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a b s t r a c t

Posttraumatic stress disorder (PTSD) is common among combat personnel with mild traumatic brain
injury (mTBI). While patients with either PTSD or mTBI share abnormal activation of multiple frontal
brain areas, anterior cingulate cortex (ACC) activity during inhibitory processing may be particularly
affected by PTSD. To further test this hypothesis, we recorded electroencephalography from 32 combat
veterans with mTBI—17 of whom were also comorbid for PTSD (mTBIþPTSD) and 15 without PTSD
(mTBI-only). Subjects performed the Stop Task, a validated inhibitory control task requiring inhibition of
initiated motor responses. We observed a larger inhibitory processing eventrelated potential (ERP) in
veterans with mTBIþPTSD, including greater N200 negativity. Furthermore, greater N200 negativity
correlated with greater PTSD severity. This correlation was most dependent on contributions from the
dorsal ACC. Support vector machine analysis demonstrated that N200 and P300 amplitudes objectively
classified veterans into mTBI-only or mTBIþPTSD groups with 79.4% accuracy. Our results support a
model where, in combat veterans with mTBI, larger ERPs from cingulate areas are associated with
greater PTSD severity and likely related to difficulty controlling ongoing brain processes, including
trauma-related thoughts and feelings.

Published by Elsevier Ireland Ltd.

1. Introduction

Posttraumatic stress disorder (PTSD) is especially common
in combat personnel with mild traumatic brain injury (mTBI) and
further worsens outcomes following mTBI (Polusny et al., 2011;
Tanelian and Jaycox, 2008; Vasterling et al., 2012a). Functional
magnetic resonance imaging (fMRI) studies of patients with active
PTSD or mTBI suggest that while these patients share abnormalities in
dorsolateral prefrontal, middle frontal, and orbitofrontal brain activity,
abnormalities in medial frontal and anterior cingulate cortex brain
activity may be especially common in patients with PTSD ( Stein and
McAllister, 2009; Simmons and Matthews, 2012). If so, neural
mechanisms underlying the compounding effects of PTSD on

outcomes in personnel with comorbid mTBI likely involve medial
frontal and anterior cingulate brain areas.

Medial frontal and anterior cingulate areas (MFC and ACC) are
consistently activated during cognitive control tasks requiring
conflict monitoring and response inhibition (Ridderinkhof et al.,
2004). During these tasks, patients with PTSD generally exhibit
increased MFC and ACC activity, and increased errors—abnormal-
ities that likely contribute to difficulties controlling ongoing brain
processes, including trauma-related thoughts and feelings in
patients with PTSD ( Stein et al., 2002; Carrion et al., 2008;
Jovanovic et al., 2012; Matthews et al., 2012; Swick et al., 2012;
Thomaes et al., 2012). In contrast, patients with mTBI only
generally do not exhibit significant errors or differences in brain
activation during these tasks (Stewart and Tannock, 1999; Potter et
al., 2002; DeHaan et al., 2007; Larson et al., 2011, 2012; Mayer et
al., 2012; Terry et al., 2012).

Electroencephalographic (EEG) studies of event-related poten-
tials (ERPs) have also demonstrated generally larger ERPs during
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inhibitory processing in patients with PTSD. More specifically,
during Go/No-Go or Stop Tasks, patients with PTSD consistently
exhibit greater N200 (or N2) and P300 (or P3) ERPs (Shucard et al.,
2008; Wu et al., 2010; Covey et al., 2013). N200 and P300 ERPs
have been repeatedly associated with conflict monitoring and
response inhibition (Nieuwenhuis et al., 2003; Donkers and van
Boxtel, 2004; Enriquez-Geppert et al., 2010; Huster et al., 2013). In
contrast, ERP studies of inhibitory processing in patients with
mTBI only have focused primarily on civilians with injuries from
sports, accidents, or assaults— without specifically examining
PTSD—and have generally observed normal or attenuated error-
related ERPs ( Potter et al., 2002; Pontifex et al., 2009; Larson et al.,
2011, 2012; De Beaumont et al., 2013).

To date, there are no published ERP studies of inhibitory
processing in patients with comorbid PTSD and mTBI. We
hypothesized that, among combat veterans with mTBI, those with
PTSD would exhibit larger ERPs during inhibitory processing, as
compared with those without PTSD. To test our hypothesis, we
recorded EEG from veterans with mTBI and a few or no symptoms
of PTSD (mTBI-only) and from veterans with mTBI and PTSD
(mTBIþPTSD). Subjects performed the Stop Task, a validated
inhibitory control task requiring inhibition of initiated motor
responses. Consistent with fMRI studies demonstrating increased
ACC activity in patients with PTSD during inhibitory processing,
and studies localizing the N200 and P300 to the ACC (Huster et al.,
2011), we hypothesized that the larger ERPs in our mTBIþPTSD
group would localize to the cingulate cortex.

2. Materials and methods

2.1. Subjects

Thirty-two (15 mTBI-only; 17 mTBIþPTSD) male combat veterans from the
military conflict in Iraq or Afghanistan provided written informed consent and
completed this cross-sectional study, which was conducted from 2010 to 2012 and
approved by the University of California San Diego Human Research Protection
Program and the Veterans Affairs San Diego Healthcare System (VASDHS) Research
and Development Committee. Subjects were recruited from VASDHS clinical
services through paper and electronic advertisements and word of mouth.

All subjects completed two sessions. During session 1, subjects completed a
detailed clinical assessment, which involved administration of the Brief Traumatic
Brain Injury Screen (BTBIS; Schwab et al., 2007), the Structured Clinical Interview
for DSM-IV-TR (SCID-IV-TR; First et al., 2002), the Clinician-Administered PTSD
Scale (CAPS) (Weathers et al., 2001), and the Beck Depression Inventory II (BDI-II)
(Beck et al., 1996). Subjects were included if they: (1) reported experiencing one or
more concussive events (mTBI) during combat (i.e. a blast exposure or a blow or jolt
to the head) that resulted in a loss or alteration of consciousness for 20 min or less,
on the BTBIS; and (2) met criteria for mTBI based on questions adapted from
Vasterling et al. (2012b). Each case was also reviewed by Drs. Shu and Matthews,
VA psychiatrists who together have over 8 years of experience evaluating and
treating veterans with mTBI. Health records related to mTBI were not available;
therefore, subjects' recall of trauma history could not be confirmed. TBI variables
assessed during Session 1 are presented in Table 1.

Subjects who developed PTSD during or after combat, as determined by the
SCID-IV-TR and CAPS score 465 (Weathers et al., 2001), were included in the
mTBIþPTSD group (n¼17). Subjects who developed PTSD prior to combat were
excluded from the study. Subjects without PTSD were included in the mTBI-only
group (n¼15); however, the mean7standard deviation (S.D.) CAPS score for the
mTBI-only group was 37.3713.2, suggesting subthreshold PTSD-related symptoms.
Exclusion criteria included: (1) meeting criteria for an alcohol or substance use
disorder within the past 30 days; (2) history of developing PTSD prior to combat;
(3) history of bipolar disorder, attention deficit hyperactivity disorder, or psychotic
disorders; or (4) acute medical problems. Included subjects returned for Session 2,
where they performed the Stop Task (see Section 2.2 below) while EEG was
recorded (see Section 2.3 below).

2.2. Task

During the Stop Task (Matthews et al., 2005), subjects were presented with
the letter “X” or “O,” in bold, white font, on a black background. Subjects were
instructed to press the right mouse button for “X” and the left mouse button for
“O”. In 25% of the trials (Stop Trials), four separate delays of �15, �65, �115, or

�165 ms (depending slightly on stochastic software delays but not scaled by
subject response time) after “X” or “O” presentation, subjects were presented with
a Stop Signal (auditory beep), instructing subjects to inhibit the button press.
Subjects were given four blocks to practice the task, after which, when all subjects
were likely to be at the plateau of their learning curve, they began the trials used
for further analyses. Each trial lasted 1800 ms (or until subject response). Trials
were separated by a jittered inter-trial interval of between 700 and 1200 ms (black
background only). During successful Stop Trials, subjects correctly inhibited button
presses when presented with the Stop Signal; during Error Trials, subjects
incorrectly responded with button presses when presented with the Stop Signal
(Fig. 1). After artifact removal, the number of successful Go Trials used for subject
ERP averages ranged from 283 to 542; Stop Trials ranged from 69 to 154; Error
Trials ranged from 3 to 41. Given the low number of Error Trials, ERP results from
Error Trials should be interpreted with caution. However, the analysis showed a
logical trend away from successful Stop activity and toward no beep, or Go Trial
activity (i.e. no button press), which seemed worth reporting for future rigorous
validation. Please refer to Online Supplementary materials (Online Supplementary
Figs. 1–3).

2.3. EEG acquisition and preprocessing

EEG data were collected synchronously from 132 scalp and four infra-ocular
electrodes with an active reference (BioSemi Instrumentation, Amsterdam, NL) at a
sampling rate of 512 Hz with 24-bit analog-to-digital resolution. Onsets and offsets
of Stop Task stimuli, as well subjects' button presses, were recorded in a
simultaneously acquired event channel. Electrodes and water-based conductive
gel were pressed into plastic wells on caps with a custom whole-head montage
covering most of the skull, forehead, and superior temporal face surface.

Data were analyzed by customMATLAB (The MathWorks, Inc., Natick, MA, USA)
scripts built on the open source EEGLAB environment (http://sccn.ucsd.edu/eeglab)
(Delorme et al., 2011). In addition, data were re-referenced to average reference and
high-pass filtered above 1 Hz. Data periods containing broadly distributed, high-
amplitude muscle noise, and other irregular artifacts were removed from analysis
using EEGLAB functions. Eye blinks, other eye movements, and tonic muscle
tension artifacts were not removed at this stage of preprocessing.

2.4. Artifact removal using independent component analysis (ICA)

Data were then concatenated and submitted to full-rank decomposition by
extended InfoMax ICA as implemented in EEGLAB. Independent components (ICs)
characteristic of nonbrain artifact (e.g. eye, muscle, and line noise) by visual
inspection of scalp topographies, time courses, and activity spectra were excluded.
Next, equivalent dipole models for each IC were computed using a boundary
element model that included Oostenveld FieldTrip functions as implemented by
EEGLAB's DIPFIT plug-in. Pairs of bilaterally symmetric dipoles were permitted to
fit ICs with bilaterally symmetric scalp maps. ICs with scalp projections having less

Table 1
Clinical and behavioral variables.

mTBI-only (n¼15) mTBIþPTSD (n¼17) P
Mean7S.D. Mean7S.D.

Age, years 29.575.7 3075.4 0.74
Education, years 14.071.1 14.071.3 0.61
Stop, % errors 12.47713.8 10.378.4 0.61
CAPS 37.3713.2 81.0717.4 o0.001
CAPS-intrusions 10.975.3 20.677.1 o0.001
CAPS-avoidance 3.773.3 11.173.2 o0.001
CAPS-dysphoria 17.879.2 38.179.5 o0.001
CAPS-hyperarousal 7.973.7 12.172.0 o0.001
BDI-II 7.177.9 21710.1 o0.001
MDD n¼9 n¼15 0.11
Other anxiety disorders n¼4 n¼9 0.17
Psychoactive medications n¼4 n¼6 0.71
Blast-related n¼13 n¼14 1.00
Number of blasts 13.8720.1 6.277.3 0.20
LOC n¼7 n¼6 0.72
Retrograde amnesia n¼3 n¼2 0.65
PCS n¼10 n¼11 0.70

BDI-II, Beck Depression Inventory II; CAPS, Clinician-Administered PTSD Scale; LOC,
loss of consciousness; MDD, major depressive disorder; mTBI, mild traumatic brain
injury; PCS, post-concussive symptoms; PTSD, posttraumatic stress disorder; and
S.D., standard deviation. Significant group differences in bold (independent sample
t-test or Fisher's exact test).
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than 15% residual variance from the best-fit dipole scalp projection were con-
sidered brain ICs. Dipoles that localized outside the brain volume were excluded.

2.5. Analysis

All ICs, except known artifacts (e.g. eye blinks, eye movements, electrocardio-
gram, and muscle activity), were back projected to scalp electrode positions. For
each subject, onset of Stop Signal was set as time 0 ms, average activity between
�100 and 0 ms was subtracted as baseline, and the epochs between 0 and 625 ms
from all Stop Trials were averaged to generate single-subject ERPs. For each group,
single-subject ERPs were averaged to generate group ERP. Two-tailed independent
sample t-tests were also computed for each channel.

Peak amplitudes for single-subject ERPs were computed by identifying the
most negative (or positive) ERP value within the window, starting 100 ms before
and ending 100 ms after the characteristic ERP latency (i.e. 100–300 ms for N200).
There being no evidence to assume linear relationships between peak amplitudes
and PTSD severity, correlations between single- subject peak amplitudes and
single-subject CAPS scores were tested using Spearman's ρ.

For source localization, we first identified putative brain ICs or those with
o15% residual variance from an equivalent dipole model and localized within the
brain volume. ICs were then clustered based on anatomical location, by calculating
the Euclidean distance between all dipole locations and then clustering the results
using linkage and dendrogram functions in MATLAB.

More specifically, a hierarchical clustering was performed based on a distance
measurement between dipole locations. The only variable in this process is the
number of clusters, which is true of many clustering algorithms. The number 15
was arrived at by clustering with a wide range of cluster numbers and choosing the
number that was in the middle of a fairly stable stretch of cluster numbers (that is,
very well-defined clusters were relatively intact, but minor changes in the
peripheries of clusters accounted for the variations among cluster numbers).
Essentially, the final number of clusters (within reason) would not have altered
our result significantly, but may have spread or narrowed the physical spread of the
cluster dipoles of interest. There is no exact science to clustering dipoles at the
present moment. The head models themselves use an average MNI brain, which
makes exact anatomical localization impossible, though general placement is quite
reliable. Furthermore, variations in IC expression across subjects can make cluster-
ing an extra challenge because the distributions of dipoles across subjects do not
always line up exactly. Nevertheless, we believe that the clusters that we have
identified are reasonably homogeneous and fairly well-localized to the locations we
have identified. But because we understand that these are slightly imperfect
estimations, we intended to express that these cluster locations are ‘in or near’
the stated locations, but this terminology gets dropped when we begin to discuss
what is known about the brain regions that we think are involved in the
phenomenon of interest. We added the phrase ‘in or near’ to the manuscript
where the localization of our clusters in particular is discussed.

To determine which clusters contributed most to the observed correlation with
PTSD severity, each cluster was removed from the raw data back projection
individually, and the correlation was recalculated. The clusters that caused the
largest decrease in the correlation P-value were considered the highest contribu-
tors to the observed scalp correlation.

To test whether inhibitory processing ERPs can objectively classify combat veterans
with mTBI into groups with and without PTSD, a support vector machine (SVM) analysis

is performed in R (http://www.r-project.org) using the e1071 library (cran.r-project.org/
web/packages/e1071). Machine learning methods can be used to find the unknown
decision function f that maps EEG signals to groups: f(v)-g, where v represents the EEG
data (N200/P300) and g is the predicted group of allocation (mTBI/mTBIþPTSD). Once
the decision function is learned from the training data, it can be used to predict the
group assignment in a new set of data. The SVM algorithm corresponds to an optimal
classifier with strong generalization (Boser et al., 1992). For a detailed description of the
SVM, see Burges (1998). The SVM was performed on the full set of 32 subjects to test
how well the group could be optimally classified. Thus, peak single-subject N200 and
P300 amplitudes are utilized to develop an algorithm that optimally segregates subjects
into mTBI-only and mTBIþPTSD groups. Due to the limited number of subjects, a
general model that used a different cohort of subjects for training and testing could not
be performed.

3. Results

3.1. Clinical and behavioral results

Based on selection criteria, PTSD severity was significantly
higher in veterans with mTBIþPTSD (mean7S.D. CAPS scores:
mTBI-only, 37.3713.2; mTBIþPTSD, 81.0717.4; Po0.001; see
Table 1). Groups did not differ on demographic variables, including
age or education, or on head injury variables, such as mechanisms
of mTBI, number of blasts, or mTBI-related changes in mental
status (e.g. loss of consciousness or retrograde amnesia) (Table 1).
Behaviorally, groups did not differ on total number of errors during
Stop Trials. One low-scoring mTBI-only subject who scored 47%
increased the standard deviation of the mTBI-only group to three
times that of the PTSDþmTBI group. Examination of the results
with and without this subject confirmed that, despite his low
behavioral score, his brain activity was comparable to the other
subjects and was left in the analysis (Table 1; also see Online
Supplementary Fig. 3).

As shown in Table 1, groups do not differ on the clinical
variables of comorbid major depressive disorder (MDD) and other
anxiety disorders or treatments with psychoactive medications.
However, groups did differ on depression severity; more specifi-
cally, veterans with mTBIþPTSD exhibited greater depression
severity (mean7S.D. BDI-II scores: mTBI-only, 7.177.7; mTBI7
PTSD, 21710.1; Po0.001; see Table 1).

3.2. ERP results

During successful Stop Trials, both groups exhibited two ERPs
(N200 and P300) consistently associated with conflict monitoring

Fig. 1. Schematic for three likeliest outcomes during Stop Task. During Go Trials, subjects are presented with Go Signal (“X” or “O”) without Stop Signal (beep) and responded
with corresponding button press (right for “X”; left for “O”). During successful Stop Trials, subjects are presented with Go Signal followed by Stop Signal (beep) and
responded correctly by inhibiting button press. Error Trials are Stop Trials where subjects are presented with Go Signal followed by Stop Signal but fail to inhibit, and
incorrectly respond with button press. See Materials and methods for details.
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and response inhibition (Huster et al., 2010). While peak N200
amplitudes did not correlate with behavioral accuracy (due to all
subjects exhibiting high accuracy), N200 ERPs were not observed
during Go or Error Trials – consistent with previous reports that
N200 is associated with response inhibition (also see Online
Supplemental Fig. 4). Compared with mTBI-only veterans,
mTBIþPTSD veterans exhibited significantly larger N200 ampli-
tudes at the vertex channel, Cz (t-test; Po0.0003; Fig. 2). Of note,
this group difference remained significant (Po0.03) after covary-
ing for depression severity. Removal of Go Signal locked ERP
activity decreased amplitude of Stop Signal locked N200
(Figs. 3 and 4); however, the magnitude of decrease – on the
order of �1 μV – is comparable in both mTBI-only and
mTBIþPTSD veterans (Fig. 5). Note that group N200 differences
remain significant after correcting for ERP responses to the Go
Signal (Po0.05). Furthermore, peak Go Signal locked N300 ampli-
tudes were not correlated with PTSD severity, in contrast to Stop
Signal locked N200 – either corrected or uncorrected for Go Signal
locked ERP activity (Online Supplementary Fig. 5). Correction for
auditory N1 (in response to Stop Signal) is not necessary given the
latency of the observed N200 and the source separation and
localization results below.

While P300 amplitudes were greater in mTBIþPTSD veterans
compared with mTBI-only veterans, the differences were not
statistically significant. For all veterans, no N200 or P300 ERPs
were observed during Error Trials (Fig. 2), which is consistent with
N200 and P300 arising from brain processes necessary for
response inhibition. Since group differences were only observed
for N200 ERPs, we focused on N200 negativity in the subsequent
analysis.

3.3. Correlations

Peak N200 amplitudes from single-subject ERPs were com-
puted by identifying the most negative ERP value between 100
and 300 ms latencies. For all veterans, greater central-medial N200
negativity was correlated with greater PTSD severity (Spearman's
ρ¼�0.573 with Po0.001 at Cz; Fig. 6). Correlation strength was
smaller (�0.374) but remained significant (Po0.02) after control-
ling for depression severity.

For all veterans, correlations were significant for all PTSD
symptoms clusters (re-experiencing, avoidance/numbing, and
hyperarousal subscores on the CAPS). However, the strongest
and most significant correlations were for avoidance/numbing
(Spearman's ρ¼�0.522, Po0.001) and hyperarousal (Spearman's
ρ¼�0.593, Po0.0002). The correlation with re-experiencing was
lower, but still significant (Spearman's ρ¼�0.394, Po0.04). For
both avoidance/numbing and hyperarousal, strength of correlation
was smaller but remained significant after controlling for depres-
sion severity (Spearman's ρ¼�0.330, with Po0.04; �0.447,
0.006; respectively). Dividing the CAPS test differently into four
subclusters as described by Simms et al. (2002)—intrusions (B1–5),
avoidance (C1–2), dysphoria (C3–7, D1–3), and hyperarousal (D4–
5)—we similarly found all subcluster scores to significantly corre-
late with N200 magnitude, although the intrusion subcluster was
again less significant (intrusions: Spearman's ρ¼�0.32, Po0.04;
avoidance: Spearman's ρ¼�0.42, Po0.008; dysphoria: Spear-
man's ρ¼�0.6, Po0.0001; hyperarousal: Spearman's ρ¼�0.42,
Po0.008). Dysphoria and hyperarousal subclusters were still
significant after correcting for depression, but intrusions and
avoidance were not (dysphoria: Spearman's ρ¼�0.42, Po0.01;
hyperarousal: Spearman's ρ¼�0.31, Po0.05).

Within-group correlations were significant only for N200
negativity and total CAPS score among mTBIþPTSD veterans
(Spearman's ρ¼�0.305 with Po0.05). This correlation trended
toward significance among mTBI-only veterans (Spearman's
ρ¼�0.324 with P¼0.11).

From the 15 anatomic clusters of ICs responsible for the great-
est N200 variance, we tested the significance of the correlation
between N200 negativity and PTSD severity when any one cluster
was removed from the analysis (Fig. 7). Strength of correlation was
most affected by removing cluster 9 (which localizes to or near the
dorsal ACC) from the analysis, which decreased Spearman's ρ from
�0.57 to �0.49. Strength of correlation was also affected by
clusters 12, 8, 16, and 3, which localize to or near the bilateral
occipital areas, precuneus, L sensorimotor areas, and anterior ACC,
respectively and which decreased Spearman's ρ to order of �0.50
to �0.56. Please see Online Supplementary Figs. 6 and 7 for more
detailed information on how clusters 9 (dorsal ACC) and 12
(occipital areas) contribute to observed N200 differences.

3.4. Clinical classification

The above results suggest that, among combat veterans with
mTBI, a larger inhibitory processing ERP is associated with greater
PTSD severity. To test the hypothesis that larger N200 and P300
ERPs can objectively classify combat veterans with mTBI into
groups with and without PTSD, we used SVM, a multivariate
pattern recognition technique. Further, SVM was used to develop
an algorithm that, with peak single-subject N200 and P300
amplitudes as inputs, optimally segregates subjects into mTBI-
only and mTBIþPTSD groups. Consistent with the hypothesis,
peak single-subject N200 and P300 amplitudes allowed discrimi-
nation with an accuracy of 81% (Po0.002, sensitivity¼70.6%,
specificity¼88.2%; see Table 2).

Fig. 2. Grand average Stop Signal locked ERPs at Cz for mTBI-only (blue) and
mTBIþPTSD (red) veterans, during Stop (solid lines) and Error (lightened lines)
trials. Green asterisk indicates latency with significant group differences during
successful Stop Trials (t-test, P¼0.0003). Turquoise asterisk indicates latencies with
significant trial-type differences (t-test, Po0.00001). The word latency is used here
to indicate the time point when groups were significantly different from one
another. Using the word ‘component’ in this manuscript would be confusing
because of our use of ‘independent components’, which has a completely different
meaning. We have therefore left the word ‘latency’ as is since it is technically
correct, though may not be the conventional terminology. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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4. Discussion

Patients with PTSD consistently exhibit larger ERPs during
inhibitory processing (Shucard et al., 2008; Wu et al., 2010;
Covey et al., 2013). In contrast, mTBI-only subjects generally
exhibit normal, smaller, or slower inhibitory processing ERPs
(Potter et al., 2002; Pontifex et al., 2009; Larson et al., 2011,
2012; De Beaumont et al., 2013). These studies suggest that,
among combat veterans with mTBI, greater inhibitory processing
ERPs may be especially common in patients with PTSD. Consistent
with this hypothesis, we observed greater N200 negativity during
the Stop Task in veterans with comorbid PTSD and mTBI, com-
pared with mTBI-only subjects. Furthermore, greater N200 nega-
tivity correlated with greater PTSD and stress-related symptom
severity in all mTBIþ veterans. In an exploratory analysis, we
found that inhibitory processing ERPs can objectively classify
combat veterans with mTBI into groups with and without PTSD.

We further observed that larger ERPs in veterans with PTSD
and mTBI primarily arose from (or from near) the dorsal ACC; this
observation is consistent with studies demonstrating medial
frontal and cingulate overactivation during inhibitory processing
in patients with PTSD (Stein et al., 2002; Carrion et al., 2008;
Jovanovic et al., 2012; Matthews et al., 2012; Swick et al., 2012;
Thomaes et al., 2012). In contrast, patients with mTBI-only gen-
erally do not exhibit medial frontal and cingulate overactivation
during inhibitory processing (Stewart and Tannock, 1999; DeHaan

et al., 2007; Larson et al., 2011, 2012; Mayer et al., 2012; Terry
et al., 2012). These results raise the possibility that, in combat
veterans with mTBI, increased medial frontal and cingulate activity
during inhibitory processing may be especially common in
patients with PTSD, and may be related to hypervigilance and/or
difficulties controlling ongoing brain processes.

4.1. PTSD-related ERP differences

Consistent with previous studies (Shucard et al., 2008; Wu et
al., 2010; Covey et al., 2013), our results indicate that mTBIþPTSD
veterans exhibit larger inhibitory processing ERPs than mTBI-only
veterans. In contrast to our results, Covey et al. (2013) and Shucard
et al. (2008) observed greater P300, but not N200, in patients with
PTSD. This difference may arise from our subjects generally
exhibiting more severe PTSD symptoms from combat-related
trauma, while subjects in Covey et al. (2013) and Shucard et al.
(2008) studies generally exhibited less severe PTSD symptoms
from civilian-related trauma. While N200 and P300 are closely
related, there is evidence that N200 primarily arises from brain
processes responsible for conflict monitoring, while P300 primar-
ily arises from brain processes responsible for response inhibition
(Nieuwenhuis et al., 2003; Donkers and van Boxtel, 2004;
Enriquez-Geppert et al., 2010; Huster et al., 2013). This distinction
raises the possibility that observed N200 processing differences in
veterans with more severe combat-related PTSD symptoms are

Fig. 3. Go Signal locked ERP images: Left, Go Trials for all subjects sorted by response latency; Middle, Stop Trials for all subjects sorted by Stop Signal latency; Right, Stop
Trials for all subjects sorted by Stop Signal latency with Go Signal locked ERP responses removed.
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primarily influenced by difficulty managing conflicting thoughts
and feelings. Consistent with this model, we observed that in all
mTBIþPTSD veterans, greater N200 negativity was correlated with
greater PTSD severity, especially in the avoidance/dysphoria
and hyperarousal symptom clusters. Furthermore, in all mTBIþ

veterans (with and without clinical PTSD), greater N200 negativity
was correlated with greater CAPS scores—raising the possibility
that greater N200 negativity might reflect greater stress-related
distress in general.

Fig. 4. Stop Signal locked ERP image: Left, Stop Trials for all subjects sorted by Stop Signal latency; and Right, Stop Trials for all subjects sorted by Stop Signal latency with Go
Signal locked ERP responses removed.

Fig. 5. Grand average Stop Signal locked ERPs at Cz for mTBI-only veterans
uncorrected (blue) and corrected (turquoise) for Go Signal locked ERP activity,
and for mTBIþPTSD veterans uncorrected (red) and corrected (magenta) for Go
Signal locked ERP activity. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. For all veterans, peak negative N200 amplitudes at Cz (from successful Stop
Trials only) are plotted along the y-axis against Clinician-Administered PTSD Scale
(CAPS) scores on the x-axis –mTBI-only veterans in blue; mTBIþPTSD veterans, red
(Spearman's ρ¼�0.573; Po0.001). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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4.2. Medial cortical inhibitory processing activity in patients with
PTSD

The role of the ACC in inhibitory control is well established
(Ridderinkhof et al., 2004). Since patients with PTSD commonly
report difficulties controlling ongoing brain processes, including
trauma-related thoughts and feelings (Lanius et al., 2010), abnor-
mal inhibitory processing by the ACC may play a role in the
pathophysiology of PTSD. Consistent with this model, patients
with PTSD generally exhibit increased ACC activity, as well as
increased errors, during inhibitory control tasks and related areas
that are generally overactivated during inhibitory processing
(Stein et al., 2002; Carrion et al., 2008; Jovanovic et al., 2012;
Matthews et al., 2012; Swick et al., 2012; Thomaes et al., 2012).
Furthermore, two recent meta-analyses identified the ACC as
among the areas most consistently activated in patients with PTSD
during processing of trauma-related stimuli (Ramage et al., 2012;
Sartory et al., 2013). The most parsimonious model of these results
suggests that PTSD is associated with difficulties inhibiting
both neutral and trauma-related thoughts and feelings, which

are characterized by increased ACC activity. Consistent with this
model, we observed that the correlation between greater N200
negativity and PTSD severity among mTBIþ veterans arises
principally from the ACC.

We also observed significant contributions to the correlation
between N200 negativity and PTSD severity from the precuneus.
While multiple fMRI studies have demonstrated precuneus activa-
tion during inhibitory processing (Menon et al., 2001; O’Connell et
al., 2007; Brown et al., 2007, 2008), the precuneus may be more
responsible for behavioral engagement vs. frank response inhibi-
tion (Barber and Carter, 2005; Zhang and Li, 2012). Specific to
patients with PTSD, the precuneus is among brain areas—along
with the ACC, posterior cingulate, and retrosplenial cortex—most
consistently activated during processing of trauma-related stimuli
(Ramage et al., 2012; Sartory et al., 2013). In contrast, patients with
mTBI-only generally do not exhibit overactivation of medial
cortical areas at rest (Mayer et al., 2011; Johnson et al., 2012;
Stevens et al., 2012; Zhang et al., 2012; Zhou et al., 2012) or during
inhibitory processing ( Stewart and Tannock, 1999; DeHaan et al.,
2007; Larson et al., 2011, 2012; Mayer et al., 2012; Terry et al.,
2012). These results raise the possibility that increased medial
cortical activity among mTBIþ veterans may be due to comorbid
PTSD, and may be related to difficulties inhibiting PTSD-related
symptoms, such as hyperarousal, which was correlated with N200
magnitude in the present report.

4.3. Limitations

Similar to other published studies of combat-related mTBI,
we relied on subject recall of injuries and course of symptoms.
This limitation, combined with this study's cross-sectional design,
precludes a definitive answer to whether greater N200 negativity
preceded, or followed, traumatic events or onset of symptoms.
In addition, similar to veterans receiving treatment at Veterans
Affairs facilities nationally, subjects in this study were comorbid
for multiple psychiatric problems. It is also important to note that
our findings are relative only to individuals who have experienced
an mTBI event and have some level of combat-related PTSD since
no mTBI- and PTSD-free controls were included in this study.

While prevalence of MDD did not differ between groups,
veterans with PTSD after mTBI exhibited both greater PTSD and
depression severity. Thus, greater N200 amplitudes in this group
may arise from the effects of both PTSD and depression. Most
studies of inhibitory ERPs demonstrate decreased or equal, includ-
ing N200, amplitudes in depressed subjects (Kaiser et al., 2003;
Zhang et al., 2007b; Holmes and Pizzagalli, 2008; Ruchsow et al.,
2008; Vanderhasselt and De Raedt, 2009; Quinn et al., 2012;
Vanderhasselt et al., 2012; Clawson et al., 2013); this finding is
consistent with greater N200 amplitudes in mTBIþPTSD veterans
being specific to PTSD. However, four studies have demonstrated
increased N200 amplitudes in depressed subjects (Ogura et al.,
1991; Zhang et al., 2007a; Krompinger and Simons, 2009, 2011).
The varying effects of depressive symptoms on N200 amplitudes
likely arise from depression being a heterogeneous disorder, with
some patients exhibiting more melancholic features and other
patients more anxious features. Though not fully examined in
previous studies, we would hypothesize that patients with melan-
cholic depression exhibit normal or decreased N200 amplitudes,
while patients with anxious depression would exhibit increased
N200 amplitudes (similar to patients with anxiety disorders
including PTSD). We plan to specifically test these hypotheses in
future studies of inhibitory ERPs in patients with mTBI by recruit-
ing adequately powered samples of mTBIþ patients with MDD
only, MDDþPTSD, and PTSD only.

Importantly, prevalence of MDD, other psychiatric disorders,
treatment with psychiatric medications, and head injury variables

Fig. 7. The 16 anatomic clusters of ICs with greatest contributions to N200 variance
are plotted along the x-axis in the order of their contribution to the correlation
between N200 negativity and PTSD severity—with lowest contributors on the far
left, and the greatest contributors on the far right. For each cluster along the x-axis,
the significance of the correlation with only that cluster removed from the analysis
is plotted along the y-axis. Midsagittal and midtransverse images of the five
clusters with greatest contributions to the correlations are indicated by arrows:
dorsal ACC (turquoise), bilateral occipital areas (navy blue), precuneus (sea green),
and L sensorimotor area (fuchsia) and a more anterior ACC (yellow). Removal of the
cluster localizing to the dorsal ACC decreases Spearman's ρ from �0.57 to �0.49.
Removal of clusters in the shaded (salmon color) region of the plot eliminates
statistical significance of correlation. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 2
SVM classification into groups with and without PTSD.

PTSDþ (SVM) PTSD� (SVM) Sens/Spec

PTSDþ (CAPS465) 15 2 88% (Sens)
PTSD� (CAPSo65) 4 11 73% (Spec)
Accuracy 81%
Corrected χ2: 10.1 Po0.002

PTSD, posttraumatic stress disorder; SCID-IV-TR, Structured Clinical Interview for
the Diagnostic and Statistical Manual IV-TR; Sens, sensitivity; Spec, specificity; and
SVM, support vector machine.

I.-W. Shu et al. / Psychiatry Research: Neuroimaging 224 (2014) 58–6664



were not significantly different between the groups. ERP differ-
ences and correlations also remained significant after controlling
for depression severity; thus allowing us to conclude that
observed differences largely arise from PTSD. While our subjects
with mTBI-only did not meet categorical and severity criteria for
PTSD, the mean7S.D. CAPS score for this group was 37.3713.2,
suggesting presence of subthreshold PTSD symptoms. As such, this
limitation suggests greater N200 negativity is primarily a marker
of greater PTSD severity rather than a categorical marker of PTSD
diagnosis—a conclusion also supported by our correlational ana-
lysis. Nevertheless, peak single-subject N200 and P300 amplitudes
did objectively classify subjects into mTBI-only or mTBIþPTSD
groups with 79.4% accuracy.

5. Conclusion

To better understand the neural mechanisms underlying the
negative effects of PTSD on outcomes following mTBI, we tested the
hypothesis that combat veterans with comorbid PTSD and mTBI,
compared with those having mTBI-only, would exhibit larger
inhibitory processing ERPs from the cingulate cortex during the
Stop Task, a validated inhibitory control task requiring inhibition of
initiated motor responses. Consistent with our hypothesis, veterans
with comorbid PTSD and mTBI exhibited a larger inhibitory
processing ERP (N200 negativity). Furthermore, N200 negativity
correlated with greater PTSD severity. The significance of this
correlation depended on contributions from (or from near) the
dorsal ACC and precuneus, both medial cortical areas responsible
for managing conflicting stimuli and planned responses. These
results are consistent with a model where the negative effects of
PTSD on outcomes following mTBI are associated with a relative
overactivation of medial cortical areas during inhibitory processing.
Future studies will focus on how PTSD-related differences in medial
cortical activity during inhibitory processing may improve diagnosis
and treatment of PTSD, particularly in combat veterans with mTBI.
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