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Abstract—This paper proposes a new reduction rule for
edge-valued multi-valued decision diagrams (EVMDDs), which
improves the speed of analysis of multi-state systems (MSSs).
Existing reduction rules for decision diagrams remove redun-
dant nodes, while the proposed rule removes redundant edges
in EVMDDs. Since the time to do an analysis in an MSS
depends on the number of edges in the EVMDD, the proposed
rule is faster especially when used with edge minimization
algorithms based on variable grouping. Experimental results
show that the proposed rule reduces the number of edges by
up to 30%, and this results in an analysis time that is reduced
by up to 30%.

Keywords-Reduction rules for decision diagrams; EVMDDs;
edge reduction of EVMDDs; multi-state systems; system anal-
ysis based on decision diagrams.

I. INTRODUCTION

A multi-state system (MSS) [8], [9] is a model in which
performance, reliability, safety, efficiency, power consump-
tion, etc. are represented by states. It is widely used to
model various fault tolerant systems including computer
server systems, telecommunication systems, water, gas, elec-
trical power distribution systems, flight control systems, and
nuclear power plant monitoring systems [3]–[5], [16], [19],
[21], [23], [24]. To design dependable fault tolerant systems,
intensive analysis of MSSs in terms of various assessment
measures, such as reliability and availability is needed [16].
An approach to solving this complex problem is to compute
the probability of each state of an MSS [21], [23]. This is
because many measures can be easily computed from the
state probabilities [1], [8], [9]. However, assessing the state
probabilities is time-consuming.

For fast assessment of the state probabilities, many meth-
ods based on binary decision diagrams (BDDs) [2]–[4], [6],
[23] and multi-valued decision diagrams (MDDs) [10], [13],
[20]–[22] have been proposed, and they have attracted much
attention in recent years. Especially, MDD based methods
hold promise, as [17] showed that an MDD based method
is more efficient than a BDD based one.

Most of these methods assume only stationary probability
distributions for analysis, and thus, they cannot accommo-
date with probability distributions that depend on time. This
is because only steady-state analysis of systems is important
in many practical systems (especially in systems working

for a long time). However, in safety-critical systems such as
flight control systems and nuclear power plant monitoring
systems, not only steady-state analysis but also transient
analysis should be done.

Although methods based on the Markov model [5], [8],
[9], [19] can deal with probability distributions that depend
on time, they are impractical for a large MSS. This is
because their time complexity is O(m3n), where m is the
number of states, and n is the number of components in an
MDD [3], [4]. For faster transient analysis of large MSSs, an
MDD based method has been proposed [18]. This method
can make a transient analysis in the same way as a steady-
state analysis by assigning dynamic probability distributions
to edges in an MDD. However, even this method is slow,
since for a transient analysis, a system has to be analyzed
many times while advancing time by a small step. Thus, a
faster analysis method is desired.

In this paper, we propose a new reduction rule for edge-
valued MDDs (EVMDDs) [12], [13] to speed up the analysis
of MSSs. The existing reduction rules of decision diagrams
are intended to reduce redundant nodes, but the proposed
rule is intended to reduce redundant edges in EVMDDs.
Since analysis time of MSSs depends on the number of edges
in an EVMDD, the proposed edge reduction rule can also
reduce analysis time. The proposed technique can be applied
to a wide range of analyses including steady-state analysis,
transient analysis, and analysis of systems having dependent
components [14]. This is because the proposed technique is
a fundamental one.

This paper is organized as follows: Section II defines
MSSs, EVMDDs, and variable grouping. Section III intro-
duces the analysis method of MSSs using EVMDDs, and
in Section IV, we propose an edge reduction of EVMDDs,
and an analysis method using EVMDDs with reduced edges.
Experimental results are shown in Section V.

II. PRELIMINARIES

This section defines MSSs, structure functions, EVMDDs
to represent structure functions, and variable grouping.

A. Multi-State Systems and Structure Functions
Definition 1: A multi-state system (MSS) is a model

of a system that represents, as states, a capability, such as
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Figure 1. MSS for an electrical power distribution system and its structure
function [15].

performance, capacity, or reliability. There are usually more
than two states, and so a multiple-valued analysis is required.
When components in a system are modeled as well, it is
called a MSS with multi-state components. In this paper,
it is simply called an MSS.

Definition 2: A state of an MSS depends only on states
of components in the system. A system with n components
can be considered as a multi-valued function f (x1,x2, . . . ,xn)
: R1×R2× . . .×Rn → M, where each xi represents a compo-
nent with ri states, Ri = {0,1, . . . ,ri−1} is a set of the states,
and M = {0,1, . . . ,m−1} is a set of the m system states. This
multi-valued function is called a structure function of the
MSS.

Example 1: Fig. 1(a) shows an MSS for an electrical
power distribution system. In this figure, the thermal power
plant x1, the hydro power plant x2, and the wind power plant
x3 have three states which correspond to supply levels: 0
(breakdown), 1 (partially supply), and 2 (full supply). And,
the system has six states which correspond to the percentage
of area of a town that is blacked out: 0 (complete blackout),
1 (90% blackout), 2 (60% blackout), 3 (30% blackout), 4
(10% blackout), and 5 (0% blackout).

In this way, by assigning a value to each state, we obtain
the 6-valued structure function f shown in Fig. 1(b). Note
that Fig. 1(b) shows a part of the 33 = 27 entry table since it
is too large to be included in its entirety. (End of Example)

B. Edge-Valued Multi-Valued Decision Diagrams

Definition 3: An edge-valued multi-valued decision di-
agram (EVMDD) [12] is an extension of the MDD [7],
[11], and represents a multi-valued function. It consists of
one terminal node representing 0 and non-terminal nodes
with edges having integer weights; 0-edges always have zero
weights. In the EVMDD, the following two reduction rules
are applied:

1) Share equivalent sub-graphs.
2) Delete a non-terminal node satisfying the two condi-

tions: 1) its outgoing edges all point to the same node
v, and 2) all the edges have 0 weights. And, redirect
edges, which point to the deleted node, to v
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Figure 2. EVMDD for the structure function [15].

In the EVMDD, the function value is represented as a sum of
weights of edges traversed from the root node to the terminal
node.

Example 2: Fig. 2 shows an EVMDD for the structure
function of Example 1. (End of Example)

C. Variable Grouping

Definition 4: Let X = (x1,x2, . . . ,xn) be an ordered set of
n multi-valued variables. Partition X into u partially ordered
subsets as follows:

X1 = (x1,x2, . . . ,xk1),
X2 = (xk1+1,xk1+2, . . . ,xk1+k2),

...
Xu = (xk1+k2+...+1,xk1+k2+...+2, . . . ,xn).

Then, (X1,X2, . . . ,Xu) is a grouping of X . Each ordered
set Xi = (x j+1,x j+2, . . . ,x j+ki) forms a composite variable
whose domain is {0,1, . . . ,r j+1 × r j+2 × . . . × r j+ki − 1},
where |Xi| = ki and k1 + k2 + . . . + ku = n. Note that the
order of the original multi-valued variables is preserved in
a grouping.

By considering each composite variable Xi as a
larger-valued variable, the original multi-valued function
f (x1,x2, . . . ,xn) : R1 ×R2 × . . .×Rn → M can be converted
into another multi-valued input function g(X1,X2, . . . ,Xu) :
P1 ×P2 × . . .×Pu → M, where Pi = {0,1, . . . ,r j+1 × r j+2 ×
. . .× r j+ki −1}.

In this paper, for convenience, an EVMDD representing
the function g obtained by grouping variables is called a
GEVMDD.

Example 3: When the multi-valued variables x1,x2,x3 in
Example 1 are grouped into two composite variables, we
have

X1 = (x1,x2) and X2 = (x3)

Note that since x1 and x2 are 3-valued variables, the compos-
ite variable X1 consisting of x1 and x2 is a 9-valued variable.
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Figure 3. GEVMDD for the function g(X1,X2) [15].
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Figure 4. Analysis of the MSS using EVMDD [15].

The GEVMDD representing the obtained function g(X1,X2)
is shown in Fig. 3. (End of Example)

III. ANALYSIS METHOD USING EVMDDS

A. Steady-State Analysis of Multi-State Systems

Definition 5: The probability that a structure function
f has the value s is denoted by Ps( f = s), where s ∈
{0,1, . . . ,m−1}. The probability that a component xi has the
value c is denoted by Pc(xi = c), where c ∈ {0,1, . . . ,ri−1}.

An analysis of MSSs solves the following:
Problem 1: Given a structure function f of an MSS and

the probability of each state of each component Pc(xi = c),
compute the probability of each state of the MSS Ps( f =
s). For simplicity, we assume that the probabilities of all
component states are independent of each other.

To solve this problem efficiently, a method using
EVMDDs has been proposed [13]. The method represents
given structure functions using EVMDDs, and computes
probabilities for a structure function by merging probabilities
for sub-functions represented by nodes in a bottom-up
manner.

Example 4: Let us compute the probability of each state
of the MSS using the EVMDD in Fig. 4. In this example,
we assume that all states of each component occur with the
same probability, 1/3.

First, we have Ps( fT = 0) = 1 at the terminal node T .
Then, we compute probabilities for a sub-function fv1 at
node v1. Since this node has two edges pointing to T whose
values are 1, and the two edges represent fv1 = 1, we have

Ps( fT = 0)×Pc(x3 = 1) = 1/3,

Ps( fT = 0)×Pc(x3 = 2) = 1/3, and thus,
Ps( fv1 = 1) = Ps( fT = 0)×Pc(x3 = 1)

+Ps( fT = 0)×Pc(x3 = 2)
= 2/3.

Thus, Ps( fv1 = 0) = 1/3 and Ps( fv1 = 1) = 2/3 for v1. At v2,
the probabilities at the terminal node and v1 are multiplied
by 1/3, and they are merged. Thus, Ps( fv2 = 0) = 4/9 and
Ps( fv2 = 1) = 5/9. Similarly, by performing the same com-
putation at each node in a bottom-up manner, we have the
following at the root node: Ps( f = 0) = 1/27, Ps( f = 1) =
1/9, Ps( f = 2) = 5/27, Ps( f = 3) = 1/9, Ps( f = 4) = 10/27,
and Ps( f = 5) = 5/27. (End of Example)

B. Transient Analysis of Multi-State Systems

In steady-state analysis, it is assumed that the probabilities
of component states Pc(xi = c) are constants, as shown in
the previous subsection, since those probabilities converge to
constant values after enough time goes by, as will be shown
later. On the other hand, transient analysis assumes dynamic
probability distributions depending on time, such as Weibull
distributions that are widely used for modeling reliability of
components considering their aging degradation. That is, in
transient analysis, probabilities of component states Pc(xi =
c) are given as functions of time.

However, by assigning function values at a certain time to
edges, we can apply the same analysis method to transient
analysis as well. And, by analyzing a system many times
while advancing time in a small step, we can perform
transient analysis of an MSS [18].

Example 5: Make the following three assumptions: 1) the
thermal power plant x1 in Fig. 1 consists of two identical
power generators that work independently each other; 2) the
probability that a power generator fails is given as a cumu-
lative distribution function (CDF) of a Weibull distribution:

1− e−(t/5)2
,

where t is time; and, 3) 60% of failures occurring at a power
generator are repairable.

Then, the probabilities whether a power generator (PG)
works (PG=1) or not (PG=0) can be computed using a
decision diagram in Fig. 5(a). In this figure, the variable
w represents whether the power generator works (w = 1) or
fails (w = 0), and r represents whether a failure is repairable
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Figure 5. EVMDDs for a power generator and the thermal power plant.
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Figure 6. Result of transient analysis of a power generator.

(r = 1) or not (r = 0). Similarly, the probability of various
states of the thermal power plant x1 can be computed by
using a decision diagram in Fig. 5(b) and analysis results of
power generators PG1 and PG2. In this way, by assigning
function values at a certain time to edges, and by analyzing
system components hierarchically while advancing time by
a small step, we can perform transient analysis of the whole
power distribution system in Fig. 1.

Figs. 6 and 7 show results of transient analysis of a
power generator and the thermal power plant x1, respectively.
From these figure, we can see that probabilities converge to
constant values after enough time goes by. In steady-state
analysis, these converged values are used. (End of Example)

Since for a transient analysis, a system has to be analyzed
many times while advancing time by a small step, a faster
analysis method is desired.

IV. EDGE REDUCTION OF EVMDDS

Since the computation time of EVMDD based analysis
method depends on the number of edges in an EVMDD,
minimization of the number of edges by variable grouping
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Figure 8. Reduced GEVMDD for the function g(X1,X2).

is helpful to reduce analysis time [15]. However, variable
grouping tends to increase the number of redundant edges
that point to the same node and have the same edge value,
as shown in Fig. 3. The GEVMDD has redundant edges for
X1 = 4,5,6 and X2 = 1,2. We make the analysis faster by
reducing these redundant edges.

To reduce such redundant edges, we propose the following
reduction rule, and add it to the reduction rules of EVMDDs.

• Merge equivalent multiple edges, which leave from the
same node, point to the same node, and have the same
edge values, into a single edge, and share the edge
among corresponding values of an input variable.

In this paper, for convenience, an EVMDD and a GEVMDD
whose edges are reduced are called an REVMDD and an
RGEVMDD, respectively.

Example 6: Fig. 8 shows the reduced GEVMDD
(RGEVMDD) of the GEVMDD in Fig. 3. This RGEVMDD
has 9 edges while the original GEVMDD has 12 edges.

(End of Example)
To analyze an MSS using an RGEVMDD, we begin by

4



X

0

α

i

α

j

Y

P ( X  = i )c P ( X  = j )c

X

0

α

i, j

Y

P ( X  = i )c

+ P ( X  = j )c

Reduced

Figure 9. Probability of shared edge.

assigning probabilities of component states to edges. Shared
edges are assigned sums of probabilities corresponding to
merged edges, as shown in Fig. 9. Then, the analysis method
shown in Section III is applied to the RGEVMDD.

Since edge reduction is a fundamental technique, it can
be used along with the hybrid analysis method [14] that is
used for analysis of systems having dependent components.

V. EXPERIMENTAL RESULTS

To show the efficiency of the proposed edge reduction
technique, we used the same analysis algorithms and the
same structure functions as [13], [14]. The methods are
implemented on our private EVMDD package, and run
on the following computer environment: CPU: Intel Core2
Quad Q6600 2.4GHz, memory: 4GB, OS: CentOS 5.7,
and C-compiler: gcc -O3 (version 4.1.2). Table I shows
the number of edges in various EVMDDs for randomly
generated m-state systems with n 3-state components. In
this table, the columns “Grouping” and “Reduction” show
computation times of the edge minimization algorithm [15]
and edge reduction presented in Section IV, respectively.

From this table, we can see that even ordinary EVMDDs
have redundant edges, but GEVMDDs have more redundant
edges. Thus, edge reduction works more effectively when
it is used along with the edge minimization algorithm by
variable grouping. Table I also shows that edge reduction
quickly reduces the number of edges.

Table II shows the analysis times when applying the
two analysis methods to various EVMDDs. In the analysis
using RGEVMDDs, probabilities of shared edges have to
be computed before applying the analysis algorithms, and
thus, this makes analysis slightly longer when the number
of redundant edges is small, like the analysis of a system
with n = 15 and m = 100,000. But, in many cases, edge
reduction makes analysis faster. It can shorten analysis time
of optimized GEVMDDs by up to 30%.

VI. CONCLUSION AND COMMENTS

This paper proposed a new reduction rule for EVMDDs
that reduces redundant edges to speed up the analysis of
MSSs. Since analysis time of MSSs depends on the number
of edges in an EVMDD, the proposed edge reduction rule

can also reduce analysis time. Experimental results show
that the proposed rule works more effectively when it is
used along with the edge minimization algorithm by variable
grouping, and it reduces the number of edges by up to 30%.
This results in reducing analysis time of MSSs by up to
30%.
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Table I
NUMBER OF EDGES IN EVMDDS FOR m-STATE SYSTEMS WITH n 3-STATE COMPONENTS.

n m Number of edges Computation time (sec.)
EVMDD REVMDD Ratio1 GEVMDD RGEVMDD Ratio2 Ratio3 Grouping Reduction

5 3 27 22 81% 27 19 70% 70% ∗ < 0.01 ∗ < 0.01
5 10 51 42 82% 48 39 76% 81% ∗ < 0.01 ∗ < 0.01

10 3 42 34 81% 42 32 76% 76% ∗ < 0.01 ∗ < 0.01
10 10 168 134 80% 162 120 71% 74% ∗ < 0.01 ∗ < 0.01
10 100 792 662 84% 750 531 67% 71% ∗ < 0.01 ∗ < 0.01
10 1,000 2,718 2,548 94% 2,364 2,171 80% 92% ∗ < 0.01 ∗ < 0.01
15 3 87 66 76% 87 64 74% 74% ∗ < 0.01 ∗ < 0.01
15 10 312 250 80% 309 246 79% 80% ∗ < 0.01 ∗ < 0.01
15 100 2,121 1,696 80% 2,076 1,571 74% 76% ∗ < 0.01 ∗ < 0.01
15 1,000 10,083 8,322 83% 9,597 7,164 71% 75% ∗ < 0.01 ∗ < 0.01
15 10,000 34,419 31,608 92% 31,212 28,234 82% 90% 0.01 0.01
15 100,000 188,274 182,748 97% 159,768 153,216 81% 96% 0.06 0.02
n: Number of 3-state components. m: Number of states for systems. Ratio1: REVMDD / EVMDD × 100 (%)
Ratio2: RGEVMDD / EVMDD × 100 (%) Ratio3: RGEVMDD / GEVMDD × 100 (%)
∗ <: It was shorter than 10 msec., but could not be obtained precisely due to precision of the timer.

Table II
COMPUTATION TIMES FOR ANALYSIS OF m-STATE SYSTEMS WITH n 3-STATE COMPONENTS.

n m Computation time of bottom-up method [13] (µsec.) Computation time of hybrid method [14] (µsec.)
EVMDD GEVMDD RGEVMDD Ratio1 Ratio2 EVMDD GEVMDD RGEVMDD Ratio1 Ratio2

5 3 0.96 0.98 0.77 80% 79% 1.77 1.12 0.78 44% 70%
5 10 2.24 2.06 1.85 83% 90% 4.76 3.13 2.42 51% 77%
10 3 1.55 1.56 1.37 88% 88% 2.74 1.68 1.24 45% 74%
10 10 6.61 6.39 5.30 80% 83% 12.14 7.53 5.59 46% 74%
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