

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2015 2. REPORT TYPE

3. DATES COVERED
 00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
CrossTalk, The Journal of Defense Software Engineering. Volume 28,
Number 2, March/April 2015

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS/MXDED,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—March/April 2015

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Portable Automated Test Station: Using Engineering-Design
Partnerships to Replace Obsolete Test Systems
The PATS-70 is a robust, flightline qualified test set that has gone through rigor-
ous environmental testing.
by Benjamin Chase

Metamorphic Runtime Checking of Applications Without
Test Oracles
For some applications, it is impossible or impractical to know what the correct
output should be for an arbitrary input, making testing difficult.
by Jonathan Bell, Christian Murphy and Gail Kaiser

Dealing With the Time Crunch in Software Testing
No matter how much time you have, it is not enough time to test all functions
and combinations of functions in most software.
by Randall W. Rice

Combinatorial Coverage as an Aspect of Test Quality
There are relatively few good methods for evaluating test set quality, after
ensuring basic requirements traceability.
by D. Richard Kuhn, Raghu N. Kacker, Yu Lei

Metrics That Matter in Software Integration Testing Labs
Without having in place data-driven metrics that give a holistic business
perspective of software integration testing laboratories, leaders of the DoD’s
weapons programs are unable to optimize the performance of these full-system
and subsystem integration labs that test and certify integrated hardware and
software of the U.S. military’s complex systems.
by Christian Hagen, Steven Hurt and Andrew Williams

Silverlining:
A Simulator to Forecast Cost and Performance in the Cloud
It is difficult for CIOs to accurately estimate cloud cost and performance in a
fast and inexpensive manner.
by Lawrence Chung, Nary Subramanian, Thomas Hill and Grace Park

Fuzz Testing for Software Assurance
Multiple techniques and tools, including static analysis and testing, should be
used for software assurance.
by Vadim Okun and Elizabeth Fong

9

4

14
19
24

35

29

Test and Diagnostics

Departments

Cover Design by
Kent Bingham

 3 From the Publisher

 38 Upcoming Events

 39 BackTalk

http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com
http://www.luminpublishing.com
mailto:Crosstalk.Articles@hill.af.mil
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines

CrossTalk—March/April 2015 3

FROM THE PUBLISHER

CrossTalk would like to thank DHS for sponsoring this issue.

Success of mission and business functions should be the
focus of verification and validation activities. Issues from sloppy
manufacturing hygiene and insufficient test and diagnostics can
enable exploitation and compromise of operational functionality.
Enormous energies are put into assuring safety-critical functions
address any source of taint, such as vulnerabilities, weaknesses,
and malicious logic. With more functionality being delivered
through cloud services the burden of security shifts to develop-
ment with test being the last line of defense.

Industry has substantially invested in improving the quality of
products and systems because of customer/user demand; con-
tributing to a rise of automated software testing capabilities and
test services. As the size and complexity of software and logic-
bearing devices increase, test and diagnostic capabilities must
mature to address the changing environment in which products
and systems are deployed. Despite encouraging results with
various quality improvement approaches, the software industry
is still far from zero defects. Part of that is a cultural issue with
developers often making risk decisions for which they are not
held accountable, such as disabling compiler warnings and
selecting unpatched components from libraries. Testing is fur-
ther complicated because software-based systems often have
additional features, interfaces, and functionality that use third
party libraries, general purpose applications, and a multiplicity of
features in system libraries and system calls. As witnessed by
the myriad of patches needing to be addressed due to residual
exploitable vulnerabilities, weaknesses, and malware, software-
based systems are inherently susceptible to attack and manipu-
lation. To address the difference between what is conceived and
what is delivered, testers need to think about how software-
based systems are actually integrated and deployed. If libraries
are incorporated and deployed by a compiler, or configuration
choices undermine design choices, or someone exposes a
weakness, then testers need to factor in means for detecting
these before deployment; not after an application or system
compromise. Often, more comprehensive test programs are
needed. This requires improved security functionality and more
rigorous review, testing and inspection. Test coverage for agile
continuous testing, automated API testing, metamorphic testing
(including runtime checking), fuzz testing, and other techniques
and methods need to be part of test organizations’ process
improvement list of strategic considerations. Multiple techniques
and tools, including static and dynamic analysis, should be used
for software assurance. Test-driven development is a program-
mer practices that has been employed by a growing number of
software development teams. Despite the fact that testing often
accounts for at least 30-40% of total project costs, only limited
attention has been given to testing in various software process
improvement models, including the Capability Maturity Model
Integration (CMMI). As a result, the testing community has de-

veloped and used its own improvement models, such as the Test
Maturity Model integration (TMMi) for test process improvement
that is positioned as being complementary to the CMMI to more
comprehensively address those issues important to test manag-
ers, test engineers and quality professionals.

Unfortunately, partially because of the lack of adequate
due-diligence and due-care in development and integration test
activities, vulnerabilities are proliferating rapidly; thus stretch-
ing mission capabilities and resources. As we seek to discover
and mitigate the root causes of these vulnerabilities, sharing
the knowledge we have of them help to mitigate their impact.
In order to keep pace with growing threats we must facilitate
the automated exchange of information. With that objective the
Department of Homeland Security (DHS) sponsors ‘free for use’
standardized means for sharing information. These include the
Common Weakness Enumeration (CWE) that provides standard-
ized means for identifying and mitigating architectural, design
and coding flaws introduced during development and detectable
in testing, along with the Common Attack Pattern Enumerations
and Classification (CAPEC) that enables developers, testers and
defenders to discern attack constructs, build software resilient
to them, and determine the sufficiency of test regimes focused
on checking security concerns. These open specifications for
interoperable security automation enable secure, machine-to-
machine communication of actionable indicators within and
between organizations that want to share this information.
These have been developed collaboratively between Federal
Government and industry partners working toward information
sharing mechanisms and solutions to reduce the risk of tainted
components. These standardized means for sharing information
are already being used, and they contribute to efforts that en-
able more stakeholders to secure their part of cyberspace.

CrossTalk again thanks DHS Office of Cybersecurity and
Communications for co-sponsoring this issue focused on test
and diagnostics. Along with DoD, NIST, and GSA, DHS co-spon-
sors the Software & Supply Chain Assurance (SSCA) Forum
in which Federal, academic, and industry stakeholders address
risks and mitigation methods. SSCA Forums are free and open
to the public, and resources are available on the SSCA Com-
munity Resources and Information Clearinghouse, with many
applicable to test and diagnostics -- see <https://buildsecuri-
tyin.us-cert.gov/swa/pocket_guide_series.html> for “Software
Security Testing” and “Key Practices for Mitigating the Most
Egregious Exploitable Software Weaknesses.”

Justin T. Hill
Publisher, CrossTalk

https://buildsecuri-tyin.us-cert.gov/swa/pocket_guide_series.html
https://buildsecuri-tyin.us-cert.gov/swa/pocket_guide_series.html
https://buildsecuri-tyin.us-cert.gov/swa/pocket_guide_series.html

4 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

Introduction
The Portable Automated Test Station Model 30 (PATS-30),

Organizational (O)-Level test set is comprised of a COTS rug-
gedized Personal Computer using the Microsoft Windows XP
operating system, a transport case, a cable set, and custom
software. The PATS-30 functions as maintenance support
equipment for the A-10C aircraft by performing maintenance
activities and troubleshooting avionics system faults while the
aircraft is on the ground.

The core component of the PATS-30, the ruggedized laptop,
is no longer sustainable. Since the laptop is no longer available,
the PATS-30 will no longer be supportable. Southwest Re-
search Institute (SwRI) was tasked by the Air Force to address
the end-of-life issues of the currently fielded PATS-30 and
develop a proof of concept unit that performs the functions of
the PATS-30. SwRI constructed one prototype, identified as the
PATS-50 and field-demonstrated the prototype.

The PATS-50 proof of concept project demonstrated the
feasibility of re-hosting the PATS-30 functions onto a different test
platform. During the proof of concept project, some functional-
ity was lost, the environmental requirements were not met, and
additional requirements were identified. Analysis of the additional
requirements relative to the PATS-50 was completed. The results
of this analysis showed that the PATS-50 concept could be utilized
and re-hosted onto a test station that included the lost functional-
ity from the PATS-30, addressing the environmental requirements,
and expanding capabilities to include several separate test systems
that have been identified for inclusion into the PATS. This new de-
sign concept was designated the Portable Automated Test Station
Model 70 (PATS-70) [1].

Benjamin Chase, Hill Air Force Base

Abstract. The Air Force A-10C attack aircraft is currently experiencing obsoles-
cence issues with its legacy support equipment. The Portable Automated Test
Station Model 70 (PATS-70) replaces more than a dozen pieces of obsolete and
irreparable flightline support equipment. The PATS-70 is a robust, flightline quali-
fied test set that has gone through rigorous environmental testing. While it was
developed to function as maintenance support equipment for the A-10C aircraft,
it has no A-10 specific components so it can be adapted for maintenance on
other aircraft, platforms, or systems.

Portable Automated
Test Station:
Using Engineering-
Design Partnerships
to Replace Obsolete
Test Systems

The PATS-70’s modular design has been developed to meet
the functionality requirements, environmental requirements, and
additional expansion capabilities. The PATS-70 replaces more
than a dozen pieces of obsolete and irreparable flightline sup-
port equipment. It has been organically developed using COTS
components and industry standard software. An engineering-
design partnership was formed between the Air Force and
Marvin Test Solutions1 to facilitate this development and to help
the program meet its objective on-time, and on-budget. This led
to the selection of the Marvin PXI-based, ultra-rugged MTS-207
platform, laying the ground work for PATS-70 instrumentation
selections.

In addition, the PATS-70 provides flexibility over other test
sets since the software architecture was uniquely designed for
ease of adding additional Test Program Sets (TPSs) to support
the war fighter’s needs. Moreover, the PATS-70 hardware has
spare capacity to add additional COTS PXI components to sup-
port future TPS development. With thousands of PXI cards avail-
able today, this provides the Air Force the necessary flexibility
to tackle a multitude of test requirements and applications. The
PATS-70 has also been selected as the test platform for a new
A-10 weapons systems maintenance capability, merging the
capability of eight legacy test sets along with additional flightline
test capabilities into one test set.

The PATS-70 is a robust, flightline qualified test set which has
gone through rigorous MIL-STD-810G, and MIL-STD-416F
environmental testing. While it was developed to function as
maintenance support equipment for the A-10C aircraft, it has no
A-10 specific components so it can be adapted for maintenance
on other aircraft, platforms, or systems. The flexibility and added
functionality gives the PATS-70 an advantage in maintaining
multiple systems throughout the Department of Defense.

System Overview
The PATS-70 is an automatic test system designed to per-

form functional tests on the Fairchild Republic A-10C Thun-
derbolt II’s (A-10) Anti-skid, Alpha Mach, Stability Augmenta-
tion System (SAS), and Fuel Quantity Indicating System. The
PATS-70 provides the logic and hardware control necessary to
coordinate and automate control of these system functions. The
PATS-70 is an automated, user friendly, state-of-the-art adapt-
able test set that provides robust system diagnostic capability,
significantly reducing the time required to bring an aircraft into
mission ready status. The PATS-70 provides a mission ready
test set for the A-10 Command Center. The A-10 Aircraft
Operational Test System (OTS) consists of a PATS-70, and the
Operational Test Program (OTP). The OTS functions as main-
tenance support equipment for the A-10 aircraft. The OTS per-
forms maintenance activities as well as trouble shooting avionics
system faults while the aircraft is on the ground. The PATS-70
utilizes up-to-date, sustainable technology for Operational Flight
Program (OFP) software loading and diagnostic avionics system
testing and includes additional TPSs to enhance its capability
while decreasing the A-10 maintainability footprint. To preserve
combat effectiveness, and efficiency, the PATS-70 automates
and consolidates multiple test capabilities into one mission
ready test set. The PATS-70 is expandable to allow for the addi-
tion of future aircraft [2].

CrossTalk—March/April 2015 5

TEST AND DIAGNOSTICS

Design
The PATS-70 is a portable field-level/O-level test set (see Fig.

1) capable of performing functional tests on aircraft systems.
The test set is housed in an enclosure constructed of a durable
composite material for protection and an embedded wire frame
for electromagnetic interference (EMI) compliance. The enclo-
sure consists of upper and lower sections secured together with
eight (8) turn lock latches. A pressure-relief valve is located in
the lower half of the enclosure. The PATS-70 is based on the
Compact Peripheral Component Interface (cPCI or PCI); PCI
eXtensions for Instrumentation (PXI) technology and includes
a rugged 14-slot PXI chassis, power supplies, numerous circuit
cards, wiring harnesses, cables for interfacing the test set with
the Unit Under Test (UUT), heaters, fans, and other electrical
and mechanical components [3].

Engineering-Design Partnership
An engineering-design partnership was formed between the

Air Force and Marvin Test Solutions. Having extensive back-
ground and domain expertise with the development of test
systems and test software, the 309th Software Maintenance
Group was looking to partner with a company that had a similar
level of domain expertise in flightline test and ultra-rugged test
platforms. This led to the selection of the Marvin Test Solutions
MTS-207 ultra-rugged PXI chassis. Having deployed flightline
test sets in 20 countries in the past two decades, Marvin Test
Solutions provided the platform and support to help the 309th
SMXS deliver the PATS-70 on-time, and on-budget.

Hardware
The PATS-70 is PXI-based instrumentation platform. The cir-

cuit cards are COTS PXI products. PXI is an architecture for test
and measurement applications that is based on the cPCI bus.
This high-performance architecture provides for the throughput
and synchronization required for the performance of precision
measurements. The following list describes the main hardware
components of the PATs-70 hardware.

Portable Automated Test Station, MTS-207-3 chassis - The
Internal Chassis Assembly is the main assembly of the MTS-
207-3. It “hangs” from the top panel of the MTS-207-3 accom-
modating connectors, switches, etc. via four (4) shock absorbers
designed to protect the internal electronics. The Internal Chassis
Assembly accommodates all the MTS-207-3 electronics. Its
main assemblies are the PXI card cage, and the Power Board
circuit card assembly (CCA). The Power Board provides all
required PXI chassis power rails as well as additional supplies
required for the operating of the display and peripheral PATS-70
equipment. Additionally, the Power Board provides control over
the MTS-207-3 heaters, allowing operation at extreme low tem-
peratures. The EMI Filter protects the MTS-207-3 from power
surges and eliminates conducted emissions, to ensure compli-
ance with MIL-STD-461 requirements.

User Interface Display (Tablet) – A modified Miltope RTCU-2
Tablet computer is used as the operator console. The Tablet is
powered by a 1.06 GHz Intel Core i7-620UE processor with
4MB L2 Smart Cache and 8 GB of RAM. The Tablet is dock
mounted or extended on the supplied user interface cable. The
Government modification of the tablet allows for external con-

nection utilizing reliable MIL circular connector technology.
Removable Solid State Hard Drives – The removable stor-

age device is a minimum of 120 GB Solid State Drive (SSD);
it is mounted inside the case via a drive slot on the face of the
chassis, or stored in the engineering panel cover. It is configured
with Windows XP or Windows 7 OS and allows integration of
classified software when required.

Controller CCA- This controller contains a 2.53 GHz Intel
i7 core processor with 4GB Random Access Memory (RAM).
Utilizing the rear transition module, this CCA has four Gigabit
Ethernet ports, two VGA ports, five USB ports and two RS232
ports, in a 6U cPCI module.

45 Relay Form C CCA - The Form C relay matrix for the
high current switching requirements includes 45 single pole
double throw Form C relays with 7A contact rating per chan-
nel in a 6U PXI module.

8x132 2AMP Relay Matrix CCA – This is a very high density
electro-mechanical relay matrix with a 132x8 format and 1
pole switching. The matrix is constructed using high reliability
2A electro-mechanical relays with long life and stable contact
resistance and is a single slot, 6U PXI module.

1553 Communications CCA – The communications card
supports up to 4 dual redundant 1553 channels. Each channel
operates simultaneously as a bus controller, bus monitor and
remote terminal in a 3U PXI module.

Digital Multi-Meter (DMM) CCA – The 6.5 digit multi-meter is
capable of true AC RMS measurements from 10Hz to 100 KHz,
measures 1uV to 330V, frequency counting from 1Hz to 300
KHz in a 3U PXI module. The DMM supports Volts DC, Amp
DC, Two-Wire Resistance, Four-Wire Resistance and Frequency
measurements, in a 3U PXI module.

Figure 1. PATS-70 Hardware

6 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

Small Computer System Interface (SCSI) CCA – A single
channel SCSI interface, supports up to 320MB/s throughput; it is
backwards compatible with ultra2 SCSI and is a 3U PXI module.

Differential Oscilloscope CCA – A 2 channel 14 bit resolution,
300MHz bandwidth digitizer features a maximum sample rate of
400MS/s and is a 3U PXI module.

Arbitrary Waveform Generator (ARB) CCA – A 2 channel 14
bit resolution, 50 MHz bandwidth waveform generator features
a maximum sample of 200MS/s and is a 3U PXI module.

Software
The software subsystem consists of four software layers;

the Operating System, the Device and Instrument Drivers, Test
Executive Software, and the Test Programs as shown in Fig. 2.
Each layer is a building block for the next layer.

Operating System - comprised of COTS software that is
provided on each PATS-70 System. The PATS-70 uses two
removable Solid State Hard drives (SSD); one containing the
Windows XP Operating System (OS) and one with the Windows
7 OS. Different sets of tests are available depending on the OS
currently loaded. TPS test programs, PATS-70 Self-

Test, and System Calibration all run under the Windows 7
OS. The A-10 Operational Test Program (OTP) runs under the
Windows XP OS and contains its own Self-Test function built
into the OTP software.

Device Drivers and Instrument Wrappers - includes any
software that initializes and controls specific system interfaces
between the system controller and system devices.

Test Executive Software - includes the requisite COTS soft-
ware used to create and modify test programs.

Test Programs - specific programs designed to test and
manipulate the UUT. Two of these TPSs are the Alpha Mach
and Anti-Skid which are software that can be loaded on the
Windows 7 System SSD. The Alpha Mach and Anti-Skid TPSs
are used to conduct diagnostic tests for the Alpha Mach and
Anti-Skid systems on the A-10.

In addition, there are two other software components incorpo-
rated in the PATS-70 system:

Self-Test - tests the PATS-70 and identifies the faulty replace-
able subassembly such as the arbitrary waveform generator,
digital multimeter, and oscilloscope.

System Calibration - tests the PATS-70 against a defined
performance standard and identifies the faulty replaceable sub-
assembly. PATS-70 calibration determination has been approved
and listed by Air Force Metrology and Calibration (AFMETCAL).
PATS-70 calibration traceability and configuration manage-
ment is accomplished through an automatic calibration routine,
approved Computer Program Identification Number (CPIN), and
calibration procedures.

Applications
The PATS-70 attaches to the A-10C aircraft through a variety

of TPS connections in which applicable tests are run to track
down and identify issues. In addition, the PATS-70 test set
has the ability to perform firmware and/or Operational Flight
Program (OFP) loads to the Integrated Flight and Fire Con-
trol Computer (IFFCC), Central Interface Control Unit (CICU),
Improved Electronic Processor Unit (IEPU), and download
Non-Volatile Memory (NVM.) The PATS-70 consolidates a wide
variety of avionic specific support equipment and software into a
single test unit.

The current software available on the PATS-70 to maintain the
aircraft consists of the Operational Test Program (OTP), Alpha
Mach, and Anti-skid TPSs which are described in the following.

Operational Test Program
The OTP TPS is software that can be loaded onto the Windows

XP System SSD. The OTP is used to conduct diagnostic tests for
avionics and weapons stations of the aircraft and to load OFPs.

Alpha Mach
The Alpha Mach TPS is used during flightline test of the A-

10C aircraft to isolate anomalies in the Alpha Mach computer
and its related components.

The Alpha Mach is part of the secondary flight control system.
It receives air pressure and lift data to operate the leading edge
slats and automatically improve high angle of attack airflow to the
engines. The system also provides audible warnings to the pilot
for engine peak performance and impending stall situations.

Anti-Skid
The Anti-Skid Control System TPS is used during flightline

testing of the A-10C aircraft as the Anti-Skid operational
check and to troubleshoot and isolate Anti-Skid Control Sys-
tem anomalies.

The Anti-Skid Control System is a modulating wheel skid
control system which proportionately reduces the amount of left
hydraulic system pressure supplied to both main landing gear
brakes when either main wheel begins to skid.

Figure 2. System Software

CrossTalk—March/April 2015 7

TEST AND DIAGNOSTICS

Enhanced Capabilities and Applications

Stability Augmentation System
The Stability Augmentation System (SAS) TPS is used during

flightline test of the A-10C aircraft to isolate anomalies in the
SAS computer and its related components.

The purpose of the SAS is to improve the stability and
handling quality of the aircraft, especially in low altitude, high
angle-of-attack situations. The computer, a part of the stability
augmentation system, contains sensors and electronic circuits to
amplify and modify sensor signals. The computer interfaces with
the Low Altitude Safety and Targeting Enhancement (LASTE)
computer for further processing of the pitch, roll, and yaw rate
data. The LASTE computer sends its signals to the SAS com-
puter which drives aircraft actuator devices in the pitch and yaw
axes. Contained in the test sequence are directives for hardware
resource control which are sent to the Test Executive Program.
When directed to perform a measurement, the Test Executive
Program returns measurement data which is compared with
test limits contained in the test sequence to determine a GO or
NOGO result. The test description, limits and GO/NOGO results
are then passed back to the Test Executive Program for display
on the PATS-70 [2].

Fuel Quantity Indicating System Tester
The A-10 Fuel Quantity Indicating System (FQIS) consists

of capacitive fuel probes and compensators, a fuel quantity
intermediate device (FQID), an indicator, and associated wir-
ing harnesses. The FQID has a pivotal role in the fuel quantity
system. Its purpose is to monitor tank probes and compensators
to gather fuel information. It generates analog voltage signals
proportional to the fuel quantity and sends these to an external
indication device (fuel quantity indicator) [4].

The FQIS Tester is designed for use with the PATS-70 tablet.
The tester measures fuel probe and compensator capacitances
and harness insulation resistance; simulates the tank probe
capacitances at empty, full, and unbalanced; and stimulates the
FQID and fuel quantity indicator. This allows for full calibration,
testing, and troubleshooting of the FQIS.

PATS-70A
The 309th Software Maintenance Group is currently develop-

ing the PATS-70A which will consist of a modified PATS-70 Core
Unit, PATS-70A Auxiliary Unit, and equipment interface cables. The
modification of the Core Unit includes adding several additional PXI
cards and the associated wiring harnesses and software changes.
Since the PATS-70 is based on a COTS platform and the PXI stan-
dard, these modifications require a minimal effort and demonstrate
the adaptability of the PATS-70 [5].

The PATS-70A is designed to provide in-depth testing and
troubleshooting functions to support a variety of A-10 armament
related Line Replaceable Units (LRUs) at both the flightline and
Intermediate (Back shop) levels. The testing functions to be
provided by the PATS-70A include:

1. PATS-70A System Calibration
2. PATS-70A System Self-Test
3. Digital Data Processing Unit (DDPU)

4. Dual Rail Adaptor (DRA)
5. DRA w/ Launcher Unit (LAU)105’s attached
6. Electronic Gun Control Unit (EGCU)
7. Electrical Test Panel (ETP)
8. LAU-105/A Guided Missile Launcher
9. LAU-117A(V)3/A Guided Missile Launcher
10. LAU-131/A Rocket Launcher
11. LAU-88A/A Guided Missile Launcher
12. Munitions Armament Unit (MAU)-40/A Bomb Ejector Rack
13. MAU-50/A Bomb Ejector Rack
14. Modified Triple Ejector Rack (TER)-9A (Digital TER)
15. Triple Ejector Rack (TER)-9A
16. Pylon Wiring-Weapons Station 1/11
17. Pylon Wiring-Weapons Station 2/10
18. Pylon Wiring-Weapons Station 3/9
19. Pylon Wiring-Weapons Station 4/8
20. Pylon Wiring-Weapons Station 5/7
21. Pylon Wiring-Weapons Station 6
22. Station Control Unit A (SCU-A)
23. Station Control Unit B (SCU-B)
24. DRA Wiring Harness
25. Gun, Aircraft Unit (GAU)-8A_Wiring&Sensors
26. Guided Missile Interface Unit (GMIU)
27. LAU-105_Power Supply
28. LAU-105_Wiring Harness
29. LAU-117_Launcher Electronic Assembly (LEA)
30. Modified TER-9A Electronic Control Unit Rack Kit
31. TER-9A Wiring Support Assembly
32. A-10C Armament Wiring

Future Growth
The PATS-70 is a robust, flightline qualified test set which

currently functions as maintenance support equipment for the
A-10C aircraft. Yet it has no A-10 specific components so it
can be adapted for maintenance on other aircraft, platforms, or
systems such as helicopters, tanks, or armored vehicles.

The PATS-70 also has vast potential as an intermediate back
shop tool. The PATS-70A development will support testing of
armament related LRUs. This functionality can be augmented
to include a variety of DoD LRUs and Weapons Replaceable
Assemblies (WRAs).

Summary
The PATS-70 started deployment earlier this year having suc-

cessfully completed a rigorous qualification and validation phase
in 2013. The PATS-70 program demonstrated that Engineering-
Design partnerships and cooperation can help the Government
to better support the warfighter. By partnering with Industry and
combining the domain expertise of the 309th and Marvin Test
Solutions, the Air Force was able to deploy a PATS-70 test set that
meets the warfighter’s needs on-time and on-budget.

Acknowledgements
This work was made possible by the Portable Test Station

program of the 309th Maintenance Wing, 309th Software
Maintenance Group, 516th Squadron, MXDED Flight at Hill Air
Force Base, Utah.

8 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

ABOUT THE AUTHORS REFERENCES
Benjamin Chase is an electrical engineer
at the 309th Software Maintenance Group
at the Ogden Air Logistics Complex, Hill Air
Force Base, Utah. He is part of the Portable
Automated Test Station (PATS-70) Training
and Production team. Chase holds a Bachelor
of Science in electrical engineering from Utah
State University.

7278 4th St.
Hill AFB, UT 84056-5205
Phone: 801-586-2255
Fax: 801-586-0444
E-mail: Benjamin.chase.1@us.af.mil

1. 516th SMXS/MXDED, “Portable Automated Test Station (PATS)-50 Final
 Independent Validation and Verification (IV&V), PATS-Analysis Proof of Concept,”
 USAF 309th SMXG, Hill AFB, UT, Rep. 516SMXS-A10PATS-10-001, Jan. 20, 2011.
2. 516th SMXS/MXDED, “Software Design Description For Portable Automated Test
 Station (PATS-70),” USAF 309th SMXG, Hill AFB, UT, Rep. 516SMXS-
 A10PATS-11-000, May 4, 2011.
3. 516th SMXS/MXDED, “Operation and Maintenance with Illustrated Parts Breakdown
 for the Portable Automated Test Station Model 70 (PATS-70),” USAF 309th SMXG,
 Hill AFB, UT, Rep. PATS70-OM_MANUAL-04FEB2014, Feb. 4, 2014.
4. 516th SMXS/MXDED, “Test Requirements Document (TRD) for A-10C Fuel Quantity
 Indication System (FQIS),” USAF 309th SMXG, Hill AFB, UT, Rep. PATS70A-TRD-
 FQIS, March 14, 2014.
5. 516th SMXS/MXDED, “System / Subsystem Requirement Document A-10C Aircraft
 Portable Automated Test Station Model 70A (PATS-70A),” USAF 309th SMXG, Hill
 AFB, UT, Rep. PATS70A-SSRD-31JULY2013, July 31, 2013.

NOTES
1. All references to Marvin Test Solutions and/or Marvin products are provided for
 technical purposes only; no commercial endorsement is implied or intended.

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 777-9828www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

mailto:Benjamin.chase.1@us.af.mil
mailto:309SMXG.SODO@hill.af.mil
http://www.facebook.com/309SoftwareMaintenanceGroup

CrossTalk—March/April 2015 9

TEST AND DIAGNOSTICS

Jonathan Bell, Columbia University
Christian Murphy, University of Pennsylvania
Gail Kaiser, Columbia University

Abstract. For some applications, it is impossible or impractical to know what
the correct output should be for an arbitrary input, making testing difficult. Many
machine-learning applications for “big data”, bioinformatics and cyberphysical
systems fall in this scope: they do not have a test oracle. Metamorphic Testing,
a simple testing technique that does not require a test oracle, has been shown
to be effective for testing such applications. We present Metamorphic Runtime
Checking, a novel approach that conducts metamorphic testing of both the entire
application and individual functions during a program’s execution. We have ap-
plied Metamorphic Runtime Checking to 9 machine-learning applications, finding
it to be on average 170% more effective than traditional metamorphic testing at
only the full application level.

Metamorphic Run-
time Checking of
Applications With-
out Test Oracles

That is, if program input I produces output O, additional
test inputs based on transformations of I are generated in
such a manner that the change to O (if any) can be predicted.
In cases where the correctness of the original output O
cannot be determined, i.e., if there is no test oracle, program
defects can still be detected if the new output O is not as
expected when using the new input.

For a simple example of metamorphic testing (where we do have
a test oracle), consider a function that calculates the standard devi-
ation of a set of numbers. Certain transformations of the set would
be expected to produce the same result: for instance, permuting
the order of the elements should not affect the calculation, nor
should multiplying each value by -1. Furthermore, other transforma-
tions should alter the output, but in a predictable way: if each value
in the set were multiplied by 2, then the standard deviation should
be twice that of the original set.

Through our own past investigations into metamorphic testing
[4] [5] [6], we have garnered three key insights. First, the meta-
morphic properties of individual functions are often different than
those of the application as a whole. Thus, by checking for addi-
tional and different relationships, we can reveal defects that would
not be detected using only the metamorphic properties of the
full application. Second, the metamorphic properties of individual
functions can be checked in the course of executing metamor-
phic tests on the full application. This addresses the problem of
generating test cases from which to derive new inputs, since we
can simply use those inputs with which the functions happened to
be invoked within the full application. Third, when conducting tests
of individual functions within the full running application in this
manner, checking the metamorphic properties of one function can
sometimes detect defects in other functions, which may not have
any known metamorphic properties, because the functions share
application state.

Approach
In order to realize these improvements, we present a solution

based on checking the metamorphic properties of the entire
program and those of individual functions (methods, procedures,
subroutines, etc.) as the full program runs. That is, the program
under test is not treated only as a black box, but rather meta-
morphic testing also occurs within the program, at the function
level, in the context of the running program. This will allow for
the execution of more tests and also makes it possible to check
for subtle faults inside the code that may not cause violations of
the full program’s metamorphic properties and lead to appar-
ently reasonable output (remember we cannot check whether
that output is correct, since there is no test oracle).

In our new approach, additional metamorphic tests are logi-
cally attached to the individual functions for which metamorphic
properties have been specified. Upon a function’s execution when
it happens to be invoked within the full program, the correspond-
ing function-level tests are executed as well: the arguments are
modified according to the function’s metamorphic properties, the
function is run again (in a sandbox, not shown) in the same pro-
gram state as the original, and the output of the function with the
original input is compared to that of the function with the modified
input. If the result is not as expected according to the metamor-
phic property, then a fault has been exposed.

Introduction
During software testing, a “test oracle” [1] is required to indi-

cate whether the output is correct for the given input. Despite a
recent interest in the testing community in creating and evaluat-
ing test oracles, still there are a variety of problem domains for
which a practical and complete test oracle does not exist.

Many emerging application domains fall into a category of
software that Weyuker describes as “Programs which were written
in order to determine the answer in the first place. There would be
no need to write such programs, if the correct answer were known
[2].” Thus, in the general case, it is not possible to know the correct
output in advance for arbitrary input. In other domains, such as
optimization, determining whether the output is correct is at least as
difficult as it is to derive the output in the first place, and creating
an efficient, practical oracle may not be feasible.

Although some faults in such programs - such as those that
cause the program to crash or produce results that are obvi-
ously wrong to someone who knows the domain - are easily
found, and partial oracles may exist for a subset of the input
domain, subtle errors in performing calculations or in adhering
to specifications can be much more difficult to identify without
a practical, general oracle.

Much recent research addressing the so-called “oracle
problem” has focused on the use of metamorphic testing [3]. In
metamorphic testing changes are made to existing test inputs
in such a way (based on the program’s “metamorphic proper-
ties”) that it is possible to predict what the change to the output
should be without a test oracle.

10 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

As shown in Figure 1 the tester provides a program input to
a Metamorphic Runtime Checking framework, which then trans-
forms it according to the metamorphic property of the program
P (for simplicity, this diagram only shows one metamorphic prop-
erty, but a program may, of course, have many). The framework
then invokes P with both the original input and the transformed
input; as seen at the bottom of the diagram, when each program
invocation is finished, the outputs can be checked according to
the property.

While each invocation of P is running, metamorphic proper-
ties of individual functions can be checked as well. As shown on
the left side of Figure 1, in the invocation of P with the original
program input, before a function f is called, its input x can be
transformed according to one of the function’s metamorphic
properties to give t(x). The function is called with each input, and
then f(t(x)) is evaluated according to the original value of f(x) to
see if the property is violated.

Meanwhile, in the additional invocation of P (right side
of the diagram), function-level metamorphic testing still
occurs for function f, this time using input x’, which results
from the transformed program input to P. In this case,
f(t(x’)) and f(x’) are compared.

In this example, if we used only the application-level property
of P, we would run just one test. However, by also considering P’s
function f with one specified metamorphic property, we can now
check two properties and run a total of three tests. This combined
approach also allows us to reveal subtle faults at the function
level that may not violate application-level properties. Our study
shows that this sensitivity gain can increase the effectiveness of
metamorphic testing by up to 1,350% (on average, 170%).

Evaluation
To evaluate the effectiveness of Metamorphic Runtime Checking

at detecting faults in applications without test oracles, we compare
it to runtime assertion checking using program invariants (a state-
of-the art technique). When used in applications without test ora-
cles, assertions can detect some programming bugs by checking
that function input and output values are within a specified range,
the relationships between variables are maintained, and a function’s
effects on the application state are as expected [7]. While satisfying
the invariants does not ensure correctness, any violation of them at
runtime indicates an error.

The experiments described in this section seek to answer the
following research questions:

1. Is Metamorphic Runtime Checking more effective than
using runtime assertion checking for detecting faults in applica-
tions without test oracles?

2. What contribution do application-level and function-level
metamorphic properties make to the effectiveness of Metamor-
phic Runtime Checking?

3. Is Metamorphic Runtime Checking suitable for practical use?
In these experiments, we applied both runtime assertion

checking and Metamorphic Runtime Checking to nine real-
world applications that are representative of different domains
that have no practical, general test oracles: supervised machine
learning, unsupervised machine learning, data mining, discrete
event simulation, and NP-hard optimization. The applications are
described (along with the number of invariants, function-level
and application-level properties) in Table 1.

To create the set of invariants that we could use for runtime
assertion checking, we applied the Daikon invariant detector
tool [8] to each application. To identify the application-level
metamorphic properties for the experiment, we followed the
guidelines set forth in [4], which categorizes the types of proper-
ties that applications in these domains tend to exhibit.

To identify function-level properties, we inspected the source
code and hand-annotated the functions that we expected to ex-
hibit the types of properties described in [4]. To ensure that the
properties were not limited to only the ones that we could think
of, some of the function-level metamorphic properties used in
this experiment are based on those used in other, similar studies
such as [9], [10] and [11].

Methodology
To determine the effectiveness of the testing techniques, we

used mutation analysis to systematically insert faults into the
source code of the applications described above, and then de-
termined whether the mutants could be killed (i.e., whether the
faults could be detected) using each approach. Mutations that
yielded a fatal runtime error, an infinite loop, or an output that

Figure 1: Model of Metamorphic Runtime Checking of program P and one
of its constituent functions, f. Metamorphic Runtime Checking combines
program-level metamorphic testing with function-level metamorphic checking,
performing such checking automatically.

Program Input

Application-Level Testing

Transform Input
Program P Program P

Program Output

Check

...

f(x) f(t(x))

Transform

Check

...

Function-Level Testing
...

f(x') f(t(x'))

Transform

Check

...

Function-Level Testing

Table 1: Listing of applications studied

 # of Metamorphic
Properties identified at

the level of:
Application Domain Language LOC Functions Invariants Application Function
C4.5 classification C 5,285 141 27,603 4 40
GAFFitter optimization C++ 1,159 19 744 2 11
JSim simulation Java 3,024 468 306 2 12
K-means clustering Java 717 46 137 4 12
LDA topic modeling Java 1,630 103 1,323 4 28
Lucene information

retrieval
 Java 661 57 456 4 26

MartiRank ranking C 804 19 3,647 4 15
PAYL anomaly

detection
 Java 4,199 164 19,730 2 40

SVM classification Java 1,213 49 2,182 4 4

CrossTalk—March/April 2015 11

TEST AND DIAGNOSTICS

was clearly wrong (for instance, not conforming to the expected
output syntax or simply being blank) were discarded since any
reasonable approach would detect such faults.

We also did not consider “equivalent mutants” for which the
inputs used in the experiment produced the same program out-
put as the original, unmutated version, e.g., those mutants that
were not on the execution path for any test case or that would
not have been killed with an oracle for these inputs.

For each mutated version, we conducted runtime assertion
checking with the invariants detected by Daikon. If any invariant
was violated, the mutant was considered killed. We then per-
formed Metamorphic Runtime Checking on the same mutated
versions to determine whether any of the specified metamorphic
properties were violated. The inputs used for mutation analysis
were the same as those used for detecting invariants and verify-
ing metamorphic properties.

Figure 2 summarize the results of our experiment evaluating
the efficacy of Metamorphic Runtime Checking. Overall, Meta-
morphic Runtime Checking was more effective, killing 1,602
(90.4%) of the mutants in the applications, compared to just
1,498 (84.5%) for assertion checking.

Broadly speaking, Metamorphic Runtime Checking was more
effective at killing mutants that related to operations on arrays,
sets, collections, etc. However, further analysis could character-
ize the types of faults each approach is most suitable for detect-
ing, but it follows, that runtime assertion checking and Metamor-
phic Runtime Checking should be used together for best results.
When used in combination in our experiments, they were able to
kill 95% of the mutants (totaling across all applications): only 88
of the 1,772 survived.

To understand the factors that impacted the efficacy of Meta-
morphic Runtime Checking, we performed a deeper analysis of
the contribution of the separate mechanisms. We first deter-
mined the number of mutants killed only by application-level
properties, then the number killed only by function-level proper-
ties. Table 2 shows these results.

On average, we saw a 170% improvement in the number of
mutants killed when combining application-level properties with
function-level properties. The variance in improvement was very
large, however, showing a striking improvement of 1,350% in
PAYL, while showing smaller improvement in C4.5 and Marti-
Rank. There was no improvement at all in the JSim and LDA
applications, because application-level properties had already
been able to kill all mutants.

We believe that this improvement is attributed primarily to
our increase in: the number of properties identified (scope);
the number of tests run (scale); and the likelihood that a fault
would be detected (sensitivity).

The improvement in the scope of metamorphic testing was
particularly clear in the anomaly-based intrusion detection
system PAYL. We were only able to identify two application-level
metamorphic properties because it was not possible to cre-
ate new program inputs based on modifying the values of the
bytes inside the payloads, since the application only allowed for
syntactically and semantically valid inputs that reflected what it
considered to be “real” network traffic.

These two properties were only able to kill two of the 40
mutants. However, once we could use Metamorphic Runtime

Checking to run metamorphic tests at the function level, we
were able to identify many more properties that involved chang-
ing the byte arrays that were passed as function arguments,
thus revealing 27 additional faults.

Likewise, we were able to increase the scale of metamor-
phic testing by running many more test cases. For instance, in
MartiRank, even though we specified function-level properties
for only a handful of functions, many of those are called numer-
ous times per program execution, meaning that there are many
opportunities for the property to be violated.

Another reason why function-level properties were able to kill
mutants not killed by application-level properties is that we were
able to improve the sensitivity in terms of the ability to reveal more
subtle faults, as seen in GAFFitter. In the function to calculate the
“fitness” of a given candidate solution in the genetic algorithm, i.e.,
how close to the optimal solution (target) a candidate comes, one
of the metamorphic properties is that permuting the elements in
the candidate solution should not affect the result, since it is merely
taking a sum of all the elements.

If, for instance, there is a mutation such that the last element
is omitted from the calculation, then the metamorphic property
will be violated since the return value will be different after the
second function call. However, at the application level, such a
fault is unlikely to be detected, since the metamorphic prop-

Table 2: Number of Mutants Killed by Different Types of Metamorphic Properties

 Mutants Killed By

Application Total
Mutants

Application-
level Properties

Only

Function-level
Properties

Only

Both
Types

Not
Killed

MRC %
Improvement

C4.5 856 133 37 653 33 4.71%

GAFFitter 66 2 14 20 30 63.64%

K-means 35 6 11 11 7 64.71%

JSim 36 14 0 22 0 0.00%

LDA 24 2 0 22 0 0.00%

Lucene 15 5 3 6 1 27.27%

MartiRank 413 298 22 70 23 5.98%

PAYL 40 0 27 2 11 1350.00%

SVM 287 69 23 130 65 11.56%

Average 197 59 15 104 19 169.76%

	

Figure 2: Results of mutation analysis comparing metamorphic runtime check-
ing and runtime assertion checking. Metamorphic runtime checking was on
average more effective.

	
	

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

LDA
JSim
C4.5

MartiRank
K-means

SVM
GAFFitter

Lucene
PAYL

Average

Mutants Killed
Runtime Assertion Checking Metamorphic Runtime Checking

12 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

erty simply states that the quality of the solutions should be
increasing with subsequent generations. Even though the value
of the fitness is incorrect, it would still be increasing (unless the
omitted element had a very large effect on the result, which is
unlikely), and the property would not be violated.

Performance Overhead
Although Metamorphic Runtime Checking using function-level

properties is able to detect faults not found by metamorphic
testing based on application-level properties alone, this runtime
checking of the properties comes at a cost, particularly if the tests
are run frequently. In application-level metamorphic testing, the
program needs to be run one more time with the transformed in-
put, and then each metamorphic property is checked exactly once
(at the end of the program execution). In Metamorphic Runtime
Checking, however, each property can be checked numerous
times, depending on the number of times each function is called,
and the overhead can grow to be much higher.

During the studies discussed above, we measured the per-
formance overhead of our C and Java implementations of the
Metamorphic Runtime Checking framework. Tests were conducted
on a server with a quad-core 3GHz CPU running Ubuntu 7.10 with
2GB RAM. On average, the performance overhead for the Java
applications was around 3.5ms per test; for C, it was only 0.4ms
per test. This cost is mostly attributed to the time it takes to create
sandboxes (so the side-effects of function-level metamorphic test-
ing do not impact application-level testing).

This impact can be substantial from a percentage overhead
point of view if many tests are run in a short-lived program.
For instance, for C4.5, the overhead was on the order of 10x,
even though in absolute terms it was well under a second.
However, for most programs we investigated in our study, the

overhead was typically less than a few minutes, which
we consider a small price to pay for being able to detect faults
in programs with no test oracle.

Future work could investigate techniques for improving the
performance of a Metamorphic Runtime Checking framework.
Previously we considered an approach whereby tests were
only executed in application states that had not previously been
encountered, and showed that performance could be improved
even when the functions are invoked with new parameters up to
90% of the time [12]. It may be possible to reduce the over-
head even more, for instance by running tests probabilistically
(our framework already allows the tester to specify a probability
for checking each function-level metamorphic property, but we
turned that off for the studies presented here).

Limitations
We used Daikon to create the program invariants for

runtime assertion checking. Although in practice invariants
are typically generated by hand, and some researchers have
questioned the usefulness of Daikon-generated invariants
compared to those generated by humans [13], we chose to
use the tool so that we could eliminate any human bias or hu-
man error in creating the invariants.

Additionally, others have independently shown that metamorphic
properties are more effective at detecting defects than manually
identified invariants [14], though for programs on a smaller scale
than those in our experiment (a few hundred lines, as opposed to
thousands as in many of the programs we studied).

The ability of metamorphic testing to reveal failures is clearly
dependent on the selection of metamorphic properties. How-
ever, we have shown that a basic set of metamorphic properties
can be used without a particularly strong understanding of the
implementation - the authors knew essentially nothing about the
target systems or their domains beyond textbook generality; the
use of domain-specific properties from the developers of these
systems might reveal even more failures [15].

Conclusion
As shown in our empirical studies, Metamorphic Runtime

Checking has three distinct advantages over metamorphic test-
ing using application-level properties alone. First, we are able to
increase the scope of metamorphic testing, by identifying proper-
ties for individual functions in addition to those of the entire appli-
cation. Second, we increase the scale of metamorphic testing by
running more tests for a given input to the program. And third, we
can increase the sensitivity of metamorphic testing by checking
the properties of individual functions, making it possible to reveal
subtle faults that may otherwise go unnoticed.

Acknowledgements
We would like to thank T.Y. Chen, Lori Clarke, Lee Osterweil, Sal

Stolfo, and Junfeng Yang for their guidance and assistance. Sahar
Hasan, Lifeng Hu, Kuang Shen, and Ian Vo contributed to the
implementation of the Metamorphic Runtime Checking framework.

Bell and Kaiser are members of the Programming Systems
Laboratory, funded in part by NSF CCF-1302269, NSF CCF-
1161079, NSF CNS-0905246, and NIH U54 CA121852.

CrossTalk—March/April 2015 13

TEST AND DIAGNOSTICS

ABOUT THE AUTHORS
Jonathan Bell is a Ph.D. student in Software
Engineering at Columbia University. His
research interests include software testing,
program analysis, and fault reproduction. He’s
received an M Phil, MS and BS in Computer
Science from Columbia University.

Dept. of Computer Science
Columbia University
New York, NY 10027
Phone: 212-939-7184
E-mail: jbell@cs.columbia.edu

Christian Murphy is an Associate Profes-
sor of Practice and Director of the Master
of Computer and Information Technology
program at The University of Pennsylvania.
His primary interests are software engineer-
ing, systems programming, and mobile/em-
bedded computing. He received his Ph.D. in
Computer Science from Columbia University.

Dept. of Computer and Information
Science
University of Pennsylvania
Philadelphia, PA 19104
Phone: 215-898-0382
E-mail: cdmurphy@cis.upenn.edu

Gail E. Kaiser is a Professor of Computer
Science at Columbia University and a Senior
Member of IEEE. Her research interests
include software reliability and robustness,
information management, social software
engineering, and software development
environments and tools. She has served as
a founding associate editor of ACM TOSEM
and as an editorial board member for IEEE
Internet Computing. She received her Ph.D.
and MS from CMU and her ScB from MIT.

Dept. of Computer Science
Columbia University
New York, NY 10027
Phone: 212-939-7184
E-mail: kaiser@cs.columbia.edu

REFERENCES
1. Pezzé, M. and M. Young, Software Testing and Analysis: Process, Principles and
 Techniques. 2007: Wiley.
2. Weyuker, E.J., On testing non-testable programs. Computer Journal, 1982. 25(4): p. 465-470.
3. Chen, T.Y., S.C. Cheung, and S.M. Yiu, Metamorphic testing: a new approach for
 generating next test cases. 1998, Dept. of Computer Science, Hong Kong Univ. of
 Science and Technology.
4. Murphy, C., et al., Properties of Machine Learning Applications for Use in
 Metamorphic Testing, in Proc. of the 20th International Conference on Software
 Engineering and Knowledge Engineering (SEKE). 2008. p. 867-872.
5. Murphy, C., et al., On Effective Testing of Health Care Simulation Software, in Proc.
 of the 3rd International Workshop on Software Engineering in Health Care. 2011.
6. Murphy, C., K. Shen, and G. Kaiser, Automated System Testing of Programs without
 Test Oracles, in Proc. of the 2009 ACM International Conference on Software Testing
 and Analysis (ISSTA). 2009. p. 189-199.
7. Nimmer, J.W. and M.D. Ernst, Automatic generation of program specifications, in
 Proc. of the 2002 International Symposium on Software Testing and Analysis
 (ISSTA). 2002. p. 232-242.
8. Ernst, M.D., et al., Dynamically discovering likely programming invariants to
 support program evolution, in Proc. of the 21st International Conference on Software
 Engineering (ICSE). 1999. p. 213-224.
9. Barus, A.C., et al., Testing of Heuristic Methods: A Case Study of Greedy Algorithm.
 Lecture Notes in Computer Science, 2011. 4890: p. 246-260.
10. Kanewala, U. and J.M. Bieman, Techniques for Testing Scientific Programs Without
 an Oracle, in Proc. of the 2013 International Workshop on Software Engineering for
 Computational Science and Engineering. 2013.
11. Cheatham, T.J., J.P. Yoo, and N.J. Wahl, Software testing: a machine learning experiment,
 in Proc. of the ACM 23rd Annual Conference on Computer Science. 1995. p. 135-141.
12. Murphy, C., et al., Automatic Detection of Previously-Unseen Application States
 for Deployment Environment Testing and Analysis, in Proc. of the 5th International
 Workshop on Automation of Software Test (AST). 2010.
13. Polikarpova, N., I. Ciupa, and B. Meyer, A comparative study of programmer-written
 and automatically inferred contracts, in Proc. of the 2009 International Symposium
 on Software Testing and Analysis (ISSTA). 2009. p. 93-104.
14. Hu, P., et al., An empirical comparison between direct and indirect test result
 checking approaches, in Proc. of the 3rd International Workshop on Software Quality
 Assurance. 2006. p. 6-13.
15. Xie, X., et al., Application of Metamorphic Testing to Supervised Classifiers, in Proc.
 of the 9th International Conference on Quality Software (QSIC). 2009. p. 135-144.

mailto:jbell@cs.columbia.edu
mailto:cdmurphy@cis.upenn.edu
mailto:kaiser@cs.columbia.edu

14 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

The Impact of Time Constraints on Testing
The lack of time for testing is a symptom of deeper

project, process and organizational issues. However, that
doesn’t eliminate the impact of the time crunch. The impact
is seen in the following areas.

1. Lack of Coverage
Test coverage can be seen in a variety of ways: code cover-

age, requirements coverage, and test case coverage, to name a
few of them. If you can’t cover enough of these items, it’s hard
to give a reasonable level of confidence in the software.

2. Lack of Quality
If you can’t test to the levels needed to assess the quality of

the application, the test will be incomplete and defects will be
missed. Overall software quality suffers.

The reality is that just because testing stops, software
problems (i.e., defects) will still continue. It’s just that the users
will eventually find them. Sometimes the application is mission
critical or safety critical, so to miss finding defects due to lack of
test time can be a very high risk.

However, even “complete” testing does not necessarily equate to
high quality applications. This seems to be contradictory. After all, why
do we perform testing if we can’t make the assurance of quality?

What we may deem as “complete” may just be an illusion. There
is always one more thing (or millions of things) you can test.

Randall W. Rice, Rice Consulting Services, Inc.

Abstract. In my research involving thousands of software testers over the last 15
years, several challenges are mentioned as critical pain points in nearly every inter-
view and survey. One of the most common complaints from software testers is that,
“There is no way we can do a complete test in the time we are given.”
The mismatch of scope and time causes stress for software testers and often leaves
them in a no-win position. They might work very hard in the short amount of time they
have been allotted; only to be blamed at times for not finding certain defects once
the software is released to users.

Another impact of time constraints is that schedule delays in development and
other project activities can erode the planned test schedule. In those situations, the
overall delivery deadline remains firm even when the testers get access to the soft-
ware later than planned. This schedule crunch is another reason testers feel stress
and may be forced to skip some tests.

The truth of the matter is that no matter how much time you have, it is not enough
time to test all functions and combinations of functions in most software. In essence,
all testing is sampling, so it becomes very important where we draw the boundaries in
testing and where we take our samples.

In this article, I will explore some ways to deal with the time constraints in software
testing and still have a reasonable level of test coverage and overall confidence in the
quality of the application being delivered.

Dealing With the
Time Crunch in Soft-
ware Testing

3. Poor Morale
It really does kill morale to ask people to do something as chal-

lenging as testing, then not give enough time, tools or people to
get the job done. Even worse is when the testers get blamed for
defects when the time has been cut short, or the amount of work
is impossible to complete even in a thousand years.

Test teams that are starved of resources often don’t see the
possibility of applying what would normally be considered sound
testing techniques. The comments are along the lines of, “Oh,
we would never have time to document a test plan. We barely
have enough time to test as it is.”

Never mind the idea that a test plan could actually save time
by making sure the resources are used in the most efficient
ways, or that a workable scope balanced by risk could be de-
fined – all of which save time.

4. Missed Expectations
Sometimes people have the expectation that exhaustive

testing is possible with scarce resources and that testers would
just waste time if they had more of it. Or, management believes
sometimes just the opposite, “Since we can’t test everything,
why bother at all?” This is primarily a perception issue.

Many times, project deadlines are established with the ex-
pectation that an arbitrary allocation of time will be enough time
for testing, even though there is no clarity about which kinds
of tests are needed, or even what the scope of testing will be.
It is only after the design of the system becomes clear that the
scope of the project becomes clear.

So when defects are discovered, the project schedules often
slip and so does the management attitude toward the testing
effort. These projects are either delivered later than planned, or
delivered on-time with high levels of defects.

An Exercise in Priorities
Realizing that you could have all the time you desired and still not

have enough time to completely test anything of even moderate
complexity, the issue becomes how to define the scope of testing.

Key ways that testing fails are to 1) do the wrong tests, 2) do
the right tests in the wrong ways and 3) fail to do enough of the
right tests. So, in the third way mentioned, lack of time is a root
cause. In the first two ways, it is possible to leverage the time
available for testing with efficient test design and test execution,
combined with reviews and inspections.

If we recognize the fact we can’t test everything, the challenge
then becomes to pick the right things to test. Picking what to test
is like packing a suitcase. You only have some much room and so
much weight allowance to work with. First, you pack the big and
important things, like the main clothes you need. Next, you pack
the smaller important items, like toiletries. Finally, if you have room
and weight, you can pack your fuzzy slippers.

A key question is “How do we prioritize?” Some might say by
risk. Others might say “by what we getting paid or pressed the
most to deliver.” It is important to note that criticality is not the
same as risk. Risk is a potential loss while criticality is impor-
tance. Sometimes risk and criticality has a direct relationship,
such as a function that is safety-critical. However, in other cases,
a function may be critical to certain users yet pose no potential
negative impact.

CrossTalk—March/April 2015 15

TEST AND DIAGNOSTICS

Figure 1: ACTS Combinatorial Test Design Tool

Yet there is more to efficiency than designing and prioritizing the
right tests. You also have to design and perform them efficiently.

Going back to the suitcase analogy, how you pack the suit-
case makes a big difference in how much you can pack in it.
Some people are masters at packing a suitcase. They know how
to roll their clothes, how to fill small spaces and so forth.

Likewise, testers need an efficient process for testing. One
example of this is using combinatorial techniques to get the most
coverage from the fewest number of test cases. NIST has a
wonderful free tool called ACTS (Advanced Combinatorial Testing
System) which generates test cases based on combinatorial test
design [1]. The advantage is that you get high levels of test cover-
age with a minimal number of tests (Figure 1).

In this example, there are 72 possible condition combinations.
After applying the pairwise algorithm, we are left with twelve
cases. While this is a great reduction in the total number of test
cases, care must be taken to review the tests and supplement
them with tests that may be important, but not generated by the
tool. You will also need to manually define the expected results,
which requires time.

What About Test Estimation?
Test estimation is inherently tricky because it is an approxima-

tion. Some people are very challenged in providing estimates of
the testing effort due to lack of knowledge about what is to be
eventually tested. In some cases, the problem of test estima-
tion boils down to poor estimating methods. By “poor estimating
methods” I mean that an organization is not handling test esti-
mates in a way that deals with the facts and risks as they really
are. Instead, they become overly optimistic or just pull a number
out of thin air for the testing effort.

In those cases where the product is already developed, such
as COTS applications, test estimates can still be difficult if you

don’t have access to the software yet. It is also a surprise to
management sometimes that the time needed to test a COTS
product may actually be a multiple of the time and cost needed
to acquire and install the product.

In estimation, accuracy is not so much the issue as is getting
the recipient of the estimate to accept your estimate, which you
honestly believe as the true effort and time needed for testing.

Let’s say you work hard to create an accurate test estimate
for a project. You estimate the test to take five people three
weeks to complete. Your manager may assume there is some
padding in your estimate, so she “readjusts” your estimate to
be two weeks for testing with the same five people. In this
example, the accuracy of the original estimate really doesn’t
matter. When it’s all said and done, you and your team are still
expected to do three weeks of testing in two weeks time!

However, the next time you have to provide an estimate, you
will remember that estimate reduction and will likely inflate your
initial estimate because you know it will be cut. This is how the
dysfunction around estimation is propagated.

That is the dark side of test estimation. There is a better
way but it requires a healthy, eyes-open attitude on everyone’s
part to re-adjust the estimate when necessary or make adjust-
ments in scope and resources.

Another point of awareness and agreement is that an es-
timate is not completely accurate – it is a best approximation
based on experience and other factors.

The problem with highly precise estimates is that they often
assume things will go well and without delays. The reality is
seldom that trouble-free.

To deal with the unexpected occurrences that cause actual
test times and resources to differ from their estimates, contin-
gencies are needed. A helpful way to think of contingencies is
in the form of reserves.

16 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

Reserves are simply more people, tools, and other things available
in case of unforeseen events. Contingencies are your “Plan B” which
describe your options should a certain risk materialize.

Some people might think of reserves as “padding” an esti-
mate, but my experience is that reserves and contingencies are
needed as a safety net for when schedule crunch occurs. It is
very important not to squander reserves in time-wasting activi-
ties. For example, if your team spends forty hours on work that
could easily be done in ten hours, that is an inefficient use of
time and is not the purpose of reserves.

Dealing With the Time Crunch

Here are a few ways to deal with short test timeframes.

1. Get Good at Prioritizing
Unfortunately, most of the discussion around prioritizing test-

ing is all about risk. While risk is a key concern, it is not the only
way to prioritize testing. Risk-based testing is a sound practice
in many cases, but there are risks, even to risk-based testing.
One such risk is that our risk assessment may be totally wrong
due to factors we cannot foresee.

In addition, risk-based testing becomes ineffective when
everything is a high risk. You will need another way to prioritize
tests in that situation. To prioritize means to determine what is
important. But the big question is “Important to whom?”

Priorities for testing are often a reflection of the stakeholders,
such as project management, senior organizational manage-
ment, customers and users. One big trap we fall into is thinking
that the priorities given to development and testing groups are
the real priorities.

Testers are not in charge of the priorities of a project, and
therefore, not really in charge of the priorities of testing.
Even though a tester may write the test plan and set the test
schedule, they may not reflect the true project and stakeholder
priorities. Like the traveller who packs someone else’s bag (don’t
really do that – you can get in trouble for it!), you may include
the important things to you, but not to the other person. It is all
about who owns the bag.

You can prioritize based on:
Mission need – What solves a key problem or delivers

needed functionality right away?
Stakeholder needs – Which products and features do us-

ers and other stakeholders value most?
Risk – Where might problems most likely appear, and where

might they carry the most impact?
Management directive – Ultimately, management sets

project priorities. However, on occasion, someone in manage-
ment decides his or her pet project or feature is most important
regardless of business value or risk. Therefore, it becomes a
high priority in testing.

Experience – Where have we seen problems in the past that
we don’t want to repeat?

Sampling – There are many ways to take samples in testing,
such as random samples, customer samples, and so forth. The idea
is that if you find a concentration of problems in one area, there will
likely be others in that same area. This is known as “defect clustering.”

2. Management Needs to Understand
The Tradeoffs

The management influence on schedules and priorities drives
much of the testing time challenge. Many organizations are
schedule-driven in which the software delivery schedule takes
precedence over other decisions.

There are four key factors in the time challenge:
1. Resource levels
2. Schedules
3. Workload balance
4. Process efficiency

In many cases, deadlines are necessary and important. Man-
agement, however, must allocate the right number of resources
to get the job done whether it is in development, testing or
anything else. At the time of this writing, we have been through
an economy where the theme in organizations has been to learn
how to do more with fewer resources. That includes people,
tools and hardware.

Gerald Weinberg writes about “The Law of Raspberry Jam.”
This law says, “The wider you spread something the thinner it
gets [2].” Just like spreading jam on toast, you can have such a
small amount that after spreading it over a piece of toast, you
can hardly taste it at all.

Senior management needs to understand and embrace this
concept when defining their expectations of what can be ac-
complished with given resources. There comes a point when
project resources can be spread so thin that you can’t even tell
any difference was made at all.

3. Optimize the Testing Process
Many of the perceived time problems in testing may be due to

poor workload balance and inefficient testing approaches. It is
management’s job to fix inefficient or ineffective processes be-
cause people in the trenches don’t have the authority or control
to make major process changes.

People at the grassroots level may have the opportunity to
work smartly, but sometimes that is thwarted by management’s
decisions to do things that are inefficient and ineffective.

Here are three ways to optimize the testing process. By doing
these things, you perform testing more efficiently, which takes
less time and often finds more defects as compared to non-
optimized test methods.

Optimization Technique #1 - Apply Sampling Techniques
Going back to the idea stated earlier in this article that

all testing is sampling, it can be very helpful to learn how
to sample for defects.

Testers face a “needle in the haystack” problem. We are looking
for something very small in something very large. I am intrigued at
how some gold miners deal with a similar challenge, and how those
techniques can be applied to software testing and finding defects.

Like testing, gold mining is also a very expensive undertaking.
Even a small operation can cost thousands of dollars per day to
move layer upon layer of dirt to get close to finding gold. Unfor-
tunately, there are no signs that read, “Dig here for gold.”

CrossTalk—March/April 2015 17

TEST AND DIAGNOSTICS

One interesting and effective technique to know where to dig for
gold is to take soil samples by drilling. That is the best way to see a)
if there is any gold in the immediate soil and b) how dense the gold
concentration may be, c) how deep the gold is, and d) the quality of
the gold. If the soil sample shows gold 20 feet or more below the
surface, it will probably cost too much to remove the dirt above it.

Like in sampling for gold, in testing, we can sample in vari-
ous areas of a system with functional testing, we can sample
lines of code with structural testing, we can perform random
tests either manually or with tools, or we can sample based on
risk, just to name a few possibilities.

Sampling can help us find those pockets or clusters of
defects. This can lead us to the best places to focus testing for
the little time we have. Finding high concentrations of defects
in software is like striking gold in that you get a very high
return on investment for testing.

Optimization Technique #2 - Apply the Pareto Principle
The Pareto Principle (the 80/20 rule) that says you can get

the majority of value from the minority of people, time or effort.
In fact, my experience is that it is possible to get more than 90%
of the value of some efforts in a very short time frame.

As an example, once I was asked to perform an eight-week
test in two weeks. So, the client and I worked together to focus
on key areas and skip minor areas. The test design was based
on critical user workflows and modular tests that yielded many
more defects than expected.

Optimization Technique #3 – Use Combinatorial Methods
As mentioned earlier, tools such as ACTS and model-based

tools can help greatly by intelligently combining test conditions
into the most efficient set of tests. If you choose not to use a
combinatorial tool, even a basic decision table can help reduce
the number of tests without sacrificing coverage.

4. Agile Methods Can Help
I take great care with how I portray agile methods to avoid

promoting agile techniques as the solution for all software
project problems.

When applied pragmatically, agile methods can be a great help
in getting the right things done quickly. When applied haphazardly
or in the wrong cultures, agile can lead to disaster faster.

The good aspect of agile is that people learn to minimize the
meetings, the documentation and the project overhead to focus
on deliverables. The challenging part of agile is to keep the
knowledge we really need because of the lesser emphasis on
documentation. Agility is all about dealing with change gracefully
and focusing on the right things - do that, and you’ll be fine.

5. The Right Tools Can Help
Tools can save time when used in the right ways. Test design

tools such as ACTS (Figure 1) can save huge amounts of time
as compared to designing tests manually. The generated tests
can then be imported into test execution tools to automate the
mundane tests and help in regression testing – given that you
don’t have to spend large amounts of time on tool implementa-
tion and maintenance issues.

The time savings seen from tools is often the result of an ex-
isting test tool implementation effort that is well-designed. Initial
tool efforts typically take more time because you are learning as
you implement.

6. Know When You Are Over-testing
Whether it is your status report, test plan, or anything else,

there comes a time when the finish point needs to be declared
and then move on. It’s like the old saying that “projects are 99%
done forever.”

Seth Godin says, “Ship often. Ship lousy stuff, but ship. Ship
constantly [3].” I don’t concur with all of that (like the shipping
of lousy stuff), but I do get the sentiment. The main point is to
overcome the resistance of things that keep us from making
progress and to deliver something of value.

How about this instead? Ship often to the right people with
the quality they need. Some people are happy to get new fea-
tures, warts and all. They will give you great feedback and will
still be raving fans.

Many times, perception is reality. If a software project is
delivered with obvious defects, users don’t care who is to blame.
They experience frustration and want the problems fixed “now.”
It’s the old maxim that says, “There’s never enough time to do
the job right, but there’s always time to do it again.”

As an example, an update to Apple’s iOS8 caused major
problems for users in that they were unable to make phone calls
with an iPhone after the update was installed. Apple recalled
the update very quickly, but not without reputation damage. For
the first time I can recall, a major news outlet identified the QA
Manager of a defective product by name [4].

It’s not clear why the iOS8.0.1 defects were not found –
whether it was a lack of test time or some other root cause.
The result, however, shows what happens when defects go “big
time.” Blaming the QA Manager and testers is not the solution
and is not helpful, since testers usually don’t make the decision
to release software.

Plan of Action
These are not sequential steps, but rather ways to implement

some of the ideas in this article.
Lay a foundation of expectations at the management level

that exhaustive testing is impossible and that the thinner testing
resources are spread, the less effective they become. If your es-
timates differ greatly from those already set for you, be able to
justify why you need more time and resources for testing. Risk is
a good way to balance this discussion.

Get good at identifying where the risk is in the things you test.
Learn how to sample products to find where defects may

be clustering.
Define a workable scope of testing. If you set the scope of

testing too large, you won’t finish in time. If you set it too small,
you won’t get the confidence levels you need for deployment.

Optimize your tests.
Work with project managers to build reasonable reserves

and contingency plans.
Create a risk-based test planning and reporting process.

18 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

Summary
Like any project activity, testing takes a certain amount of

time and resources to perform if it is to measure an accurate
level of confidence and quality. Exhaustive testing is impossible
due to the very high numbers of possible tests required to test
all combinations of conditions. By combining dynamic testing
with reviews and inspections throughout a project, the effect is
often a time and cost savings.

However, it makes a big difference in the time crunch as to
how testing is prioritized, designed and performed, as to whether
time and resource constraints are dealt with in an effective way.

Good estimates are helpful, but even the best efforts at
estimation may fall short of being accurate. For those times, you
need some reserves in time and resources as a contingency.
You also need a “Plan B” for those times when the time crunch
gets really bad.

There are no magic solutions to the time crunch challenge.
However, with some expectation management and careful test
selection and optimization, you may just find enough time to
perform the level of testing that gives an acceptable level of
confidence to stakeholders.

ABOUT THE AUTHOR

Randall W. Rice is a leading consultant,
author, and speaker in software test-
ing and software quality. He is a popular
speaker at international software testing
conferences and is co-author with William
E. Perry of the book, Surviving the Top
Ten Challenges of Software Testing and
Testing Dirty Systems. Randall also serves
on the board of directors of the American
Software Testing Qualifications Board
(ASTQB).

Rice Consulting Services, Inc.
P.O. Box 892003
Oklahoma City, OK 73189
Phone: 405-691-8075
E-mail: rrice@riceconsulting.com

REFERENCES
1. http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
2. Weinberg, Gerald, “The Secrets of Consulting”, New York: Dorset House Publishing, 1985
3. http://99u.com/tips/6249/Seth-Godin-The-Truth-About-Shipping
4. http://www.bloomberg.com/news/2014-09-25/apple-s-iphone-software-snafu-has-
 links-to-flawed-maps.htm

1. Jones, Capers and Bonsignour, Olivier, The Economics of Software Quality,
 New York: Addison-Wesley, 2012
2. Perry, William E. and Rice, Randall W, Surviving the Top Ten Challenges of Software
 Testing, New York: Dorset House Publishing, 1997
3. Weinberg, Gerald, Perfect Software, New York: Dorset House Publishing, 2008

ADDITIONAL RESOURCES

CALL FOR ARTICLES
If your experience or research has produced information that could be useful
to others, CrossTalk can get the word out. We are specifically looking for
articles on software-related topics to supplement upcoming theme issues.
Below is the submittal schedule for the areas of emphasis we are looking for:

Supply Chain Assurance
Sep/Oct 2015 Issue

Submission Deadline: Apr 10, 2015

Fusing IT and Real-Time Tactical
Nov/Dec 2015 Issue

Submission Deadline: Jun 10, 2015

Please follow the Author Guidelines for CrossTalk, available on
the Internet at <www.crosstalkonline.org/submission-guidelines>.
We accept article submissions on software-related topics at any time,
along with Letters to the Editor and BackTalk. To see a list of themes for
upcoming issues or to learn more about the types of articles we’re looking
for visit <www.crosstalkonline.org/theme-calendar>.

mailto:rrice@riceconsulting.com
http://csrc.nist.gov/groups/SNS/acts/documents/comparison-report.html
http://99u.com/tips/6249/Seth-Godin-The-Truth-About-Shipping
http://www.bloomberg.com/news/2014-09-25/apple-s-iphone-software-snafu-has-links-to-flawed-maps.htm
http://www.bloomberg.com/news/2014-09-25/apple-s-iphone-software-snafu-has-links-to-flawed-maps.htm
http://www.bloomberg.com/news/2014-09-25/apple-s-iphone-software-snafu-has-links-to-flawed-maps.htm
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

CrossTalk—March/April 2015 19

TEST AND DIAGNOSTICS

D. Richard Kuhn, NIST,
Raghu N. Kacker, NIST,
Yu Lei, University of Texas Arlington

Abstract. There are relatively few good methods for evaluating test set quality,
after ensuring basic requirements-traceability. Structural coverage, mutation testing,
and related methods can be used if source code is available, but these approaches
may entail significant cost in time and resources. This paper introduces an alter-
native measure of test quality that is directly related to fault detection, simple to
compute, and can be applied prior to execution of the system under test. As such, it
provides an inexpensive complement to current approaches for evaluating test quality.

Combinatorial
Coverage as an
Aspect of Test
Quality

Introduction
How thorough are your tests? This is a vitally important

question for mission critical systems, but very difficult to
answer with confidence, especially if tests were produced by
third-party test developers.

Generally it must be shown that tests track to enumerated
requirements, but this is a coarse grained metric. Structural
coverage criteria such as statement or branch coverage may
also be applied, if source code is available. Mutation testing
– developing multiple versions of the code with mutations, or
seeded faults – may be used to compare the fault detection
capacity of alternative test suites, or evolve a test suite that
produces a sufficiently high score on detecting differences
between mutated versions of the code. Such an approach
naturally is dependent on the mutations chosen.

Evaluating test quality is a particularly difficult and imprecise
process for “black box” testing, where no source code is used.
A test goal may be to positively demonstrate a collection of
specified features, often by a single test for each feature or
option. But simply showing that a particular input can dem-
onstrate the feature does little to prove that an application is
adequate for the wide range of inputs likely to be encountered
in real-world use. Alternatively, an operational profile may be
developed which tests the system according to the statisti-
cal distribution of inputs that occur in operational use. This
process can provide reasonable confidence for the system’s
behavior in normal operation, but may miss the rare input con-
figurations that can result in a failure.

A common approach for high assurance is to include tests
designed to exercise the system with rare scenarios, based on
experience or engineering judgment. This approach is clearly
dependent on the skill of testers, and it may leave a large pro-
portion of the possible input space untested. It also provides no
quantitative measure of the proportion of significant input com-
binations that have been tested. Therefore, if test services are
to be contracted out, there is little sound basis for developers to
specify the level of testing required, or for testers to prove that
testing has been adequate for the required assurance level. This
paper describes measurement methods derived from combina-
torial testing that can be used in analyzing the thoroughness of
a test set, based on characteristics of the test set separate from
its coverage of executable code.

Distribution of Faults

Empirical data show that most failures are triggered by a
single parameter value, or interactions between a small number
of parameters, generally two to six [1], a relationship known as
the interaction rule. An example of a single-value fault might be
a buffer overflow that occurs when the length of an input string
exceeds a particular limit. Only a single condition must be true
to trigger the fault: input length > buffer size. A 2-way fault is
more complex, because two particular input values are needed to
trigger the fault. One example is a search/replace function that
only fails if both the search string and the replacement string are
single characters. If one of the strings is longer than one charac-
ter, the code does not fail, thus we refer to this as a 2-way fault.
More generally, a t-way fault involves t such conditions.

Figure 1 shows the cumulative percentage of faults at t = 1 to
6 for various applications [1]. We refer to the distribution of t-way
faults as the fault profile. Figure 1 shows the fault profile for a
variety of fielded products in different application domains, and
results for initial testing of a NASA database system. As shown
in Figure 1, the fault detection rate increases rapidly with interac-
tion strength, up to t=4. With the medical device applications,
for example, 66% of the failures were triggered by only a single
parameter value, 97% by single values or 2-way combinations, and
99% by single values, 2-way, or 3-way combinations. The detection
rate curves for the other applications studied are similar, reaching
100% detection with 4 to 6-way interactions. Studies by other
researchers have been consistent with these results. Thus, the im-
possibility of exhaustive testing of all possible inputs is not a barrier
to high assurance testing. That is, even though we cannot test all

 Figure 1. Cumulative fault distribution

20 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

possible combinations of input values, failures involving more than
six variables are extremely unlikely because they have not been
seen in practice, so testing all possible combinations provides very
little benefit beyond testing 4 to 6-way combinations.

Matrices known as covering arrays can be computed to cover
all t-way combinations of variable values, up to a specified level
of t (typically t ≤ 6), making it possible to efficiently test all such
t-way interactions [2]. The effectiveness of any software test-
ing technique depends on whether test settings corresponding
to the actual faults are included in the test sets. When test sets
do not include settings corresponding to actual faults, the faults
will not be detected. Conversely, we can be confident that the
software works correctly for t-way combinations contained in
passing tests.

As with all testing, it is necessary to select a subset of values
for variables with a large number of values, and test effective-
ness is also dependent on the values selected, but testing t-way
combinations has been shown to be highly effective in practice.
This approach is known as combinatorial testing, an extension
of the established field of statistical Design of Experiments
(DoE), endorsed by the Department of Defense Office of Test
and Evaluation in 2009 [3], and used by commercial firms with
demonstrated success.

Coverage Implications of Fault Distribution
The distribution of faults reported above suggests that testing

which covers a high proportion of 4-way to 6-way combinations
can provide strong assurance. If we know that t or fewer vari-
ables are involved in failures, and we can test all t-way combina-
tions, then we can have reasonably high confidence that the
application will function correctly. As shown above, the distribu-
tion of faults varies among applications, but two important facts
are apparent: a consistently high level of fault detection has been
observed for 4-way and higher strength combinations; and no
interaction fault discovered so far, in thousands of failure reports,
has involved more than six variables.

Any test set, whether constructed as a covering array or not,
contains a large number of combinations. Measuring combina-
torial coverage, i.e., the coverage of t-way combinations in a test
set, can therefore provide valuable information about test set
quality. Combinatorial coverage includes a number of advan-
tages for assessing test quality:

• Computed independently of other evaluations of test quality.
Combinatorial coverage provides additional information for
decision-makers, and may be used in conjunction with struc-
tural coverage, mutation testing, or other approaches.

• Direct relationship with fault detection. The size of the
input space spanned by the test set, a significant aspect
of fault detection, can be measured by the number of
t-way combinations up to an appropriate level of t. The
proportion of t-way combinations covered measures the
fractional size of the input space that is tested.

• Simple to compute and interpret. Because it is based on
the input space of test values, there is no need to run the
system under test to compute this measure of test set
quality. Freely available tools can be used on any test set

expressed as a matrix where rows are tests and columns
are parameter values.

Measuring Coverage of Fault-triggering
Combinations

Combinatorial testing is based on covering all t-way combina-
tions for some specified level of t, but this form of testing may
not always be practical because of established test practices,
legal or contractual test requirements, or use of legacy test sets.
An alternative to creating a combinatorial test set from scratch
is to investigate the combinatorial coverage properties of an
existing test set, possibly supplementing it with additional tests
to ensure thorough coverage of system variable combinations.
Determining the level of input or configuration state-space cov-
erage can help in understanding the degree of risk that remains
after testing. If a high level of coverage of state-space variable
combinations has been achieved, then presumably the risk is
small, but if coverage is much lower, then the risk may be sub-
stantial. This section describes some measures of combinatorial
coverage that can be helpful in estimating this risk.

Variable-value configuration: For a set of t variables, a vari-
able-value configuration is a set of t valid values, one for each of
the variables, i.e., the variable-value configuration is a particular
setting of the variables.

Example. Given four binary variables a, b, c, and d, for a
selection of three variables a, c, and d the set {a=0, c=1, d=0}
is a variable-value configuration, and the set {a=1, c=1, d=0} is
a different variable-value configuration.

Simple t-way combination coverage: For a given test set of n
variables, simple t-way combination coverage is the proportion
of t-way combinations of n variables for which all valid variable-
value configurations are fully covered.

Example. Table I shows four binary variables, a, b, c, and d,
where each row represents a test. Of the six possible 2-way
variable combinations, ab, ac, ad, bc, bd, cd, only bd and cd have
all four binary values covered, so simple 2-way coverage for the
four tests in Table 1 is 2/6 = 33.3%. There are four 3-way vari-
able combinations, abc, abd, acd, bcd, each with eight possible
configurations: 000, 001, 010, 011, 100, 101, 110, 111. Of
the four combinations, none has all eight configurations covered,
so simple 3-way coverage for this test set is 0%. As shown
later, test sets may provide strong coverage for some measures
even if simple combinatorial coverage is low.

It is also useful to measure the number of t-way combinations
covered out of all possible settings of t variables.

Total variable-value configuration coverage: For a given

a b c d
0 0 0 0
0 1 1 0
1 0 0 1
0 1 1 1

(1)	
(2)

Table 1. Test array with four binary components

CrossTalk—March/April 2015 21

TEST AND DIAGNOSTICS

combination of t variables, total variable-value configuration cov-
erage is the proportion of all t-way variable-value configurations
that are covered by at least one test case in a test set. This
measure may also be referred to as total t-way coverage.

The number of t-way combinations in an array of n variables is
C(n,t) = n!/(n-t)!t!, or “n choose t”, the number of combinations of
n things taken t at a time without repetition. If each variable has
v values, then each set of t variables has vt configurations, so the
total number of possible combination settings is vt ×C(n, t). Any
test set covers at least some fraction of this amount. (Note that
there is a natural extension of this formula for the case where
variables do not all have the same number of values.) For the
array in Table I, there are C(4,2) = 6 possible variable combina-
tions and 22×C(4,2) = 24 possible variable-value configurations.
Of these, 19 variable-value configurations are covered and the
only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10, so
the total variable-value configuration coverage is 19/24 = 79%.
But only two, bd and cd, out of six, are covered with all 4 value
pairs. So for simple t-way coverage, we have only 33% (2/6)
coverage, but 79% (19/24) for total variable-value configuration
coverage. Although the example in Table 1 uses variables with
the same number of values, this is not essential for the coverage
measurement, and the same approach can be used to com-
pute coverage for test sets in which parameters have differing
numbers of values.

Figure 2 shows a graph of the 2-way (red/solid) and 3-way
(blue/dashed) coverage data for the tests in Table 1. Cover-
age is given as the Y axis, with the percentage of combinations
reaching a particular coverage level as the X axis. For example,
the 2-way line (red) reaches Y = 1.0 at X = .33, reflecting the
fact that 2/6 of the six combinations have all 4 binary values
of two variables covered. Similarly, Y = .5 at X = .833 because
one out of the six combinations has 2 of the 4 binary values
covered. The area under the curve for 2-way combinations is
approximately 79% of the total area of the graph, reflecting the
total variable-value configuration coverage.

Practical Examples
The methods described in this paper were originally devel-

oped to analyze the input space coverage of tests for space-
craft software [4][5]. A set of 7,489 tests had been developed,
although at that time combinatorial coverage was not the goal.
With such a large test suite, it seemed likely that a huge number
of combinations had been covered, but how many? Did these
tests provide 2-way, 3-way, or even higher degree coverage?

The original test suite had been developed to verify correct
system behavior in normal operation as well as a variety of fault
scenarios, and performance tests were also included. Careful
analysis and engineering judgment were used to prepare the
original tests, but the test suite was not designed according
to criteria such as statement or branch coverage. The system
was relatively large, with the 82 variable configuration 132754262
(three 1-value, 75 binary, two 4-value, and two 6-value). Figure
3 shows combinatorial coverage for this system (red = 2-way,
blue = 3-way, green = 4-way, orange = 5-way). This particular
test set is not a covering array, but pairwise coverage is still

relatively good, because 82% of the 2-way combinations have
100% of possible variable-value configurations covered and
about 98% of the 2-way combinations have at least 75% of
possible variable-value configurations covered.

Figure 4 shows a smaller example based on a US Air Force
test plan [6] with seven parameters in a 243142 (four 2-value,
one 3-value, and two 4-value) configuration, with 2-way through
6-way coverage for 122 tests. Coverage is remarkably high,
with nearly 100% of all 2-way through 4-way combinations

interaction combinations settings coverage
2-way 3321 14761 94.0
3-way 88560 828135 83.1
4-way 1749060 34364130 68.8
5-way 27285336 603068813 53.6

Table 2. Total t-way coverage for Fig. 3 configuration.

Figure 2. Graph of coverage for Table 1 tests

Figure 3. Configuration coverage for spacecraft example.

22 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

covered. Note that the 2-way and 3-way lines are not visible
because with 100% coverage they appear as vertical lines on
the right side of the chart.

Figure 5 shows how coverage declines with 25% of the tests
removed. Although the smaller test set has less coverage for all
but 2-way combinations, coverage is still relatively high, so a test
manager might consider this comparison in reviewing the cost/
benefit tradeoffs of adding or removing tests.

interaction combinations settings coverage
2-way 21 152 100
3-way 35 664 100
4-way 35 1690 98.7
5-way 21 1818 69.7

Table 3. Coverage for Fig. 4 configuration.

Figure 4. Configuration coverage for USAF test plan.

Figure 5. Configuration coverage, 75% of tests in Fig. 4.

Table 4. Coverage for Fig. 5 configuration.

interaction combinations settings coverage
2-way 21 152 100
3-way 35 664 99.5
4-way 35 1690 90.0
5-way 21 1818 56.7

Computing Combinatorial Coverage
Tools are available to compute the measures discussed in

this article. Several covering array generators can compute total
coverage, and NIST-developed tools that are freely available
can compute a variety of additional measures, and produce the
reports included in examples above. The tools also include em-
bedded constraint solvers, making it possible to produce counts
of covered combinations excluding those that are not possible
physically, or should be excluded because of constraints among
variables. This is an essential feature for real-world use. It is
also possible to generate additional tests to supplement those
analyzed, to bring coverage up to any desired level.

The methods and tools introduced above were developed for
analysis of NASA software tests, and additional NASA usage has
suggested the following areas of utility [7]: 1) as an inline analysis
tool for evaluating developer tests, 2) as a planning tool during test
development to ensure adequate coverage, 3) as an IV&V audit tool
for auditing completed IV&V analysis or multi-project test plans.

Conclusions
Combinatorial coverage provides valuable information for

decision-makers because it measures the proportion of the
input space that is covered relevant to testing. Because only
a small number of variables are involved in failures, testing all
settings of 4-way to 6-way combinations can provide strong
assurance. For example, if we measure the t-way coverage of
tests, and find that all 4-way combinations are covered, 90% of
5-way combinations, and 70% of 6-way combinations are cov-
ered, we can reasonably conclude that very few potential failure-
triggering combinations have been left untested. Conversely, we
can also have confidence that the system has been shown to
work correctly for almost all of the relevant input space. Thus,
combinatorial coverage can provide significant value in evaluat-
ing test quality.

Acknowledgements
We are grateful to Greg Hutto at Eglin AFB for providing

a copy of the 53d Wing tech report on design of experiments
in test plan design.

Disclaimer
Certain products may be identified in this document, but such

identification does not imply recommendation by the U.S. National
Institute of Standards and Technology or other agencies of the
U.S. Government, nor does it imply that the products identified are
necessarily the best available for the purpose.

CrossTalk—March/April 2015 23

TEST AND DIAGNOSTICS

ABOUT THE AUTHORS
D. Richard Kuhn is a computer scientist
in the Computer Security Division of NIST.
His current interests are in information
security, empirical studies of software fail-
ure, and software assurance, focusing on
combinatorial testing. He received an MS
in computer science from the University of
Maryland College Park.
Phone: 301-975-3337
E-mail: kuhn@nist.gov

Raghu N. Kacker is a researcher in the
Applied and Computational Mathemat-
ics Division of NIST. His current interests
include software testing and evaluation of
the uncertainty in outputs of computation-
al models and physical measurements. He
has a Ph.D. in statistics and is a Fellow of
the American Statistical Association, and
American Society for Quality.

Phone: 301-975-2109
E-mail: raghu.kacker@nist.gov

1. D.R. Kuhn, D.R. Wallace, A.J. Gallo, Jr., “Software Fault
 Interactions and Implications for Software Testing”, IEEE
 Trans. on Software Engineering, vol. 30, no. 6, June, 2004.
2. NIST Special Publication 800-142, Practical Combinatorial
 Testing, Oct. 2010.
3. C. McQuery, “Design of Experiments in Test and Evaluation”.
 Memo, Office of the Secretary of Defense, May 1, 2009.
4. J.R. Maximoff, M.D. Trela, D.R. Kuhn, R. Kacker, “A Method
 for Analyzing System State-space Coverage within a t-Wise
 Testing Framework”, IEEE International Systems Conference
 2010, Apr. 4-11, 2010, San Diego.
5. D.R. Kuhn, I. Dominguez, R.N. Kacker and Y. Lei.
 “Combinatorial Coverage Measurement Concepts and
 Applications”, 2nd Intl Workshop on Combinatorial Testing,
 Luxembourg, IWCT2013, IEEE, Mar. 2013.
6. G. Hutto, “53d Wing Test Plan Examples”, Tech. Rpt., Eglin
 AFB, 2012.
7. C. Price, R. Kuhn, R. Forquer, A. Lagoy, R. Kacker,
 “Evaluating the t-way Combinatorial Technique for
 Determining the Thoroughness of a Test Suite”, NASA
 IV&V Workshop, 2013.

REFERENCES

Yu Lei is a professor in Department of
Computer Science and Engineering at the
University of Texas, Arlington. His current
research interests include automated
software analysis and testing, with a
special focus on combinatorial testing,
concurrency testing, and security testing.
He received his PhD from North Carolina
State University.

Phone: 817-272-2341
E-mail: ylei@uta.edu

mailto:kuhn@nist.gov
mailto:raghu.kacker@nist.gov
mailto:ylei@uta.edu

24 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

Christian Hagen, A.T. Kearney
Steven Hurt, A.T. Kearney
Andrew Williams, A.T. Kearney

Abstract. Without having in place data-driven metrics that give a holistic
business perspective of software integration testing laboratories, leaders of the
DoD’s weapons programs are unable to optimize the performance of these full-
system and subsystem integration labs that test and certify integrated hardware
and software during the development, modernization, and sustainment of the U.S.
military’s integrated and complex systems. Yet these metrics are not available
across the DoD lab footprint, even though the labs’ significance is growing in par-
allel with the military’s rapid shift from using equipment with capabilities based on
advanced hardware to equipment that is dependent on fully integrated, complex
systems of both hardware and software.

Metrics That Matter
in Software Integra-
tion Testing Labs

This game-changing shift is now evident in weapons programs
throughout the military. It’s seen, for example, in the F-35 program,
whose software over the years has increased in size to approximately
24 million source lines of code, which has made the testing more
difficult and led, in part, to the program’s multiyear delays (see
Figure 1).

As this shift intensifies, so too does the program leaders’ need to
successfully compare the operations of any lab to that of any other
lab, each of which today approaches software integration testing
with its own particular processes for measuring its progress and
success. They simply need to be able to answer several pertinent
questions that they cannot answer now, such as the following:

• Is the lab running at the appropriate level of efficiency, ef-
fectiveness, and cost, and if not, how can the current level
of performance be improved?

• Can the lab handle additional testing and, if so, how much
should be moved there and from where?

• Should the lab be updated and, if so, how much money
should be spent on the update?

• Should the lab be closed rather than updated and should
the testing be transferred to another facility?

• Would the labs see reduced costs and improved performance
with the purchase of new, faster testing equipment?

The Need for Metrics That Matter
The need to have metrics that matter when making decisions

facing software integration labs was recently underscored by
Robert Ferguson of Carnegie Mellon University’s Software En-
gineering Institute (SEI). Ferguson’s 2012 research shows that
using project dashboards and following the right measurements
are critical to project management because they provide manag-
ers with the information they need to perform different tasks at
the correct times—much like the dashboard of a car leads to a
successful journey by preventing the driver’s running out of gas,
going over the speed limit, or arriving late [1].

Ferguson showed a project dashboard—which should be con-
structed to suggest different decisions about product quality,
and about directing and controlling the work—provides mea-
sures for the critical areas of project decision making. These
measures include scheduling, resource allocation, scope and
change, product quality, and effective process performance. In
addition, the dashboard should do the following:

• Forecast milestones and delivery of scope
• Provide clear warnings if the plan is not working or an

unplanned event has affected some desired outcome
• Support re-estimation and re-planning by showing the

magnitude of the problem
Measures like these have never been more important than in

today’s environment in which software integration labs deliver
the software and hardware capability weapon programs must
have to win on the battlefield—a critical role the labs can per-
form only if they have the metrics they need.

Unfortunately, most software and program leaders today are
attempting to make decisions without metrics that matter to them.
Primarily, they have engineering- and technology-based metrics—
metrics that are of value to those who care mostly about being
able to test a single piece of equipment, not manage the overall
operation of a lab or group of labs. What they need are metrics
that are valid to those who must make command-level decisions
from a holistic business perspective.

When DoD leaders try to make decisions like moving one
lab’s testing to other labs, they run headlong into major problems
caused by the lack of metrics that really matter. Since each lab
measures its progress and success with its own unique processes,
decisions across the footprint are made using a nonstandard, and
often ad hoc, approach. And with no standard set of metrics, lead-
ers are uncertain about what the available metrics mean, which
ones matter, and how they can use them to make fully informed
command decisions about the system integration labs. Their con-
fusion is compounded by the lab contractors’ belief that since the
labs use different technologies, test different equipment, and have
completely different workloads, they cannot provide the metrics
needed to compare operations—a belief that has been proven
groundless in many other industries.

It was this confusion that led the leaders of a major avionics
program in the DoD to determine they needed to significantly
improve the way they looked across multiple labs to compare Note: SLOC for F-16 and F-22 are at first operational flight. F-35 SLOC figures are from first test flight and current estimates/sources.

Source: Hagen, C., Hurt, S., Sorenson, J. “E�ective Approaches for Delivering A�ordable Military Software.” CrossTalk – The Journal of Defense
Software Engineering, Vol. 26 No. 6 (November-December 2013).

Figure 1
The amount of software in military avionics systems has skyrocketed

F-16A Block 1 (1974)

F-16D Block 60 (1984)

F-22 Raptor (1997)

F-35 Lightning II (2006)

F-35 Lightning II (2012)

F-35 Lightning II (2012)
Operational and support software

135

236

1,700

6,800

Source lines of code (SLOC) for select avionics programs
(in thousands)

10,000

24,000

CrossTalk—March/April 2015 25

TEST AND DIAGNOSTICS

operating costs, performance, and other key metrics. Through
research they concluded that the metrics that matter the most
for use in the system integration labs would come from examin-
ing operations with similar capital-intensive processes.

They found the metrics they needed in manufacturing and opera-
tions, which has long been using a standard set of metrics—capacity,
efficiency, effectiveness, and capability—to compare the operations of
manufacturing plants, regardless of what the plants were producing.
While the type of work done in these manufacturing facilities—input-
ting parts, assembling them, and outputting completed products—dif-
fers greatly from that of the integration labs—inputting software code
and hardware, running tests against the code, and putting out a
report on whether the code is good or bad—the processes are similar.
Therefore, the metrics can be similar as well (see Figure 2). Although
much has been written about software estimation and quality, [2, 3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], much
less has been written about software integration testing.

The metrics found in these plants are derived from the body of
work in manufacturing excellence that crosses many industries
having similar processes, although a variety of products. They also
are perfectly applicable to software integration labs. And now a few
decision makers across the labs are starting to discover that these
metrics—capacity, efficiency, effectiveness, and capability—enable
them to not only measure and improve each software lab’s cost and
performance but to effectively manage all their labs as they test
software systems that are fast becoming the strategic weapons on
which the military’s future success depends.

These four metrics closely resemble those of the overall equip-
ment effectiveness (OEE) framework that was developed over
the years to measure how effectively a process was executed in
a manufacturing facility, and is now being used across industries,
including the automotive sector. This framework was designed to
give leaders the metrics to compare processes across factories and
industries—the metrics they simply have to understand if they are to
manage effectively their businesses and operations.

OEE, as research shows, is based on a standard set of
metrics for understanding the manufacturing process [22]. It
is captured through the following formula: OEE = machine
availability x machine performance x product quality. The result
is presented as a percentage that can be used to understand
how the current manufacturing process of a plant is perform-
ing, and to determine how one or all three of these factors can
be changed to improve this performance. It can also be used
to compare performance across manufacturing plants within a
company, throughout an industry, or across industries.

Additional research has shown that OEE can be applied more
generally to operations, plants, and machinery. An article from
2003, for example, shows how cross-functional teams can apply
OEE principles to multiple areas of operations and further shows
that OEE principles can be applied to areas beyond manufacturing,
pointing the way to its application in software integration labs [23].

Leaders in the avionics program tweaked this framework for
use within the department’s software integration laboratories.
They have learned that the four metrics—capacity, efficiency,
effectiveness, and capability—are easily transferable to the labs
because their measurements are directly comparable to those
made in the automotive factories (see Figure 3).

Capacity
While automotive factories count their output of vehicles per

hour, software integration labs measure capacity by counting the
number of tests executed per hour.

This metric, measured in test points, is the throughput per hour
in terms of a lab’s ability to execute its raw work. Test points, which
at a basic level represent specific criteria to evaluate for validation
and successful testing (for example, specific engineering perfor-
mance values or, for a smoke test, the expected system output to a
standard set of inputs), are used as a basis for the starting point for
lab capacity. Test points are executed within a variety of test types,
such as integration, verification, and regression tests. They are a
measure of how much work, in total units, could be accomplished if
the lab worked nonstop around the clock.

Capacity is measured in test points, which can easily be con-
verted into derivative metrics like shift, daily, and yearly capacity.
And it serves as the best proxy for lab size, showing whether the
lab equates to a factory that is big or small. Knowing this capacity
will, among other things, help DoD leaders determine whether the
work they want to shift to another lab can be handled by that lab
or not, vis-à-vis capability or capacity.

Because test points are the basic unit of lab production,
comparing dollars per test point is the core indicator of a lab’s
cost. Using this comparison, decision makers can determine, for
example, the cost of running a test or of finding a defect—such

Source: A.T. Kearney analysis

Figure 2
The metrics for manufacturing and for software testing labs are similar

Capacity

E�iciency

E�ectiveness

Capability

• Number of cars produced per hour

• Number of good cars produced per hour

• Number of quality fixes

• What can the factory produce?
 (for example, Porsche vs. Yugo)

• Number of test points executed per hour

• Number of test points executed per hour

• Number of defects found

• What areas and complexity of tests
 can the lab execute?

Manufacturing

Production metrics

Software integration lab

Capacity
How much can

the lab test?

Source: A.T. Kearney analysis

Figure 3
Software metrics for laboratory performance

E�iciency
How many tests are

executed successfully?

E�ectiveness
How good is the lab at

catching errors?

Capability
What is the skill and

education of the personnel?

Lab performance

26 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

as a major defect that would cause the postponement of an
unmanned vehicle’s mission or a minor defect that might cause
the malfunction of a truck’s power steering.

Efficiency
While automotive factories check the number of “lemons” pro-

duced each hour, software integration labs measure efficiency by
checking the number of tests executed hourly “on condition.”

This quality metric indicates how well a lab is doing its work. If it
can do 100 units of work each day, but only 50 units, on average,
are correct, the labs’ efficiency metric would be quite low.

“On-condition” is a test executed successfully—a determination
based on the checklist and setup procedures handed down by the
system engineers. Since the test is successful, it does not need
to be performed again. Efficiency measures the percentage of
tests executed correctly—not whether the software being tested
passed or failed the test—and is calculated by dividing test points
on condition by total test points attempted. “Off-condition” is a
test that must be repeated because an error occurred in testing
methods or setup. A false “on-condition” test is properly executed
on condition, but it must be repeated because further analysis
shows the test package was poorly designed.

Tightly linked, lab capacity and efficiency are often measured
together to provide a clear understanding of their combined effect.
With baselines derived from this combination, leaders can begin
making command-level decisions about issues such as how a given
action would change the lab’s throughput, how a different action
would affect the lab’s cost per hour or cost per defect, and how
some other action would impact the lab’s efficiency or capacity.

Effectiveness
While automotive factories count the number of quality assur-

ance fixes, software integration labs measure effectiveness by
counting the number of software defects.

This metric points out how good a lab is at discovering
errors. If, for example, its primary purpose is to find defects or
certify code, the number of work units to defects could be a
measure of effectiveness.

Effectiveness is measured by the number of test points execut-
ed per defect found, and it is calculated by defect found divided
by test points attempted. This measurement of the lab’s testing
procedure shows how many tests must be run before the lab
starts finding errors in the testing procedure. This metric is based
on the assumption that labs have the capability to properly test the
code. Testing capability means having the subject matter expertise,
the appropriate number of personnel, and the right equipment to
test the code. Since this metric measures the lab’s ability to find
defects in an existing code base, the resulting output of the metric
is driven by the quality of the code being tested by the lab. Since
quality of code can vary greatly across different development types
and teams, this metric should not be used as an absolute value
to compare labs across different development types. Instead, the
trending of this metric within projects of similar size and scope can
help a lab administrator track a lab’s performance compared to
historical testing efforts.

In a white paper on their research into software defects, SEI’s
Julie Cohen, Robert Ferguson, and William Hayes show that
classifying defects appropriately and tracking them differently

can increase lab effectiveness [24]. They suggest quantifying
the priority of addressing these defects by assigning a Risk
Priority Number (RPN) to each defect, a number that is calcu-
lated with “three distinct attributes of failure sources”: severity,
“a rating of the adverse impact of the failure”; occurrence, “how
often the source of failure is encountered”; and detection, “how
detectable the failure is when it occurs.”

While not specifically addressing defects in software integra-
tion labs, the SEI authors underscore the need to view the defect
data in the appropriate way with the appropriate metrics. This
approach is essential to solving the broader issues DoD lead-
ers face as they try to more effectively manage labs across the
footprints.

Capability
While automotive factories explore the functionality of

their equipment and what each factory can make, software
integration labs measure capability by exploring the ability of
each lab to meet the overall requirements.

This metric is the skill set of a lab’s workforce and the func-
tionality of its equipment. It is used to compare how well each
lab can test specific areas of the software and is the function of
three factors:

• Knowledge, which is assessed across product, functions, and
technology, and is proven through work experience requiring
expertise in the product, function, and technology areas

• Competency, which is assessed across current work behaviors
and skills required to perform the work and proven by the exis-
tence of artifacts, such as current job descriptions and training,
which are used to validate managers’ and directors’ scores for
their teams and specific knowledge areas

• Capacity, which is measured by the availability and readi-
ness of the lab’s resources (human and infrastructure) to
perform an activity

Because capability is also directly affected by a lab’s equip-
ment composition, this composition must be analyzed in any
lab-to-lab comparison.

Capability plays a major role in leaders’ overall management
decisions because it has an implicit effect on the other three
metrics that matter. Therefore, its impact on each of these
metrics must be understood before making changes to the size,
experience, or skill set of the workforce.

Approach to Applying the Metrics That Matter
When the leaders of the avionics weapons program began to

evaluate the current strategy for software integration labs and
to explore alternative models that might deliver better value, they
quickly learned they needed metrics on which to base deci-
sions—data-driven metrics that matter. In order to complete the
evaluation, the team developed metrics that illuminated each
lab’s actual performance. These metrics drove the assessment
of software integration labs and enabled leaders to accurately
measure and compare lab performance across the footprint.
They made possible the direct lab comparisons for analysis and
enabled the leaders to create a business case to model future-
state scenarios and compare cost savings, transition risks, and
steady-state capacity risks across scenarios (see Figure 4).

As an example of the power that using the correct metrics gives

CrossTalk—March/April 2015 27

TEST AND DIAGNOSTICS

to business leaders evaluating testing labs, Figure 5 describes a
hypothetical model of additional hours of test time required during a
lab transition scenario. By understanding a lab’s normal throughput
in tests and operational efficiency (first time right execution), the
effects of the overall program test hours can be estimated as dif-
ferent areas of the lab are shut down to transition.

In this example, the lab is transitioning in two phases, each
of which will reduce the testing capacity of the lab during
the transition time. Using the appropriate metrics the leaders
can estimate the impact to the program and additional hours
required to keep the same level of testing results as before the
transition started (revised test hours).

Besides evaluating the labs’ current strategy and exploring
alternative value models, the assessment’s specific objective
was to reduce the labs’ life cycle costs by moving the program’s
testing from its current location to potential alternatives and to
do so without degrading current performance. The program also
set out to answer questions about the attributes of the current
lab footprint; about alternatives to the current lab environment;
about the costs, benefits, and risks of the current plan and the
proposed alternatives; and about the recommended strategy
(current plan versus proposed alternatives).

The program met its objective with a thorough analytical review
of the current long-term strategy and potential alternatives. In do-
ing so, it determined that the best value alternative would result in
the lowest life cycle cost with manageable risk while not degrad-
ing lab capabilities or performance.

Results
The metrics developed during the assessment provided the

information needed for the leaders to recommend that the
avionics program transition the testing to the alternative labs
but maintain the current lab’s performance and its operator and
equipment capability. This result provided less risk during the
transition as well as steady state. It also saved more than 30
percent in life cycle costs, for a total net present value savings
of hundreds of millions of dollars (see Figure 6).

Using the metrics, the team modeled several courses of action
through the perceived end-of-life. From these, it recommended
a clear course of action for moving the testing, including the
expected cost savings, transition risks, and potential risks.

The clear, communicable metrics that were created reflect
lab capacity, efficiency, effectiveness, and capability—the four
metrics that matter to program leaders and make it possible for
them to manage labs more effectively.

Assessing the performance of the system integration labs not
with ad hoc metrics valued only by technicians and engineers
but with a standard set of metrics that matter to decision mak-
ers needing a holistic business perspective can lead to valuable
manufacturing-environment benefits, such as the following:

• Transparency. With a clear, communicable set of metrics,
leaders can quickly and accurately assess performance and
capacity. In addition, fact-based, apples-to-apples compari-
sons will enable them to contrast the performance of one
lab to that of others.

• Cost savings. Historically, cost advantages between labs have
been hidden behind immaterial metrics. Now equal, meaning-
ful metrics highlight current cost-saving opportunities.

Key performance indicators

Source: A.T. Kearney analysis

Figure 4
Lab comparison across common metrics

5.0

9.0

Test points per defect Dollars per defect ($K)

Hours per test point Dollars per test point ($K)

47.0

33.0

Lab 1 Lab 2 Lab 1 Lab 2

1.5

15.0

50.0

705.0

Lab 1 Lab 2 Lab 1 Lab 2

Demand calculation

1 aTPs/hr: Adjusted test points per hour. Adjusted test points = raw test points / hour * first time right percent.

Source: A.T. Kearney analysis

Figure 5
Example analytic framework for workload shift across integration labs

Nominal
demand

Adjusted
capacity

Adjusted
demand

Demand
adjustment

Test hours

TP = test points
aTP = adjusted test points

200 200 200 200

200 200 223 250

2 TP/hr 2 TP/hr 1.8 TP/hr 1.6 TP/hr

90% 90% 90% 90%

360 TP 360 TP

N/A 0 TPs 36 TPs 72 TPs

0 0

Raw capacity
(test points/HR)

First time
right

Adjusted test
points executed

Performance
variance (test points)

Hours surge
required

Revised test
hours

Baseline Period 1 Period 2

Lab Transitioning

Period 3

× × × ×
× × × ×
= =

324 TP 288 TP
= =

Illustrative

50 hrs at 1.44
aTPs/hr1

23 hrs at 1.62
aTPs/hr1

Source: A.T. Kearney analysis

Figure 6
Focusing on metrics that matter can reduce life cycle costs

100%

70%

Pre metrics Post metrics

• Using metrics that matter, an avionics
defense program identified lower-cost
labs to perform work

• By shifting work to these locations, life
cycle costs dropped 30%

• The lower-cost labs are not always driven
by just labor costs but are evaluated by
total cost to test, which includes:
—Process
—E�iciency
—Lab and test philosophy
—Equipment requirements

–30%

Program life cycle costs Illustrative

28 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

• Risk mitigation. The metrics will take into account current
and future lab capacity, allowing for more accurate esti-
mates of cost and potential schedule delays.

• Negotiations support. The metrics will provide the facts on
which the best negotiations are based and enable DoD leadership
to accurately size and negotiate requirements for contracting labs.

Moreover, with these metrics that matter, program leaders will
have the solid measures they need to develop a full understanding
of the labs’ current level of efficiency, a starting point on which to
base both minor and command-level decisions for the future and
for determining the impact of those decisions—whether they are
about adding capacity, reducing costs, hiring employees, improv-
ing throughput and quality, or similar issues. And as they make
these decisions that will drive the effectiveness and savings of labs
across the footprint, they will further strengthen labs’ role in deliver-
ing the most advanced systems to U.S. weapon programs.

1. Ferguson, R. (2012). “A Project Dashboard.” Unpublished Manuscript, Software
 Engineering Institute at Carnegie Mellon University.
2. Stark, G. (2011). “A Comparison of Parametric Software Estimation Models Using
 Real Project Data.” CrossTalk – The Journal of Defense Software Engineering,
 January 2011.
3. Boehm, B. (1981). Software Engineering Economics. Englewood Cliffs, N.J., Prentice Hall.
4. Boehm, B. (2006). “Minimizing Future Guesswork in Estimating,” IBM Conference
 on Estimation, Atlanta, GA, February 2006.
5. Jones, C. (2007). “Software Estimating Rules-of-Thumb.”
 <http://www.compaid.com/caiinternet/ezine/capers-rules.pdf.>, March 2007.
6. Jones, C. (1997). Applied Software Measurement, 2nd Ed. McGraw-Hill, NY.
7. Rone, K. et al. (1994). “The Matrix Method of Software Project Estimation.”
 Proceedings of the Dual-Use Space Technology Conference, NASA Johnson Space
 Center, Houston, TX, February.
8. J.W. Bailey and V.R. Basili. “A Meta-Model for Software Development and Resource
 Expenditures.” Proceedings of the 5th International Conference on Software
 Engineering. New York: Institute of Electrical and Electronic Engineers, 1983.
9. ISBSG, International Software Benchmarking Standards Group.
 <http://www.compaid.com/caiInternet/ezine/ ISBSGestimation.pdf>.
10. ISBSG, International Software Benchmarking Standards Group.
 <http://www.isbsg.org/isbsg.nsf/weben/Project%20Duration>.
11. McConnell, S. (2006). Software Estimation: Demystifying the Black Art,
 Redmond, WA, Microsoft Press.
12. International Function Point User’s Group (IFPUG), Function Point Counting Manual,
 Release 3.1, 1990.
13. Jones, C. “Achieving Excellence in Software Engineering.” Presentation to IBM
 Software Engineering Group, March 2006.
14. P. Oman. “Automated Software Quality Models in Industry.” Proceedings of the Eighth
 Annual Oregon Workshop on Software Metrics (May 11-13, Coeur d’Alene, ID), 1997.
15. G. Atkinson, J. Hagemeister, P. Oman & A. Baburaj. “Directing Software
 Development Projects with Product Measures.” Proceedings of the Fifth
 International Software Metrics Symposium (November 20-21, Bethesda, MD), IEEE
 CS Press, Los Alamitos, CA, 1998, pp. 193-204.
16. T. Pearse, T. Freeman, & P. Oman. “Using Metrics to Manage the End-Game of a
 Software Project.” Proceedings of the Sixth International Software Metrics Symposium
 (Nov. 4-6, Boca Raton, FL), IEEE CS Press, Los Alamitos, CA, 1999, pp. 207-215.
17. Kemerer, C. F. (1987). “An empirical validation of software cost estimation models.”
 Communications of the ACM, Vol. 30, No. 5, pp. 416-429.
18. Jorgensen, M., and Sheppard, M. (2007). “A Systematic Review of Software
 Development Cost Estimation Studies.” IEEE Transactions on Software Engineering,
 Vol. 33, No. 1, January, pp 33-53.
19. Fenton N. E., and Pfleeger, S. L. (1997). Software Metrics: A Rigorous & Practical
 Approach, 2nd Ed., London, PWS Publishing.
20. Jorgensen, M. (2004). “A Review of Studies on Expert Estimation of Software
 Development Effort.” Journal of Systems & Software, Vol. 70, No. 1-2, pp. 37-60.
21. Hagen, C., Hurt, S., Sorenson, J. “Effective Approaches for Delivering Affordable
 Military Software.” CrossTalk – The Journal of Defense Software Engineering,
 Vol. 26 No. 6 (November-December 2013).
22. OEE Primer, <http://www.oee.com/calculating-oee.html>.
23. C.J. Bamber et al. (2003). “Cross-Functional Team Working for Overall Equipment
 Effectiveness (OEE).” Journal of Quality in Maintenance Engineering, Vol. 9
 Issue 3, pp. 223-238.
24. J. Cohen, R. Ferguson & W. Hayes (2013). “White Paper: A Defect Prioritization
 Method Based on the Risk Priority Number.” Internal White Paper, Software
 Engineering Institute at Carnegie Mellon University.

ABOUT THE AUTHORS
Christian Hagen is a partner in A.T. Ke-
arney’s Strategic Information Technology
Practice and is based in Chicago. He advises
many of the world’s largest organizations
across multiple industries, including govern-
ment and defense contractors. He specializes
in helping clients leverage software and in-
formation technology to increase efficiencies
and gain competitive advantage. Christian
has led several global studies for A.T. Kearney
and authored over 60 published papers on
low-cost competition, software engineering,
e-commerce, technology innovation, and
strategy.

E-mail: christian.hagen@atkearney.com

Steven Hurt is a partner in A.T. Kearney’s
Public Sector and Defense Services.
Steve has worked with several of the
USAF’s highest-visibility programs to drive
affordability in both software and hard-
ware sustainment. Specifically, Steve has
focused on should-cost analyses, business
case analyses, contract negotiations, and
developing business intelligence aimed at
reducing cost.

E-mail: steven.hurt@atkearney.com

Andrew Williams is a principal in the Stra-
tegic Information Technology Practice and
in Public Sector and Defense Services at
A.T. Kearney. Andrew works with both com-
mercial and government clients on some
of the most challenging IT issues, including
cost optimization, should-cost evaluations,
infrastructure services, and large mega-
vendor contract negotiations.

E-mail: andrew.williams@atkearney.com

REFERENCES

http://www.compaid.com/caiinternet/ezine/capers-rules.pdf
http://www.compaid.com/caiInternet/ezine/ISBSGestimation.pdf
http://www.isbsg.org/isbsg.nsf/weben/Project%20Duration
http://www.oee.com/calculating-oee.html
mailto:christian.hagen@atkearney.com
mailto:steven.hurt@atkearney.com
mailto:andrew.williams@atkearney.com

CrossTalk—March/April 2015 29

TEST AND DIAGNOSTICS

Introduction
A software system’s operational behavior can be characterized

by not only its functional requirements - what the system does –
but also its non-functional requirements (NFRs) - how usefully and
usably the system executes its functions. To forecast the behavior
of a software system in the cloud, we explore two primary run-time
NFRs - cost and performance. The objective of the Silverlining
Simulator is to predict the operational cost and performance of a
system by building a model to imitate the operation of the software
system under study. The simulation model needs a description of
the basic cloud infrastructure topology (resource capacity) and a

Lawrence Chung, The University of Texas at Dallas
Nary Subramanian, The University of Texas at Tyler
Thomas Hill, The University of Texas at Dallas
Grace Park, The University of Texas at Dallas

Abstract. A key question for a Chief Information Officer (CIO) would be the
future run-time cost and performance of complex business application software,
before deciding to migrate it to a cloud. It is difficult for CIOs to accurately esti-
mate cloud cost and performance in a fast and inexpensive manner. In this article,
we describe “Silverlining”, a simulator for estimating the cost and performance of
a cloud service before migration, to help the CIO not only with go/no-go deci-
sions but also with the budgeting for an appropriate cloud configuration.

Silverlining:
A Simulator to Forecast
Cost and Performance
in the Cloud

step-by-step depiction of the system operation workload (resource
usage). The Google cloud infrastructure, employed in the case
study, uses the following two primary classes of compute resources
(shown in Figure 3): The Google App Engine (GAE) and the
CloudSQL Database Engine. The CloudSQL Database Engine was
simulated using three cloud configurations (Low-cost/low-power-
CPU server - D1, medium-cost/medium-power-CPU server - D16
and high-cost/high-power-CPU server - D32). The low-cost/low-
power-CPU server - D1 provided adequate throughput to satisfy
the management’s goal.

Silverlining Simulation Process
In order to provide cloud forecasting capability, Silverlining -

our simulator - must first be primed with appropriate base infor-
mation (examples in Figures 4 and 5). For this purpose, cost and
performance goals are obtained from stakeholder requirements
for the system, oftentimes in terms of service level agreements
(SLAs) (See Figure 1 Step1), and their interdependencies are
analyzed by means of a notational convention, called Softgoal
Interdependency Graph (SIG), which is intended for represent-
ing and reasoning about NFRs.

Next the characteristics of the intended software applica-
tion is estimated (Step 2), e.g., using varying workloads. The
characteristics of the intended software application are then
loaded as input into the simulator (Step 3/4), and the simula-
tor would output (Step 5) the cost and performance estimates
for executing the software system, with varying workloads and
cloud configurations, on the cloud. With proper adjustments for
differences from the standard (Step6), the data from the simula-
tor can be used to estimate the cost and performance of the
cloud, as well as choosing among the available cloud configura-
tions according to the particular cost and performance business
goals that a CIO may have.

Now, an important question is if and how much Silverlining is
reliable – i.e., the accuracy of the simulation results. For Silverlin-
ing, experiments for a typical application were run on Google
cloud (called Google App Engine, or GAE), with varying workloads
and cloud configurations (such as platforms and infrastructure
characteristics), for a variety of benchmark data, and, using the
same workloads and cloud configurations, the results from Silver-
lining were compared against the benchmark data. The compari-
son showed the two sets of data were very close for the typical
application (or class of applications) that was used for the experi-
ments. Of course, more experiments would be needed, in order
for Silverlining to help a CIO and a cloud service provider assess
and predict the cost and performance of a variety of (classes) of
software applications, as well as choose among alternative cloud
platforms and configurations, or, if needed, even adjust cost and
performance business goals.

In this paper, a case study of a Vehicle Management System
(VMS) Display-Status is presented, which has been in opera-
tion for almost three decades and will continue to be for many
decades to come. This particular VMS is supposed to manage
close to 100,000 vehicles, while carrying out a variety of tasks,
such as keeping track of their locations and status (e.g., in normal
operation or maintenance, or in emergency repair, moving or
stationed), scheduling their routes, allocating crews, dispatching
them, compiling statistics, reporting on work progress, etc.

Figure 1. Silverlining simulation modeling framework steps.

30 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

In the following, the process of using Silverlining for the case
study is described in a piecemeal manner.

The Vehicle Management CIO is contemplating the migration
of the VMS to the cloud. Among other things, two requirements
are of critical concerns - the total system operation costs cannot
exceed $3,000 per month and the Display-Status application
must perform at 300 transactions per minute (tpm). The perfor-
mance goals and VMS operational characteristics are used as
input to the simulation forecaster. The CIO can run the simula-
tion on a local laptop computer and see the cost and perfor-
mance estimates immediately, i.e., without the time-consuming
and costly development, tailoring, installation, configuration and
testing the software system, as well as without (the use of) any
real cloud or hardware equipment.

Step 1: Set stakeholder cost and performance goals
First, a VMS Display-Status application SIG (Softgoal Interde-

pendency Graph) [1] is developed to represent a subset of the
business and the system non-functional requirements (NFRs).
Figure 2-1 shows these NFRs as business (soft-)goals – goals
for which there is no absolute criteria for their complete satis-
faction - along with their sub-goals, and Figure 2-2 shows the
system goals of the VMS, which are traceable to each other and
the business (soft-) goals.

As shown in Figure 2-1, the final goal of the CIO of the organi-
zation is to maximize profits by lowering cost with good perfor-
mance of service. To achieve the business goal, the CIO may
consider migrating to a cloud, while exploring several options.

The options being considered include a Consolidated Cloud,
in which the whole VMS system is operated in the cloud. A
Hybrid Cloud is another option, in which the VMS Data center
manages important and highly confidential information and the
cloud manages less important and less vulnerable information.

Softgoals Each option has its own pros and cons, and the CIO
can carry out an estimated tradeoff analysis in terms of potential
benefits and risks that each option is likely to bring about. For
example, a Consolidated Cloud is estimated to be better for
Lower cost[Service] (green ++) than a Hybrid Cloud (red -), but
worse for Security[Service] (red -) than a Hybrid Cloud (green
S+, i.e., some +). The CIO can decide to choose one of the
options that best meets (i.e., satisfices) the particular business
goals as a business strategy, after confirming the tradeoff rela-
tionships between business goals and strategies by executing
the Silverlining Simulator. In this case, we may assume, for the
purpose of illustration, that the most important business goal is
“Lower Cost”, hence consequently the CIO selecting a Consoli-
dated Cloud. By the way, due to the space limitation, we show
the simulation results for only the VMS Consolidated Cloud, as
indicated by solid lines; other ones whose simulation results are
not shown in this paper are indicated by dotted lines.

Softgoals, such as Good Performance and Lower Cost[VMS
Consolidated Cloud] in the upper line in Figure 2-2, come
from the business strategy on the right-hand side portion on
the bottom of Figure 2-1. In consideration of the business
strategy, a system analyst can then traceably establish the
system’s concrete goals, such as Throughput and Cost, which
respectively are quantified as 300 transactions per minute and
$1.5 per hour, as shown in Figure 2-2. The alignment between
business (soft-)goals and system (soft-)goals is represented by
“eql” (equal relationship), as in “Good Performance[VMS CC] eql
Good Performance[Throughput=300]” and “Lower Cost[VMS
CC] eql Lower Cost[CostPerHour=$1.5/h].” Note that, in the
piecemeal illustrations, Lower Cost[VMS CC] is considered more
important than performance, when selection decisions are made.

To achieve the system goals, a system analyst finds out
which configuration elements of a system infrastructure are
needed, such as “WAN Media” and “Server Capacity”, by
estimating the application workload of Step2. There may be
several operational options to achieve the system goals for
each system element, and a system analyst can also choose
one option, using our simulator results. As in Figure 2-2, the

Figure 2-1. The SIG for VMS Business goals.

Figure 2-2. The SIG for VMS System goals.

TEST AND DIAGNOSTICS

CrossTalk—March/April 2015 31

“WAN media” has options such as Fiber, Cable, and Google
USA-wide [2] which have their own round trip time.

Using the simulator and the WANTimeResponse formula, as in
Figure 2-3, a system analyst can obtain results as shown in Table
1. In this case, achieving all three subgoals of Good Performance
[Throughput=300] will imply achieving Good Performance
[Throughput=300] as well. Moreover, Good Performance [CPU
Processing Waiting Time] and Good Performance [CPU Process-
ing Time] are estimated to be achievable, via the use of a Cloud
with any of the three different capacities (D1, D16 and D32)
being considered (Of course, this can be confirmed, or denied, by
simulation results). This would, then, imply that Good Performance
[Throughput=300] is estimated to be achievable. In other words,
for example, if we estimate that D1 achieves Good Performance
[CPU Processing Waiting Time] and Good Performance [CPU
Processing Time], then based on the data in Table 1, all WAN
media options will achieve the goal Good Performance [Through-
put=300] (See all contributions are green). However, their
respective WAN Response Service Times (Table 1, second row)
are distinguished with ++, +, S+, reflecting the different degrees
to which the three different options contribute.

From the perspective of the goal [CostPerHour=$1.5/h],
the costs of Fiber, Cable, Google USA-wide, which respec-
tively are 1.9, 1.75, and 1.0, have contributions -, S-, +
respectively. Hence, Google USA-wide achieves the system
goal of Good Performance, and at the same with the lowest
cost among the options considered.

As in the above descriptions, A SIG serves as a notational
convention for exploring options for achieving business and system
NFR goals, such as cost and performance. At the end, it also
serves as a record of the rationale for the various design decisions
made, in consideration of tradeoff analysis (pluses and minuses)
[3]. In Figure 2-1, for example, the pros (green lines) and cons (the
red lines) from different options represent the contributions the
different options make towards the NFR (soft-) goals. A Claim,
“Lower Cost is the most important”, is the rationale for the particular
decision made on the VMS Consolidated Cloud. Similarly in Figure
2-2, the selection on Google USA-wide has the rationale with the
claim “Achieve the Throughput Goal with the Lowest Cost.”

Table 1. Wide Area Network (WAN) Design Alternatives.

Figure 2-3. Formula for WANTimeResponse.

Figure 3. The VMS annotated application workload and workflow.

Many uses of SIG can be found in the literature. One such
use, dealing with trustworthiness, can be found in [4].

Step 2: Estimate application workload
The workflow for the VMS Display-Status application,

together with resource consumption, is shown in Figure 3. The
estimated flow and consumption metrics were extracted from
runtime transaction monitors [5, 6] and a standard relational
database benchmark [7].

The Display-Status application flow is annotated in the fol-
lowing steps: 1. A small request message (1K bytes) is initiated
by an average of 300 concurrent users; 2. The message is sent
over the internet to a cloud provider’s Frontend engine; 3. The
Frontend engine executes the Display-Status program (.0001
service units); 4. The cloud Database engine updates and re-
trieves the status window (2.5 service units, 4 gigabytes); 5,6,7.
The response message is returned; and 8. The (1 million bytes)
message is displayed in the regional center.

Step 3: Describe simulation experiment
Figure 4 shows an operational Google App Script graphical

user interface, which can be used to describe a single simula-
tion/forecaster experiment [8]. The GUI has four sections,
which can be used to collect the data elements for the selected
simulation experiment:

Create Section - This section groups the XML file actions and
establishes the simulation goals for response time (3 seconds)
and throughput – i.e., applications transactions per minute (300).

Application Group Section - This section accumulates the
operating characteristics of all application workloads - operating
hours (24) and primary database size (4 gigabytes).

Application Workload Section - This section estimates the
workload characteristics of each application – the total daily
requests, workload mix percentage (10), keying time (10), think
time, and the number of input and output operations.

Cloud Infrastructure Configuration Section - This section describes
the attributes of each component in the cloud infrastructure topology
– the number of Clients (300), network elements, frontend compute
characteristics (.0001), and the database storage characteristics (2.5).

32 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

Step 4: Generate simulation experiment XML
The Google App Script can generate XML to describe a simula-

tion/forecaster experiment. A selected sample of the XML, in
Figure 5, is highlighted in red to demonstrate XML’s ability to com-
municate a complete simulation experiment description to multiple
discrete event simulation modeling frameworks supporting multiple
cloud provider infrastructures. The important additional annotations
are explained with the following XML tag descriptions:

<apptitle>Display-Status
<workloadmip>10
<requestsmsgbytes>1000
<responsemsgbytes>1000000
<instancenbr>10
<instanceclass>F1
<costperinsthour>0.08
<sqlinstanceclass>D1
<sqlcostperinsthour>0.10
<sqlcostpermio>0.10
<sqlcoststoragepergbyteperm>0.24

The XML is designed to describe a complete simulation for
the following open source discrete event simulation frameworks:

SimPy [9], CloudSim [10] and OMNet++ [11].

Step 5: Run Simulation experiment
Simulation models are created for understanding the behavior

of a complex system without actually constructing the system.
Simulation eliminates the time and expense that are needed to:
design, code and test the software system, not to mention the
physical hardware equipment either.

Figure 6 presents the results of using an open source discrete
event simulation framework, SimPy, for a particular simulation
experiment, which corresponds to the Google App Engine cloud
characteristics for 300 concurrent users. The report is formatted
to closely align with Google’s monthly invoice format. An explana-
tion of the significant report data elements follows:

Section I. Latency-goal (3 seconds), Throughput-goal (300
transactions per minute), Op-hours (operation hours per day 24)
and #-users (number of concurrent users 300), Display-Status
application SIM-THROUGHPUT-PER-MIN (throughput per
minute 367.86), and Txn-workload-% (the percent of total trans-
actions dedicated to the Display-Status application 10).

Section II. The estimated daily frontend compute resource
usage for 24 hours per day CHARGE is $83.35 daily or
$2,500.39 per 30-day month.

Section III. The estimated daily database (D1 CloudSQL) re-
source usage for one database instance, read-write operations
and storage is $12.40 per 30-day month is $372.20. Here, D1
is the cheapest, hence with the lowest computing, infrastructure
of Google App Engine, among 32 different infrastructures which
enable the use of SQL.

The simulation run of 4-hours-simulation-clock-time, using a
laptop computer (1.30GHz), took 2 minutes execution time at
a very low cost. The simulation input variables can be modified
to describe application workload changes and alternative cloud
infrastructure configurations at a minimum cost.

Figure 4. The GUI for the VMS simulation experiment.

Figure 5. A selected XML description for the VMS simulation experiment.

TEST AND DIAGNOSTICS

CrossTalk—March/April 2015 33

as-a-Service (PaaS) on this cloud with an indication of the class
of Infrastructure-as-a-Service (IaaS) to be used. We then ran
several experiments on this cloud system to collect cost and
performance data. This data seeds the simulator-framework
SimPy, which is written in the Python programming language,
and the simulator is then able to predict, to a high degree of ac-
curacy, the cost and performance of operating a similar software
system to the cloud.

We have described the essentials of our system, Silverlining,
in this paper and interested readers are referred to some of the
references at the end of this article for further details. Further
research in this area relates to identifying adjustment factors
when the cloud to be migrated to is not exactly like the GAE,
to creating a revised local stand-alone GUI front-end for the
simulator (the current Google App Script GUI requires internet
connectivity to operate properly), and to porting the simulator to
other domains, in order to cover a wide range of software ap-
plications and a variety of clouds. The simulator source code can
be obtained by a requesting email to any of the authors.

Acknowledgments
This work wouldn’t have been possible without the generous

Grant from Google and the untiring help of Michael Brauwer-
man at Google. Five Silverlining research team members also
deserve special recognition — Dr. Sam Supakkul, Dr. Rutvij
Mehta, Alan Anderson, Yishuai Li and John McCain (NTT Data)
— for collaborating, encouraging and leading the way.

Step 6: Validate distance to cloud benchmark
After a review of the simulation report, one question remains –

“Is the simulation throughput of 368 transactions-per-minute (tpm)
a reasonable result?” The Silverlining Lab at the University of
Texas at Dallas maintains the results of cloud TPC-C [7] bench-
marks, ranging from 10 to 6000 concurrent users and throughput
ranging from 12.5 tpmC to 7,029 tpmC, for two kinds of platforms
– Java and Python – and for a variety of CloudSQL and NoSQL
infrastructures [12].

Figure 7 plots (in blue) a subset of the cloud TPC-C bench-
mark to show 320 users with 338.1 transactions-per-minute
throughput, in the table on the bottom. The VMS Display-Status
simulation shows 300 users with 368 transactions-per-minute
(in red) throughput, with a similar application profile (similar
workload, service times, database activity and cloud infrastruc-
ture configuration), in the graph on the top.

As seen in Figure 7, the comparison shows that the VMS
simulation result is indeed very close (distance 320 to 368
throughput) the corresponding benchmark result. Hence, the
answer to the above question, “Is the simulation throughput of
368 transactions-per-minute (tpm) a reasonable result?”, would
be in the affirmative.

Conclusions: What the Silverlining Simulator Can Do
A common problem confronting just about every CIO is

the cost and performance issues, when migration of software
to the cloud is considered - a CIO needs to budget the cost
and ensure that the performance of the system is not unduly
compromised by the migration. This should be true whether the
cloud is public, private, or hybrid, since the cost and performance
in a cloud-based system is related to the configuration of the
resources - different servers and platforms - supporting the
intended software system. To aid the IT department and specifi-
cally the CIO, we have developed a simulator, Silverlining, that
can forecast the cost and performance of a Google GAE and
CloudSQL cloud infrastructure.

Our simulator is benchmarked on the GAE with an industry
standard benchmark application, TPC-C, which covers a class
of online transaction processing (OLTP) relational database-
centric applications , and we deployed a configurable Platform-

Figure 7. VMS simulation data point to TPC-C benchmark curve comparison.

Figure 6. VMS SimPy simulation report.

34 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

ABOUT THE AUTHORS

Prof. Lawrence Chung is in Computer
Science at University of Texas at Dallas.
Working in Requirements Engineering
and Architecture, he was the principal
author of “Non-Functional Requirements
in Software Engineering”, and has been
involved in developing “RE-Tools“ (a multi-
notational tool for RE) with Sam Supakkul,
“HOPE“ (a smartphone application for dis-
abilities) with Rutvij Mehta, and “Silverlin-
ing” (a cloud forecaster) with Tom Hill. He
received his Ph.D. in Computer Science in
1993 from University of Toronto.

The University of Texas at Dallas
800 W Campbell Road
Richardson, Texas 75080
Phone: 972-883-2178
E-mail: chung@utdallas.edu

Nary Subramanian is an Associate
Professor of Computer Science at The
University of Texas at Tyler, Tyler, Texas.
Dr. Subramanian received his Ph.D. in
Computer Science from The University
of Texas at Dallas. He is a Faculty Fellow
for Service Learning at UT Tyler’s Center
for Teaching Excellence and Innovation.
He has over fifteen years’ experience in
industry in engineering, sales, and man-
agement. His research interests include
software engineering, systems engineer-
ing, and security engineering.

The University of Texas at Tyler
3900 University Blvd.
Tyler, Texas 75799
Phone: 903-566-7309
E-mail: nsubramanian@uttyler.edu

Thomas Hill became an EDS/HP Fellow
Emeritus, when he retired as the Director
of EDS/HP Fellows and Distinguished
Engineering after 40 years of service.
He served as a systems engineer, since
becoming an Air Force officer in 1963,
building the first joint intelligence agency
time-sharing system. He joined EDS in
1970, as a systems engineer. He has a BS
and MBA in Information Technology and
received his Ph.D. in software engineering
from The University of Texas at Dallas.

The University of Texas at Dallas
800 W Campbell Road
Richardson, Texas 75080
Phone: 469-767-5011
E-mail: tom.hill.fellow@gmail.com

Grace (Eun-jung) Park is a Ph.D. Student
of Computer Science at The University
of Texas at Dallas. She has about fifteen
years of industrial experience in software
engineering, and she is an IT profes-
sional engineer in her native country. Her
research interests are Requirements En-
gineering, System/Software Architecture,
and Cloud Computing.

The University of Texas at Dallas
800 W Campbell Road
Richardson, Texas 75080
Phone: 469-450-3940
E-mail: exp130530@utdallas.edu

1. S. Supakkul. Softgoal Profile Tool Users Guide,
 <http://www.utdallas.edu/~supakkul/tools/softgoal-profile/softgoal-profile.html>.
2. Grigorik, Google, Making the Web Faster at Google and Beyond Presentation,
 November 2012.
3. L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in
 Software Engineering, Kluwer Academic Publishers, Boston. 2000.
4. N. Subramanian, S. Drager, W. McKeever, “Identifying Trustworthiness Deficit in
 Legacy Systems Using the NFR Approach”, CrossTalk, The Journal of Defense
 Software Engineering, Special Issue on Legacy System Software Sustainment,
 Vol. 27, No. 1, January/February, 2014, pp. 4-11.
5. Oracle Enterprise Manager
 <http://www.oracle.com/us/products/enterprise-manager>, 2014.

6. HP Loadrunner, <http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing>, 2014.
7. Transaction Processing Council, <http://www.tpc.org/tpcc, 2014>.
8. Google App Script Reference, <http://developers.google.com/apps-script>, 2013.
9. Simpy Documentation, <http://simpy.sourceforge.net/old/simpy-manual>, 2013.
10. R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose and R. Buyya. CloudSim: a
 toolkit for modeling and simulation of cloud computing environments and evaluation
 of resource provisioning algorithms, SOFTWARE PRACTICE AND EXPERIENCE,
 John Wiley & Sons, 2010.
11. OMNETT++ Reference, <www.omnetpp.org>.
12. T. L. Hill, Confirming and Reconfirming Architectural Decisions: a Goal-Oriented
 Simulation Approach, Ph.D. Disserttion, The University of Texas at Dallas, 2014.

REFERENCES

http://www.utdallas.edu/~chung
http://sourceforge.net/projects/re-tools/files/stats/map?dates=2009-05-26+to+2014-08-06
http://sourceforge.net/projects/hope-android/files/stats/map?dates=2012-05-04 to 2013-09-16
mailto:chung@utdallas.edu
mailto:nsubramanian@uttyler.edu
mailto:tom.hill.fellow@gmail.com
mailto:exp130530@utdallas.edu
http://www.utdallas.edu/~supakkul/tools/softgoal-profile/softgoal-profile.html
http://www.oracle.com/us/products/enterprise-manager
http://www8.hp.com/us/en/software-solutions/loadrunner-load-testing
http://www.tpc.org/tpcc
http://developers.google.com/apps-script
http://simpy.sourceforge.net/old/simpy-manual
http://www.omnetpp.org

TEST AND DIAGNOSTICS

CrossTalk—March/April 2015 35

Vadim Okun, NIST
Elizabeth Fong, NIST

Abstract. Multiple techniques and tools, including static analysis and testing,
should be used for software assurance. Fuzz testing is one such technique that
can be effective for finding security vulnerabilities. In contrast with traditional
testing, fuzz testing only monitors the program for crashes or other undesirable
behavior. This makes it feasible to run a very large number of test cases. This
article describes fuzz testing, its strengths and limitations, and an example of its
application for detecting the Heartbleed bug.

Fuzz Testing
for Software
Assurance

Fuzz Testing and its Role for Software Assurance
Software assurance is level of confidence that software is

free from vulnerabilities, either intentionally designed into the
software or accidentally inserted at any time during its life cycle
and that the software functions in the intended manner [1].

Multiple techniques and tools should be used for software
assurance. Static analysis tools examine code for weaknesses
without executing it. On the other hand, testing evaluates a
program by executing it with test inputs and then compares the
outputs with expected outputs. Both static analysis and testing
have a place in the software development life cycle.

Positive testing checks whether a program behaves as ex-
pected when provided with valid input. On the other hand, nega-
tive testing checks program behavior by providing invalid data as
input. Due to time constraints, negative testing is often excluded
from the software development life cycle. This may allow vulner-
abilities to persist long after release and be exploited by hackers.
Fuzz testing is a type of negative testing that is conceptually
simple and does not have a big learning curve.

Fuzz testing, or fuzzing, is a software testing technique that
involves providing invalid, unexpected, or random test inputs to
the software system under test. The system is then monitored
for crashes and other undesirable behavior [2].

The first fuzzing tool simply provided random inputs to about
90 UNIX utility programs [3]. Surprisingly, this simple approach
led to crashes or hangs (never-ending execution) for a substan-
tial proportion of the programs (25 to 33%).

Fuzz testing has been used to find many vulnerabilities in
popular real-life software. For example, a significant proportion
of recent vulnerabilities in Wireshark (http://www.wireshark.org),
a network protocol analyzer, were found by fuzzing. Large orga-
nizations are taking note. For example, Microsoft includes fuzz
testing as part of its Security Development Lifecycle (http://
www.microsoft.com/security/sdl/default.aspx).

A fuzzing tool, or fuzzer, consists of several components and
a fuzzing process involves several steps [4]. First, a generator
produces test inputs. Second, the test inputs are delivered to
the system under test. The delivery mechanism depends on the
type of input that the system processes. For example, a delivery
mechanism for a command-line application is different from one
for a web application. Third, the system under test is monitored
for crashes and other basic undesirable behavior.

Strengths and Limitations of Fuzz Testing
Fuzz testing is conceptually simple and may offer a high ben-

efit-to-cost ratio. In traditional testing, each test case consists of
an input and the expected output, perhaps supplied by an oracle.
The output of the program is compared to the expected output
to see whether the test is passed or failed. In the absence of
executable specifications or a test oracle (e.g. a reference imple-
mentation or checking procedure), finding the expected output
for a lot of test cases can be costly. In contrast, fuzz testing only
monitors the program for crashes or other undesirable behavior.
This makes it feasible to run hundreds of thousands or millions
of test cases.

http://www.wireshark.org
http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx

36 CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

instead there must be monitoring for crashes or other generally
undesirable behavior. However, many types of weaknesses do
not produce clearly undesirable behavior. Therefore, more so-
phisticated detection that test input caused a failure can signifi-
cantly expand the classes of weaknesses uncovered by fuzzing.
The following Section describes an example of using dynamic
analysis tools to detect a weakness that does not cause a crash
under normal operation.

Protocol Testing Experiment
The Heartbleed bug is a widely known vulnerability in

OpenSSL, a popular implementation of the cryptographic proto-
cols Secure Sockets Layer (SSL) and Transport Layer Security
(TLS). Briefly, under the Heartbeat protocol, the client sends a
message and the message length to the server, and the server
echoes back the message.

The Heartbleed vulnerability can be exploited to leak con-
fidential information, including passwords and authentication
data. It was caused by the failure of OpenSSL to validate the
message length, which caused Buffer over-read weakness [10].
For more details, an interested reader can examine Heartbit,
an abstracted version of the OpenSSL code demonstrating the
Heartbleed vulnerability [11]. Even though buffer overflow, which
includes buffer over-read, is a well-known weakness, software
assurance tools missed it [12].

Simple fuzz testing, which looks for crashes, would not have
detected Heartbleed. The reason is that buffer over-reads rarely
lead to program crashes. However, fuzz testing in combination
with a memory error detection tool, may have detected Heart-
bleed, as demonstrated in [13].

Memory error detection tools, such as Valgrind (http://val-
grind.org) and AddressSanitizer (http://code.google.com/p/
address-sanitizer), are a type of dynamic analysis tools that can
be used to instrument code to detect various memory errors,
such as buffer overflows and use-after-free errors that may not
cause a crash under normal operation.

In the first experiment, [13] ran a vulnerable version of
OpenSSL with Valgrind. When the fuzzer sent an exploiting
Heartbleed request, Valgrind produced an error trace highlight-
ing the bug. In the second experiment, a vulnerable version of
OpenSSL was compiled with the AddressSanitizer compiler
option. When an exploiting Heartbleed request was sent to the
server, it terminated and an error trace was produced. In both
experiments, a programmer could use the error trace to find the
Heartbleed bug.

Conclusions
Typical software testing, including fuzz testing, cannot be used

alone to produce bug-free software. Since fuzz testing does not
require a sophisticated oracle, it can quickly test a very large
number of unexpected inputs. When combined with appropriate
supplemental tools, this makes it possible to find security vulner-
abilities, such as the Heartbleed bug, which may be missed by
other tools. As demonstrated by a large number of bugs recently

Fuzz testing is effective for finding vulnerabilities because
most modern programs have extremely large input spaces, while
test coverage of that space is comparatively small [5].

While static source code analysis or manual review are not
applicable to systems where source code is not available, fuzz
testing may be used. Fuzz testing is a general technique and
therefore may be included in other testing tools and techniques
such as web application scanners [6].

Fuzz testing has a number of limitations [7]. First, exhaustive
testing is infeasible for a reasonably large program. Therefore,
typical software testing, including fuzz testing, cannot be used to
provide a complete picture of the overall security, quality or ef-
fectiveness of a program in any environment. Second, it is hard
to exercise the program thoroughly without detailed understand-
ing, so fuzz testing may often be limited to finding shallow weak-
nesses with few preconditions. Third, finding out what weakness
in code caused the crash may be a time-consuming process. Fi-
nally, fuzz testing is harder to apply to categories of weaknesses,
such as buffer over-reads, that do not cause program crashes.

Fuzzing Approaches
Test input generation can be as simple as creating a se-

quence of random data [3]. This approach does not work well
for programs that expect structured input. No matter how many
tests are generated, the vast majority might only exercise a
small validation routine that checks for valid input.

In regression testing, valid inputs may be collected, for example,
from historical databases of unusual inputs that caused errors
in the past versions of the software, and then supplied to the
program without modification. Such approach can help uncover a
weakness that reoccurs between versions or implementations, but
is unlikely to uncover new weaknesses.

Most fuzz generators can be divided into two major categories:
mutation based and generation based fuzzers [8]. A mutation
based fuzzer produces test inputs by making random changes
to valid test input, such as those from regression testing. This
approach can be quickly applied to systems, such as protocols
or word processors, that accept complex inputs. However, the
coverage is only as strong as the set of valid test inputs. If there is
no valid test input for a particular system component, the mutation
based fuzzer is unlikely to cover this component.

A generation based fuzzer produces test inputs based on
some specification of the input format. While implement-
ing the input format in enough detail requires a significant
upfront effort, the generation based fuzzer can achieve very
high coverage at lower cost.

A relatively recent approach, whitebox fuzz testing, combines
symbolic execution with constraint solving to construct new
inputs to a program [9]. Whitebox fuzzing has been used by Mi-
crosoft to find one third of all the bugs discovered by file fuzzing
during the development of Windows 7.

The next step after producing test inputs is providing them to
the system under test. Some common delivery mechanisms are
files, environment variables, command line and API parameters, and
operating system events, such as mouse and keyboard events.

Fuzz testing does not require knowing the expected output,

http://val-grind.org
http://val-grind.org
http://val-grind.org
http://code.google.com/p/address-sanitizer
http://code.google.com/p/address-sanitizer

TEST AND DIAGNOSTICS

CrossTalk—March/April 2015 37

discovered in production software, fuzz testing can be used to
increase software assurance.

Disclaimer:
Any commercial product mentioned is for information only; it

does not imply recommendation or endorsement by NIST nor
does it imply that the products mentioned are necessarily the
best available for the purpose.

1. CNSS, National Information Assurance (IA) Glossary CNSSI-4009, 26 April 2010,
 p. 69, http://www.ncix.gov/publications/policy/docs/CNSSI_4009.pdf.
2. Wheeler, David A. and Rama S. Moorthy, “SOAR for Software Vulnerability
 Detection, test and Evaluation,” IDA paper P-5061, July 2014.
3. Miller, Barton P., Lars Fredriksen, and Bryan So, “An Empirical Study of the
 Reliability of UNIX Utilities,” Communications of ACM 33(12):32-44 (Dec. 1990).
4. McNally, R., Yiu, K., Grove, D., and Gerhardy, D., “Fuzzing: The State of the Art,”
 Technical Note DSTO-TN-1043, 2012.
5. Householder, Allen D., “Why Fuzzing (Still) Works,” in Metrics and Standards for
 Software Testing (MaSST) workshop, p. 39-59, December 2012,
 http://samate.nist.gov/docs/MaSST_2012_NIST_IR_7920.pdf.
6. Fong, Elizabeth, Romain Gaucher, Vadim Okun, Paul E. Black, and Eric Dalci,
 “Building a Test Suite for Web Application Scanners,” 41st Hawaii Int’l Conf. on
 System Sciences (HICSS), January 2008.
7. West, Jacob, “How I Learned to Stop Fuzzing and Find More Bugs,” DefCon,
 Las Vegas, August 2007.
8. Neystadt, John, “Automated Penetration Testing with White-Box Fuzzing,”
 http://msdn.microsoft.com/en-us/library/cc162782.aspx, Microsoft, February 2008.
9. Bounimova, Ella, Patrice Godefroid, and David Molnar, “Billions and Billions of
 Constraints: Whitebox Fuzz Testing in Production,” ICSE 2013:122-131.
10. Wheeler, David A., “How to Prevent the next Heartbleed,”
 http://www.dwheeler.com/essays/heartbleed.html, 2014.
11. Bolo – Joseph T. Burger, “Heartbit test case,”
 http://samate.nist.gov/SARD/view_testcase.php?tID=149042.
12. Kupsch, James A. and Miller, Barton P. “Why Do Software Assurance Tools Have
 Problems Finding Bugs Like Heartbleed?” Continuous Software Assurance
 Marketplace, 22 Apr. 2014, https://continuousassurance.org/swamp/SWAMP-Heartbleed.pdf.
13. Vassilev, Apostol and Christopher Celi, “Avoiding Cyberspace Catastrophes through
 Smarter Testing,” IEEE Computer, October 2014; 47(10):86-90.

ABOUT THE AUTHORS

Vadim Okun is a Computer Scientist at
the National Institute of Standards and
Technology, where he is leading the SA-
MATE (http://samate.nist.gov/) team. His
current research focuses on software as-
surance, in particular, the effect of tools on
security. He organized Static Analysis Tool
Expositions (SATE) – large-scale evalua-
tions to support research in, and improve-
ment of, static analysis tools. Previously,
Okun contributed to the development
of automated software testing methods:
specification-based mutation analysis and
combinatorial testing. He received a Ph.D.
in Computer Science from University of
Maryland Baltimore County.

E-mail: vadim.okun@nist.gov

Elizabeth Fong is a computer scientist
currently working in the Software and
Systems Division, Information Technol-
ogy Laboratory of National Institute of
Standards and Technology. She performs
research, analysis, and evaluation of in-
novative information technology software
and practices with emphasis on new
fields of computer technology for Federal
Government applications. Recent work
involved software assurance, smart card
technology, XML registry framework and
standards, and interoperability testing
technology. Earlier work included tech-
nologies and standards development for
Object-Oriented, distributed database
management and agent-based comput-
ing. She has many years of experience in
the development of software testing and
reference models for information tech-
nologies. She received B.SC (Math) New
York University, New York, NY,
 M.S. (Computer Science) Stanford Univer-
sity, CA and Graduate Courses (Computer
Science) U. of Maryland, MD.

E-mail: efong@nist.gov

REFERENCES

http://www.ncix.gov/publications/policy/docs/CNSSI_4009.pdf
http://samate.nist.gov/docs/MaSST_2012_NIST_IR_7920.pdf
http://msdn.microsoft.com/en-us/library/cc162782.aspx
http://www.dwheeler.com/essays/heartbleed.html
http://samate.nist.gov/SARD/view_testcase.php?tID=149042
https://continuousassurance.org/swamp/SWAMP-Heartbleed.pdf
http://samate.nist.gov/
mailto:vadim.okun@nist.gov
mailto:efong@nist.gov

38 CrossTalk—March/April 2015

COMING EVENTS

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

Software and Supply Chain Assurance (SSCA) Forum
(Theme: Enterprise Risk Management)
Co-sponsored by organizations in DoD, DHS, NIST & GSA
9-11 March 2015
McLean, VA
Open to public; no cost to attend, but registration is required.
https://register.mitre.org/ssca

International Conference on Software Quality
Long Beach, CA
9-11 Mar, 2015
http://asq-icsq.org/index.html

IEEE International Conference on Cloud Engineering
(IC2E 2015)
March 9-13, 2015
Tempe, AZ
http://conferences.computer.org/IC2E/2015

Conference on Systems Engineering Research (CSER
2015)
March 17-19, 2015
Hoboken, NJ
http://www.stevens.edu/sse/CSER2015

The Southwest Cybersecurity Summit
March 25-26, 2015
Phoenix, AZ
http://www.afei.org/events/5A06/Pages/default.aspx

IEEE Mobile Cloud 2015 : The 3rd IEEE International
Conference on Mobile Cloud Computing
March 30-April 3, 2015
San Francisco, CA
http://mobile-cloud.net

ETAPS 2015 - 18th European Joint Conferences on Theory
and Practice of Software
London, United Kingdom
11-19 April, 2015
http://www.etaps.org/2015

The Fourteenth International Conference on Networks
ICN 2015
April 19-24, 2015
Barcelona, Spain
http://www.iaria.org/conferences2015/ICN15.html

WICSA 2015 — 12th IEEE Conference on Software
Architecture
Montreal, QC, Canada
20-24 April 2015
http://www.computer.org/portal/web/conferences/calendar

SATURN 2015- Software Engineering Institute (SEI)
Architecture Technology User Network 2015
27-30 April 2015
Baltimore, MD
http://www.sei.cmu.edu/saturn/2015

Systems Engineering Test Evaluation Conference
April 27-29 2015
Canberra, Australia
http://sete2015.com.au

11th ACM/IEEE- Symposium on Architectures for
Networking and Communications Systems (ANCS’15)
7-8 May 2015
Oakland, CA
http://www.ancsconf.org

The 37th International Conference on Software Engineering
May 16-24, 2015
Firenze, Italy
http://2015.icse-conferences.org

The 39th Annual International Computer, Software &
Applications Conference
July 1-5, 2015
Taichung, Taiwan
http://www.computer.org/portal/web/COMPSA

INCOSE 25th Annual Symposium IS 2015
13-16 July 2015
Seattle, WA
http://www.incose.org/newsevents/events/details.aspx?id=255

STC 2015, the 27th Annual IEEE Software Technology
Conference
October 12 - 15, 2015
Long Beach, CA
http://ieee-stc.org

http://www.crosstalkonline.org/events
https://register.mitre.org/ssca
http://asq-icsq.org/index.html
http://conferences.computer.org/IC2E/2015
http://www.stevens.edu/sse/CSER2015
http://www.afei.org/events/5A06/Pages/default.aspx
http://mobile-cloud.net
https://www.ieee.org/conferences_events/conferences/
http://www.etaps.org/2015
http://www.iaria.org/conferences2015/ICN15.html
http://www.computer.org/portal/web/conferences/calendar
http://www.sei.cmu.edu/saturn/2015
http://sete2015.com.au
http://www.ancsconf.org
http://2015.icse-conferences.org
http://www.computer.org/portal/web/COMPSA
http://www.incose.org/newsevents/events/details.aspx?id=255

CrossTalk—March/April 2015 39

BACKTALK

The Proof is in the Testing:
After writing BackTalk columns for over 15 years, I’m out of ideas. No
clues. Nothing to write about. Zip. Zilch.

I usually have a great stash of ideas – and I am SO used to grabbing
my iPhone, and telling Siri to remind me “Write up story of the non-work-
ing GPS” or “Maybe hibernating skunks for next column?” Not this time.
Not a single idea involving Testing and Diagnostics.

Of course, I have a great excuse. I am teaching a course on high-
integrity programming this semester here at the university. As any
BackTalk reader for the last 15 years might know, I was (and still am)
an Ada advocate. It’s a really good language for teaching high-integrity
coding practices. We have decided to cover more “secure programming”
in our curriculum, and I wanted to test-drive a course as “Special Topics”
before we make it a permanent part of the curriculum. It’s keeping me
pretty busy.

Nice thing about Ada – the language thinks about security for you. It
gets real picky about mathematical conversions, and cheerfully lets the
user know if there is a overflow or underflow in the conversion. In fact,
you have to make a conscious decision to turn off error checking. And,
why would you ever do that

Imagine a very simple Java program that inputs an integer from the
keyboard, and adds one to it. In Java, if the number is equal to the largest
possible integer, then adding one converts is to the smallest integer. It
“wraps around.” And vice versa – subtracting one from the smallest nega-
tive integer will give the largest possible positive integer. Note that Java
is one of the most used languages used in introductory computer sci-
ence – currently it’s #2 in popularity. You might think that C++ would be
#1, but #1 is Python. However, Java is more of a “software engineering”
language than Python, and many educators expect it to move back to #1
next year. All I am saying is that if you can’t trust adding 1 to a number –
what can you trust? It makes teaching “safe and secure” programming a
challenge.

What about other common languages? In Python, the integer is
converted to a “long”, which has unlimited length (obviously, implemented
in software, not hardware). In C and C++, the behavior is undefined. In
C#, it is possible to automatically “catch” this – but only if you are in a
checked context.

What I am saying is that once you’ve had the thought, “Gee – I am
adding to an integer here – should I worry about overflow?” you can’t un-
think it. It is no longer an error. It’s a condition you considered, and then
you made the decision to not worry about it.

And what if the software later fails because of an overflow or un-
derflow? Of course, that is highly unlikely, right? Heard of the Ariane 5
(https://www.ima.umn.edu/~arnold/disasters/ariane.html)?

Brief summary – back in 1996 the European Space Agency launched
the Ariane 5 rocket, designed to launch two satellites into orbit. The
Ariane 5 was the result of over $7 billion in development, and the rocket
and cargo itself cost over $500 million. On its first launch, the guidance
system catastrophically failed. How was this possible? After all, the guid-
ance software was based on the well-tested guidance software from the
previous rocket version, the Ariane 4.

Let me quote from James Gleick (http://www.around.com/
ariane.html): “…the guidance system’s own computer tried to
convert one piece of data -- the sideways velocity of the rocket
-- from a 64-bit format to a 16-bit format. The number was too big,

and an overflow error resulted. ….. in this case, the programmers
had decided that this particular velocity figure would never be
large enough to cause trouble. After all, it never had been before.
Unluckily, Ariane 5 was a faster rocket than Ariane 4. One extra
absurdity: the calculation containing the bug, which shut down
the guidance system, which confused the on-board computer,
which forced the rocket off course, actually served no purpose
once the rocket was in the air. Its only function was to align the
system before launch. So it should have been turned off. But
engineers chose long ago, in an earlier version of the Ariane, to
leave this function running for the first 40 seconds of flight.”

Years of work. $7 billion in development. And “the programmers had
decided…” If only they had used Ada, right? As a matter of fact, the
Ariane 4 and 5 software was written in Ada, which automatically checks
for overflow and underflow, should have triggered a exception that could
have been safely detected, handled, and recovered from. However, to
quote from (http://en.wikipedia.org/wiki/Ariane_5):

The software was originally written for the Ariane 4 where effi-
ciency considerations (the computer running the software had an 80%
maximum workload requirement) led to four variables being protected
with a handler while three others, including the horizontal bias variable,
were left unprotected because it was thought that they were “physically
limited or that there was a large margin of error.”

In other words – due to hardware considerations (the Ariane 4 CPU
was overloaded) – consciously ignoring automatic overflow and under-
flow checking saved a few machine cycles. Don’t get me wrong – the
Ariane 4 software was perfect for the given requirements (hardware
and software). The processor in the Ariane 4 was heavily loaded – and
the decision to turn off checking was probably well analyzed. It was
only much, much later, when the code was reused for a different set of
requirements, that the decision should have been revisited. But the code
was “rock(et) solid” and well-tested – so why test it again? Copy and
Paste. Control-C, Control-V, and go. Nothing to worry about, right?

It’s even sadder that there was an exact backup copy of the guidance
software running on the Ariane 5 – an exact copy. So when the primary
guidance software failed, control was immediately transferred to the
backup copy. Running the same code, and encountering the exact same
unhandled error.

Software is like that. As Marin David Condic pointed out in his excel-
lent write up found at (http://www.adapower.com/index.php?Comman
d=Class&ClassID=FAQ&CID=328), it would be like reusing Corvette
tires on a large 18 wheeler. Just because they are “tires” – the require-
ments and assumptions made initial development are no longer valid.
What’s “good” for Corvette tires might not be “good” for a fully loaded
semi. Likewise, code needs to be analyzed and tested, even if it’s been
trusted for years. It’s just not safe to reuse otherwise.

But then, we already know that testing and diagnostics are important,
right?

David A. Cook
Stephen F. Austin State University

P.S. Come to think of it, maybe I do have an idea for this BackTalk
than might work.

http://www.around.com/ariane.html
http://www.around.com/ariane.html
http://en.wikipedia.org/wiki/Ariane_5
http://www.adapower.com/index.php?Command=Class&ClassID=FAQ&CID=328
http://www.adapower.com/index.php?Command=Class&ClassID=FAQ&CID=328
https://www.ima.umn.edu/~arnold/disasters/ariane.html)?
http://en.wikipedia.org/wiki/Ariane_5):

CrossTalk thanks the
above organizations for
providing their support.

	Front Cover
	Table of Contents
	From the Publisher
	Portable AutomateTest Station
	Metamorphic Runtime Checking of Applications Without Test Oracles
	Dealing With the Time Crunch in Software Testing
	Combinatorial Coverage as an Aspect of Test Quality
	Metrics That Matter in Software Integration Testing Labs
	Silverlining
	Fuzz Testing for Software Assurance
	Upcoming Events
	BackTalk

