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INTRODUCTION 

Specific induction of cell death in tumors is considered one of the most desired and effective anticancer 
therapies.  Effective strategies to activate the apoptotic pathway, or other death mechanisms, are currently being 
intensely pursued.  A potent chemotherapy option is directly arming the cancer cells with executioner proteins 
or apoptotic-inducing proteins that are not targeted by anti-apoptotic maneuvers found in many tumors.  In this 
proposal, we will develop a new method to treat breast cancer by using a native-protein delivery approach.  This 
is a platform to deliver proteins in native forms into cells.  The key design feature of our strategy is to first 
encapsulate protein molecules in a thin layer of water soluble, positively charged, degradable polymer to form 
nanometer-sized nanocapsules.  The nanocapsule shell facilitates uptake of the protein content into cells, and 
protects the protein both during in vivo circulation and endocytosis.   To endow the nanocapsules 
biodegradability once entered the target cells, the polymer shell is crosslinked with redox-sensitive crosslinkers 
that can be reduced upon encountering the reducing environment of the cytoplasm. Our overall research 
objective is to thoroughly evaluate this delivery method as a potentially new therapeutic modality for breast 
cancer treatment.   Three aims will be pursued in parallel and results from each aim will be used to guide the 
refinement of other aims and the overall research objective.  1) Delivering different target proteins to breast 
cancer cell lines using this approach, including the tumor specific apoptin; 2) Equipping the protein 
nanocapsules with specific cancer cell targeting ligands; 3) Examining the in vivo potency and 
pharmacokinetics of the nanocapsules. 

BODY 

Summary of State of Work  

Specific Aim 1: Delivering different target proteins to breast cancer cell lines using protein nanocapsules 
Task 1. Preparing and characterizing of Apoptin contained nanocapsules  
-COMPLETED 
This task has been completed and published in Nano Today, 2013, 8, 11-20. (SEE REPORT 1 BELOW) 
We also characterized a new nanocapsule formulation in which eGFP and transcription factor P53 is included. 
The task has been published in Journal of the American Chemical Society, 2014, 136, 15319-15325. (SEE 
REPORT 2 BELOW) 

Task 2. in vitro studying Apoptin contained nanocapsules  
-COMPLETED 
This task has been completed and published in Nano Today, 2013, 8, 11-20. (SEE REPORT 1 BELOW) 

Specific Aim 2: Equipping protein nanocapsules with specific cancer cell targeting ligands; 
Task 3. Preparing and testing of MMP activatable cell penetrating peptides (ACCPs)-coupled nanocapsules  
-COMPLETED 
This task is described here. New chemistry is introduced and new peptide ligands are used, which is published 
in Journal of the American Chemical Society, 2014, 136, 15319-25.  (SEE REPORT 2 BELOW) 

Task 4. Preparing and testing of ligand-receptor affinity based targeting: Transferrin (Tf) and Herceptin 
-COMPLETED 
Completed and described here, published in Journal of the American Chemical Society, 2014, 136, 15319-25. 
(SEE REPORT 2 BELOW) 

Specific Aim 3: Examining the in vivo potency and pharmacokinetics of the nanocapsules. 

Task 5. Evaluating in vivo distribution of protein nanocapsules 
-COMPLETED 
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This task has been partially performed and published in Nano Today, 2013, 8, 11-20.(SEE REPORT 1 
BELOW) 

Task 6. Examining the in vivo pharmacokinetics of nanocapsules   
-NOT COMPLETED DUE TO INSUFFICIENT TIME 
We were not able to complete this aim in time at the completion of this grant.  We worked with Institute of 
Melanoma and Bone Cancer Research (www.imbcr.org) and devised a set of in vivo mice experiments. 
However, the amount of nanocapsule requirement was too large and we were not able to complete synthesis of 
the entire batch.   

Task 7. Determing the in vivo delivery efficacy of nanocapsules  
-COMPLETED 
This task has been completed and published in Nano Today, 2013, 8, 11-20.  (SEE REPORT 1 BELOW) 

The work on apoptin and p53 nanocapsules described here published in Zhao et al, Nano Today, 2013, 8, 
11-20 and in Journal of the American Chemical Society, 2014, 136, 15319-25. Both manuscripts are 
reformatted here. 

REPORT 1. Degradable Polymeric Nanocapsule for Efficient Intracellular Delivery of a 
High Molecular Weight Tumor-Selective Protein Complex (Tasks 1, 2, 5, and 7) 

1.1 Introduction 
The most desirable anticancer therapy is both potent and specific towards tumor cells(Atkins and 

Gershell, 2002; Gibbs, 2000).  Many conventional small molecule chemotherapeutics do not discriminate 
between cancerous and normal cells, cause damage to healthy tissues, and are therefore unable to be 
administered at high dosage.  In contrast, cytoplasmic and nuclear proteins that selectively alter the signaling 
pathways in tumor cells, reactivate apoptosis and restore tissue homeostasis, can delay tumor progression with 
less collateral damage to other tissues(Reed, 2003; Russo et al., 2006).  Using stimuli-responsive nanocarriers 
for the intracellular delivery of such proteins, including human tumor suppressors (Brown et al., 2009)and 
exogenous tumor-killing proteins (Backendorf et al., 2008; Los et al., 2009; Noteborn, 2009), is attractive as a 
new anti-cancer therapy modality. 

Apoptin is a 121-residue protein derived from chicken anemia virus (Backendorf et al., 2008).  When 
transgenically expressed, apoptin can induce p53-independent apoptosis in a variety of tumor and transformed 
cells(Zhuang et al., 1995), while leaving normal and untransformed cells unaffected(DanenVanOorschot et al., 
1997).  Apoptin exists as a globular multimeric complex, composed of thirty to forty subunits, with no well-
defined secondary structure (Leliveld et al., 2003). While the exact mechanism of the tumor selectivity is 
unresolved, apoptin is known to translocate to the nucleus where tumor-specific phosphorylation at residue 
Thr108 takes place, leading to accumulation of apoptin in nucleus and activation of the apoptotic cascade in 
tumor cell(Danen-van Oorschot et al., 2003).  In normal cells, apoptin is not phosphorylated at Thr108 and is 
located mostly in the cytoplasm, where it aggregates and undergoes degradation (Rohn et al., 2002).  Because of 
the high potency in inducing this exquisite tumor-selective apoptosis, apoptin has been investigated widely as 
an anti-tumor therapeutic option (Backendorf et al., 2008).  Different gene therapy approaches have been used 
to administer apoptin to mouse xenograft tumor models, in which significant reduction in tumor sizes and 
prolonged lifespan of mice have been observed without compromising the overall health (Peng et al., 2007; 
Pietersen et al., 1999; van der Eb et al., 2002).  However, as with other gain-of-function therapy candidates, in 
vivo gene delivery approaches using viral vectors may lead to unwanted genetic modifications and elicit safety 
concerns(Edelstein et al., 2007).  While protein transduction domain (PTD)-fused apoptin has been delivered to 
cells(Sun et al., 2009; Tavassoli et al., 2004), this approach suffers from inefficient release of the cargo from 
endosomes and instability of the unprotected protein (Murriel and Dowdy, 2006). Development of nanoparticle 
carriers to aid the functional delivery of apoptin to tumor cells is therefore desirable (Shi et al., 2010). 
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We chose to work with recombinant maltose-binding-protein fused apoptin (MBP-APO) that can be 
solubly expressed from Escherichia coli, whereas native apoptin forms inclusion bodies(Leliveld et al., 2003). 
MBP-APO has been shown to similarly assemble into a multimeric protein complex, which exhibits the 
essential functions and selectivity of native apoptin(Leliveld et al., 2003).  Nanoparticle-mediated delivery of 
functional MBP-APO poses unique challenges (Gu et al., 2011).  First, MBP-APO preassembles into large 
complex with an average diameter of ~40 nm and molecular weight of ~2.4 MDa (Leliveld et al., 2003).  To 
achieve nanocarrier sizes that are optimal for in vivo administration (~100 nm) (Adiseshaiah et al., 2010), a 
loading strategy that forms compact particles is desirable.  Second, in order to maintain the multimeric state of 
functional MBP-APO, the protein loading and releasing steps need to take place under very mild, physiological 
conditions in the absence of surfactants.  Lastly, the nanocarrier must completely disassemble inside the cell to 
release the MBP-APO in its native and unobstructed form to ensure the correct spatial presentation of key 
residues within the apoptin portion, including the nuclear localization/export signals, the phosphorylation site 
and other elements important for downstream signaling.  

In the current study, we selected a polymeric nanocapsule (NC) strategy for the functional delivery of 
MBP-APO, in which the protein complex is noncovalently protected in a water soluble polymer shell (Figure 
1).  This slightly positively-charged shell shields the MBP-APO from serum proteases and surrounding 
environment, while enabling cellular uptake of the polymer-protein complex through endocytosis (Gu et al., 
2009).  The polymeric layer is weaved together by redox-responsive cross-linkers containing disulfide bond (S-
S) that can be degraded once the NCs are exposed to the reducing environment in cytoplasm (Zhao et al., 2011).  
No covalent bonds are formed between the protein cargo and the polymer shell, which ensures complete 
disassembly of the capsule layer and release of native MBO-APO inside the cell.  Using this approach, we show 
that MBP-APO can be efficiently delivered to induce apoptosis in cancer cell lines selectively both in vitro and 
in vivo. 

1. 2 RESULTS AND DISCUSSION
1.2.1. Synthesis and characterization of apoptin nanocapsules 

MBP-APO (pI = 6.5) was first purified from E. coli extract using an amylose-affinity column.  Dynamic 
Light Scattering (DLS) measurement revealed an average hydrodynamic radius of 36.1 nm, consistent with the 
reported size for the recombinant MBP-APO complex (Leliveld et al., 2003).  Transmission Electron 
Microscopy (TEM) analysis of MBP-APO showed similarly sized protein complexes (Figure 1c and enlarged in 
Figure 1d).  Interestingly, MBP-APO complexes appear to adopt a disk-shaped structure despite the lack of 
defined secondary structure from the apoptin component.  Since the apoptin portion of the protein can self-
assemble into the ~40-mer complex, we propose a three dimensional arrangement of MBP-APO in which the C-
terminal apoptin forms the central spoke of the wheel-like structure (Figure 1b), with the larger MBP portion 
distributes around the apoptin.  The planar arrangement allows the apoptin portion of the fusion protein to 
remain accessible to its protein partners, which may explain how the MBP-APO fusion retains essentially all of 
the observed functions of native apoptin. 

The reversible encapsulation strategy for producing apoptin NCs is shown in Figure 1a.  Following 
electrostatic deposition of the monomers acrylamide (1 in Figure 1a) and N-(3-aminopropyl)methacrylamide 
(2), and the cross-linker N,N’-bis(acryloyl)cystamine (3), at a molar ratio of 1.5:1:0.14, onto MBP-APO (1 mg) 
in carbonate buffer (5 mM, pH 9.0), in situ polymerization was initiated with the addition of free radical 
initiators and proceeded for one hour.  The molar ratio and the time of reaction reported were optimized to 
minimize protein aggregation and precipitation, as well as to maximize the solution stability of the resulting 
NCs (designated below as S-S APO NC).  Excess monomers and cross-linkers were removed using 
ultrafiltration and S-S APO NC was stored in PBS buffer (pH 7.4).  DLS clearly showed increase in average 
diameter of the sample to ~75 nm with a slightly positive ζ-potential value of 2.8 mV.  TEM analysis of the S-S 
APO NC confirmed the nearly doubling in diameter of the spherical particle (Figure 1e).  Unexpectedly, the 
NCs displayed dark contrast upon uranyl acetate staining, which hints that the cores of the particles were very 
densely packed.  As expected from the incorporation of redox-responsive cross-linker 3, the reduction of NCs 
size can be seen upon treatment of the reducing agent glutathione (GSH) (2 mM, 6 hours, 37°C).  As shown in 
Figure 1f, the densely packed NCs were completely dissociated into ~30 nm particles, confirming the reversible 
nature of the encapsulation process.  As a control, we also synthesized nondegradable MBP-APO NCs (ND 
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REPORT 2. Clickable Protein Nanocapsules for Targeted Delivery of Recombinant p53 
Protein. (Tasks 1, 3 and 4) 
 
2.1 Introduction 

Virtually all human cancer cells have elaborate anti-apoptotic strategies to overcome apoptosis, which is a 
vital cellular mechanism to obstruct tumor progression.(Cotter, 2009)  The most commonly mutated gene in 
tumor cells is the tumor suppressor gene TP53, the protein product of which promotes apoptosis of aberrant 
cells through both transcription-dependent and independent mechanisms.(Coles et al., 1992)  In this manner, the 
genome guardian p53 is critically important in eliminating possible neoplastic cells incurred during DNA 
damage.  About 50% of all the human tumors have mutant p53 proteins.(Lacroix et al., 2006)  Therefore, 
restoring p53 function can be a highly effective option for cancer treatment.  While functional copies of p53 can 
resurrect the apoptotic circuitry, it also sensitize the tumor cells towards other various treatments (radio- and 
chemotherapy).(Blagosklonny, 2002)  Different strategies pursuing this goal have been intensively investigated, 
including small molecules, peptides that overcome p53 mutations and adenovirus/p53 gene delivery 
vectors.(Friedler et al., 2002; Issaeva et al., 2004; Senzer et al., 2007; Vassilev et al., 2004)  While restoring p53 
functions in cancer cells has been a tantalizing approach towards combating cancer, the lack of effective 
delivery method has undermined its potential as an anti-cancer therapeutic.      

One critical limitation of previous protein-containing nanocapsule is that the polymer layer is synthesized 
from a positively charged monomer that enables nonselective entry across cellular membrane.  However, since 
the level of p53 is tightly regulated in normal cell lines, targeted delivery of p53 using functionalized 
nanocapsules that restricts entry to only cancer cell lines is highly desirable.  Hence, new nanocapsule 
encapsulation strategy that allows facile modification of the polymeric carrier is needed. 

To equip the nanocapsules with cancer-targeting ligands such as peptides and antibodies that can enable 
receptor mediated endocytosis, the surface of the nanocapsules must be decorated with reactive handles that 
facilitate aqueous-based conjugation chemistry.  The chemistry utilized must be nondenaturing and maintaining 
the native form of protein cargo. This is especially important for p53 delivery since the protein forms a 
tetrameric complex that is prone to aggregation and loss of function.(Bell et al., 2002b) The reaction must also 
be orthogonal to the nanocapsule synthesis chemistry and compatible with the designed degradation mechanism 
of the polymer capsule, such as disulfide mediated redox-sensitive degradation.  One of the most versatile 
reactions that are compatible with a protein-based cargo is the copper-free click chemistry that utilizes azides 
and aryl cyclooctynes.(Baskin et al., 2007; Mbua et al., 2011; Ning et al., 2008) Click chemistry has been used 
for modification of nanoparticles for directed conjugation of ligands and chromophores.(Koo et al., 2012; 
Welser et al., 2009)  In this report, we demonstrate that pegylated protein nanocapsules containing reactive 
azido groups on the surface can be synthesized, which allows facile conjugation to various tumor-targeting 
ligands.  More importantly, we show that recombinant p53 can be selectively delivered to specific cancer cell 
lines using nanocapsules clicked with targeting ligands. 
 
2.2 RESULTS AND DISCUSSION 

2.2.1. Synthesis of nanocapsules with clickable monomer 
Our synthesis strategy for protein nanocapsules is shown in Figure 1.  Monomers and redox-sensitive 

crosslinkers are polymerized in situ around the target protein to form a noncovalent shell that encapsulates the 
protein.   The monomer acrylamide (1) is used as a general building block of the water-soluble shell.  The 
nanocapsules are crosslinked with N,N’-bis(acryloyl)cystamine (3), which is designed to degrade under high 
reducing conditions such as the cytosol,(Meister and Tate, 1976) thereby releasing the protein cargo 
intracellularly.  To synthesize a near-neutral polymer shell that does not enter cells via positive charges, we first 
eliminated the use of positively charged monomers employed in previous designs, such as N-(3-
aminopropyl)methacrylamide.  Instead, we chose N-(azidoethyl-decaethylene glycol)-acrylamide (2) as the 
second monomer (Figure 1a).  The neutral 2 contains a terminal azido group that can be used as the reactive site 
for cross-coupling via copper-free click reaction.  The ten ethylene glycol unit serves as a water soluble spacer 
at the surface of the nanocapsules, and provides flexibility to the conjugated targeting ligand.  Through 
copolymerization of 1 and 2, the azido functionalities can be displayed on the surface of the nanocapsules for 
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conjugated S-S p53 NC; b) MDA-MB-231, SK-OV-3 and HFF cell lines treated with LHRH-conjugated S-S S121F NC; 
c) MDA-MB-231, SK-OV-3 and HFF cell lines treated with LHRH-conjugated S-S GFP NC.

KEY RESEARCH ACCOMPLISHMENTS  

 We synthesized degradable, sub-100 nm, core-shell protein nanocapsules containing the 2.4 MDa apoptin
complexes.  Recombinant apoptin is reversibly encapsulated in a positively charged, water soluble polymer
shell and is released in native form in response to reducing conditions such as the cytoplasm.

 Intracellularly released apoptin induced tumor-specific apoptosis in several cancer cell lines and inhibited
tumor growth in vivo.

 A new conjugation method of a targeting peptide to the surface of nanocapsules is developed.

 We synthesized polymer nanocapsules for delivery of the cellular guardian transcription factor p53

 Incorporating copper-free “click chemistry” moieties, polyethylene glycol (PEG) units, redox-sensitive
crosslinker, and tumor specific targeting ligand in the new design, nanocapsules can selectively deliver
intracellular protein therapeutics to tumor cells via receptor-mediated endocytosis.

REPORTABLE OUTCOMES   

Publications: 

1. Muxun Zhao, Biliang Hu, Zhen Gu, Kye-Il Joo, Pin Wang* and Yi Tang* “Degradable Polymeric
Nanocapsule for Efficient Intracellular Delivery of a High Molecular Weight Tumor-Selective Protein 
Complex” 2013, Nano Today, 8, 11-20 

2. Muxun Zhao, Yarong Liu, Renee S. Hsieh, Nova Wang, Kye-Il Joo, Pin Wang, Zhen Gu, Yi Tang*
“Clickable Protein Nanocapsules for Targeted Delivery of Recombinant p53 Protein” 2014, Journal of the 
American Chemical Society, 136, 15319-15325 

Presentations in this period: 

The following oral presentation was made at American Institute of Chemical Engineers Annual Meeting (2013) 
San Francisco 

“Delivery of tumor killing protein to cancer cells.” Muxun Zhao, Biliang Hu, Pin Wang, Yi Tang. 
University of California, Los Angeles, Los Angeles, CA; University of Southern California, Los Angeles, CA 

CONCLUSION  

We were able to deliver the high molecular weight complex of the tumor-selective MBP-APO using a 
redox-responsive polymeric NC in vitro and in vivo.  The choice and design of the sub-100 nm NC is well-
suited for diverse protein targets because of its mild preparation conditions, reversible encapsulation, efficient 
membrane penetration, and cytoplasmic release of the protein cargo.  We also developed a new polymerization 
strategy for the synthesis of protein nanocapsules that display azido functional groups on the surface. By using a 
cyclooctyne and NHS ester or maleimide containing bifunctional linkers, different targeting ligands such as the 
LHRH peptide and HER2 ScFv can be attached to the surface of the protein nanocapsules.  Using GFP as cargo, 
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we demonstrated the specific internalization of the nanocapsules into cells overexpressing corresponding 
receptors.  Finally, we demonstrated this approach can achieve the functional delivery of the genome guardian 
p53 protein to trigger apoptosis in targeted cancer cell lines. LHRH-conjugated nanocapsule can be used as a 
protein delivery system for the treatment of LHRH receptor overexpressing tumor cells. Our results validate a 
general approach for targeted protein delivery into tumor cells in a cellular-responsive manner, opening up new 
opportunity for the development of protein anticancer treatment. 
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