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FROM THE PUBLISHER

CrossTalk would like to thank DHS for sponsoring this issue.

Success of mission and business functions should be the 
focus of verification and validation activities. Issues from sloppy 
manufacturing hygiene and insufficient test and diagnostics can 
enable exploitation and compromise of operational functionality. 
Enormous energies are put into assuring safety-critical functions 
address any source of taint, such as vulnerabilities, weaknesses, 
and malicious logic. With more functionality being delivered 
through cloud services the burden of security shifts to develop-
ment with test being the last line of defense. 

Industry has substantially invested in improving the quality of 
products and systems because of customer/user demand; con-
tributing to a rise of automated software testing capabilities and 
test services. As the size and complexity of software and logic-
bearing devices increase, test and diagnostic capabilities must 
mature to address the changing environment in which products 
and systems are deployed. Despite encouraging results with 
various quality improvement approaches, the software industry 
is still far from zero defects. Part of that is a cultural issue with 
developers often making risk decisions for which they are not 
held accountable, such as disabling compiler warnings and 
selecting unpatched components from libraries. Testing is fur-
ther complicated because software-based systems often have 
additional features, interfaces, and functionality that use third 
party libraries, general purpose applications, and a multiplicity of 
features in system libraries and system calls. As witnessed by 
the myriad of patches needing to be addressed due to residual 
exploitable vulnerabilities, weaknesses, and malware, software-
based systems are inherently susceptible to attack and manipu-
lation. To address the difference between what is conceived and 
what is delivered, testers need to think about how software-
based systems are actually integrated and deployed. If libraries 
are incorporated and deployed by a compiler, or configuration 
choices undermine design choices, or someone exposes a 
weakness, then testers need to factor in means for detecting 
these before deployment; not after an application or system 
compromise. Often, more comprehensive test programs are 
needed. This requires improved security functionality and more 
rigorous review, testing and inspection. Test coverage for agile 
continuous testing, automated API testing, metamorphic testing 
(including runtime checking), fuzz testing, and other techniques 
and methods need to be part of test organizations’ process 
improvement list of strategic considerations. Multiple techniques 
and tools, including static and dynamic analysis, should be used 
for software assurance. Test-driven development is a program-
mer practices that has been employed by a growing number of 
software development teams. Despite the fact that testing often 
accounts for at least 30-40% of total project costs, only limited 
attention has been given to testing in various software process 
improvement models, including the Capability Maturity Model 
Integration (CMMI). As a result, the testing community has de-

veloped and used its own improvement models, such as the Test 
Maturity Model integration (TMMi) for test process improvement 
that is positioned as being complementary to the CMMI to more 
comprehensively address those issues important to test manag-
ers, test engineers and quality professionals.

Unfortunately, partially because of the lack of adequate 
due-diligence and due-care in development and integration test 
activities, vulnerabilities are proliferating rapidly; thus stretch-
ing mission capabilities and resources. As we seek to discover 
and mitigate the root causes of these vulnerabilities, sharing 
the knowledge we have of them help to mitigate their impact. 
In order to keep pace with growing threats we must facilitate 
the automated exchange of information. With that objective the 
Department of Homeland Security (DHS) sponsors ‘free for use’ 
standardized means for sharing information. These include the 
Common Weakness Enumeration (CWE) that provides standard-
ized means for identifying and mitigating architectural, design 
and coding flaws introduced during development and detectable 
in testing, along with the Common Attack Pattern Enumerations 
and Classification (CAPEC) that enables developers, testers and 
defenders to discern attack constructs, build software resilient 
to them, and determine the sufficiency of test regimes focused 
on checking security concerns. These open specifications for 
interoperable security automation enable secure, machine-to-
machine communication of actionable indicators within and 
between organizations that want to share this information. 
These have been developed collaboratively between Federal 
Government and industry partners working toward information 
sharing mechanisms and solutions to reduce the risk of tainted 
components. These standardized means for sharing information 
are already being used, and they contribute to efforts that en-
able more stakeholders to secure their part of cyberspace.

CrossTalk again thanks DHS Office of Cybersecurity and 
Communications for co-sponsoring this issue focused on test 
and diagnostics. Along with DoD, NIST, and GSA, DHS co-spon-
sors the Software & Supply Chain Assurance (SSCA) Forum 
in which Federal, academic, and industry stakeholders address 
risks and mitigation methods. SSCA Forums are free and open 
to the public, and resources are available on the SSCA Com-
munity Resources and Information Clearinghouse, with many 
applicable to test and diagnostics -- see <https://buildsecuri-
tyin.us-cert.gov/swa/pocket_guide_series.html> for “Software 
Security Testing” and “Key Practices for Mitigating the Most 
Egregious Exploitable Software Weaknesses.” 

Justin T. Hill
Publisher, CrossTalk

https://buildsecuri-tyin.us-cert.gov/swa/pocket_guide_series.html
https://buildsecuri-tyin.us-cert.gov/swa/pocket_guide_series.html
https://buildsecuri-tyin.us-cert.gov/swa/pocket_guide_series.html
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Introduction
The Portable Automated Test Station Model 30 (PATS-30), 

Organizational (O)-Level test set is comprised of a COTS rug-
gedized Personal Computer using the Microsoft Windows XP 
operating system, a transport case, a cable set, and custom 
software. The PATS-30 functions as maintenance support 
equipment for the A-10C aircraft by performing maintenance 
activities and troubleshooting avionics system faults while the 
aircraft is on the ground.

The core component of the PATS-30, the ruggedized laptop, 
is no longer sustainable. Since the laptop is no longer available, 
the PATS-30 will no longer be supportable. Southwest Re-
search Institute (SwRI) was tasked by the Air Force to address 
the end-of-life issues of the currently fielded PATS-30 and 
develop a proof of concept unit that performs the functions of 
the PATS-30. SwRI constructed one prototype, identified as the 
PATS-50 and field-demonstrated the prototype. 

The PATS-50 proof of concept project demonstrated the 
feasibility of re-hosting the PATS-30 functions onto a different test 
platform. During the proof of concept project, some functional-
ity was lost, the environmental requirements were not met, and 
additional requirements were identified. Analysis of the additional 
requirements relative to the PATS-50 was completed. The results 
of this analysis showed that the PATS-50 concept could be utilized 
and re-hosted onto a test station that included the lost functional-
ity from the PATS-30, addressing the environmental requirements, 
and expanding capabilities to include several separate test systems 
that have been identified for inclusion into the PATS. This new de-
sign concept was designated the Portable Automated Test Station 
Model 70 (PATS-70) [1].

Benjamin Chase, Hill Air Force Base

Abstract.  The Air Force A-10C attack aircraft is currently experiencing obsoles-
cence issues with its legacy support equipment. The Portable Automated Test 
Station Model 70 (PATS-70) replaces more than a dozen pieces of obsolete and 
irreparable flightline support equipment. The PATS-70 is a robust, flightline quali-
fied test set that has gone through rigorous environmental testing. While it was 
developed to function as maintenance support equipment for the A-10C aircraft, 
it has no A-10 specific components so it can be adapted for maintenance on 
other aircraft, platforms, or systems. 

Portable Automated 
Test Station: 
Using Engineering-
Design Partnerships 
to Replace Obsolete 
Test Systems

The PATS-70’s modular design has been developed to meet 
the functionality requirements, environmental requirements, and 
additional expansion capabilities. The PATS-70 replaces more 
than a dozen pieces of obsolete and irreparable flightline sup-
port equipment. It has been organically developed using COTS 
components and industry standard software. An engineering-
design partnership was formed between the Air Force and 
Marvin Test Solutions1 to facilitate this development and to help 
the program meet its objective on-time, and on-budget. This led 
to the selection of the Marvin PXI-based, ultra-rugged MTS-207 
platform, laying the ground work for PATS-70 instrumentation 
selections. 

In addition, the PATS-70 provides flexibility over other test 
sets since the software architecture was uniquely designed for 
ease of adding additional Test Program Sets (TPSs) to support 
the war fighter’s needs. Moreover, the PATS-70 hardware has 
spare capacity to add additional COTS PXI components to sup-
port future TPS development. With thousands of PXI cards avail-
able today, this provides the Air Force the necessary flexibility 
to tackle a multitude of test requirements and applications. The 
PATS-70 has also been selected as the test platform for a new 
A-10 weapons systems maintenance capability, merging the 
capability of eight legacy test sets along with additional flightline 
test capabilities into one test set. 

The PATS-70 is a robust, flightline qualified test set which has 
gone through rigorous MIL-STD-810G, and MIL-STD-416F 
environmental testing. While it was developed to function as 
maintenance support equipment for the A-10C aircraft, it has no 
A-10 specific components so it can be adapted for maintenance 
on other aircraft, platforms, or systems. The flexibility and added 
functionality gives the PATS-70 an advantage in maintaining 
multiple systems throughout the Department of Defense.

System Overview
The PATS-70 is an automatic test system designed to per-

form functional tests on the Fairchild Republic A-10C Thun-
derbolt II’s (A-10) Anti-skid, Alpha Mach, Stability Augmenta-
tion System (SAS), and Fuel Quantity Indicating System. The 
PATS-70 provides the logic and hardware control necessary to 
coordinate and automate control of these system functions. The 
PATS-70 is an automated, user friendly, state-of-the-art adapt-
able test set that provides robust system diagnostic capability, 
significantly reducing the time required to bring an aircraft into 
mission ready status. The PATS-70 provides a mission ready 
test set for the A-10 Command Center. The A-10 Aircraft 
Operational Test System (OTS) consists of a PATS-70, and the 
Operational Test Program (OTP). The OTS functions as main-
tenance support equipment for the A-10 aircraft. The OTS per-
forms maintenance activities as well as trouble shooting avionics 
system faults while the aircraft is on the ground. The PATS-70 
utilizes up-to-date, sustainable technology for Operational Flight 
Program (OFP) software loading and diagnostic avionics system 
testing and includes additional TPSs to enhance its capability 
while decreasing the A-10 maintainability footprint. To preserve 
combat effectiveness, and efficiency, the PATS-70 automates 
and consolidates multiple test capabilities into one mission 
ready test set. The PATS-70 is expandable to allow for the addi-
tion of future aircraft [2]. 
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Design
The PATS-70 is a portable field-level/O-level test set (see Fig. 

1) capable of performing functional tests on aircraft systems. 
The test set is housed in an enclosure constructed of a durable 
composite material for protection and an embedded wire frame 
for electromagnetic interference (EMI) compliance. The enclo-
sure consists of upper and lower sections secured together with 
eight (8) turn lock latches. A pressure-relief valve is located in 
the lower half of the enclosure. The PATS-70 is based on the 
Compact Peripheral Component Interface (cPCI or PCI); PCI 
eXtensions for Instrumentation (PXI) technology and includes 
a rugged 14-slot PXI chassis, power supplies, numerous circuit 
cards, wiring harnesses, cables for interfacing the test set with 
the Unit Under Test (UUT), heaters, fans, and other electrical 
and mechanical components [3].

Engineering-Design Partnership
An engineering-design partnership was formed between the 

Air Force and Marvin Test Solutions. Having extensive back-
ground and domain expertise with the development of test 
systems and test software, the 309th Software Maintenance 
Group was looking to partner with a company that had a similar 
level of domain expertise in flightline test and ultra-rugged test 
platforms. This led to the selection of the Marvin Test Solutions 
MTS-207 ultra-rugged PXI chassis. Having deployed flightline 
test sets in 20 countries in the past two decades, Marvin Test 
Solutions provided the platform and support to help the 309th 
SMXS deliver the PATS-70 on-time, and on-budget.

Hardware
The PATS-70 is PXI-based instrumentation platform. The cir-

cuit cards are COTS PXI products. PXI is an architecture for test 
and measurement applications that is based on the cPCI bus. 
This high-performance architecture provides for the throughput 
and synchronization required for the performance of precision 
measurements. The following list describes the main hardware 
components of the PATs-70 hardware.

Portable Automated Test Station, MTS-207-3 chassis - The 
Internal Chassis Assembly is the main assembly of the MTS-
207-3. It “hangs” from the top panel of the MTS-207-3 accom-
modating connectors, switches, etc. via four (4) shock absorbers 
designed to protect the internal electronics. The Internal Chassis 
Assembly accommodates all the MTS-207-3 electronics. Its 
main assemblies are the PXI card cage, and the Power Board 
circuit card assembly (CCA). The Power Board provides all 
required PXI chassis power rails as well as additional supplies 
required for the operating of the display and peripheral PATS-70 
equipment. Additionally, the Power Board provides control over 
the MTS-207-3 heaters, allowing operation at extreme low tem-
peratures. The EMI Filter protects the MTS-207-3 from power 
surges and eliminates conducted emissions, to ensure compli-
ance with MIL-STD-461 requirements.

User Interface Display (Tablet) – A modified Miltope RTCU-2 
Tablet computer is used as the operator console. The Tablet is 
powered by a 1.06 GHz Intel Core i7-620UE processor with 
4MB L2 Smart Cache and 8 GB of RAM. The Tablet is dock 
mounted or extended on the supplied user interface cable. The 
Government modification of the tablet allows for external con-

nection utilizing reliable MIL circular connector technology.
Removable Solid State Hard Drives – The removable stor-

age device is a minimum of 120 GB Solid State Drive (SSD); 
it is mounted inside the case via a drive slot on the face of the 
chassis, or stored in the engineering panel cover. It is configured 
with Windows XP or Windows 7 OS and allows integration of 
classified software when required.

Controller CCA- This controller contains a 2.53 GHz Intel 
i7 core processor with 4GB Random Access Memory (RAM). 
Utilizing the rear transition module, this CCA has four Gigabit 
Ethernet ports, two VGA ports, five USB ports and two RS232 
ports, in a 6U cPCI module. 

45 Relay Form C CCA - The Form C relay matrix for the 
high current switching requirements includes 45 single pole 
double throw Form C relays with 7A contact rating per chan-
nel in a 6U PXI module.

8x132 2AMP Relay Matrix CCA – This is a very high density 
electro-mechanical relay matrix with a 132x8 format and 1 
pole switching. The matrix is constructed using high reliability 
2A electro-mechanical relays with long life and stable contact 
resistance and is a single slot, 6U PXI module.

1553 Communications CCA – The communications card 
supports up to 4 dual redundant 1553 channels. Each channel 
operates simultaneously as a bus controller, bus monitor and 
remote terminal in a 3U PXI module.

Digital Multi-Meter (DMM) CCA – The 6.5 digit multi-meter is 
capable of true AC RMS measurements from 10Hz to 100 KHz, 
measures 1uV to 330V, frequency counting from 1Hz to 300 
KHz in a 3U PXI module. The DMM supports Volts DC, Amp 
DC, Two-Wire Resistance, Four-Wire Resistance and Frequency 
measurements, in a 3U PXI module.

Figure 1. PATS-70 Hardware
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Small Computer System Interface (SCSI) CCA – A single 
channel SCSI interface, supports up to 320MB/s throughput; it is 
backwards compatible with ultra2 SCSI and is a 3U PXI module.

Differential Oscilloscope CCA – A 2 channel 14 bit resolution, 
300MHz bandwidth digitizer features a maximum sample rate of 
400MS/s and is a 3U PXI module.

Arbitrary Waveform Generator (ARB) CCA – A 2 channel 14 
bit resolution, 50 MHz bandwidth waveform generator features 
a maximum sample of 200MS/s and is a 3U PXI module.

Software
The software subsystem consists of four software layers; 

the Operating System, the Device and Instrument Drivers, Test 
Executive Software, and the Test Programs as shown in Fig. 2. 
Each layer is a building block for the next layer.

Operating System - comprised of COTS software that is 
provided on each PATS-70 System. The PATS-70 uses two 
removable Solid State Hard drives (SSD); one containing the 
Windows XP Operating System (OS) and one with the Windows 
7 OS. Different sets of tests are available depending on the OS 
currently loaded. TPS test programs, PATS-70 Self-

Test, and System Calibration all run under the Windows 7 
OS. The A-10 Operational Test Program (OTP) runs under the 
Windows XP OS and contains its own Self-Test function built 
into the OTP software.

Device Drivers and Instrument Wrappers - includes any 
software that initializes and controls specific system interfaces 
between the system controller and system devices. 

Test Executive Software - includes the requisite COTS soft-
ware used to create and modify test programs. 

Test Programs - specific programs designed to test and 
manipulate the UUT. Two of these TPSs are the Alpha Mach 
and Anti-Skid which are software that can be loaded on the 
Windows 7 System SSD. The Alpha Mach and Anti-Skid TPSs 
are used to conduct diagnostic tests for the Alpha Mach and 
Anti-Skid systems on the A-10.

In addition, there are two other software components incorpo-
rated in the PATS-70 system:

Self-Test - tests the PATS-70 and identifies the faulty replace-
able subassembly such as the arbitrary waveform generator, 
digital multimeter, and oscilloscope.

System Calibration - tests the PATS-70 against a defined 
performance standard and identifies the faulty replaceable sub-
assembly. PATS-70 calibration determination has been approved 
and listed by Air Force Metrology and Calibration (AFMETCAL). 
PATS-70 calibration traceability and configuration manage-
ment is accomplished through an automatic calibration routine, 
approved Computer Program Identification Number (CPIN), and 
calibration procedures.

Applications
The PATS-70 attaches to the A-10C aircraft through a variety 

of TPS connections in which applicable tests are run to track 
down and identify issues. In addition, the PATS-70 test set 
has the ability to perform firmware and/or Operational Flight 
Program (OFP) loads to the Integrated Flight and Fire Con-
trol Computer (IFFCC), Central Interface Control Unit (CICU), 
Improved Electronic Processor Unit (IEPU), and download 
Non-Volatile Memory (NVM.) The PATS-70 consolidates a wide 
variety of avionic specific support equipment and software into a 
single test unit.

The current software available on the PATS-70 to maintain the 
aircraft consists of the Operational Test Program (OTP), Alpha 
Mach, and Anti-skid TPSs which are described in the following.

Operational Test Program
The OTP TPS is software that can be loaded onto the Windows 

XP System SSD. The OTP is used to conduct diagnostic tests for 
avionics and weapons stations of the aircraft and to load OFPs. 

Alpha Mach
The Alpha Mach TPS is used during flightline test of the A-

10C aircraft to isolate anomalies in the Alpha Mach computer 
and its related components.

The Alpha Mach is part of the secondary flight control system. 
It receives air pressure and lift data to operate the leading edge 
slats and automatically improve high angle of attack airflow to the 
engines. The system also provides audible warnings to the pilot 
for engine peak performance and impending stall situations.

Anti-Skid
The Anti-Skid Control System TPS is used during flightline 

testing of the A-10C aircraft as the Anti-Skid operational 
check and to troubleshoot and isolate Anti-Skid Control Sys-
tem anomalies.

The Anti-Skid Control System is a modulating wheel skid 
control system which proportionately reduces the amount of left 
hydraulic system pressure supplied to both main landing gear 
brakes when either main wheel begins to skid.

Figure 2. System Software
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Enhanced Capabilities and Applications

Stability Augmentation System
The Stability Augmentation System (SAS) TPS is used during 

flightline test of the A-10C aircraft to isolate anomalies in the 
SAS computer and its related components.

The purpose of the SAS is to improve the stability and 
handling quality of the aircraft, especially in low altitude, high 
angle-of-attack situations. The computer, a part of the stability 
augmentation system, contains sensors and electronic circuits to 
amplify and modify sensor signals. The computer interfaces with 
the Low Altitude Safety and Targeting Enhancement (LASTE) 
computer for further processing of the pitch, roll, and yaw rate 
data. The LASTE computer sends its signals to the SAS com-
puter which drives aircraft actuator devices in the pitch and yaw 
axes. Contained in the test sequence are directives for hardware 
resource control which are sent to the Test Executive Program. 
When directed to perform a measurement, the Test Executive 
Program returns measurement data which is compared with 
test limits contained in the test sequence to determine a GO or 
NOGO result. The test description, limits and GO/NOGO results 
are then passed back to the Test Executive Program for display 
on the PATS-70 [2].

Fuel Quantity Indicating System Tester
The A-10 Fuel Quantity Indicating System (FQIS) consists 

of capacitive fuel probes and compensators, a fuel quantity 
intermediate device (FQID), an indicator, and associated wir-
ing harnesses. The FQID has a pivotal role in the fuel quantity 
system. Its purpose is to monitor tank probes and compensators 
to gather fuel information. It generates analog voltage signals 
proportional to the fuel quantity and sends these to an external 
indication device (fuel quantity indicator) [4].

The FQIS Tester is designed for use with the PATS-70 tablet. 
The tester measures fuel probe and compensator capacitances 
and harness insulation resistance; simulates the tank probe 
capacitances at empty, full, and unbalanced; and stimulates the 
FQID and fuel quantity indicator. This allows for full calibration, 
testing, and troubleshooting of the FQIS.

PATS-70A
The 309th Software Maintenance Group is currently develop-

ing the PATS-70A which will consist of a modified PATS-70 Core 
Unit, PATS-70A Auxiliary Unit, and equipment interface cables. The 
modification of the Core Unit includes adding several additional PXI 
cards and the associated wiring harnesses and software changes. 
Since the PATS-70 is based on a COTS platform and the PXI stan-
dard, these modifications require a minimal effort and demonstrate 
the adaptability of the PATS-70 [5].

The PATS-70A is designed to provide in-depth testing and 
troubleshooting functions to support a variety of A-10 armament 
related Line Replaceable Units (LRUs) at both the flightline and 
Intermediate (Back shop) levels. The testing functions to be 
provided by the PATS-70A include:

1. PATS-70A System Calibration
2. PATS-70A System Self-Test
3. Digital Data Processing Unit (DDPU)

4. Dual Rail Adaptor (DRA)
5. DRA w/ Launcher Unit (LAU)105’s attached
6. Electronic Gun Control Unit (EGCU)
7. Electrical Test Panel (ETP)
8. LAU-105/A Guided Missile Launcher
9. LAU-117A(V)3/A Guided Missile Launcher
10. LAU-131/A Rocket Launcher
11. LAU-88A/A Guided Missile Launcher
12. Munitions Armament Unit (MAU)-40/A Bomb Ejector Rack
13. MAU-50/A Bomb Ejector Rack
14. Modified Triple Ejector Rack (TER)-9A (Digital TER)
15. Triple Ejector Rack (TER)-9A
16. Pylon Wiring-Weapons Station 1/11
17. Pylon Wiring-Weapons Station 2/10
18. Pylon Wiring-Weapons Station 3/9
19. Pylon Wiring-Weapons Station 4/8
20. Pylon Wiring-Weapons Station 5/7
21. Pylon Wiring-Weapons Station 6
22. Station Control Unit A (SCU-A)
23. Station Control Unit B (SCU-B)
24. DRA Wiring Harness
25. Gun, Aircraft Unit (GAU)-8A_Wiring&Sensors
26. Guided Missile Interface Unit (GMIU)
27. LAU-105_Power Supply
28. LAU-105_Wiring Harness
29. LAU-117_Launcher Electronic Assembly (LEA)
30. Modified TER-9A Electronic Control Unit Rack Kit
31. TER-9A Wiring Support Assembly
32. A-10C Armament Wiring

Future Growth
The PATS-70 is a robust, flightline qualified test set which 

currently functions as maintenance support equipment for the 
A-10C aircraft. Yet it has no A-10 specific components so it 
can be adapted for maintenance on other aircraft, platforms, or 
systems such as helicopters, tanks, or armored vehicles.

The PATS-70 also has vast potential as an intermediate back 
shop tool. The PATS-70A development will support testing of 
armament related LRUs. This functionality can be augmented 
to include a variety of DoD LRUs and Weapons Replaceable 
Assemblies (WRAs). 

Summary
The PATS-70 started deployment earlier this year having suc-

cessfully completed a rigorous qualification and validation phase 
in 2013. The PATS-70 program demonstrated that Engineering-
Design partnerships and cooperation can help the Government 
to better support the warfighter. By partnering with Industry and 
combining the domain expertise of the 309th and Marvin Test 
Solutions, the Air Force was able to deploy a PATS-70 test set that 
meets the warfighter’s needs on-time and on-budget.
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Abstract.  For some applications, it is impossible or impractical to know what 
the correct output should be for an arbitrary input, making testing difficult. Many 
machine-learning applications for “big data”, bioinformatics and cyberphysical 
systems fall in this scope: they do not have a test oracle. Metamorphic Testing, 
a simple testing technique that does not require a test oracle, has been shown 
to be effective for testing such applications. We present Metamorphic Runtime 
Checking, a novel approach that conducts metamorphic testing of both the entire 
application and individual functions during a program’s execution. We have ap-
plied Metamorphic Runtime Checking to 9 machine-learning applications, finding 
it to be on average 170% more effective than traditional metamorphic testing at 
only the full application level.

Metamorphic Run-
time Checking of 
Applications With-
out Test Oracles

That is, if program input I produces output O, additional 
test inputs based on transformations of I are generated in 
such a manner that the change to O (if any) can be predicted. 
In cases where the correctness of the original output O 
cannot be determined, i.e., if there is no test oracle, program 
defects can still be detected if the new output O is not as 
expected when using the new input. 

For a simple example of metamorphic testing (where we do have 
a test oracle), consider a function that calculates the standard devi-
ation of a set of numbers. Certain transformations of the set would 
be expected to produce the same result: for instance, permuting 
the order of the elements should not affect the calculation, nor 
should multiplying each value by -1. Furthermore, other transforma-
tions should alter the output, but in a predictable way: if each value 
in the set were multiplied by 2, then the standard deviation should 
be twice that of the original set. 

Through our own past investigations into metamorphic testing 
[4] [5] [6], we have garnered three key insights. First, the meta-
morphic properties of individual functions are often different than 
those of the application as a whole. Thus, by checking for addi-
tional and different relationships, we can reveal defects that would 
not be detected using only the metamorphic properties of the 
full application. Second, the metamorphic properties of individual 
functions can be checked in the course of executing metamor-
phic tests on the full application. This addresses the problem of 
generating test cases from which to derive new inputs, since we 
can simply use those inputs with which the functions happened to 
be invoked within the full application. Third, when conducting tests 
of individual functions within the full running application in this 
manner, checking the metamorphic properties of one function can 
sometimes detect defects in other functions, which may not have 
any known metamorphic properties, because the functions share 
application state.

Approach
In order to realize these improvements, we present a solution 

based on checking the metamorphic properties of the entire 
program and those of individual functions (methods, procedures, 
subroutines, etc.) as the full program runs. That is, the program 
under test is not treated only as a black box, but rather meta-
morphic testing also occurs within the program, at the function 
level, in the context of the running program. This will allow for 
the execution of more tests and also makes it possible to check 
for subtle faults inside the code that may not cause violations of 
the full program’s metamorphic properties and lead to appar-
ently reasonable output (remember we cannot check whether 
that output is correct, since there is no test oracle). 

In our new approach, additional metamorphic tests are logi-
cally attached to the individual functions for which metamorphic 
properties have been specified. Upon a function’s execution when 
it happens to be invoked within the full program, the correspond-
ing function-level tests are executed as well: the arguments are 
modified according to the function’s metamorphic properties, the 
function is run again (in a sandbox, not shown) in the same pro-
gram state as the original, and the output of the function with the 
original input is compared to that of the function with the modified 
input. If the result is not as expected according to the metamor-
phic property, then a fault has been exposed. 

Introduction
During software testing, a “test oracle” [1] is required to indi-

cate whether the output is correct for the given input. Despite a 
recent interest in the testing community in creating and evaluat-
ing test oracles, still there are a variety of problem domains for 
which a practical and complete test oracle does not exist. 

Many emerging application domains fall into a category of 
software that Weyuker describes as “Programs which were written 
in order to determine the answer in the first place. There would be 
no need to write such programs, if the correct answer were known 
[2].” Thus, in the general case, it is not possible to know the correct 
output in advance for arbitrary input. In other domains, such as 
optimization, determining whether the output is correct is at least as 
difficult as it is to derive the output in the first place, and creating 
an efficient, practical oracle may not be feasible. 

Although some faults in such programs - such as those that 
cause the program to crash or produce results that are obvi-
ously wrong to someone who knows the domain - are easily 
found, and partial oracles may exist for a subset of the input 
domain, subtle errors in performing calculations or in adhering 
to specifications can be much more difficult to identify without 
a practical, general oracle.

Much recent research addressing the so-called “oracle 
problem” has focused on the use of metamorphic testing [3]. In 
metamorphic testing changes are made to existing test inputs 
in such a way (based on the program’s “metamorphic proper-
ties”) that it is possible to predict what the change to the output 
should be without a test oracle. 
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As shown in Figure 1 the tester provides a program input to 
a Metamorphic Runtime Checking framework, which then trans-
forms it according to the metamorphic property of the program 
P (for simplicity, this diagram only shows one metamorphic prop-
erty, but a program may, of course, have many). The framework 
then invokes P with both the original input and the transformed 
input; as seen at the bottom of the diagram, when each program 
invocation is finished, the outputs can be checked according to 
the property.

While each invocation of P is running, metamorphic proper-
ties of individual functions can be checked as well. As shown on 
the left side of Figure 1, in the invocation of P with the original 
program input, before a function f is called, its input x can be 
transformed according to one of the function’s metamorphic 
properties to give t(x). The function is called with each input, and 
then f(t(x)) is evaluated according to the original value of f(x) to 
see if the property is violated.

Meanwhile, in the additional invocation of P (right side  
of the diagram), function-level metamorphic testing still  
occurs for function f, this time using input x’, which results  
from the transformed program input to P. In this case,  
f(t(x’)) and f(x’) are compared. 

In this example, if we used only the application-level property 
of P, we would run just one test. However, by also considering P’s 
function f with one specified metamorphic property, we can now 
check two properties and run a total of three tests. This combined 
approach also allows us to reveal subtle faults at the function 
level that may not violate application-level properties. Our study 
shows that this sensitivity gain can increase the effectiveness of 
metamorphic testing by up to 1,350% (on average, 170%).

Evaluation
To evaluate the effectiveness of Metamorphic Runtime Checking 

at detecting faults in applications without test oracles, we compare 
it to runtime assertion checking using program invariants (a state-
of-the art technique). When used in applications without test ora-
cles, assertions can detect some programming bugs by checking 
that function input and output values are within a specified range, 
the relationships between variables are maintained, and a function’s 
effects on the application state are as expected [7]. While satisfying 
the invariants does not ensure correctness, any violation of them at 
runtime indicates an error.

The experiments described in this section seek to answer the 
following research questions:

1.   Is Metamorphic Runtime Checking more effective than 
using runtime assertion checking for detecting faults in applica-
tions without test oracles?

2.   What contribution do application-level and function-level 
metamorphic properties make to the effectiveness of Metamor-
phic Runtime Checking?

3.   Is Metamorphic Runtime Checking suitable for practical use?
In these experiments, we applied both runtime assertion 

checking and Metamorphic Runtime Checking to nine real-
world applications that are representative of different domains 
that have no practical, general test oracles: supervised machine 
learning, unsupervised machine learning, data mining, discrete 
event simulation, and NP-hard optimization. The applications are 
described (along with the number of invariants, function-level 
and application-level properties) in Table 1. 

To create the set of invariants that we could use for runtime 
assertion checking, we applied the Daikon invariant detector 
tool [8] to each application. To identify the application-level 
metamorphic properties for the experiment, we followed the 
guidelines set forth in [4], which categorizes the types of proper-
ties that applications in these domains tend to exhibit. 

To identify function-level properties, we inspected the source 
code and hand-annotated the functions that we expected to ex-
hibit the types of properties described in [4]. To ensure that the 
properties were not limited to only the ones that we could think 
of, some of the function-level metamorphic properties used in 
this experiment are based on those used in other, similar studies 
such as [9], [10] and [11].

Methodology
To determine the effectiveness of the testing techniques, we 

used mutation analysis to systematically insert faults into the 
source code of the applications described above, and then de-
termined whether the mutants could be killed (i.e., whether the 
faults could be detected) using each approach. Mutations that 
yielded a fatal runtime error, an infinite loop, or an output that 

Figure 1: Model of Metamorphic Runtime Checking of program P and one 
of its constituent functions, f. Metamorphic Runtime Checking combines 
program-level metamorphic testing with function-level metamorphic checking, 
performing such checking automatically.

Program Input

Application-Level Testing

Transform Input
Program P Program P

Program Output

Check

...

f(x) f(t(x))

Transform

Check

...

Function-Level Testing
...

f(x') f(t(x'))

Transform

Check

...

Function-Level Testing

Table 1: Listing of applications studied

            # of Metamorphic 
Properties identified at 

the level of: 
Application Domain Language LOC Functions Invariants Application Function 
C4.5   classification   C  5,285 141 27,603 4 40 
GAFFitter   optimization   C++  1,159 19 744 2 11 
JSim   simulation          Java 3,024 468 306 2 12 
K-means   clustering       Java  717 46 137 4 12 
LDA   topic modeling       Java  1,630 103 1,323 4 28 
Lucene   information 

retrieval    
 Java  661 57 456 4 26 

MartiRank   ranking        C  804 19 3,647 4 15 
PAYL   anomaly 

detection            
 Java 4,199 164 19,730 2 40 

SVM   classification       Java 1,213 49 2,182 4 4 
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was clearly wrong (for instance, not conforming to the expected 
output syntax or simply being blank) were discarded since any 
reasonable approach would detect such faults. 

We also did not consider “equivalent mutants” for which the 
inputs used in the experiment produced the same program out-
put as the original, unmutated version, e.g., those mutants that 
were not on the execution path for any test case or that would 
not have been killed with an oracle for these inputs.

For each mutated version, we conducted runtime assertion 
checking with the invariants detected by Daikon. If any invariant 
was violated, the mutant was considered killed. We then per-
formed Metamorphic Runtime Checking on the same mutated 
versions to determine whether any of the specified metamorphic 
properties were violated. The inputs used for mutation analysis 
were the same as those used for detecting invariants and verify-
ing metamorphic properties. 

Figure 2 summarize the results of our experiment evaluating 
the efficacy of Metamorphic Runtime Checking. Overall, Meta-
morphic Runtime Checking was more effective, killing 1,602 
(90.4%) of the mutants in the applications, compared to just 
1,498 (84.5%) for assertion checking.

Broadly speaking, Metamorphic Runtime Checking was more 
effective at killing mutants that related to operations on arrays, 
sets, collections, etc. However, further analysis could character-
ize the types of faults each approach is most suitable for detect-
ing, but it follows, that runtime assertion checking and Metamor-
phic Runtime Checking should be used together for best results. 
When used in combination in our experiments, they were able to 
kill 95% of the mutants (totaling across all applications): only 88 
of the 1,772 survived.

To understand the factors that impacted the efficacy of Meta-
morphic Runtime Checking, we performed a deeper analysis of 
the contribution of the separate mechanisms. We first deter-
mined the number of mutants killed only by application-level 
properties, then the number killed only by function-level proper-
ties. Table 2 shows these results.

On average, we saw a 170% improvement in the number of 
mutants killed when combining application-level properties with 
function-level properties. The variance in improvement was very 
large, however, showing a striking improvement of 1,350% in 
PAYL, while showing smaller improvement in C4.5 and Marti-
Rank. There was no improvement at all in the JSim and LDA 
applications, because application-level properties had already 
been able to kill all mutants.

We believe that this improvement is attributed primarily to 
our increase in: the number of properties identified (scope); 
the number of tests run (scale); and the likelihood that a fault 
would be detected (sensitivity).

The improvement in the scope of metamorphic testing was 
particularly clear in the anomaly-based intrusion detection 
system PAYL. We were only able to identify two application-level 
metamorphic properties because it was not possible to cre-
ate new program inputs based on modifying the values of the 
bytes inside the payloads, since the application only allowed for 
syntactically and semantically valid inputs that reflected what it 
considered to be “real” network traffic. 

These two properties were only able to kill two of the 40 
mutants. However, once we could use Metamorphic Runtime 

Checking to run metamorphic tests at the function level, we 
were able to identify many more properties that involved chang-
ing the byte arrays that were passed as function arguments, 
thus revealing 27 additional faults.

Likewise, we were able to increase the scale of metamor-
phic testing by running many more test cases. For instance, in 
MartiRank, even though we specified function-level properties 
for only a handful of functions, many of those are called numer-
ous times per program execution, meaning that there are many 
opportunities for the property to be violated.

Another reason why function-level properties were able to kill 
mutants not killed by application-level properties is that we were 
able to improve the sensitivity in terms of the ability to reveal more 
subtle faults, as seen in GAFFitter. In the function to calculate the 
“fitness” of a given candidate solution in the genetic algorithm, i.e., 
how close to the optimal solution (target) a candidate comes, one 
of the metamorphic properties is that permuting the elements in 
the candidate solution should not affect the result, since it is merely 
taking a sum of all the elements. 

If, for instance, there is a mutation such that the last element 
is omitted from the calculation, then the metamorphic property 
will be violated since the return value will be different after the 
second function call. However, at the application level, such a 
fault is unlikely to be detected, since the metamorphic prop-

Table 2: Number of Mutants Killed by Different Types of Metamorphic Properties

    Mutants Killed By     

Application Total 
Mutants 

Application-
level Properties 

Only 

Function-level 
Properties 

Only 

Both 
Types 

Not 
Killed 

MRC % 
Improvement 

C4.5 856 133 37 653 33 4.71% 

GAFFitter 66 2 14 20 30 63.64% 

K-means 35 6 11 11 7 64.71% 

JSim 36 14 0 22 0 0.00% 

LDA 24 2 0 22 0 0.00% 

Lucene 15 5 3 6 1 27.27% 

MartiRank 413 298 22 70 23 5.98% 

PAYL 40 0 27 2 11 1350.00% 

SVM 287 69 23 130 65 11.56% 

Average 197 59 15 104 19 169.76% 

	  

Figure 2: Results of mutation analysis comparing metamorphic runtime check-
ing and runtime assertion checking. Metamorphic runtime checking was on 
average more effective.
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erty simply states that the quality of the solutions should be 
increasing with subsequent generations. Even though the value 
of the fitness is incorrect, it would still be increasing (unless the 
omitted element had a very large effect on the result, which is 
unlikely), and the property would not be violated.

Performance Overhead
Although Metamorphic Runtime Checking using function-level 

properties is able to detect faults not found by metamorphic 
testing based on application-level properties alone, this runtime 
checking of the properties comes at a cost, particularly if the tests 
are run frequently. In application-level metamorphic testing, the 
program needs to be run one more time with the transformed in-
put, and then each metamorphic property is checked exactly once 
(at the end of the program execution). In Metamorphic Runtime 
Checking, however, each property can be checked numerous 
times, depending on the number of times each function is called, 
and the overhead can grow to be much higher. 

During the studies discussed above, we measured the per-
formance overhead of our C and Java implementations of the 
Metamorphic Runtime Checking framework. Tests were conducted 
on a server with a quad-core 3GHz CPU running Ubuntu 7.10 with 
2GB RAM. On average, the performance overhead for the Java 
applications was around 3.5ms per test; for C, it was only 0.4ms 
per test. This cost is mostly attributed to the time it takes to create 
sandboxes (so the side-effects of function-level metamorphic test-
ing do not impact application-level testing). 

This impact can be substantial from a percentage overhead 
point of view if many tests are run in a short-lived program.  
For instance, for C4.5, the overhead was on the order of 10x, 
even though in absolute terms it was well under a second. 
However, for most programs we investigated in our study, the 

overhead was typically less than a few minutes, which  
we consider a small price to pay for being able to detect faults 
in programs with no test oracle. 

Future work could investigate techniques for improving the 
performance of a Metamorphic Runtime Checking framework. 
Previously we considered an approach whereby tests were 
only executed in application states that had not previously been 
encountered, and showed that performance could be improved 
even when the functions are invoked with new parameters up to 
90% of the time [12]. It may be possible to reduce the over-
head even more, for instance by running tests probabilistically 
(our framework already allows the tester to specify a probability 
for checking each function-level metamorphic property, but we 
turned that off for the studies presented here).

Limitations
We used Daikon to create the program invariants for 

runtime assertion checking. Although in practice invariants 
are typically generated by hand, and some researchers have 
questioned the usefulness of Daikon-generated invariants 
compared to those generated by humans [13], we chose to 
use the tool so that we could eliminate any human bias or hu-
man error in creating the invariants. 

Additionally, others have independently shown that metamorphic 
properties are more effective at detecting defects than manually 
identified invariants [14], though for programs on a smaller scale 
than those in our experiment (a few hundred lines, as opposed to 
thousands as in many of the programs we studied).

The ability of metamorphic testing to reveal failures is clearly 
dependent on the selection of metamorphic properties. How-
ever, we have shown that a basic set of metamorphic properties 
can be used without a particularly strong understanding of the 
implementation - the authors knew essentially nothing about the 
target systems or their domains beyond textbook generality; the 
use of domain-specific properties from the developers of these 
systems might reveal even more failures [15].

Conclusion
As shown in our empirical studies, Metamorphic Runtime 

Checking has three distinct advantages over metamorphic test-
ing using application-level properties alone. First, we are able to 
increase the scope of metamorphic testing, by identifying proper-
ties for individual functions in addition to those of the entire appli-
cation. Second, we increase the scale of metamorphic testing by 
running more tests for a given input to the program. And third, we 
can increase the sensitivity of metamorphic testing by checking 
the properties of individual functions, making it possible to reveal 
subtle faults that may otherwise go unnoticed. 

Acknowledgements
We would like to thank T.Y. Chen, Lori Clarke, Lee Osterweil, Sal 

Stolfo, and Junfeng Yang for their guidance and assistance. Sahar 
Hasan, Lifeng Hu, Kuang Shen, and Ian Vo contributed to the 
implementation of the Metamorphic Runtime Checking framework. 

Bell and Kaiser are members of the Programming Systems 
Laboratory, funded in part by NSF CCF-1302269, NSF CCF-
1161079, NSF CNS-0905246, and NIH U54 CA121852.



CrossTalk—March/April 2015 13

TEST AND DIAGNOSTICS

ABOUT THE AUTHORS
Jonathan Bell is a Ph.D. student in Software 
Engineering at Columbia University. His 
research interests include software testing, 
program analysis, and fault reproduction. He’s 
received an M Phil, MS and BS in Computer 
Science from Columbia University. 

Dept. of Computer Science
Columbia University
New York, NY 10027
Phone: 212-939-7184
E-mail: jbell@cs.columbia.edu

Christian Murphy is an Associate Profes-
sor of Practice and Director of the Master 
of Computer and Information Technology 
program at The University of Pennsylvania. 
His primary interests are software engineer-
ing, systems programming, and mobile/em-
bedded computing. He received his Ph.D. in 
Computer Science from Columbia University. 

Dept. of Computer and Information 
Science
University of Pennsylvania
Philadelphia, PA 19104
Phone: 215-898-0382
E-mail: cdmurphy@cis.upenn.edu

Gail E. Kaiser is a Professor of Computer 
Science at Columbia University and a Senior 
Member of IEEE. Her research interests 
include software reliability and robustness, 
information management, social software 
engineering, and software development 
environments and tools. She has served as 
a founding associate editor of ACM TOSEM 
and as an editorial board member for IEEE 
Internet Computing. She received her Ph.D. 
and MS from CMU and her ScB from MIT.

Dept. of Computer Science
Columbia University
New York, NY 10027
Phone: 212-939-7184
E-mail: kaiser@cs.columbia.edu

REFERENCES
1. Pezzé, M. and M. Young, Software Testing and Analysis: Process, Principles and 
 Techniques. 2007: Wiley.
2. Weyuker, E.J., On testing non-testable programs. Computer Journal, 1982. 25(4): p. 465-470.
3. Chen, T.Y., S.C. Cheung, and S.M. Yiu, Metamorphic testing: a new approach for
 generating next test cases. 1998, Dept. of Computer Science, Hong Kong Univ. of
 Science and Technology.
4. Murphy, C., et al., Properties of Machine Learning Applications for Use in 
 Metamorphic Testing, in Proc. of the 20th International Conference on Software 
 Engineering and Knowledge Engineering (SEKE). 2008. p. 867-872.
5. Murphy, C., et al., On Effective Testing of Health Care Simulation Software, in Proc. 
 of the 3rd International Workshop on Software Engineering in Health Care. 2011.
6. Murphy, C., K. Shen, and G. Kaiser, Automated System Testing of Programs without
 Test Oracles, in Proc. of the 2009 ACM International Conference on Software Testing 
 and Analysis (ISSTA). 2009. p. 189-199.
7. Nimmer, J.W. and M.D. Ernst, Automatic generation of program specifications, in 
 Proc. of the 2002 International Symposium on Software Testing and Analysis 
 (ISSTA). 2002. p. 232-242.
8. Ernst, M.D., et al., Dynamically discovering likely programming invariants to 
 support program evolution, in Proc. of the 21st International Conference on Software 
 Engineering (ICSE). 1999. p. 213-224.
9. Barus, A.C., et al., Testing of Heuristic Methods: A Case Study of Greedy Algorithm. 
 Lecture Notes in Computer Science, 2011. 4890: p. 246-260.
10. Kanewala, U. and J.M. Bieman, Techniques for Testing Scientific Programs Without 
 an Oracle, in Proc. of the 2013 International Workshop on Software Engineering for 
 Computational Science and Engineering. 2013.
11. Cheatham, T.J., J.P. Yoo, and N.J. Wahl, Software testing: a machine learning experiment, 
 in Proc. of the ACM 23rd Annual Conference on Computer Science. 1995. p. 135-141.
12. Murphy, C., et al., Automatic Detection of Previously-Unseen Application States 
 for Deployment Environment Testing and Analysis, in Proc. of the 5th International 
 Workshop on Automation of Software Test (AST). 2010.
13. Polikarpova, N., I. Ciupa, and B. Meyer, A comparative study of programmer-written 
 and automatically inferred contracts, in Proc. of the 2009 International Symposium 
 on Software Testing and Analysis (ISSTA). 2009. p. 93-104.
14. Hu, P., et al., An empirical comparison between direct and indirect test result 
 checking approaches, in Proc. of the 3rd International Workshop on Software Quality 
 Assurance. 2006. p. 6-13.
15. Xie, X., et al., Application of Metamorphic Testing to Supervised Classifiers, in Proc. 
 of the 9th International Conference on Quality Software (QSIC). 2009. p. 135-144.

mailto:jbell@cs.columbia.edu
mailto:cdmurphy@cis.upenn.edu
mailto:kaiser@cs.columbia.edu


14     CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

The Impact of Time Constraints on Testing
The lack of time for testing is a symptom of deeper  

project, process and organizational issues. However, that 
doesn’t eliminate the impact of the time crunch. The impact  
is seen in the following areas.

1. Lack of Coverage
Test coverage can be seen in a variety of ways: code cover-

age, requirements coverage, and test case coverage, to name a 
few of them. If you can’t cover enough of these items, it’s hard 
to give a reasonable level of confidence in the software.

2. Lack of Quality
If you can’t test to the levels needed to assess the quality of 

the application, the test will be incomplete and defects will be 
missed. Overall software quality suffers.

The reality is that just because testing stops, software 
problems (i.e., defects) will still continue. It’s just that the users 
will eventually find them. Sometimes the application is mission 
critical or safety critical, so to miss finding defects due to lack of 
test time can be a very high risk.

However, even “complete” testing does not necessarily equate to 
high quality applications. This seems to be contradictory. After all, why 
do we perform testing if we can’t make the assurance of quality?

What we may deem as “complete” may just be an illusion. There 
is always one more thing (or millions of things) you can test. 

Randall W. Rice, Rice Consulting Services, Inc.

Abstract.  In my research involving thousands of software testers over the last 15 
years, several challenges are mentioned as critical pain points in nearly every inter-
view and survey. One of the most common complaints from software testers is that, 
“There is no way we can do a complete test in the time we are given.” 
The mismatch of scope and time causes stress for software testers and often leaves 
them in a no-win position. They might work very hard in the short amount of time they 
have been allotted; only to be blamed at times for not finding certain defects once 
the software is released to users. 

Another impact of time constraints is that schedule delays in development and 
other project activities can erode the planned test schedule. In those situations, the 
overall delivery deadline remains firm even when the testers get access to the soft-
ware later than planned. This schedule crunch is another reason testers feel stress 
and may be forced to skip some tests.

The truth of the matter is that no matter how much time you have, it is not enough 
time to test all functions and combinations of functions in most software. In essence, 
all testing is sampling, so it becomes very important where we draw the boundaries in 
testing and where we take our samples.

In this article, I will explore some ways to deal with the time constraints in software 
testing and still have a reasonable level of test coverage and overall confidence in the 
quality of the application being delivered.

Dealing With the 
Time Crunch in Soft-
ware Testing

3. Poor Morale
It really does kill morale to ask people to do something as chal-

lenging as testing, then not give enough time, tools or people to 
get the job done. Even worse is when the testers get blamed for 
defects when the time has been cut short, or the amount of work 
is impossible to complete even in a thousand years.

Test teams that are starved of resources often don’t see the 
possibility of applying what would normally be considered sound 
testing techniques. The comments are along the lines of, “Oh, 
we would never have time to document a test plan. We barely 
have enough time to test as it is.”

Never mind the idea that a test plan could actually save time 
by making sure the resources are used in the most efficient 
ways, or that a workable scope balanced by risk could be de-
fined – all of which save time.

4. Missed Expectations
Sometimes people have the expectation that exhaustive 

testing is possible with scarce resources and that testers would 
just waste time if they had more of it. Or, management believes 
sometimes just the opposite, “Since we can’t test everything, 
why bother at all?” This is primarily a perception issue.

Many times, project deadlines are established with the ex-
pectation that an arbitrary allocation of time will be enough time 
for testing, even though there is no clarity about which kinds 
of tests are needed, or even what the scope of testing will be. 
It is only after the design of the system becomes clear that the 
scope of the project becomes clear.

So when defects are discovered, the project schedules often 
slip and so does the management attitude toward the testing 
effort. These projects are either delivered later than planned, or 
delivered on-time with high levels of defects.

An Exercise in Priorities
Realizing that you could have all the time you desired and still not 

have enough time to completely test anything of even moderate 
complexity, the issue becomes how to define the scope of testing.

Key ways that testing fails are to 1) do the wrong tests, 2) do 
the right tests in the wrong ways and 3) fail to do enough of the 
right tests. So, in the third way mentioned, lack of time is a root 
cause. In the first two ways, it is possible to leverage the time 
available for testing with efficient test design and test execution, 
combined with reviews and inspections.

If we recognize the fact we can’t test everything, the challenge 
then becomes to pick the right things to test. Picking what to test 
is like packing a suitcase. You only have some much room and so 
much weight allowance to work with. First, you pack the big and 
important things, like the main clothes you need. Next, you pack 
the smaller important items, like toiletries. Finally, if you have room 
and weight, you can pack your fuzzy slippers.

A key question is “How do we prioritize?” Some might say by 
risk. Others might say “by what we getting paid or pressed the 
most to deliver.” It is important to note that criticality is not the 
same as risk. Risk is a potential loss while criticality is impor-
tance. Sometimes risk and criticality has a direct relationship, 
such as a function that is safety-critical. However, in other cases, 
a function may be critical to certain users yet pose no potential 
negative impact.
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Figure 1: ACTS Combinatorial Test Design Tool

Yet there is more to efficiency than designing and prioritizing the 
right tests. You also have to design and perform them efficiently.

Going back to the suitcase analogy, how you pack the suit-
case makes a big difference in how much you can pack in it. 
Some people are masters at packing a suitcase. They know how 
to roll their clothes, how to fill small spaces and so forth.

Likewise, testers need an efficient process for testing. One 
example of this is using combinatorial techniques to get the most 
coverage from the fewest number of test cases. NIST has a 
wonderful free tool called ACTS (Advanced Combinatorial Testing 
System) which generates test cases based on combinatorial test 
design [1]. The advantage is that you get high levels of test cover-
age with a minimal number of tests (Figure 1).

In this example, there are 72 possible condition combinations. 
After applying the pairwise algorithm, we are left with twelve 
cases. While this is a great reduction in the total number of test 
cases, care must be taken to review the tests and supplement 
them with tests that may be important, but not generated by the 
tool. You will also need to manually define the expected results, 
which requires time. 

What About Test Estimation?
Test estimation is inherently tricky because it is an approxima-

tion. Some people are very challenged in providing estimates of 
the testing effort due to lack of knowledge about what is to be 
eventually tested. In some cases, the problem of test estima-
tion boils down to poor estimating methods. By “poor estimating 
methods” I mean that an organization is not handling test esti-
mates in a way that deals with the facts and risks as they really 
are. Instead, they become overly optimistic or just pull a number 
out of thin air for the testing effort.

In those cases where the product is already developed, such 
as COTS applications, test estimates can still be difficult if you 

don’t have access to the software yet. It is also a surprise to 
management sometimes that the time needed to test a COTS 
product may actually be a multiple of the time and cost needed 
to acquire and install the product.

In estimation, accuracy is not so much the issue as is getting 
the recipient of the estimate to accept your estimate, which you 
honestly believe as the true effort and time needed for testing.

Let’s say you work hard to create an accurate test estimate 
for a project. You estimate the test to take five people three 
weeks to complete. Your manager may assume there is some 
padding in your estimate, so she “readjusts” your estimate to 
be two weeks for testing with the same five people. In this 
example, the accuracy of the original estimate really doesn’t 
matter. When it’s all said and done, you and your team are still 
expected to do three weeks of testing in two weeks time!

However, the next time you have to provide an estimate, you 
will remember that estimate reduction and will likely inflate your 
initial estimate because you know it will be cut. This is how the 
dysfunction around estimation is propagated.

That is the dark side of test estimation. There is a better 
way but it requires a healthy, eyes-open attitude on everyone’s 
part to re-adjust the estimate when necessary or make adjust-
ments in scope and resources. 

Another point of awareness and agreement is that an es-
timate is not completely accurate – it is a best approximation 
based on experience and other factors.

The problem with highly precise estimates is that they often 
assume things will go well and without delays. The reality is 
seldom that trouble-free. 

To deal with the unexpected occurrences that cause actual 
test times and resources to differ from their estimates, contin-
gencies are needed. A helpful way to think of contingencies is 
in the form of reserves.



16     CrossTalk—March/April 2015

TEST AND DIAGNOSTICS

Reserves are simply more people, tools, and other things available 
in case of unforeseen events. Contingencies are your “Plan B” which 
describe your options should a certain risk materialize.

Some people might think of reserves as “padding” an esti-
mate, but my experience is that reserves and contingencies are 
needed as a safety net for when schedule crunch occurs. It is 
very important not to squander reserves in time-wasting activi-
ties. For example, if your team spends forty hours on work that 
could easily be done in ten hours, that is an inefficient use of 
time and is not the purpose of reserves.

Dealing With the Time Crunch

Here are a few ways to deal with short test timeframes.

1. Get Good at Prioritizing
Unfortunately, most of the discussion around prioritizing test-

ing is all about risk. While risk is a key concern, it is not the only 
way to prioritize testing. Risk-based testing is a sound practice 
in many cases, but there are risks, even to risk-based testing. 
One such risk is that our risk assessment may be totally wrong 
due to factors we cannot foresee.

In addition, risk-based testing becomes ineffective when 
everything is a high risk. You will need another way to prioritize 
tests in that situation. To prioritize means to determine what is 
important. But the big question is “Important to whom?”

Priorities for testing are often a reflection of the stakeholders, 
such as project management, senior organizational manage-
ment, customers and users. One big trap we fall into is thinking 
that the priorities given to development and testing groups are 
the real priorities.

Testers are not in charge of the priorities of a project, and 
therefore, not really in charge of the priorities of testing. 
Even though a tester may write the test plan and set the test 
schedule, they may not reflect the true project and stakeholder 
priorities. Like the traveller who packs someone else’s bag (don’t 
really do that – you can get in trouble for it!), you may include 
the important things to you, but not to the other person. It is all 
about who owns the bag.

You can prioritize based on:
Mission need – What solves a key problem or delivers 

needed functionality right away?
Stakeholder needs – Which products and features do us-

ers and other stakeholders value most?
Risk – Where might problems most likely appear, and where 

might they carry the most impact?
Management directive – Ultimately, management sets 

project priorities. However, on occasion, someone in manage-
ment decides his or her pet project or feature is most important 
regardless of business value or risk. Therefore, it becomes a 
high priority in testing.

Experience – Where have we seen problems in the past that 
we don’t want to repeat?

Sampling – There are many ways to take samples in testing, 
such as random samples, customer samples, and so forth. The idea 
is that if you find a concentration of problems in one area, there will 
likely be others in that same area. This is known as “defect clustering.”

2. Management Needs to Understand  
The Tradeoffs

The management influence on schedules and priorities drives 
much of the testing time challenge. Many organizations are 
schedule-driven in which the software delivery schedule takes 
precedence over other decisions.

There are four key factors in the time challenge:
1.   Resource levels
2.   Schedules
3.   Workload balance
4.   Process efficiency

In many cases, deadlines are necessary and important. Man-
agement, however, must allocate the right number of resources 
to get the job done whether it is in development, testing or 
anything else. At the time of this writing, we have been through 
an economy where the theme in organizations has been to learn 
how to do more with fewer resources. That includes people, 
tools and hardware. 

Gerald Weinberg writes about “The Law of Raspberry Jam.” 
This law says, “The wider you spread something the thinner it 
gets [2].” Just like spreading jam on toast, you can have such a 
small amount that after spreading it over a piece of toast, you 
can hardly taste it at all.

Senior management needs to understand and embrace this 
concept when defining their expectations of what can be ac-
complished with given resources. There comes a point when 
project resources can be spread so thin that you can’t even tell 
any difference was made at all.

3. Optimize the Testing Process
Many of the perceived time problems in testing may be due to 

poor workload balance and inefficient testing approaches. It is 
management’s job to fix inefficient or ineffective processes be-
cause people in the trenches don’t have the authority or control 
to make major process changes.

People at the grassroots level may have the opportunity to 
work smartly, but sometimes that is thwarted by management’s 
decisions to do things that are inefficient and ineffective.

Here are three ways to optimize the testing process. By doing 
these things, you perform testing more efficiently, which takes 
less time and often finds more defects as compared to non-
optimized test methods.

Optimization Technique #1 - Apply Sampling Techniques
Going back to the idea stated earlier in this article that  

all testing is sampling, it can be very helpful to learn how  
to sample for defects.

Testers face a “needle in the haystack” problem. We are looking 
for something very small in something very large. I am intrigued at 
how some gold miners deal with a similar challenge, and how those 
techniques can be applied to software testing and finding defects.

Like testing, gold mining is also a very expensive undertaking. 
Even a small operation can cost thousands of dollars per day to 
move layer upon layer of dirt to get close to finding gold. Unfor-
tunately, there are no signs that read, “Dig here for gold.”
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One interesting and effective technique to know where to dig for 
gold is to take soil samples by drilling. That is the best way to see a) 
if there is any gold in the immediate soil and b) how dense the gold 
concentration may be, c) how deep the gold is, and d) the quality of 
the gold. If the soil sample shows gold 20 feet or more below the 
surface, it will probably cost too much to remove the dirt above it.

Like in sampling for gold, in testing, we can sample in vari-
ous areas of a system with functional testing, we can sample 
lines of code with structural testing, we can perform random 
tests either manually or with tools, or we can sample based on 
risk, just to name a few possibilities.

Sampling can help us find those pockets or clusters of 
defects. This can lead us to the best places to focus testing for 
the little time we have. Finding high concentrations of defects 
in software is like striking gold in that you get a very high 
return on investment for testing.

Optimization Technique #2 - Apply the Pareto Principle
The Pareto Principle (the 80/20 rule) that says you can get 

the majority of value from the minority of people, time or effort. 
In fact, my experience is that it is possible to get more than 90% 
of the value of some efforts in a very short time frame.

As an example, once I was asked to perform an eight-week 
test in two weeks. So, the client and I worked together to focus 
on key areas and skip minor areas. The test design was based 
on critical user workflows and modular tests that yielded many 
more defects than expected.

Optimization Technique #3 – Use Combinatorial Methods
As mentioned earlier, tools such as ACTS and model-based 

tools can help greatly by intelligently combining test conditions 
into the most efficient set of tests. If you choose not to use a 
combinatorial tool, even a basic decision table can help reduce 
the number of tests without sacrificing coverage.

4. Agile Methods Can Help
I take great care with how I portray agile methods to avoid 

promoting agile techniques as the solution for all software 
project problems.

When applied pragmatically, agile methods can be a great help 
in getting the right things done quickly. When applied haphazardly 
or in the wrong cultures, agile can lead to disaster faster.

The good aspect of agile is that people learn to minimize the 
meetings, the documentation and the project overhead to focus 
on deliverables. The challenging part of agile is to keep the 
knowledge we really need because of the lesser emphasis on 
documentation. Agility is all about dealing with change gracefully 
and focusing on the right things - do that, and you’ll be fine.

5. The Right Tools Can Help
Tools can save time when used in the right ways. Test design 

tools such as ACTS (Figure 1) can save huge amounts of time 
as compared to designing tests manually. The generated tests 
can then be imported into test execution tools to automate the 
mundane tests and help in regression testing – given that you 
don’t have to spend large amounts of time on tool implementa-
tion and maintenance issues.

The time savings seen from tools is often the result of an ex-
isting test tool implementation effort that is well-designed. Initial 
tool efforts typically take more time because you are learning as 
you implement.

6. Know When You Are Over-testing 
Whether it is your status report, test plan, or anything else, 

there comes a time when the finish point needs to be declared 
and then move on. It’s like the old saying that “projects are 99% 
done forever.”

Seth Godin says, “Ship often. Ship lousy stuff, but ship. Ship 
constantly [3].” I don’t concur with all of that (like the shipping 
of lousy stuff), but I do get the sentiment. The main point is to 
overcome the resistance of things that keep us from making 
progress and to deliver something of value.

How about this instead? Ship often to the right people with 
the quality they need. Some people are happy to get new fea-
tures, warts and all. They will give you great feedback and will 
still be raving fans.

Many times, perception is reality. If a software project is 
delivered with obvious defects, users don’t care who is to blame. 
They experience frustration and want the problems fixed “now.” 
It’s the old maxim that says, “There’s never enough time to do 
the job right, but there’s always time to do it again.”

As an example, an update to Apple’s iOS8 caused major 
problems for users in that they were unable to make phone calls 
with an iPhone after the update was installed. Apple recalled 
the update very quickly, but not without reputation damage. For 
the first time I can recall, a major news outlet identified the QA 
Manager of a defective product by name [4].

It’s not clear why the iOS8.0.1 defects were not found – 
whether it was a lack of test time or some other root cause. 
The result, however, shows what happens when defects go “big 
time.” Blaming the QA Manager and testers is not the solution 
and is not helpful, since testers usually don’t make the decision 
to release software.

Plan of Action
These are not sequential steps, but rather ways to implement 

some of the ideas in this article.
Lay a foundation of expectations at the management level 

that exhaustive testing is impossible and that the thinner testing 
resources are spread, the less effective they become. If your es-
timates differ greatly from those already set for you, be able to 
justify why you need more time and resources for testing. Risk is 
a good way to balance this discussion.

Get good at identifying where the risk is in the things you test.
Learn how to sample products to find where defects may 

be clustering.
Define a workable scope of testing. If you set the scope of 

testing too large, you won’t finish in time. If you set it too small, 
you won’t get the confidence levels you need for deployment.

Optimize your tests.
Work with project managers to build reasonable reserves 

and contingency plans.
Create a risk-based test planning and reporting process.
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Summary
Like any project activity, testing takes a certain amount of 

time and resources to perform if it is to measure an accurate 
level of confidence and quality. Exhaustive testing is impossible 
due to the very high numbers of possible tests required to test 
all combinations of conditions. By combining dynamic testing 
with reviews and inspections throughout a project, the effect is 
often a time and cost savings.

However, it makes a big difference in the time crunch as to 
how testing is prioritized, designed and performed, as to whether 
time and resource constraints are dealt with in an effective way.

Good estimates are helpful, but even the best efforts at 
estimation may fall short of being accurate. For those times, you 
need some reserves in time and resources as a contingency. 
You also need a “Plan B” for those times when the time crunch 
gets really bad.

There are no magic solutions to the time crunch challenge. 
However, with some expectation management and careful test 
selection and optimization, you may just find enough time to 
perform the level of testing that gives an acceptable level of 
confidence to stakeholders.
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Abstract.  There are relatively few good methods for evaluating test set quality, 
after ensuring basic requirements-traceability.  Structural coverage, mutation testing, 
and related methods can be used if source code is available, but these approaches 
may entail significant cost in time and resources.   This paper introduces an alter-
native measure of test quality that is directly related to fault detection, simple to 
compute, and can be applied prior to execution of the system under test.  As such, it 
provides an inexpensive complement to current approaches for evaluating test quality.   

Combinatorial 
Coverage as an 
Aspect of Test 
Quality

Introduction
How thorough are your tests?  This is a vitally important 

question for mission critical systems, but very difficult to 
answer with confidence, especially if tests were produced by 
third-party test developers.  

Generally it must be shown that tests track to enumerated 
requirements, but this is a coarse grained metric.  Structural 
coverage criteria such as statement or branch coverage may 
also be applied, if source code is available.  Mutation testing 
– developing multiple versions of the code with mutations, or 
seeded faults – may be used to compare the fault detection 
capacity of alternative test suites, or evolve a test suite that 
produces a sufficiently high score on detecting differences 
between mutated versions of the code.  Such an approach 
naturally is dependent on the mutations chosen.  

Evaluating test quality is a particularly difficult and imprecise 
process for “black box” testing, where no source code is used.  
A test goal may be to positively demonstrate a collection of 
specified features, often by a single test for each feature or 
option.  But simply showing that a particular input can dem-
onstrate the feature does little to prove that an application is 
adequate for the wide range of inputs likely to be encountered 
in real-world use.   Alternatively, an operational profile may be 
developed which tests the system according to the statisti-
cal distribution of inputs that occur in operational use.  This 
process can provide reasonable confidence for the system’s 
behavior in normal operation, but may miss the rare input con-
figurations that can result in a failure.  

A common approach for high assurance is to include tests 
designed to exercise the system with rare scenarios, based on 
experience or engineering judgment.   This approach is clearly 
dependent on the skill of testers, and it may leave a large pro-
portion of the possible input space untested.  It also provides no 
quantitative measure of the proportion of significant input com-
binations that have been tested.  Therefore, if test services are 
to be contracted out, there is little sound basis for developers to 
specify the level of testing required, or for testers to prove that 
testing has been adequate for the required assurance level. This 
paper describes measurement methods derived from combina-
torial testing that can be used in analyzing the thoroughness of 
a test set, based on characteristics of the test set separate from 
its coverage of executable code.  

     
Distribution of Faults

Empirical data show that most failures are triggered by a 
single parameter value, or interactions between a small number 
of parameters, generally two to six [1], a relationship known as 
the interaction rule. An example of a single-value fault might be 
a buffer overflow that occurs when the length of an input string 
exceeds a particular limit.  Only a single condition must be true 
to trigger the fault:  input length > buffer size.  A 2-way fault is 
more complex, because two particular input values are needed to 
trigger the fault.  One example is a search/replace function that 
only fails if both the search string and the replacement string are 
single characters.  If one of the strings is longer than one charac-
ter, the code does not fail, thus we refer to this as a 2-way fault.  
More generally, a t-way fault involves t such conditions.

Figure 1 shows the cumulative percentage of faults at t = 1 to 
6 for various applications [1].  We refer to the distribution of t-way 
faults as the fault profile.  Figure 1 shows the fault profile for a 
variety of fielded products in different application domains, and 
results for initial testing of a NASA database system. As shown 
in Figure 1, the fault detection rate increases rapidly with interac-
tion strength, up to t=4.  With the medical device applications, 
for example, 66% of the failures were triggered by only a single 
parameter value, 97% by single values or 2-way combinations, and 
99% by single values, 2-way, or 3-way combinations. The detection 
rate curves for the other applications studied are similar, reaching 
100% detection with 4 to 6-way interactions.   Studies by other 
researchers have been consistent with these results. Thus, the im-
possibility of exhaustive testing of all possible inputs is not a barrier 
to high assurance testing.  That is, even though we cannot test all 

 Figure 1. Cumulative fault distribution
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possible combinations of input values, failures involving more than 
six variables are extremely unlikely because they have not been 
seen in practice, so testing all possible combinations provides very 
little benefit beyond testing 4 to 6-way combinations. 

Matrices known as covering arrays can be computed to cover 
all t-way combinations of variable values, up to a specified level 
of t (typically t ≤ 6), making it possible to efficiently test all such 
t-way interactions [2].   The effectiveness of any software test-
ing technique depends on whether test settings corresponding 
to the actual faults are included in the test sets.  When test sets 
do not include settings corresponding to actual faults, the faults 
will not be detected. Conversely, we can be confident that the 
software works correctly for t-way combinations contained in 
passing tests. 

As with all testing, it is necessary to select a subset of values 
for variables with a large number of values, and test effective-
ness is also dependent on the values selected, but testing t-way 
combinations has been shown to be highly effective in practice. 
This approach is known as combinatorial testing, an extension 
of the established field of statistical Design of Experiments 
(DoE), endorsed by the Department of Defense Office of Test 
and Evaluation in 2009 [3], and used by commercial firms with 
demonstrated success.  

Coverage Implications of Fault Distribution
The distribution of faults reported above suggests that testing 

which covers a high proportion of 4-way to 6-way combinations 
can provide strong assurance.  If we know that t or fewer vari-
ables are involved in failures, and we can test all t-way combina-
tions, then we can have reasonably high confidence that the 
application will function correctly.  As shown above, the distribu-
tion of faults varies among applications, but two important facts 
are apparent:  a consistently high level of fault detection has been 
observed for 4-way and higher strength combinations; and no 
interaction fault discovered so far, in thousands of failure reports, 
has involved more than six variables.  

Any test set, whether constructed as a covering array or not, 
contains a large number of combinations.  Measuring combina-
torial coverage, i.e., the coverage of t-way combinations in a test 
set, can therefore provide valuable information about test set 
quality.  Combinatorial coverage includes a number of advan-
tages for assessing test quality:

•   Computed independently of other evaluations of test quality.  
Combinatorial coverage provides additional information for 
decision-makers, and may be used in conjunction with struc-
tural coverage, mutation testing, or other approaches.

•   Direct relationship with fault detection.  The size of the 
input space spanned by the test set, a significant aspect 
of fault detection, can be measured by the number of 
t-way combinations up to an appropriate level of t.  The 
proportion of t-way combinations covered measures the 
fractional size of the input space that is tested. 

•   Simple to compute and interpret.  Because it is based on 
the input space of test values, there is no need to run the 
system under test to compute this measure of test set 
quality.  Freely available tools can be used on any test set 

expressed as a matrix where rows are tests and columns 
are parameter values.   

Measuring Coverage of Fault-triggering  
Combinations

Combinatorial testing is based on covering all t-way combina-
tions for some specified level of t, but this form of testing may 
not always be practical because of established test practices, 
legal or contractual test requirements, or use of legacy test sets.  
An alternative to creating a combinatorial test set from scratch 
is to investigate the combinatorial coverage properties of an 
existing test set, possibly supplementing it with additional tests 
to ensure thorough coverage of system variable combinations.  
Determining the level of input or configuration state-space cov-
erage can help in understanding the degree of risk that remains 
after testing.  If a high level of coverage of state-space variable 
combinations has been achieved, then presumably the risk is 
small, but if coverage is much lower, then the risk may be sub-
stantial.  This section describes some measures of combinatorial 
coverage that can be helpful in estimating this risk.  

Variable-value configuration:  For a set of t variables, a vari-
able-value configuration is a set of t valid values, one for each of 
the variables, i.e., the variable-value configuration is a particular 
setting of the variables.    

Example.  Given four binary variables a, b, c, and d, for a 
selection of three variables a, c, and d the set {a=0, c=1, d=0} 
is a variable-value configuration, and the set {a=1, c=1, d=0} is 
a different variable-value configuration. 

Simple t-way combination coverage:  For a given test set of n 
variables, simple t-way combination coverage is the proportion 
of t-way combinations of n variables for which all valid variable-
value configurations are fully covered.    

Example.  Table I shows four binary variables, a, b, c, and d, 
where each row represents a test.  Of the six possible 2-way 
variable combinations, ab, ac, ad, bc, bd, cd, only bd and cd have 
all four binary values covered, so simple 2-way coverage for the 
four tests in Table 1 is 2/6 = 33.3%.  There are four 3-way vari-
able combinations, abc, abd, acd, bcd, each with eight possible 
configurations:  000, 001, 010, 011, 100, 101, 110, 111.  Of 
the four combinations, none has all eight configurations covered, 
so simple 3-way coverage for this test set is 0%.  As shown 
later, test sets may provide strong coverage for some measures 
even if simple combinatorial coverage is low.

It is also useful to measure the number of t-way combinations 
covered out of all possible settings of t variables.  

Total variable-value configuration coverage:  For a given 

a b c d 
0 0 0 0 
0 1 1 0 
1 0 0 1
0 1 1 1 

(1)	  
(2)

Table 1. Test array with four binary components
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combination of t variables, total variable-value configuration cov-
erage is the proportion of all t-way variable-value configurations 
that are covered by at least one test case in a test set.  This 
measure may also be referred to as total t-way coverage. 

The number of t-way combinations in an array of n variables is 
C(n,t) = n!/(n-t)!t!, or “n choose t”, the number of combinations of 
n things taken t at a time without repetition.  If each variable has 
v values, then each set of t variables has vt configurations, so the 
total number of possible combination settings is vt ×C(n, t).  Any 
test set covers at least some fraction of this amount.  (Note that 
there is a natural extension of this formula for the case where 
variables do not all have the same number of values.)  For the 
array in Table I, there are C(4,2) = 6 possible variable combina-
tions and 22×C(4,2) = 24 possible variable-value configurations.  
Of these, 19 variable-value configurations are covered and the 
only ones missing are ab=11, ac=11, ad=10, bc=01, bc=10, so 
the total variable-value configuration coverage is 19/24 = 79%.  
But only two, bd and cd, out of six, are covered with all 4 value 
pairs.  So for simple t-way coverage, we have only 33% (2/6) 
coverage, but 79% (19/24) for total variable-value configuration 
coverage. Although the example in Table 1 uses variables with 
the same number of values, this is not essential for the coverage 
measurement, and the same approach can be used to com-
pute coverage for test sets in which parameters have differing 
numbers of values.

Figure 2 shows a graph of the 2-way (red/solid) and 3-way 
(blue/dashed) coverage data for the tests in Table 1.  Cover-
age is given as the Y axis, with the percentage of combinations 
reaching a particular coverage level as the X axis.  For example, 
the 2-way line (red) reaches Y = 1.0 at X = .33, reflecting the 
fact that 2/6 of the six combinations have all 4 binary values 
of two variables covered.  Similarly, Y = .5 at X = .833 because 
one out of the six combinations has 2 of the 4 binary values 
covered.  The area under the curve for 2-way combinations is 
approximately 79% of the total area of the graph, reflecting the 
total variable-value configuration coverage.   

Practical Examples
The methods described in this paper were originally devel-

oped to analyze the input space coverage of tests for space-
craft software [4][5].  A set of 7,489 tests had been developed, 
although at that time combinatorial coverage was not the goal.  
With such a large test suite, it seemed likely that a huge number 
of combinations had been covered, but how many?  Did these 
tests provide 2-way, 3-way, or even higher degree coverage?  

The original test suite had been developed to verify correct 
system behavior in normal operation as well as a variety of fault 
scenarios, and performance tests were also included.  Careful 
analysis and engineering judgment were used to prepare the 
original tests, but the test suite was not designed according 
to criteria such as statement or branch coverage.  The system 
was relatively large, with the 82 variable configuration 132754262 
(three 1-value, 75 binary, two 4-value, and two 6-value). Figure 
3 shows combinatorial coverage for this system (red = 2-way, 
blue = 3-way, green = 4-way, orange = 5-way).  This particular 
test set is not a covering array, but pairwise coverage is still 

relatively good, because 82% of the 2-way combinations have 
100% of possible variable-value configurations covered and 
about 98% of the 2-way combinations have at least 75% of 
possible variable-value configurations covered. 

Figure 4 shows a smaller example based on a US Air Force 
test plan [6] with seven parameters in a 243142 (four 2-value, 
one 3-value, and two 4-value) configuration, with 2-way through 
6-way coverage for 122 tests.  Coverage is remarkably high, 
with nearly 100% of all 2-way through 4-way combinations 

interaction combinations settings coverage 
2-way 3321 14761 94.0 
3-way 88560 828135 83.1 
4-way 1749060 34364130 68.8 
5-way 27285336 603068813 53.6

Table 2. Total t-way coverage for Fig. 3 configuration.

Figure 2.  Graph of coverage for Table 1 tests

Figure 3. Configuration coverage for spacecraft example.
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covered.  Note that the 2-way and 3-way lines are not visible 
because with 100% coverage they appear as vertical lines on 
the right side of the chart.  

Figure 5 shows how coverage declines with 25% of the tests 
removed.  Although the smaller test set has less coverage for all 
but 2-way combinations, coverage is still relatively high, so a test 
manager might consider this comparison in reviewing the cost/
benefit tradeoffs of adding or removing tests.  

interaction combinations settings coverage 
2-way 21 152 100 
3-way 35 664 100 
4-way 35 1690 98.7
5-way 21 1818 69.7 

Table 3. Coverage for Fig. 4 configuration.

Figure 4. Configuration coverage for USAF test plan. 

Figure 5. Configuration coverage, 75% of tests in Fig. 4. 

Table 4. Coverage for Fig. 5 configuration.

interaction combinations settings coverage
2-way 21 152 100 
3-way 35 664 99.5 
4-way 35 1690 90.0 
5-way 21 1818 56.7 

Computing Combinatorial Coverage
Tools are available to compute the measures discussed in 

this article.  Several covering array generators can compute total 
coverage, and NIST-developed tools that are freely available 
can compute a variety of additional measures, and produce the 
reports included in examples above.   The tools also include em-
bedded constraint solvers, making it possible to produce counts 
of covered combinations excluding those that are not possible 
physically, or should be excluded because of constraints among 
variables.  This is an essential feature for real-world use.  It is 
also possible to generate additional tests to supplement those 
analyzed, to bring coverage up to any desired level.

The methods and tools introduced above were developed for 
analysis of NASA software tests, and additional NASA usage has 
suggested the following areas of utility [7]:  1) as an inline analysis 
tool for evaluating developer tests, 2) as a planning tool during test 
development to ensure adequate coverage, 3) as an IV&V audit tool 
for auditing completed IV&V analysis or multi-project test plans. 

Conclusions
Combinatorial coverage provides valuable information for 

decision-makers because it measures the proportion of the 
input space that is covered relevant to testing.  Because only 
a small number of variables are involved in failures, testing all 
settings of 4-way to 6-way combinations can provide strong 
assurance.   For example, if we measure the t-way coverage of 
tests, and find that all 4-way combinations are covered, 90% of 
5-way combinations, and 70% of 6-way combinations are cov-
ered, we can reasonably conclude that very few potential failure-
triggering combinations have been left untested.  Conversely, we 
can also have confidence that the system has been shown to 
work correctly for almost all of the relevant input space.  Thus, 
combinatorial coverage can provide significant value in evaluat-
ing test quality. 
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Abstract.  Without having in place data-driven metrics that give a holistic 
business perspective of software integration testing laboratories, leaders of the 
DoD’s weapons programs are unable to optimize the performance of these full-
system and subsystem integration labs that test and certify integrated hardware 
and software during the development, modernization, and sustainment of the U.S. 
military’s integrated and complex systems. Yet these metrics are not available 
across the DoD lab footprint, even though the labs’ significance is growing in par-
allel with the military’s rapid shift from using equipment with capabilities based on 
advanced hardware to equipment that is dependent on fully integrated, complex 
systems of both hardware and software. 

Metrics That Matter 
in Software Integra-
tion Testing Labs

This game-changing shift is now evident in weapons programs 
throughout the military. It’s seen, for example, in the F-35 program, 
whose software over the years has increased in size to approximately 
24 million source lines of code, which has made the testing more 
difficult and led, in part, to the program’s multiyear delays (see 
Figure 1).

As this shift intensifies, so too does the program leaders’ need to 
successfully compare the operations of any lab to that of any other 
lab, each of which today approaches software integration testing 
with its own particular processes for measuring its progress and 
success. They simply need to be able to answer several pertinent 
questions that they cannot answer now, such as the following:

•   Is the lab running at the appropriate level of efficiency, ef-
fectiveness, and cost, and if not, how can the current level 
of performance be improved?

•  Can the lab handle additional testing and, if so, how much 
should be moved there and from where?

• Should the lab be updated and, if so, how much money 
should be spent on the update?

• Should the lab be closed rather than updated and should 
the testing be transferred to another facility?

• Would the labs see reduced costs and improved performance 
with the purchase of new, faster testing equipment?

The Need for Metrics That Matter
The need to have metrics that matter when making decisions 

facing software integration labs was recently underscored by 
Robert Ferguson of Carnegie Mellon University’s Software En-
gineering Institute (SEI). Ferguson’s 2012 research shows that 
using project dashboards and following the right measurements 
are critical to project management because they provide manag-
ers with the information they need to perform different tasks at 
the correct times—much like the dashboard of a car leads to a 
successful journey by preventing the driver’s running out of gas, 
going over the speed limit, or arriving late [1].

Ferguson showed a project dashboard—which should be con-
structed to suggest different decisions about product quality, 
and about directing and controlling the work—provides mea-
sures for the critical areas of project decision making. These 
measures include scheduling, resource allocation, scope and 
change, product quality, and effective process performance. In 
addition, the dashboard should do the following:

• Forecast milestones and delivery of scope
• Provide clear warnings if the plan is not working or an 

unplanned event has affected some desired outcome
• Support re-estimation and re-planning by showing the 

magnitude of the problem
Measures like these have never been more important than in 

today’s environment in which software integration labs deliver 
the software and hardware capability weapon programs must 
have to win on the battlefield—a critical role the labs can per-
form only if they have the metrics they need. 

Unfortunately, most software and program leaders today are 
attempting to make decisions without metrics that matter to them. 
Primarily, they have engineering- and technology-based metrics—
metrics that are of value to those who care mostly about being 
able to test a single piece of equipment, not manage the overall 
operation of a lab or group of labs. What they need are metrics 
that are valid to those who must make command-level decisions 
from a holistic business perspective. 

When DoD leaders try to make decisions like moving one 
lab’s testing to other labs, they run headlong into major problems 
caused by the lack of metrics that really matter. Since each lab 
measures its progress and success with its own unique processes, 
decisions across the footprint are made using a nonstandard, and 
often ad hoc, approach. And with no standard set of metrics, lead-
ers are uncertain about what the available metrics mean, which 
ones matter, and how they can use them to make fully informed 
command decisions about the system integration labs. Their con-
fusion is compounded by the lab contractors’ belief that since the 
labs use different technologies, test different equipment, and have 
completely different workloads, they cannot provide the metrics 
needed to compare operations—a belief that has been proven 
groundless in many other industries. 

It was this confusion that led the leaders of a major avionics 
program in the DoD to determine they needed to significantly 
improve the way they looked across multiple labs to compare Note: SLOC for F-16 and F-22 are at first operational flight. F-35 SLOC figures are from first test flight and current estimates/sources.

Source: Hagen, C., Hurt, S., Sorenson, J. “E�ective Approaches for Delivering A�ordable Military Software.” CrossTalk – The Journal of Defense 
Software Engineering, Vol. 26 No. 6 (November-December 2013).

Figure 1 
The amount of software in military avionics systems has skyrocketed

F-16A Block 1 (1974)

F-16D Block 60 (1984)

F-22 Raptor (1997)

F-35 Lightning II (2006)

F-35 Lightning II (2012)

F-35 Lightning II (2012)
Operational and support software
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Source lines of code (SLOC) for select avionics programs 
(in thousands)
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24,000
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operating costs, performance, and other key metrics. Through 
research they concluded that the metrics that matter the most 
for use in the system integration labs would come from examin-
ing operations with similar capital-intensive processes. 

They found the metrics they needed in manufacturing and opera-
tions, which has long been using a standard set of metrics—capacity, 
efficiency, effectiveness, and capability—to compare the operations of 
manufacturing plants, regardless of what the plants were producing. 
While the type of work done in these manufacturing facilities—input-
ting parts, assembling them, and outputting completed products—dif-
fers greatly from that of the integration labs—inputting software code 
and hardware, running tests against the code, and putting out a 
report on whether the code is good or bad—the processes are similar. 
Therefore, the metrics can be similar as well (see Figure 2). Although 
much has been written about software estimation and quality, [2, 3, 
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], much 
less has been written about software integration testing.

The metrics found in these plants are derived from the body of 
work in manufacturing excellence that crosses many industries 
having similar processes, although a variety of products. They also 
are perfectly applicable to software integration labs. And now a few 
decision makers across the labs are starting to discover that these 
metrics—capacity, efficiency, effectiveness, and capability—enable 
them to not only measure and improve each software lab’s cost and 
performance but to effectively manage all their labs as they test 
software systems that are fast becoming the strategic weapons on 
which the military’s future success depends.

These four metrics closely resemble those of the overall equip-
ment effectiveness (OEE) framework that was developed over 
the years to measure how effectively a process was executed in 
a manufacturing facility, and is now being used across industries, 
including the automotive sector. This framework was designed to 
give leaders the metrics to compare processes across factories and 
industries—the metrics they simply have to understand if they are to 
manage effectively their businesses and operations.

OEE, as research shows, is based on a standard set of 
metrics for understanding the manufacturing process [22]. It 
is captured through the following formula: OEE = machine 
availability x machine performance x product quality. The result 
is presented as a percentage that can be used to understand 
how the current manufacturing process of a plant is perform-
ing, and to determine how one or all three of these factors can 
be changed to improve this performance. It can also be used 
to compare performance across manufacturing plants within a 
company, throughout an industry, or across industries. 

Additional research has shown that OEE can be applied more 
generally to operations, plants, and machinery. An article from 
2003, for example, shows how cross-functional teams can apply 
OEE principles to multiple areas of operations and further shows 
that OEE principles can be applied to areas beyond manufacturing, 
pointing the way to its application in software integration labs [23]. 

Leaders in the avionics program tweaked this framework for 
use within the department’s software integration laboratories. 
They have learned that the four metrics—capacity, efficiency, 
effectiveness, and capability—are easily transferable to the labs 
because their measurements are directly comparable to those 
made in the automotive factories (see Figure 3).

Capacity
While automotive factories count their output of vehicles per 

hour, software integration labs measure capacity by counting the 
number of tests executed per hour. 

This metric, measured in test points, is the throughput per hour 
in terms of a lab’s ability to execute its raw work. Test points, which 
at a basic level represent specific criteria to evaluate for validation 
and successful testing (for example, specific engineering perfor-
mance values or, for a smoke test, the expected system output to a 
standard set of inputs), are used as a basis for the starting point for 
lab capacity. Test points are executed within a variety of test types, 
such as integration, verification, and regression tests. They are a 
measure of how much work, in total units, could be accomplished if 
the lab worked nonstop around the clock.

Capacity is measured in test points, which can easily be con-
verted into derivative metrics like shift, daily, and yearly capacity. 
And it serves as the best proxy for lab size, showing whether the 
lab equates to a factory that is big or small. Knowing this capacity 
will, among other things, help DoD leaders determine whether the 
work they want to shift to another lab can be handled by that lab 
or not, vis-à-vis capability or capacity. 

Because test points are the basic unit of lab production, 
comparing dollars per test point is the core indicator of a lab’s 
cost. Using this comparison, decision makers can determine, for 
example, the cost of running a test or of finding a defect—such 

Source: A.T. Kearney analysis

Figure 2
The metrics for manufacturing and for software testing labs are similar
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Source: A.T. Kearney analysis

Figure 3 
Software metrics for laboratory performance
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as a major defect that would cause the postponement of an 
unmanned vehicle’s mission or a minor defect that might cause 
the malfunction of a truck’s power steering.

Efficiency
While automotive factories check the number of “lemons” pro-

duced each hour, software integration labs measure efficiency by 
checking the number of tests executed hourly “on condition.”

This quality metric indicates how well a lab is doing its work. If it 
can do 100 units of work each day, but only 50 units, on average, 
are correct, the labs’ efficiency metric would be quite low. 

“On-condition” is a test executed successfully—a determination 
based on the checklist and setup procedures handed down by the 
system engineers. Since the test is successful, it does not need 
to be performed again. Efficiency measures the percentage of 
tests executed correctly—not whether the software being tested 
passed or failed the test—and is calculated by dividing test points 
on condition by total test points attempted. “Off-condition” is a 
test that must be repeated because an error occurred in testing 
methods or setup. A false “on-condition” test is properly executed 
on condition, but it must be repeated because further analysis 
shows the test package was poorly designed. 

Tightly linked, lab capacity and efficiency are often measured 
together to provide a clear understanding of their combined effect. 
With baselines derived from this combination, leaders can begin 
making command-level decisions about issues such as how a given 
action would change the lab’s throughput, how a different action 
would affect the lab’s cost per hour or cost per defect, and how 
some other action would impact the lab’s efficiency or capacity.

Effectiveness
While automotive factories count the number of quality assur-

ance fixes, software integration labs measure effectiveness by 
counting the number of software defects. 

This metric points out how good a lab is at discovering 
errors. If, for example, its primary purpose is to find defects or 
certify code, the number of work units to defects could be a 
measure of effectiveness.

Effectiveness is measured by the number of test points execut-
ed per defect found, and it is calculated by defect found divided 
by test points attempted. This measurement of the lab’s testing 
procedure shows how many tests must be run before the lab 
starts finding errors in the testing procedure. This metric is based 
on the assumption that labs have the capability to properly test the 
code. Testing capability means having the subject matter expertise, 
the appropriate number of personnel, and the right equipment to 
test the code. Since this metric measures the lab’s ability to find 
defects in an existing code base, the resulting output of the metric 
is driven by the quality of the code being tested by the lab. Since 
quality of code can vary greatly across different development types 
and teams, this metric should not be used as an absolute value 
to compare labs across different development types. Instead, the 
trending of this metric within projects of similar size and scope can 
help a lab administrator track a lab’s performance compared to 
historical testing efforts. 

In a white paper on their research into software defects, SEI’s 
Julie Cohen, Robert Ferguson, and William Hayes show that 
classifying defects appropriately and tracking them differently 

can increase lab effectiveness [24]. They suggest quantifying 
the priority of addressing these defects by assigning a Risk 
Priority Number (RPN) to each defect, a number that is calcu-
lated with “three distinct attributes of failure sources”: severity, 
“a rating of the adverse impact of the failure”; occurrence, “how 
often the source of failure is encountered”; and detection, “how 
detectable the failure is when it occurs.” 

While not specifically addressing defects in software integra-
tion labs, the SEI authors underscore the need to view the defect 
data in the appropriate way with the appropriate metrics. This 
approach is essential to solving the broader issues DoD lead-
ers face as they try to more effectively manage labs across the 
footprints.

Capability
While automotive factories explore the functionality of  

their equipment and what each factory can make, software 
integration labs measure capability by exploring the ability of 
each lab to meet the overall requirements. 

This metric is the skill set of a lab’s workforce and the func-
tionality of its equipment. It is used to compare how well each 
lab can test specific areas of the software and is the function of 
three factors:

•  Knowledge, which is assessed across product, functions, and 
technology, and is proven through work experience requiring 
expertise in the product, function, and technology areas

•  Competency, which is assessed across current work behaviors 
and skills required to perform the work and proven by the exis-
tence of artifacts, such as current job descriptions and training, 
which are used to validate managers’ and directors’ scores for 
their teams and specific knowledge areas

•  Capacity, which is measured by the availability and readi-
ness of the lab’s resources (human and infrastructure) to 
perform an activity 

Because capability is also directly affected by a lab’s equip-
ment composition, this composition must be analyzed in any 
lab-to-lab comparison.

Capability plays a major role in leaders’ overall management 
decisions because it has an implicit effect on the other three 
metrics that matter. Therefore, its impact on each of these 
metrics must be understood before making changes to the size, 
experience, or skill set of the workforce. 

Approach to Applying the Metrics That Matter
When the leaders of the avionics weapons program began to 

evaluate the current strategy for software integration labs and 
to explore alternative models that might deliver better value, they 
quickly learned they needed metrics on which to base deci-
sions—data-driven metrics that matter. In order to complete the 
evaluation, the team developed metrics that illuminated each 
lab’s actual performance. These metrics drove the assessment 
of software integration labs and enabled leaders to accurately 
measure and compare lab performance across the footprint. 
They made possible the direct lab comparisons for analysis and 
enabled the leaders to create a business case to model future-
state scenarios and compare cost savings, transition risks, and 
steady-state capacity risks across scenarios (see Figure 4). 

As an example of the power that using the correct metrics gives 
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to business leaders evaluating testing labs, Figure 5 describes a 
hypothetical model of additional hours of test time required during a 
lab transition scenario. By understanding a lab’s normal throughput 
in tests and operational efficiency (first time right execution), the 
effects of the overall program test hours can be estimated as dif-
ferent areas of the lab are shut down to transition.

In this example, the lab is transitioning in two phases, each 
of which will reduce the testing capacity of the lab during 
the transition time. Using the appropriate metrics the leaders 
can estimate the impact to the program and additional hours 
required to keep the same level of testing results as before the 
transition started (revised test hours).

Besides evaluating the labs’ current strategy and exploring 
alternative value models, the assessment’s specific objective 
was to reduce the labs’ life cycle costs by moving the program’s 
testing from its current location to potential alternatives and to 
do so without degrading current performance. The program also 
set out to answer questions about the attributes of the current 
lab footprint; about alternatives to the current lab environment; 
about the costs, benefits, and risks of the current plan and the 
proposed alternatives; and about the recommended strategy 
(current plan versus proposed alternatives). 

The program met its objective with a thorough analytical review 
of the current long-term strategy and potential alternatives. In do-
ing so, it determined that the best value alternative would result in 
the lowest life cycle cost with manageable risk while not degrad-
ing lab capabilities or performance. 

Results
The metrics developed during the assessment provided the 

information needed for the leaders to recommend that the 
avionics program transition the testing to the alternative labs 
but maintain the current lab’s performance and its operator and 
equipment capability. This result provided less risk during the 
transition as well as steady state. It also saved more than 30 
percent in life cycle costs, for a total net present value savings 
of hundreds of millions of dollars (see Figure 6).

Using the metrics, the team modeled several courses of action 
through the perceived end-of-life. From these, it recommended 
a clear course of action for moving the testing, including the 
expected cost savings, transition risks, and potential risks. 

The clear, communicable metrics that were created reflect 
lab capacity, efficiency, effectiveness, and capability—the four 
metrics that matter to program leaders and make it possible for 
them to manage labs more effectively.

Assessing the performance of the system integration labs not 
with ad hoc metrics valued only by technicians and engineers 
but with a standard set of metrics that matter to decision mak-
ers needing a holistic business perspective can lead to valuable 
manufacturing-environment benefits, such as the following:

•  Transparency. With a clear, communicable set of metrics, 
leaders can quickly and accurately assess performance and 
capacity. In addition, fact-based, apples-to-apples compari-
sons will enable them to contrast the performance of one 
lab to that of others.

•  Cost savings. Historically, cost advantages between labs have 
been hidden behind immaterial metrics. Now equal, meaning-
ful metrics highlight current cost-saving opportunities. 

Key performance indicators

Source: A.T. Kearney analysis

Figure 4
Lab comparison across common metrics
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Figure 5
Example analytic framework for workload shift across integration labs
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Figure 6 
Focusing on metrics that matter can reduce life cycle costs
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•  Risk mitigation. The metrics will take into account current 
and future lab capacity, allowing for more accurate esti-
mates of cost and potential schedule delays.

•  Negotiations support. The metrics will provide the facts on 
which the best negotiations are based and enable DoD leadership 
to accurately size and negotiate requirements for contracting labs. 

Moreover, with these metrics that matter, program leaders will 
have the solid measures they need to develop a full understanding 
of the labs’ current level of efficiency, a starting point on which to 
base both minor and command-level decisions for the future and 
for determining the impact of those decisions—whether they are 
about adding capacity, reducing costs, hiring employees, improv-
ing throughput and quality, or similar issues. And as they make 
these decisions that will drive the effectiveness and savings of labs 
across the footprint, they will further strengthen labs’ role in deliver-
ing the most advanced systems to U.S. weapon programs. 
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Introduction
A software system’s operational behavior can be characterized 

by not only its functional requirements - what the system does – 
but also its non-functional requirements (NFRs) - how usefully and 
usably the system executes its functions. To forecast the behavior 
of a software system in the cloud, we explore two primary run-time 
NFRs - cost and performance. The objective of the Silverlining 
Simulator is to predict the operational cost and performance of a 
system by building a model to imitate the operation of the software 
system under study. The simulation model needs a description of 
the basic cloud infrastructure topology (resource capacity) and a 

Lawrence Chung, The University of Texas at Dallas
Nary Subramanian, The University of Texas at Tyler
Thomas Hill, The University of Texas at Dallas
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Abstract.   A key question for a Chief Information Officer (CIO) would be the 
future run-time cost and performance of complex business application software, 
before deciding to migrate it to a cloud. It is difficult for CIOs to accurately esti-
mate cloud cost and performance in a fast and inexpensive manner. In this article, 
we describe “Silverlining”, a simulator for estimating the cost and performance of 
a cloud service before migration, to help the CIO not only with go/no-go deci-
sions but also with the budgeting for an appropriate cloud configuration. 

Silverlining: 
A Simulator to Forecast 
Cost and Performance 
in the Cloud

step-by-step depiction of the system operation workload (resource 
usage). The Google cloud infrastructure, employed in the case 
study, uses the following two primary classes of compute resources 
(shown in Figure 3): The Google App Engine (GAE) and the 
CloudSQL Database Engine. The CloudSQL Database Engine was 
simulated using three cloud configurations (Low-cost/low-power-
CPU server - D1, medium-cost/medium-power-CPU server - D16 
and high-cost/high-power-CPU server - D32). The low-cost/low-
power-CPU server - D1 provided adequate throughput to satisfy 
the management’s goal.

Silverlining Simulation Process   
In order to provide cloud forecasting capability, Silverlining - 

our simulator - must first be primed with appropriate base infor-
mation (examples in Figures 4 and 5). For this purpose, cost and 
performance goals are obtained from stakeholder requirements 
for the system, oftentimes in terms of service level agreements 
(SLAs) (See Figure 1 Step1), and their interdependencies are 
analyzed by means of a notational convention, called Softgoal 
Interdependency Graph (SIG), which is intended for represent-
ing and reasoning about NFRs. 

Next the characteristics of the intended software applica-
tion is estimated (Step 2), e.g., using varying workloads. The 
characteristics of the intended software application are then 
loaded as input into the simulator (Step 3/4), and the simula-
tor would output (Step 5) the cost and performance estimates 
for executing the software system, with varying workloads and 
cloud configurations, on the cloud. With proper adjustments for 
differences from the standard (Step6), the data from the simula-
tor can be used to estimate the cost and performance of the 
cloud, as well as choosing among the available cloud configura-
tions according to the particular cost and performance business 
goals that a CIO may have. 

Now, an important question is if and how much Silverlining is 
reliable – i.e., the accuracy of the simulation results. For Silverlin-
ing, experiments for a typical application were run on Google 
cloud (called Google App Engine, or GAE), with varying workloads 
and cloud configurations (such as platforms and infrastructure 
characteristics), for a variety of benchmark data, and, using the 
same workloads and cloud configurations, the results from Silver-
lining were compared against the benchmark data. The compari-
son showed the two sets of data were very close for the typical 
application (or class of applications) that was used for the experi-
ments. Of course, more experiments would be needed, in order 
for Silverlining to help a CIO and a cloud service provider assess 
and predict the cost and performance of a variety of (classes) of 
software applications, as well as choose among alternative cloud 
platforms and configurations, or, if needed, even adjust cost and 
performance business goals.

In this paper, a case study of a Vehicle Management System 
(VMS) Display-Status is presented, which has been in opera-
tion for almost three decades and will continue to be for many 
decades to come. This particular VMS is supposed to manage 
close to 100,000 vehicles, while carrying out a variety of tasks, 
such as keeping track of their locations and status (e.g., in normal 
operation or maintenance, or in emergency repair, moving or 
stationed), scheduling their routes, allocating crews, dispatching 
them, compiling statistics, reporting on work progress, etc.

Figure 1. Silverlining simulation modeling framework steps.
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In the following, the process of using Silverlining for the case 
study is described in a piecemeal manner.

The Vehicle Management CIO is contemplating the migration 
of the VMS to the cloud. Among other things, two requirements 
are of critical concerns - the total system operation costs cannot 
exceed $3,000 per month and the Display-Status application 
must perform at 300 transactions per minute (tpm). The perfor-
mance goals and VMS operational characteristics are used as 
input to the simulation forecaster. The CIO can run the simula-
tion on a local laptop computer and see the cost and perfor-
mance estimates immediately, i.e., without the time-consuming 
and costly development, tailoring, installation, configuration and 
testing the software system, as well as without (the use of) any 
real cloud or hardware equipment. 

Step 1: Set stakeholder cost and performance goals
First, a VMS Display-Status application SIG (Softgoal Interde-

pendency Graph) [1] is developed to represent a subset of the 
business and the system non-functional requirements (NFRs). 
Figure 2-1 shows these NFRs as business (soft-)goals – goals 
for which there is no absolute criteria for their complete satis-
faction - along with their sub-goals, and Figure 2-2 shows the 
system goals of the VMS, which are traceable to each other and 
the business (soft-) goals.

As shown in Figure 2-1, the final goal of the CIO of the organi-
zation is to maximize profits by lowering cost with good perfor-
mance of service. To achieve the business goal, the CIO may 
consider migrating to a cloud, while exploring several options.

The options being considered include a Consolidated Cloud, 
in which the whole VMS system is operated in the cloud. A 
Hybrid Cloud is another option, in which the VMS Data center 
manages important and highly confidential information and the 
cloud manages less important and less vulnerable information. 

Softgoals Each option has its own pros and cons, and the CIO 
can carry out an estimated tradeoff analysis in terms of potential 
benefits and risks that each option is likely to bring about. For 
example, a Consolidated Cloud is estimated to be better for 
Lower cost[Service] (green ++) than a Hybrid Cloud (red -), but 
worse for Security[Service] (red -) than a Hybrid Cloud (green 
S+, i.e., some +). The CIO can decide to choose one of the 
options that best meets (i.e., satisfices) the particular business 
goals as a business strategy, after confirming the tradeoff rela-
tionships between business goals and strategies by executing 
the Silverlining Simulator. In this case, we may assume, for the 
purpose of illustration, that the most important business goal is 
“Lower Cost”, hence consequently the CIO selecting a Consoli-
dated Cloud. By the way, due to the space limitation, we show 
the simulation results for only the VMS Consolidated Cloud, as 
indicated by solid lines; other ones whose simulation results are 
not shown in this paper are indicated by dotted lines. 

Softgoals, such as Good Performance and Lower Cost[VMS 
Consolidated Cloud] in the upper line in Figure 2-2, come 
from the business strategy on the right-hand side portion on 
the bottom of Figure 2-1. In consideration of the business 
strategy, a system analyst can then traceably establish the 
system’s concrete goals, such as Throughput and Cost, which 
respectively are quantified as 300 transactions per minute and 
$1.5 per hour, as shown in Figure 2-2. The alignment between 
business (soft-)goals and system (soft-)goals is represented by 
“eql” (equal relationship), as in “Good Performance[VMS CC] eql 
Good Performance[Throughput=300]” and “Lower Cost[VMS 
CC] eql Lower Cost[CostPerHour=$1.5/h].” Note that, in the 
piecemeal illustrations, Lower Cost[VMS CC] is considered more 
important than performance, when selection decisions are made.

To achieve the system goals, a system analyst finds out 
which configuration elements of a system infrastructure are 
needed, such as “WAN Media” and “Server Capacity”, by 
estimating the application workload of Step2. There may be 
several operational options to achieve the system goals for 
each system element, and a system analyst can also choose 
one option, using our simulator results. As in Figure 2-2, the 

Figure 2-1. The SIG for VMS Business goals.

Figure 2-2. The SIG for VMS System goals.
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“WAN media” has options such as Fiber, Cable, and Google 
USA-wide [2] which have their own round trip time.

Using the simulator and the WANTimeResponse formula, as in 
Figure 2-3, a system analyst can obtain results as shown in Table 
1. In this case, achieving all three subgoals of Good Performance 
[Throughput=300] will imply achieving Good Performance 
[Throughput=300] as well. Moreover, Good Performance [CPU 
Processing Waiting Time] and Good Performance [CPU Process-
ing Time] are estimated to be achievable, via the use of a Cloud 
with any of the three different capacities (D1, D16 and D32) 
being considered (Of course, this can be confirmed, or denied, by 
simulation results). This would, then, imply that Good Performance 
[Throughput=300] is estimated to be achievable. In other words, 
for example, if we estimate that D1 achieves Good Performance 
[CPU Processing Waiting Time] and Good Performance [CPU 
Processing Time], then based on the data in Table 1, all WAN 
media options will achieve the goal Good Performance [Through-
put=300] (See all contributions are green). However, their 
respective WAN Response Service Times (Table 1, second row) 
are distinguished with ++, +, S+, reflecting the different degrees 
to which the three different options contribute. 

From the perspective of the goal [CostPerHour=$1.5/h], 
the costs of Fiber, Cable, Google USA-wide, which respec-
tively are 1.9, 1.75, and 1.0, have contributions -, S-, + 
respectively. Hence, Google USA-wide achieves the system 
goal of Good Performance, and at the same with the lowest 
cost among the options considered. 

As in the above descriptions, A SIG serves as a notational 
convention for exploring options for achieving business and system 
NFR goals, such as cost and performance. At the end, it also 
serves as a record of the rationale for the various design decisions 
made, in consideration of tradeoff analysis (pluses and minuses) 
[3]. In Figure 2-1, for example, the pros (green lines) and cons (the 
red lines) from different options represent the contributions the 
different options make towards the NFR (soft-) goals. A Claim, 
“Lower Cost is the most important”, is the rationale for the particular 
decision made on the VMS Consolidated Cloud. Similarly in Figure 
2-2, the selection on Google USA-wide has the rationale with the 
claim “Achieve the Throughput Goal with the Lowest Cost.”

Table 1. Wide Area Network (WAN) Design Alternatives.

Figure 2-3. Formula for WANTimeResponse.

Figure 3. The VMS annotated application workload and workflow.

Many uses of SIG can be found in the literature. One such 
use, dealing with trustworthiness, can be found in [4].

Step 2: Estimate application workload
The workflow for the VMS Display-Status application, 

together with resource consumption, is shown in Figure 3. The 
estimated flow and consumption metrics were extracted from 
runtime transaction monitors [5, 6] and a standard relational 
database benchmark [7]. 

The Display-Status application flow is annotated in the fol-
lowing steps: 1. A small request message (1K bytes) is initiated 
by an average of 300 concurrent users; 2. The message is sent 
over the internet to a cloud provider’s Frontend engine; 3. The 
Frontend engine executes the Display-Status program (.0001 
service units); 4. The cloud Database engine updates and re-
trieves the status window (2.5 service units, 4 gigabytes); 5,6,7. 
The response message is returned; and 8. The (1 million bytes) 
message is displayed in the regional center. 

Step 3: Describe simulation experiment 
Figure 4 shows an operational Google App Script graphical 

user interface, which can be used to describe a single simula-
tion/forecaster experiment [8]. The GUI has four sections, 
which can be used to collect the data elements for the selected 
simulation experiment: 

Create Section - This section groups the XML file actions and 
establishes the simulation goals for response time (3 seconds) 
and throughput – i.e., applications transactions per minute (300).

Application Group Section - This section accumulates the 
operating characteristics of all application workloads - operating 
hours (24) and primary database size (4 gigabytes).

Application Workload Section - This section estimates the 
workload characteristics of each application – the total daily 
requests, workload mix percentage (10), keying time (10), think 
time, and the number of input and output operations. 

Cloud Infrastructure Configuration Section - This section describes 
the attributes of each component in the cloud infrastructure topology 
– the number of Clients (300), network elements, frontend compute 
characteristics (.0001), and the database storage characteristics (2.5).
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Step 4: Generate simulation experiment XML   
The Google App Script can generate XML to describe a simula-

tion/forecaster experiment. A selected sample of the XML, in 
Figure 5, is highlighted in red to demonstrate XML’s ability to com-
municate a complete simulation experiment description to multiple 
discrete event simulation modeling frameworks supporting multiple 
cloud provider infrastructures. The important additional annotations 
are explained with the following XML tag descriptions:

 
<apptitle>Display-Status 
<workloadmip>10 
<requestsmsgbytes>1000
<responsemsgbytes>1000000
<instancenbr>10 
<instanceclass>F1 
<costperinsthour>0.08 
<sqlinstanceclass>D1 
<sqlcostperinsthour>0.10 
<sqlcostpermio>0.10 
<sqlcoststoragepergbyteperm>0.24

The XML is designed to describe a complete simulation for 
the following open source discrete event simulation frameworks:

SimPy [9], CloudSim [10] and OMNet++ [11]. 

Step 5: Run Simulation experiment  
Simulation models are created for understanding the behavior 

of a complex system without actually constructing the system. 
Simulation eliminates the time and expense that are needed to: 
design, code and test the software system, not to mention the 
physical hardware equipment either.

Figure 6 presents the results of using an open source discrete 
event simulation framework, SimPy, for a particular simulation 
experiment, which corresponds to the Google App Engine cloud 
characteristics for 300 concurrent users. The report is formatted 
to closely align with Google’s monthly invoice format. An explana-
tion of the significant report data elements follows:

Section I. Latency-goal (3 seconds), Throughput-goal (300 
transactions per minute), Op-hours (operation hours per day 24) 
and #-users (number of concurrent users 300), Display-Status 
application SIM-THROUGHPUT-PER-MIN (throughput per 
minute 367.86), and Txn-workload-% (the percent of total trans-
actions dedicated to the Display-Status application 10).

Section II. The estimated daily frontend compute resource 
usage for 24 hours per day CHARGE is $83.35 daily or 
$2,500.39 per 30-day month.

Section III. The estimated daily database (D1 CloudSQL) re-
source usage for one database instance, read-write operations 
and storage is $12.40 per 30-day month is $372.20. Here, D1 
is the cheapest, hence with the lowest computing, infrastructure 
of Google App Engine, among 32 different infrastructures which 
enable the use of SQL.

The simulation run of 4-hours-simulation-clock-time, using a 
laptop computer (1.30GHz), took 2 minutes execution time at 
a very low cost. The simulation input variables can be modified 
to describe application workload changes and alternative cloud 
infrastructure configurations at a minimum cost. 

Figure 4. The GUI for the VMS simulation experiment. 

Figure 5. A selected XML description for the VMS simulation experiment.
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as-a-Service (PaaS) on this cloud with an indication of the class 
of Infrastructure-as-a-Service (IaaS) to be used. We then ran 
several experiments on this cloud system to collect cost and 
performance data. This data seeds the simulator-framework 
SimPy, which is written in the Python programming language, 
and the simulator is then able to predict, to a high degree of ac-
curacy, the cost and performance of operating a similar software 
system to the cloud. 

We have described the essentials of our system, Silverlining, 
in this paper and interested readers are referred to some of the 
references at the end of this article for further details. Further 
research in this area relates to identifying adjustment factors 
when the cloud to be migrated to is not exactly like the GAE, 
to creating a revised local stand-alone GUI front-end for the 
simulator (the current Google App Script GUI requires internet 
connectivity to operate properly), and to porting the simulator to 
other domains, in order to cover a wide range of software ap-
plications and a variety of clouds. The simulator source code can 
be obtained by a requesting email to any of the authors.
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Step 6: Validate distance to cloud benchmark
After a review of the simulation report, one question remains – 

“Is the simulation throughput of 368 transactions-per-minute (tpm) 
a reasonable result?” The Silverlining Lab at the University of  
Texas at Dallas maintains the results of cloud TPC-C [7] bench-
marks, ranging from 10 to 6000 concurrent users and throughput 
ranging from 12.5 tpmC to 7,029 tpmC, for two kinds of platforms 
– Java and Python – and for a variety of CloudSQL and NoSQL 
infrastructures [12]. 

Figure 7 plots (in blue) a subset of the cloud TPC-C bench-
mark to show 320 users with 338.1 transactions-per-minute 
throughput, in the table on the bottom. The VMS Display-Status 
simulation shows 300 users with 368 transactions-per-minute 
(in red) throughput, with a similar application profile (similar 
workload, service times, database activity and cloud infrastruc-
ture configuration), in the graph on the top. 

As seen in Figure 7, the comparison shows that the VMS 
simulation result is indeed very close (distance 320 to 368 
throughput) the corresponding benchmark result. Hence, the 
answer to the above question, “Is the simulation throughput of 
368 transactions-per-minute (tpm) a reasonable result?”, would 
be in the affirmative.

Conclusions: What the Silverlining Simulator Can Do
A common problem confronting just about every CIO is 

the cost and performance issues, when migration of software 
to the cloud is considered - a CIO needs to budget the cost 
and ensure that the performance of the system is not unduly 
compromised by the migration. This should be true whether the 
cloud is public, private, or hybrid, since the cost and performance 
in a cloud-based system is related to the configuration of the 
resources - different servers and platforms - supporting the 
intended software system. To aid the IT department and specifi-
cally the CIO, we have developed a simulator, Silverlining, that 
can forecast the cost and performance of a Google GAE and 
CloudSQL cloud infrastructure. 

Our simulator is benchmarked on the GAE with an industry 
standard benchmark application, TPC-C, which covers a class 
of online transaction processing (OLTP) relational database-
centric applications , and we deployed a configurable Platform-

Figure 7. VMS simulation data point to TPC-C benchmark curve comparison.

Figure 6. VMS SimPy simulation report.
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Abstract.  Multiple techniques and tools, including static analysis and testing, 
should be used for software assurance. Fuzz testing is one such technique that 
can be effective for finding security vulnerabilities. In contrast with traditional 
testing, fuzz testing only monitors the program for crashes or other undesirable 
behavior. This makes it feasible to run a very large number of test cases. This 
article describes fuzz testing, its strengths and limitations, and an example of its 
application for detecting the Heartbleed bug.

Fuzz Testing 
for Software 
Assurance

Fuzz Testing and its Role for Software Assurance
Software assurance is level of confidence that software is 

free from vulnerabilities, either intentionally designed into the 
software or accidentally inserted at any time during its life cycle 
and that the software functions in the intended manner [1].

Multiple techniques and tools should be used for software 
assurance. Static analysis tools examine code for weaknesses 
without executing it. On the other hand, testing evaluates a 
program by executing it with test inputs and then compares the 
outputs with expected outputs. Both static analysis and testing 
have a place in the software development life cycle.

Positive testing checks whether a program behaves as ex-
pected when provided with valid input. On the other hand, nega-
tive testing checks program behavior by providing invalid data as 
input. Due to time constraints, negative testing is often excluded 
from the software development life cycle. This may allow vulner-
abilities to persist long after release and be exploited by hackers. 
Fuzz testing is a type of negative testing that is conceptually 
simple and does not have a big learning curve.

Fuzz testing, or fuzzing, is a software testing technique that 
involves providing invalid, unexpected, or random test inputs to 
the software system under test. The system is then monitored 
for crashes and other undesirable behavior [2].

The first fuzzing tool simply provided random inputs to about 
90 UNIX utility programs [3]. Surprisingly, this simple approach 
led to crashes or hangs (never-ending execution) for a substan-
tial proportion of the programs (25 to 33%).

Fuzz testing has been used to find many vulnerabilities in 
popular real-life software. For example, a significant proportion 
of recent vulnerabilities in Wireshark (http://www.wireshark.org), 
a network protocol analyzer, were found by fuzzing. Large orga-
nizations are taking note. For example, Microsoft includes fuzz 
testing as part of its Security Development Lifecycle (http://
www.microsoft.com/security/sdl/default.aspx). 

A fuzzing tool, or fuzzer, consists of several components and 
a fuzzing process involves several steps [4]. First, a generator 
produces test inputs. Second, the test inputs are delivered to 
the system under test. The delivery mechanism depends on the 
type of input that the system processes. For example, a delivery 
mechanism for a command-line application is different from one 
for a web application. Third, the system under test is monitored 
for crashes and other basic undesirable behavior.

Strengths and Limitations of Fuzz Testing
Fuzz testing is conceptually simple and may offer a high ben-

efit-to-cost ratio. In traditional testing, each test case consists of 
an input and the expected output, perhaps supplied by an oracle. 
The output of the program is compared to the expected output 
to see whether the test is passed or failed. In the absence of 
executable specifications or a test oracle (e.g. a reference imple-
mentation or checking procedure), finding the expected output 
for a lot of test cases can be costly. In contrast, fuzz testing only 
monitors the program for crashes or other undesirable behavior. 
This makes it feasible to run hundreds of thousands or millions 
of test cases.

http://www.wireshark.org
http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx
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instead there must be monitoring for crashes or other generally 
undesirable behavior. However, many types of weaknesses do 
not produce clearly undesirable behavior. Therefore, more so-
phisticated detection that test input caused a failure can signifi-
cantly expand the classes of weaknesses uncovered by fuzzing. 
The following Section describes an example of using dynamic 
analysis tools to detect a weakness that does not cause a crash 
under normal operation.

Protocol Testing Experiment
The Heartbleed bug is a widely known vulnerability in 

OpenSSL, a popular implementation of the cryptographic proto-
cols Secure Sockets Layer (SSL) and Transport Layer Security 
(TLS). Briefly, under the Heartbeat protocol, the client sends a 
message and the message length to the server, and the server 
echoes back the message.

The Heartbleed vulnerability can be exploited to leak con-
fidential information, including passwords and authentication 
data. It was caused by the failure of OpenSSL to validate the 
message length, which caused Buffer over-read weakness [10]. 
For more details, an interested reader can examine Heartbit, 
an abstracted version of the OpenSSL code demonstrating the 
Heartbleed vulnerability [11]. Even though buffer overflow, which 
includes buffer over-read, is a well-known weakness, software 
assurance tools missed it [12].

Simple fuzz testing, which looks for crashes, would not have 
detected Heartbleed. The reason is that buffer over-reads rarely 
lead to program crashes. However, fuzz testing in combination 
with a memory error detection tool, may have detected Heart-
bleed, as demonstrated in [13]. 

Memory error detection tools, such as Valgrind (http://val-
grind.org) and AddressSanitizer (http://code.google.com/p/
address-sanitizer), are a type of dynamic analysis tools that can 
be used to instrument code to detect various memory errors, 
such as buffer overflows and use-after-free errors that may not 
cause a crash under normal operation. 

In the first experiment, [13] ran a vulnerable version of 
OpenSSL with Valgrind. When the fuzzer sent an exploiting 
Heartbleed request, Valgrind produced an error trace highlight-
ing the bug. In the second experiment, a vulnerable version of 
OpenSSL was compiled with the AddressSanitizer compiler 
option. When an exploiting Heartbleed request was sent to the 
server, it terminated and an error trace was produced. In both 
experiments, a programmer could use the error trace to find the 
Heartbleed bug.

Conclusions
Typical software testing, including fuzz testing, cannot be used 

alone to produce bug-free software. Since fuzz testing does not 
require a sophisticated oracle, it can quickly test a very large 
number of unexpected inputs. When combined with appropriate 
supplemental tools, this makes it possible to find security vulner-
abilities, such as the Heartbleed bug, which may be missed by 
other tools. As demonstrated by a large number of bugs recently 

Fuzz testing is effective for finding vulnerabilities because 
most modern programs have extremely large input spaces, while 
test coverage of that space is comparatively small [5].

While static source code analysis or manual review are not 
applicable to systems where source code is not available, fuzz 
testing may be used. Fuzz testing is a general technique and 
therefore may be included in other testing tools and techniques 
such as web application scanners [6].

Fuzz testing has a number of limitations [7]. First, exhaustive 
testing is infeasible for a reasonably large program. Therefore, 
typical software testing, including fuzz testing, cannot be used to 
provide a complete picture of the overall security, quality or ef-
fectiveness of a program in any environment. Second, it is hard 
to exercise the program thoroughly without detailed understand-
ing, so fuzz testing may often be limited to finding shallow weak-
nesses with few preconditions. Third, finding out what weakness 
in code caused the crash may be a time-consuming process. Fi-
nally, fuzz testing is harder to apply to categories of weaknesses, 
such as buffer over-reads, that do not cause program crashes. 

Fuzzing Approaches
Test input generation can be as simple as creating a se-

quence of random data [3]. This approach does not work well 
for programs that expect structured input. No matter how many 
tests are generated, the vast majority might only exercise a 
small validation routine that checks for valid input.

In regression testing, valid inputs may be collected, for example, 
from historical databases of unusual inputs that caused errors 
in the past versions of the software, and then supplied to the 
program without modification. Such approach can help uncover a 
weakness that reoccurs between versions or implementations, but 
is unlikely to uncover new weaknesses.

Most fuzz generators can be divided into two major categories: 
mutation based and generation based fuzzers [8]. A mutation 
based fuzzer produces test inputs by making random changes 
to valid test input, such as those from regression testing. This 
approach can be quickly applied to systems, such as protocols 
or word processors, that accept complex inputs. However, the 
coverage is only as strong as the set of valid test inputs. If there is 
no valid test input for a particular system component, the mutation 
based fuzzer is unlikely to cover this component.

A generation based fuzzer produces test inputs based on 
some specification of the input format. While implement-
ing the input format in enough detail requires a significant 
upfront effort, the generation based fuzzer can achieve very 
high coverage at lower cost.

A relatively recent approach, whitebox fuzz testing, combines 
symbolic execution with constraint solving to construct new 
inputs to a program [9]. Whitebox fuzzing has been used by Mi-
crosoft to find one third of all the bugs discovered by file fuzzing 
during the development of Windows 7.

The next step after producing test inputs is providing them to 
the system under test. Some common delivery mechanisms are 
files, environment variables, command line and API parameters, and 
operating system events, such as mouse and keyboard events.

Fuzz testing does not require knowing the expected output, 

http://val-grind.org
http://val-grind.org
http://val-grind.org
http://code.google.com/p/address-sanitizer
http://code.google.com/p/address-sanitizer
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discovered in production software, fuzz testing can be used to 
increase software assurance.

Disclaimer:
Any commercial product mentioned is for information only; it 

does not imply recommendation or endorsement by NIST nor 
does it imply that the products mentioned are necessarily the 
best available for the purpose. 
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Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

Software and Supply Chain Assurance (SSCA) Forum 
(Theme:  Enterprise Risk Management)
Co-sponsored by organizations in DoD, DHS, NIST & GSA
9-11 March 2015
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Long Beach, CA
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http://asq-icsq.org/index.html

IEEE International Conference on Cloud Engineering  
(IC2E 2015)
March 9-13, 2015
Tempe, AZ 
http://conferences.computer.org/IC2E/2015

Conference on Systems Engineering Research (CSER 
2015)
March 17-19, 2015
Hoboken, NJ 
http://www.stevens.edu/sse/CSER2015

The Southwest Cybersecurity Summit
March 25-26, 2015
Phoenix, AZ
http://www.afei.org/events/5A06/Pages/default.aspx

IEEE Mobile Cloud 2015 : The 3rd IEEE International  
Conference on Mobile Cloud Computing 
March 30-April 3, 2015
San Francisco, CA
http://mobile-cloud.net

ETAPS 2015 - 18th European Joint Conferences on Theory 
and Practice of Software
London, United Kingdom
11-19 April, 2015
http://www.etaps.org/2015

The Fourteenth International Conference on Networks  
ICN 2015
April 19-24, 2015
Barcelona, Spain
http://www.iaria.org/conferences2015/ICN15.html

WICSA 2015 — 12th IEEE Conference on Software  
Architecture
Montreal, QC, Canada
20-24 April 2015
http://www.computer.org/portal/web/conferences/calendar 

SATURN 2015- Software Engineering Institute (SEI)  
Architecture Technology User Network 2015
27-30 April 2015
Baltimore, MD
http://www.sei.cmu.edu/saturn/2015

Systems Engineering Test Evaluation Conference
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Canberra, Australia
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11th ACM/IEEE- Symposium on Architectures for  
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The 37th International Conference on Software Engineering
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Firenze, Italy
http://2015.icse-conferences.org

The 39th Annual International Computer, Software &  
Applications Conference
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Taichung, Taiwan
http://www.computer.org/portal/web/COMPSA

INCOSE 25th Annual Symposium IS 2015
13-16 July 2015
Seattle, WA
http://www.incose.org/newsevents/events/details.aspx?id=255

STC 2015, the 27th Annual IEEE Software Technology  
Conference
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Long Beach, CA
http://ieee-stc.org
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BACKTALK

The Proof is in the Testing:
After writing BackTalk columns for over 15 years, I’m out of ideas. No 
clues. Nothing to write about. Zip. Zilch.

I usually have a great stash of ideas – and I am SO used to grabbing 
my iPhone, and telling Siri to remind me “Write up story of the non-work-
ing GPS” or “Maybe hibernating skunks for next column?” Not this time. 
Not a single idea involving Testing and Diagnostics.

Of course, I have a great excuse. I am teaching a course on high-
integrity programming this semester here at the university. As any 
BackTalk reader for the last 15 years might know, I was (and still am) 
an Ada advocate. It’s a really good language for teaching high-integrity 
coding practices. We have decided to cover more “secure programming” 
in our curriculum, and I wanted to test-drive a course as “Special Topics” 
before we make it a permanent part of the curriculum. It’s keeping me 
pretty busy.

Nice thing about Ada – the language thinks about security for you. It 
gets real picky about mathematical conversions, and cheerfully lets the 
user know if there is a overflow or underflow in the conversion. In fact, 
you have to make a conscious decision to turn off error checking. And, 
why would you ever do that

Imagine a very simple Java program that inputs an integer from the 
keyboard, and adds one to it. In Java, if the number is equal to the largest 
possible integer, then adding one converts is to the smallest integer. It 
“wraps around.” And vice versa – subtracting one from the smallest nega-
tive integer will give the largest possible positive integer. Note that Java 
is one of the most used languages used in introductory computer sci-
ence – currently it’s #2 in popularity. You might think that C++ would be 
#1, but #1 is Python. However, Java is more of a “software engineering” 
language than Python, and many educators expect it to move back to #1 
next year. All I am saying is that if you can’t trust adding 1 to a number – 
what can you trust? It makes teaching “safe and secure” programming a 
challenge.

What about other common languages? In Python, the integer is 
converted to a “long”, which has unlimited length (obviously, implemented 
in software, not hardware). In C and C++, the behavior is undefined. In 
C#, it is possible to automatically “catch” this – but only if you are in a 
checked context.

What I am saying is that once you’ve had the thought, “Gee – I am 
adding to an integer here – should I worry about overflow?” you can’t un-
think it. It is no longer an error. It’s a condition you considered, and then 
you made the decision to not worry about it. 

And what if the software later fails because of an overflow or un-
derflow? Of course, that is highly unlikely, right? Heard of the Ariane 5 
(https://www.ima.umn.edu/~arnold/disasters/ariane.html)?  

Brief summary – back in 1996 the European Space Agency launched 
the Ariane 5 rocket, designed to launch two satellites into orbit. The 
Ariane 5 was the result of over $7 billion in development, and the rocket 
and cargo itself cost over $500 million. On its first launch, the guidance 
system catastrophically failed. How was this possible? After all, the guid-
ance software was based on the well-tested guidance software from the 
previous rocket version, the Ariane 4. 

Let me quote from James Gleick (http://www.around.com/
ariane.html): “…the guidance system’s own computer tried to 
convert one piece of data -- the sideways velocity of the rocket 
-- from a 64-bit format to a 16-bit format. The number was too big, 

and an overflow error resulted. ….. in this case, the programmers 
had decided that this particular velocity figure would never be 
large enough to cause trouble. After all, it never had been before. 
Unluckily, Ariane 5 was a faster rocket than Ariane 4. One extra 
absurdity: the calculation containing the bug, which shut down 
the guidance system, which confused the on-board computer, 
which forced the rocket off course, actually served no purpose 
once the rocket was in the air. Its only function was to align the 
system before launch. So it should have been turned off. But 
engineers chose long ago, in an earlier version of the Ariane, to 
leave this function running for the first 40 seconds of flight.”

Years of work. $7 billion in development. And “the programmers had 
decided…” If only they had used Ada, right? As a matter of fact, the 
Ariane 4 and 5 software was written in Ada, which automatically checks 
for overflow and underflow, should have triggered a exception that could 
have been safely detected, handled, and recovered from. However, to 
quote from (http://en.wikipedia.org/wiki/Ariane_5 ):

The software was originally written for the Ariane 4 where effi-
ciency considerations (the computer running the software had an 80% 
maximum workload requirement) led to four variables being protected 
with a handler while three others, including the horizontal bias variable, 
were left unprotected because it was thought that they were “physically 
limited or that there was a large margin of error.”

In other words – due to hardware considerations (the Ariane 4 CPU 
was overloaded) – consciously ignoring automatic overflow and under-
flow checking saved a few machine cycles. Don’t get me wrong – the 
Ariane 4 software was perfect for the given requirements (hardware 
and software). The processor in the Ariane 4 was heavily loaded – and 
the decision to turn off checking was probably well analyzed. It was 
only much, much later, when the code was reused for a different set of 
requirements, that the decision should have been revisited. But the code 
was “rock(et) solid” and well-tested – so why test it again? Copy and 
Paste. Control-C, Control-V, and go. Nothing to worry about, right?

It’s even sadder that there was an exact backup copy of the guidance 
software running on the Ariane 5 – an exact copy. So when the primary 
guidance software failed, control was immediately transferred to the 
backup copy. Running the same code, and encountering the exact same 
unhandled error. 

Software is like that. As Marin David Condic pointed out in his excel-
lent write up found at (http://www.adapower.com/index.php?Comman
d=Class&ClassID=FAQ&CID=328 ), it would be like reusing Corvette 
tires on a large 18 wheeler. Just because they are “tires” – the require-
ments and assumptions made initial development are no longer valid. 
What’s “good” for Corvette tires might not be “good” for a fully loaded 
semi. Likewise, code needs to be analyzed and tested, even if it’s been 
trusted for years. It’s just not safe to reuse otherwise.

But then, we already know that testing and diagnostics are important, 
right?

David A. Cook
Stephen F. Austin State University

P.S. Come to think of it, maybe I do have an idea for this BackTalk 
than might work. 

http://www.around.com/ariane.html
http://www.around.com/ariane.html
http://en.wikipedia.org/wiki/Ariane_5
http://www.adapower.com/index.php?Command=Class&ClassID=FAQ&CID=328
http://www.adapower.com/index.php?Command=Class&ClassID=FAQ&CID=328
https://www.ima.umn.edu/~arnold/disasters/ariane.html)?
http://en.wikipedia.org/wiki/Ariane_5):


CrossTalk thanks the 
above organizations for 
providing their support.
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