 1
+ mrl

.

The number of multi-valued functions that can be represented in the lower
part does not exceed the number of functions that can be chosen by the upper
part: rn−l . Therefore, we have the relation rn−l ≥ mrl

.

281i-MVLSC˙V3 6



MULTI-STATE SYSTEMS 7

Theorem 1 shows that an upper bound for an MDD depends only on m,
n, and r . It is independent of monotonicity of structure functions. Although
this is an upper bound over all MDDs, it is a tight upper bound for monotone
increasing functions, since multi-terminal decision diagrams cannot represent
monotonicity of functions compactly [12]. In many applications, structure
functions are usually monotone increasing. Thus, decision diagrams suitable
for monotone functions are preferable. Since EVMDDs can represent mono-
tone functions compactly, EVMDDs are preferable for many monotone struc-
ture functions.

Definition 6. Let N0 be the set of nonnegative integers, and let p ∈ N0. An
integer function f (X ) : N0 → N0 such that 0 ≤ f (X + 1) − f (X ) ≤ p and
f (0) = 0 is an Mp-monotone increasing function on N0. That is, an Mp-
monotone increasing function f (X ) satisfies f (0) = 0, and increasing X by
one increases the value of f (X ) by at most p. p is called the increment value.

A monotone multi-valued function can be converted into an Mp-
monotone increasing function by considering the set of multi-valued vari-
ables xi as an r -valued vector:

X = (xn, xn−1, . . . , x1)r ,

and EVMDDs for monotone multi-valued functions have the same complex-
ity as EVMDDs for Mp-monotone increasing functions [13]. In this paper,
Mp-monotone increasing functions obtained in this way from n-variable
multi-valued functions are called n-variable Mp-monotone increasing func-
tions.

In the following, we derive an upper bound of an EVMDD for an n-
variable Mp-monotone increasing function. To derive an upper bound, we
begin by defining a (p + 1)-valued 0-preserving function, and show a lemma
on the number of distinct n-variable Mp-monotone increasing functions.

Definition 7. An n-variable multi-valued function h : {0, 1, . . . , r − 1}n →
{0, 1, . . . , p} such that h(0, 0, . . . , 0) = 0 is an n-variable (p + 1)-valued
0-preserving function. This is an extension of the 0-preserving function for
logic function [18].

Lemma 1. The number of distinct n-variable Mp-monotone increasing func-
tions is (p + 1)rn−1.

Proof. Let h(Y ) be an n-variable (p + 1)-valued 0-preserving function,
where Y = (yn−1 yn−2 . . . y0)r . For each h(Y ), there exists an n-variable

281i-MVLSC˙V3 7
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Mp-monotone increasing function

f (X ) =
X∑

Y=0

h(Y ).

Conversely, for any given n-variable Mp-monotone increasing function
f (X ), there exists a (p + 1)-valued 0-preserving function. The number of
different h’s is (p + 1)rn−1. Therefore, we have the lemma.

Theorem 2. For an n-variable Mp-monotone increasing function, the num-
ber of nodes in an EVMDD is at most

U BE (n, p, r ) = rn−l − 1

r − 1
+

l∑
i=0

(p + 1)r i −1 − l,

where l is the largest integer satisfying rn−l ≥ (p + 1)rl−1, p is the increment
value, and r is the number of component states.

Proof. Suppose that an EVMDD is partitioned into an upper part and a
lower part, as shown in Figure 3. In this case, the lower part represents Mp-
monotone increasing functions having fewer than or equal to l variables, and
the upper part represents the function that chooses one from them. Since the
upper part has the maximum number of nodes when it forms a complete
r -valued tree, its maximum number of nodes is the same as (1).

The lower part has the maximum number of nodes when it represents all
Mp-monotone increasing functions with fewer than or equal to l variables.
From Lemma 1, the total number of functions except for the zero constant
function is

l∑
i=1

((p + 1)r i −1 − 1) =
l∑

i=1

(p + 1)r i −1 − l (3)

This is the maximum number of nodes in the lower part excluding the
terminal node. Thus, by summing (1), (3), and 1 (for the terminal node), we
have the theorem. The number of Mp-monotone increasing functions that
can be represented in the lower part does not exceed the number of functions
that can be chosen by the upper part. Therefore, we have the relation
rn−l ≥ (p + 1)rl−1.

281i-MVLSC˙V3 8



MULTI-STATE SYSTEMS 9

Theorem 2 shows that the upper bound for an EVMDD depends on the
value of p, not the number of system states m. Thus, even if m is large,
EVMDDs have a small number of nodes when the value of p is small. In the
future, systems will become more complex, and thus, m will become larger.
For such systems, MDDs require many nodes. On the other hand, EVMDDs
can represent such systems compactly if the value of p is small.

4 ANALYSIS METHODS USING MDDS AND EVMDDS

This section formulates a problem of system analysis, and then presents an
algorithm to solve the problem using EVMDDs.

Definition 8. The probability that a structure function f has the value
s is denoted by Ps( f = s), where s ∈ {0, 1, . . . , m − 1}. The probability
that a component xi has the value c is denoted by Pc(xi = c), where c ∈
{0, 1, . . . , ri − 1}.

Problem 1. Given a structure function f of a multi-state system and the
probability of each state of each component in the system Pc(xi = c), com-
pute the probability of each state of the multi-state system Ps( f = s).

In this problem, we assume that the probabilities of all component states
are independent of each other.

4.1 Analysis Method Using MDDs
Problem 1 can be solved efficiently using node traversing probabilities in an
MDD that compute the average path length in an MDD [10].

Definition 9. In an MDD, a sequence of edges and nodes leading from the
root node to a terminal node is a path. The node traversing probability,
denoted by NTP(vi ), is the probability that an assignment of values to vari-
ables selects a path that includes the node vi .

Since terminal nodes of an MDD for a structure function represent sys-
tem states, node traversing probabilities of terminal nodes correspond to the
probabilities of system states. Node traversing probabilities can be computed
by visiting each node only once in breadth-first order starting from the root
node. Thus, the time complexity of this analysis method is O(NM ), where
NM is the number of nodes in an MDD. Other existing methods whose
time complexity is O(NM ) also analyze multi-state systems in a similar
way [8, 19, 20].

281i-MVLSC˙V3 9



10 SHINOBU NAGAYAMA et al.

Example 3. Let us compute node traversing probabilities for the MDD in
Figure 2(a). In this example, we assume that all states of each component
occur with the same probability, 1/3.

First, we have NTP(v1) = 1 for the root node v1, since the root node
occurs in all paths. Then, we compute NTP(v2) = NTP(v1) × 1/3 and
NTP(v3) = NTP(v1) × 1/3 in a breadth-first order. Similarly, by computing
NTPs in a top-down manner, we have NTP(v4) = NTP(v2)/3, NTP(v5) =
NTP(v2)/3, NTP(v6) = NTP(v2)/3, and NTP(v7) = NTP(v3)/3. Since at a
re-convergence node v8, all NTPs received from parent nodes are summed
up, we have NTP(v8) = NTP(v4)/3 + NTP(v7)/3. Finally, we have the
node traversing probabilities of terminal nodes: NTP(0) = 29/81, NTP(1) =
14/81, NTP(2) = 14/81, NTP(3) = 1/9, NTP(4) = 10/81, and NTP(5) =
5/81.

This shows that, in this electrical power distribution system, the town
becomes completely blacked out with probability 36% (NTP(0) = 29/81).

4.2 Analysis Method Using EVMDDs
In an EVMDD, a function value is represented by a sum of edge values,
rather than a terminal node. Thus, we cannot solve Problem 1 using only
node traversing probabilities, and another analysis method is needed. In this
subsection, we present a bottom-up approach that computes probabilities for
each sub-function incrementally.

Figure 4 shows the proposed analysis algorithm. This algorithm visits each
node only once in depth-first order starting from the root node, and ana-
lyzes a sub-function represented by each node recursively. Probabilities for a

Input: An EVMDD for a structure function of a multi-state system, and the probability of each
state of each component in the system Pc(xi = c).

Output: Probability of each state of the multi-state system Ps ( f = s).

Step: The following procedures are applied to each node recursively from the root node.
1. If a node v has been already visited, then return the probabilities for the sub-function

fv that have been already computed. Else, go to the next step.
2. If a node v is the terminal node T , then return the probability for the constant zero

function: Ps ( fT = 0) = 1. Else, go to the next step.
3. Visit all child nodes u j of v, and obtain the probabilities for the sub-functions fu j

represented by u j .
4. Multiply the obtained probabilities for a sub-function Ps ( fu j = s) by the probability

that the component xi selects the sub-function Pc(xi = c).
5. Each function value fu j = s at each child node u j becomes a function value fv =

s + e j at the node v because of its edge value e j . Thus, the probabilities Ps ( fu j = s) ×
Pc(xi = c) obtained by the step 4 are added to Ps ( fv = s + e j ), and they are summed
up (merged) in each function value at v.

6. Return the merged probabilities to the parent node.

FIGURE 4
Proposed analysis algorithm using EVMDDs.

281i-MVLSC˙V3 10
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FIGURE 5
Analysis of a multi-state system using EVMDD.

function represented by a node can be computed by merging probabilities for
sub-functions represented by its child nodes. Thus, the algorithm shown in
Figure 4 efficiently computes the probability of each state of a multi-state
system. Since the algorithm visits each node only once, its time complexity
is O(NE ), where NE is the number of nodes in an EVMDD.

Example 4. Let us compute the probability of each state of the multi-state
system using the EVMDD in Figure 5. As with the previous example, we
assume that all states of each component occur with the same probability,
1/3.

First, we have Ps( fT = 0) = 1 at the terminal node T . Then, we compute
the probability for a sub-function at the node v1. Since this node has two
edges pointing to T whose values are 1, and the two edges represent fv1 = 1,
we have

Ps( fT = 0) × Pc(x4 = 1) = 1/3,

Ps( fT = 0) × Pc(x4 = 2) = 1/3, and thus,

Ps( fv1 = 1) = Ps( fT = 0) × Pc(x4 = 1)

+Ps( fT = 0) × Pc(x4 = 2) = 2/3.

Thus, we have Ps( fv1 = 0) = 1/3 and Ps( fv1 = 1) = 2/3 for v1, as shown
in Figure 5. Since node v2 also has two edges pointing to T whose values
are 1, the same probabilities are obtained from T . Since the 0-edge of v2

points to v1, the probabilities at v1 are multiplied by 1/3, and they are added
to the probabilities from T . Thus, we have Ps( fv2 = 0) = 1/9 and Ps( fv2 =
1) = 8/9. Similarly, by performing the same computation at each node in
the depth-first order, we have the following at the root node: Ps( f = 0)

281i-MVLSC˙V3 11



12 SHINOBU NAGAYAMA et al.

= 29/81, Ps( f = 1) = 14/81, Ps( f = 2) = 14/81, Ps( f = 3) = 1/9,
Ps( f = 4) = 10/81, and Ps( f = 5) = 5/81. Note that these are consistent
with the results obtained by MDDs in Example 3.

When a structure function is monotone increasing, the number of nodes
in an EVMDD NE is smaller than for non-monotone increasing functions,
and thus, computation time is shorter. Of course, the proposed method can be
applied to nonmonotonic structure functions used in some applications [20,
22] as well.

5 EXPERIMENTAL RESULTS

To show the effectiveness of the proposed analysis method, we compare
it with a conventional analysis method based on MDDs in terms of their
size and runtime using various structure functions. To show the difference
between the two methods clearly, we need large structure functions since
both the analysis methods are compact and fast. Unfortunately, however,
benchmark functions of such sizes were not found in the literature. Since
structure functions are usually monotone increasing, we randomly gener-
ated M1-monotone increasing functions, and used them as structure func-
tions for experiments in this paper. The analysis algorithms based on MDDs
and EVMDDs are implemented using the following computer environment:
CPU: Intel Core2 Quad Q6600 2.4GHz, memory: 4GB, OS: CentOS 5.7, and
C-compiler: gcc -O3 (version 4.1.2). Table 1 shows the experimental results
for randomly generated m-state systems with n components, each component
having three states.

From this table, we can see that EVMDDs have fewer nodes than MDDs
for all the functions. Especially, as the number of states m becomes larger,
EVMDDs are much smaller than MDDs. We expect that systems will become
more complex in the future, and that m, the number of system states, will
become larger. Thus, EVMDDs whose size is independent of the number
of states are more promising. However, when m is very small, MDDs are
faster, since sizes of MDDs are small enough. In Table 1, when m = 3, only
two terminal nodes are reduced in EVMDDs. Thus, using EVMDDs for such
systems is not effective.

As for the computation time, the proposed method using EVMDDs is
comparable to the conventional method using MDDs. Therefore, we can say
that EVMDDs are suitable for compact representation and efficient analysis
of many-state systems.

Figure 6 compares MDDs and EVMDDs for 15-variable Mp-monotone
increasing functions using various values of p, in terms of the number of

281i-MVLSC˙V3 12



MULTI-STATE SYSTEMS 13

Number of nodes Computation time (μsec.)

n m MDD EVMDD Ratio MDD EVMDD Ratio

5 3 12 10 83% 0.30 0.96 316%
5 10 36 18 50% 1.00 2.39 240%

10 3 17 15 88% 0.60 1.61 271%
10 10 77 57 74% 2.71 6.87 253%
10 100 599 265 44% 24.28 40.54 167%
10 1,000 4,201 907 22% 216.60 250.31 116%

15 3 32 30 94% 1.31 3.03 232%
15 10 120 105 88% 4.54 12.14 267%
15 100 1,098 708 64% 57.82 94.26 163%
15 1,000 9,010 3,362 37% 529.38 630.49 119%
15 10,000 70,140 11,474 16% 4, 357.00 3, 800.00 87%
15 100,000 495,224 62,759 13% 60, 861.00 52, 955.00 87%

n: Number of 3-state components. m: Number of system states.
Ratio: EVMDD / MDD × 100 (%)
The computation time is an average time obtained by running the same computation
1, 000, 000 times, and dividing its total time by 1, 000, 000.

TABLE 1
MDDs and EVMDDs for m-state systems with n 3-state components.

nodes and analysis time. Figure 6 shows that the number of nodes and anal-
ysis time in MDDs are independent of the value of p, as described in Sec-
tion 3. On the other hand, the number of nodes and analysis time in EVMDDs
increase as the value of p increases. However, its rate of increase is low. In
this example, the number of nodes increases by up to 16%, and the analysis
time increases by up to 11% for each increment of p. Therefore, we can say
that EVMDDs are efficient when p is small.
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FIGURE 6
MDDs and EVMDDs for 15-variable Mp-monotone increasing functions.
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6 DIAGNOSIS METHOD USING EVMDDS

This section formulates a problem of system diagnosis, and then proposes an
EVMDD-based method to infer the most probable causes for system failures
using probabilities of systems obtained by the analysis method in Figure 4. In
this paper, we infer such causes by computing conditional probabilities (also
known as posterior probabilities).

Definition 10. A conditional probability, denoted by P(A|B), is the prob-
ability that an event A occurs given that an event B has occurred.

By considering event B as a system state, and event A as a component
state, the probability that the component state causes the system state is
obtained. Then, we infer the most probable causes for the system state from
the probability. Thus, we formulate a problem of system diagnosis as follows:

Problem 2. Given a structure function f , the probability of each state of
each component Pc(xi = c), a system state f = s, and a component state
xi = c, compute the conditional probability P(xi = c| f = s).

The conditional probability can be computed by Bayes’ theorem:

P(A|B) = P(B|A) × P(A)

P(B)
.

Bayesian networks infer causes of various events based on this theorem [5,6].
Since in the diagnosis of multi-state systems, A is a component state (i.e.,

xi = c) and B is a system state (i.e., f = s), Bayes’ theorem is rewritten as
follows:

P(xi = c| f = s) = P( f = s|xi = c) × Pc(xi = c)

Ps( f = s)
. (4)

From this equation, we can solve Problem 2, if the probability P( f = s|xi =
c) is known. This is because Pc(xi = c) is given, and Ps( f = s) can be
obtained by the analysis algorithm in Figure 4. Thus, in this section, we pro-
pose an efficient algorithm to compute the probability P( f = s|xi = c).

6.1 Algorithm to Compute Conditional Probability Using EVMDD
From the definition of the conditional probability, the probability P( f =
s|xi = c) is equivalent to the probability of the system state Ps( f = s) when
xi = c. This can be obtained by taking the cofactor of f with respect to
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Input: An EVMDD for a structure function of a multi-state system, the probability of each
component state in the system Pc , a system state f = s, and a component state xi = c.

Output: The conditional probability P( f = s|xi = c).

Step: The following procedures are applied to each node recursively from the root node, and
the probability P( f = s|xi = c) at the root node is the solution.

1. If a node v has been already visited, then return the probabilities for the sub-function
fv that have been already computed. Else, go to the next step.

2. If a node v is the terminal node T , then return the probability for the constant zero
function: P( fT = 0|xi = c) = 1. Else, go to the next step.

3. If the variable assigned to v is xi , then visit a child node uc connected to the edge
of xi = c. Else, visit all child nodes u j .
Obtain the probabilities for the visited sub-functions. If the variable is xi , then
go to the step 5. Else, go to the next step.

4. Multiply the obtained probabilities for a sub-function by the probability that the vari-
able selects the sub-function Pc .

5. Each function value su at each visited child node becomes a function value fv = su +
e j at the node v because of its edge value e j . Thus, the probabilities for su are added to
P( fv = su + e j |xi = c), and they are summed up in each function value at v.

6. Return the merged probabilities to the parent node.

FIGURE 7
Algorithm to compute conditional probabilities using EVMDD

xi = c [18], and computing the probability that the cofactor has s. Since
cofactors can be computed efficiently by using decision diagrams, we can
compute the probability P( f = s|xi = c) efficiently by applying an algo-
rithm similar to Figure 4 to a cofactor.

Figure 7 shows the proposed algorithm to compute the conditional proba-
bility P( f = s|xi = c) using an EVMDD. Actually, this algorithm computes
the conditional probabilities for all system states P( f = 0|xi = c), P( f =
1|xi = c), . . . , P( f = m − 1|xi = c) simultaneously. Thus, we can diagnose
effects of the component state (xi = c) to all the system states efficiently
using this algorithm.

This algorithm is based on the analysis algorithm in Figure 4 with the
underlined parts shown in Figure 7 that compute a cofactor added to the anal-
ysis algorithm. Therefore, its time complexity is the same as the analysis
algorithm, O(NE ), where NE is the number of nodes in an EVMDD.

Example 5. Let us compute the conditional probability P( f = 0|x3 = 0)
using the EVMDD in Figure 8. As with the previous examples, we assume
that all states of each component occur with the same probability, 1/3.

First, we have P( fT = 0|x3 = 0) = 1 at the terminal node T . As shown in
Example 4, we compute probabilities at the node v1, yielding P( fv1 = 0|x3 =
0) = 1/3 and P( fv1 = 1|x3 = 0) = 2/3. Then, we compute probabilities at
the node v2. Since the variable assigned to v2 is x3, we visit only a child node
connected to the 0-edge. The child node is v1, and thus, the probabilities at
v2 are the same as the probabilities at v1. Similarly, by performing the same
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Computing conditional probabilities using EVMDD.

computation as the analysis method at each node in the depth-first order,
we have the following probabilities at the root node: Ps( f = 0|x3 = 0) =
11/27, Ps( f = 1|x3 = 0) = 7/27, Ps( f = 2|x3 = 0) = 1/9, Ps( f = 3|x3 =
0) = 1/9, Ps( f = 4|x3 = 0) = 1/9, and Ps( f = 5|x3 = 0) = 0. Therefore,
P( f = 0|x3 = 0) = 11/27, and thus, by the equation (4),

P(x3 = 0| f = 0) = P( f = 0|x3 = 0) × Pc(x3 = 0)

Ps( f = 0)
= 11

29
≈ 0.379.

This implies that the breakdown of the hydro power plant causes a complete
blackout of the town with probability 38%.

On the other hand, P( f = 0|x1 = 0) = 1 is readily obtained because the
0-edge of the root node points to the terminal node. Thus, we have

P(x1 = 0| f = 0) = P( f = 0|x1 = 0) × Pc(x1 = 0)

Ps( f = 0)
= 27

29
≈ 0.931.

This implies that the breakdown of the transformer causes a complete black-
out of the town with probability 93%. Since this is the most probable cause
for a complete blackout of the town, the transformer turns out to be a criti-
cal component in achieving fault tolerance of this system. It agrees with our
intuition.

6.2 Comparison with Bayesian Networks
Bayesian networks represent cause-and-effect relationships among compo-
nents and a system, and compute the probability of each system state Ps( f
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FIGURE 9
Bayesian networks representing systems with independent components.

= s) as follows [23]:

Ps( f = s) =
∑
�c∈Rn

P( f = s, x1, x2, . . . , xn), (5)

where Rn is a set of value assignments to all the variables xi , and P( f =
s, x1, x2, . . . , , xn) is a joint probability of f = s and (x1, x2, . . . , xn) = �c =
(c1, c2, . . . , cn). Since, in the systems considered in this paper, all compo-
nents are independent of each other, their Bayesian networks become like
that of Figure 9, and

P( f = s, x1 = c1, x2 = c2, . . . , xn = cn) =
P( f = s|x1 = c1, x2 = c2, . . . , xn = cn)

×Pc(x1 = c1) × Pc(x2 = c2) × . . . × Pc(xn = cn).

The conditional probability P( f = s|x1 = c1, x2 = c2, . . . , xn = cn) is

P( f = s|x1 = c1, x2 = c2, . . . , xn = cn) =
{

0 ( f (c1, c2, . . . , cn) 	= s)
1 ( f (c1, c2, . . . , cn) = s)

,

because f is a function of x1, x2, . . . , xn . Therefore, (5) is obtained by a sum
of probabilities that an input vector �c satisfies f = s. Its time complexity is
O(rn). This is obviously inefficient. Also, in a diagnosis using Bayesian net-
works, one can assume that values of P( f = s|xi = c) are given to compute
(4).

On the other hand, our diagnosis method using EVMDDs can compute
(4) even if the values of P( f = s|xi = c) are not given, as shown in the
previous subsection. Since the time complexities to compute Ps( f = s) and
P( f = s|xi = c) are both O(NE ), our methods using EVMDDs analyze
and diagnose multi-state systems more efficiently than conventional methods
based on Bayesian networks. In fact, our method using EVMDDs analyzes
the largest 15-component system in Table 1 about 12.6 times faster than a
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conventional method based on Bayesian networks. The conventional method
requires 667.4 msec to analyze the same system.

Although this paper assumes that all components are independent of each
other, an MDD-based method can efficiently analyze multi-state systems in
which components have interdependent states as well [9].

7 CONCLUSION AND COMMENTS

This paper presents an efficient analysis method of multi-state systems using
EVMDDs. It is somewhat more complicated than existing methods using
ordinary MDDs because a state of the system is represented by a sum of
edge values. However, the computation time of our EVMDD-based analysis
method is comparable to methods using MDDs, since the time complexity
is asymptotically proportional to the number of nodes in an EVMDD, and
EVMDDs have fewer nodes than MDDs. Especially, for systems with many
states, our analysis method is effective because EVMDDs are much smaller
than MDDs.

This paper focuses only on monotone increasing structure functions to
emphasize the effectiveness of EVMDDs. However, there exist applications
using nonmonotonic structure functions [20, 22]. Even for such structure
functions, EVMDDs are not larger than MDDs [12]. Thus, our analysis
method is effective for a wide range of structure functions.

We also propose an efficient diagnosis method using EVMDDs. The pro-
posed diagnosis method can infer the most probable causes for system fail-
ures more efficiently than conventional methods based on Bayesian networks.

In this paper, we used randomly generated M1-monotone increasing func-
tions for our experiments, since benchmarks of multi-state systems were
unavailable. However, there could be functions more suitable for multi-state
systems. Thus, we will study such functions. We will also study how to gen-
erate EVMDDs directly from multi-state systems without using MDDs for
structure functions.
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