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Abstract

Recent interest in optically-pumped alkali laser systems has prompted this study

into the binary interaction potentials between species of alkali-metal atoms and rare-

gas atoms and the effects of the collision of these species on the alkali-metal atom

absorption spectrum. Special attention is placed on the relationship of the interaction

potentials and the resulting line shape. The X2Σ+
1/2, A

2Π1/2, A2Π3/2, and B2Σ+
1/2 po-

tential energy curves and associated dipole matrix elements are computed for M+Ng

at the spin-orbit multi-reference configuration interaction level, where M = K, Rb,

Cs and Ng = He, Ne, Ar. Dissociation energies and equilibrium positions for all

minima are identified and corresponding vibrational energy levels are computed. Dif-

ference potentials are used together with the quasistatic approximation to estimate

the position of satellite peaks of collisionally broadened D2 lines. The comparison of

potential energy curves for different alkali-metal atom and noble-gas atom combina-

tions is facilitated by using the same level of theory for all nine M +Ng pairs. The

Anderson-Talman theory of spectral line broadening is used together with potential

energy curves calculated at the spin-orbit multi-reference configuration interaction

level to compute broadening, shifting, and asymmetry coefficients of the D1 and D2

lines. The calculated coefficients are compared to experiment for a variety of tempera-

tures. In all cases general agreement is observed for the broadening coefficients, while

significant disagreement is observed for the shifting coefficients. I also compare my

K + He broadening and shifting results with fully quantum mechanical calculations

that employ the Baranger theory of collisional line broadening, and then compare

the results with other semiclassical calculations. As with the comparison to experi-

ment, closer agreement is observed for the broadening coefficients while the shifting

iv



coefficients exhibit significant disagreement. I use the natural variation between the

difference potentials of the nine M + Ng pairs to explore the relationship between

potential and line shape as determined by Anderson-Talman theory and develop a

picture for the mechanism that underlies the general agreement between theoretical

and experimental results on the broadening coefficient and the general disagreement

on shifting coefficients.
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POTENTIAL ENERGY CURVES AND ASSOCIATED LINE SHAPE OF

ALKALI-METAL AND NOBLE-GAS INTERACTIONS

I. Introduction

1.1 Motivation

High energy laser (HEL) systems have been the subject of much research and

development in past decades. After all this time, the idea of integrating HEL into

weapons systems is quickly becoming a reality. As such, all branches of the United

States military are involved in efforts to produce HEL weapons systems. Such systems

face a variety of challenges. A brief summary of these challenges includes: defining

the parameters which must be met for a particular engagement scenario, the HEL

device itself (the device which will actually produce the high energy laser), a system to

direct and control the beam, understanding and correcting for atmospheric effects on

the beam during propagation, and determining the requirements for target lethality.

Although each of these challenges involve a broad range of physical considerations and

technological implementations, only the HEL devices themselves will be considered

in this work.

There are several broad categories of HEL devices currently being researched by

funding provided by the Department of Defense including chemical, free electron,

and solid-state lasers. All lasers require some mechanism to create a population in-

version. Chemical lasers produce this inversion through chemical interactions that

yield products in an excited state. These products then release their energy through

the process of stimulated and spontaneous emission, dropping them down into a lower

1



energy state. If the chemical reaction is quick enough compared to the stimulated

emission, and the spontaneous emission slow enough compared to stimulated emis-

sion, then the population inversion is maintained and lasing results. Chemical laser

devices are capable of generating very powerful lasers and have been integrated into

several weapons systems in development by the Department of Defense. Thermal

management issues are easily handled by exhausting the hot gases. On the down side

chemical lasers are big and they require specialized fuels and have pollutants, etc.

Free electron lasers use a relativistic electron beam as their lasing medium. Elec-

trons are accelerated through a vacuum to near the speed of light. Coherent laser ra-

diation is converted from the kinetic energy of the electrons by sending them through

a series of magnets. These magnets cause the electrons to wiggle during their mo-

tion, producing electromagnetic radiation. The wavelength of the coherent radiation

is easily and rapidly adjusted over a wide range by tuning the magnets or adjusting

the kinetic energy of the electron beam. The disadvantages of this approach involve

size, weight, and cost. These disadvantages get more pronounced as one attempts to

make a high energy laser of shorter and shorter wavelengths.

Solid-state lasers (SSL) include heat-capacity, fibers, and continuously-cooled lasers.

In the past, flash-lamp lasers have provided kilo-Watt peak power with good beam

quality. More recently, high efficiency, laser diode arrays have enabled the possibility

of higher average power SSL weapons. These systems offer several advantages over

the previously mentioned systems. They are smaller and less costly than chemical

and free electron lasers. Also, they do not require specialized fuels for input en-

ergy like chemical lasers. The primary disadvantage of these systems is that they

are solid. This means that thermal management cannot be handled by simply ex-

hausting hot gas. Complex cooling mechanisms must be designed and implemented.

Even with these considerations temperature gradients will exist throughout the solid.
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This complicates optical processes among other things. As a consequence, thermal

management is the great challenge in implementing a SSL weapon.

In 2003 Krupke et al. [2003] proposed an entirely new type of laser. This laser

combines properties of both gas phase and solid state lasers. The idea is as follows:

a sample of an alkali-metal atom is placed in an optically transparent container and

heated to a point where an appreciable amount of the alkali-metal atoms are in the

gas phase. A buffer gas composed of noble-gas atoms (and possibly methane) is then

pumped into the container. An optical pump source is arranged so it shines on the

alkali-metal atoms, pumping the D2 transition (2S1/2 → 2P3/2). This is followed

by rapid collisions with the buffer gas which induces a transition to the alkali-metal

atom’s 2P1/2 state (2P3/2 → 2P1/2). Lasing occurs via stimulated emission on the

D1 line (2P1/2 → 2S1/2). The presence of the buffer gas also serves to broaden the

absorption features of the alkali-metal atoms, which are relatively narrow compared to

the emission spectrum of the diodes. This broadening will have the effect of making

the device more efficient. In this text I will use the term OPAL for this type of

device, standing for Optically Pumped Alkali Laser. In the decade since the OPAL

was proposed there have been many studies of these systems. For example, see Beach

et al. [2004], Zhdanov et al. [2006], Page et al. [2006], Zhdanov et al. [2008].

During operation of an OPAL an optical source will drive the 2S1/2 →2 P3/2 atomic

transition. In the case of the K + Ng and Rb + Ng, the alkali-metal atoms have

a small enough spin-orbit splitting of the 2P alkali-metal state so that the noble-gas

atoms in the buffer gas will be sufficient to drive the spin-orbit relaxation. In the

case of Cs + Ng, CH4 or a similar additive must be inserted into the buffer gas. This

increases the rate of the collisional deexcitation due to the many internal degrees of

freedom in the methane, providing more mechanisms by which the spin-orbit energy

may be transferred from the alkali-metal atoms. The pump rate and the spin-orbit
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relaxation rate must be fast compared to the spontaneous emission rates for both the

2P1/2 and 2P3/2 states in order to maintain a population inversion between the 2P1/2

and 2S1/2 states.

OPAL lasers offer much promise, potentially marrying the advantages of a SSL

with the ease of thermal management the gas phase provides. Although these ad-

vantages are enticing, OPAL systems have their own challenges which need to be

addressed. The advantage of using a solid as the lasing medium is that its absorp-

tion features are broad. This fits well with the diodes, which have a broad emission

spectrum. On the other hand, the absorption profile of the alkali-metal atom’s D2

transition used in an OPAL is relatively narrow. This results in a lack of efficiency

since much of the diode radiation is not absorbed. Currently a great deal of research

effort is being made both to narrow the spectral emission of the diodes, while simul-

taneously broadening the absorption features of the alkali-metal atom. While most

success thus far has been in the narrowing of the diodes, it is still ideal to meet in

the middle of these two approaches to maximize the efficiency of the OPAL.

In this work the emphasis will be on the spectral broadening of the alkali-metal

atom’s absorption features. Although the width of a spectral absorption feature

is dependent on many different physical processes (see Chapter IV), the primary

contributor to the broadening is accomplished via collisions that the alkali-metal atom

has with the buffer gas. This kind of broadening is appropriately named collisional

broadening.

Several theoretical models for collisional broadening exist and are reviewed by

Szudy and Baylis [1996] and Allard and Kielkopf [1982]. To become predictive these

models require knowledge of the interaction potentials between collision partners.

A complete description of the forces of interaction between atoms and molecules

is contained in a potential energy curve (PEC) (see Chapter II), the generation of
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which is a major goal of computational chemistry. PECs are often calculated from a

variety of quantum mechanical methods which have been developed over the years. Of

these methods, ab initio calculations have delivered good results. Ab initio literally

means from the beginning. These methods calculate potential energy surfaces from

first principles, while applying a variety of approximations in the process. While

computational resources required for these calculations scales rapidly with system

size, ab initio potential energy surfaces calculated for systems that are small enough

to be amenable to these calculations can lead to very accurate physical predictions.

As a first step in developing a theoretical understanding of the collisional line

broadening processes that occur in OPAL systems, I computed the X2Σ+
1/2, A

2Π1/2,

A2Π3/2, and B2Σ+
1/2 potential energy curves (PECs) and corresponding dipole tran-

sition moments for M +Ng combinations, where M = K, Rb, Cs and Ng = He, Ne,

Ar. The same level of theory is used to compute PECs for all nine M + Ng pairs

facilitating the identification of trends across the molecular systems. I then used these

PECs with a semi-classical model of collisional broadening to predict the broadening

and shifting coefficients for the different systems over a range of T = 50 − 3000K.

The M + Ng systems also exhibit blue satellites off of the D2 line core. I used the

collisional broadening model and the PECs to predict the position of the satellites.

1.2 Background

The first OPAL system was reported in Beach et al. [2004]. This work produced

a host of experimental and model results which provided evidence that the physics

involved in the OPAL concept was well understood. It also demonstrated that potas-

sium, rubidium, and cesium make good candidates for a OPAL (rubidium was used

by Krupke et al. [2003] in generating the concept of a OPAL). It is the magnitude of

the fine structure splitting between the 2P1/2 and 2P3/2 levels which determines the
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effectiveness of a particular alkali-metal atom for use in a OPAL. If the splitting is

small then the fine structure transition rate will be fast. This means that population

will quickly transfer from the pumped 2P3/2 level to the lasing 2P1/2 level, establish-

ing a population inversion. However, a small fine structure transition rate also makes

it difficult to specifically pump the 2P3/2 level without simultaneously pumping the

2P1/2 level as well due to the broad emission spectrum of the pumping diodes. The

fast fine structure transition rate can also be a double edged sword as it can cause

population to transfer from the 2P1/2 to the 2P3/2, which is opposite the preferred

transition. When the fine structure splitting between the 2P1/2 and 2P3/2 levels is

large then the broad emission spectrum of the diodes is not a complicating factor and

pumping the 2P3/2 level specifically is possible. The large fine structure splitting also

reduces the chance of collisions depleting the population inversion by causing a 2P1/2

to 2P3/2 transition. However, the fine structure transition rate from the 2P3/2 level

to the 2P1/2 level will also be slow. It is in this case which an additive such as CH4

must be used to increase the fine structure transition rate to the point where lasing

becomes possible.

Not only is an understanding of alkali-metal noble-gas systems of interest to people

researching OPALs, but these systems provide an excellent example of van der Walls

complexes. Although well depths in the ground state of an alkali-metal atom plus a

noble-gas atom PEC rarely exceed tens of wave numbers (cm−1), the wells in the first,

spin-free, excited state A2Π are deep enough to provide van der Walls binding. A

molecule which binds only in an excited state of the system is called an exciplex. Due

to these properties, a host of experimental and theoretical studies have been made

for alkali-metal noble-gas systems. A collection of the work done on this subject up

to 1981 may be found in Rostas [1981]. Most of these studies focused on scattering,

absorption spectroscopy of the three lowest states (X2Σ, A2Π and B2Σ), emission
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spectroscopy using laser induced florescence or electric discharge. More recently,

high resolution laser spectroscopy has provided a new approach to experimentally

probing these systems. Pitz et al. [2009] and Pitz et al. [2010] recently used this

method to probe the broadening and shift of cesium with a variety of collisional

partners including all rare gases. This data was used to produce experimentally

derived difference potentials for the transitions between the states involved. A similar

study was conducted for rubidium by Rotondaro and Perram [1997]. The rotationally

resolved absorption spectrum for the A2Π → B2Σ transition of Li + Ne has been

measured by Lee and Havey [1991]. All rovibrational levels of the X2Σ states of Li +

Ar and of Na + Kr have been observed by Bruhl and Zimmermann [2001] and Bruhl

et al. [1991], who has provided values of the spectroscopic constants for their rotation

and vibration. The recent observation of brown dwarfs has also revived interest in

the spectral broadening of various alkali-metal atoms [Seager and Sasselov, 2000,

Burgasser et al., 2003, Zhu et al., 2006, Allard et al., 2007, Santra and Kirby, 2005].

The line shape of light alkali-metal atoms in the brown dwarf photosphere provides a

useful diagnostic of the opacity of the atmospheres of these substellar objects [Allard

et al., 2007].

Theoretical developments of collisional broadening began as far back as 1895 with

Michelson in Michelson [1885]. Since then a wealth of progress has been accumulated.

Early but still often cited reviews of the subject include Ch’en and Takeo [1957]

and Breene [1957]. Developments up until the early 1980’s have been reviewed by

Allard and Kielkopf [1982] and Hindmarsh and Farr [1972]. The fundamentals of a

quantum treatment of pressure broadening have been reviewed by Szudy and Baylis

[1975]. Here the authors lay out basic principles, which are the starting point for

all modern developments of a quantum picture of pressure broadening, and show

how this theory reduces to the classical theory under certain approximations. More
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advanced treatments which capture the physical effects dominant in the wings of the

spectrum as well as satellites has also been reviewed by Szudy and Baylis [1996].

Accurate ab initio calculations of excited state curves in alkali-metal atom interac-

tions with noble-gas atoms have not been possible until relatively recently, within the

last 20 years. Many of these calculations have focused on Li + He due to this being

the simplest (in terms of number of electrons in the system) of the alkali-metal atom

and noble-gas atom combinations. In Behmenburg et al. [1996] the authors evaluate

Li + He using CEPA-2 CI, which consists of a series of different ab initio methods,

including self-consistent field and couple-cluster methods, to arrive at a final result.

Behmenburg et al. [1996] also apply this method to Li + Ne. Ab initio surfaces for

Li + Ar and Li + Kr in the states X2Σ, A2Π and B2Σ have been generated using

couple cluster methods by Ioannis et al. [2002]. The authors use these surfaces to

predict rovibrational spectroscopic constants and dissociation energies for any states

which show appreciable wells.

Potential surfaces of theX2Σ, A2Π and B2Σ states and spectroscopic constants for

these excited states have been obtained by pseudopotential methods for the molecules

Li + Ar, Na + Ar and K + Ar by Rhouma et al. [2002]. A potential surface for Na

+ He has been generated by Theodorakopoulos and Petsalakis [1993] using a multi-

reference singles and doubles configuration interaction calculation. The K + He

interaction potential has been explored by Santra and Kirby [2005] using a multi-

reference configuration interaction calculation. A comprehensive collection of ground

state surfaces for all pairs of alkali-metal atoms Li through Cs with noble-gas atoms

Ne through Xe were computed by Goll et al. [2006]. Although the authors do not

report these surfaces in the literature, they do report on dissociation energies, bond

lengths and harmonic frequencies for the van der Walls interaction of all these alkali-

metal atom and noble-gas atom combinations in the ground state. The authors
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combine the use of the couple-cluster ab initio technique for the short-internuclear

separation part of the potential surface with the use of density functional theory

for the long-internuclear separation component. Recently, Allard et al. [2007] used

ab initio potential energy curves, calculated with pseudopotential methods for M +

He [Pascale, 1983] and M + H2 [Rossi and Pascale, 1985], together with a dipole

autocorrelation formulation of spectral broadening theory, to determine collisional

broadening coefficients for M = Li, Na, and K over a temperature range of 500 −

3000K. These calculations employ a classical path approximation and include a dipole

transition moment that is functionally dependent on the internuclear separation of the

emitter and perturber [Allard et al., 1999]. The dipole autocorrelation formulation

has also been used to compute line profiles of Rb + He and Cs + He [Allard and

Speigelman, 2006]. Mullamphy et al. [2007] have calculated potentials for Li + He,

Na + He and K + He using a three body model in which the alkali-metal atom is

treated as an ion with a polarizable core and an active electron. The third body is the

perturbing He atom. Collisional broadening analysis of these surfaces is done using

the quantum impact theory of Baranger [1958]. Zhu et al. [2006] and Zhu et al. [2005]

describe carefully constructed surfaces for these same combinations, using different

references for different internuclear separations in putting together these surfaces, and

then use these surfaces to make quantum calculations of the emission spectrum and

absorption spectrum for different transitions.

The remainder of this document is organized as follows. Chapter 2 explores back-

ground quantum chemistry theory relevant to the ab intio calculations presented later

in this document. This chapter may be skipped if the reader is interested only in the

results of my work. The ab initio calculations for M + Ng molecular combina-

tions are reported and discussed in Chapter 3. Chapter 4 discusses both pedagogical

background information on the Anderson-Talman theory of collisionally induced line
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shapes, as well as a discussion of the algorithm used to computationally implement

the model. The results and a detailed analysis of the calculations performed using the

Anderson-Talman model is presented in Chapter 5. Finally, Chapter 6 is a discussion

of the conclusions I have drawn from my work, as well as a section on how this work

my be extended and improved.
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II. Potential Energy Surfaces

In the subject of mechanics few ideas carry as much importance as that of poten-

tial energy. Under Newton’s equations for a system of particles all particle trajectories

can be deduced exactly, in principle, if one has a knowledge of the initial conditions

and the details of the forces of interaction between said particles. For conservative

systems the details of these forces may be expressed in terms of the potential energy

one particle feels as a result of the other particles. Furthermore, in Quantum Mechan-

ics all non-relativistic details of the state of the system can be calculated from the

Schrödinger equation. This solution, as the solution to Newton’s equations, requires

a knowledge of initial conditions and the potential energy of the system. The purpose

of this chapter is to outline the methods I used to calculate the interaction poten-

tial, i.e., forces of interaction, between nuclei during atomic and molecular collisions,

specifically the interaction between an alkali-metal atom and a noble-gas atom. This

provides us with the ability to predict the nuclear motion.

This chapter begins with a discussion of the mathematics required for the subject.

An idea central to the subject, the Born-Oppenheimer approximation is discussed.

Here also, many-electron wave functions and operators important to quantum chem-

istry and their matrix elements are described. The chapter continues with a discussion

of another approximation which is central to quantum chemistry, the Hartree-Fock

approximation. Not only is this approximation central to the ideas taught in ba-

sic chemistry about electrons occupying molecular orbitals, it is also a fundamental

building block for more sophisticated theories. The theory and implementation of

the Hartree-Fock approximation is discussed. The process of computationally im-

plementing the Hartree-Fock approximation is called the self-consistent field (SCF)

method.

Next comes the subject of configuration interaction (CI). Configuration interac-
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tion is a somewhat brute force technique which attempts to solve the Schrödinger

equation directly as a basic eigenvalue equation. It accomplishes this by making a

basis out of the results of a self-consistent field calculation, expands the Hamiltonian

and diagonalizes the resulting matrix to get the eigenvalues and wave functions of

the system. Due to computational limitations the basis developed by configuration

interaction in practice is far from complete. Therefore, this method can only be

pushed so far for large systems. After configuration interaction the subject of multi-

configurational self-consistent field (MCSCF) is discussed, mostly in the context of

the state-averaged MCSCF procedure. This is a generalization of the self-consistent

field method to consider more than just a single determinant. In addition, it is useful

for improving the results of a configuration interaction calculation. Finally, I discuss

the combination of the the MCSCF and CI methods.

The goal of this chapter is to familiarize the casual reader with enough of the core

material of quantum chemistry so as to make clear the discussion of the potential

energy surfaces which I present later in this work. To this end only the areas of the

subject relevant to producing said surfaces are discussed. The fundamental ideas pre-

sented in the beginning are done so in considerable detail with the exception of some

rather tedious derivations. As one progresses through the chapter the details become

increasingly more complex. Since our purpose here is not to review all of quantum

chemistry, the focus slowly shifts away from the details and to the conceptual ideas

behind the various techniques. This is done in conjunction with pointing to relevant

references for those interested in a more sophisticated discussion. The majority of the

material presented in this chapter follows closely with the presentation of reference

Szabo and Ostlund [1989]. Reference Helgaker et al. [2000] will be drawn upon often

as well.

12



2.1 The Electronic Problem

The aim of this section is to set up the formalism through which one begins to

develop approximate solutions to the time-independent Schrödinger equation

Ĥ | Φ〉 = E | Φ〉, (1)

for a system of nuclei and electrons. A quantum mechanical operator will be indicated

by the presence of a ”hat” over the letter representing it, i.e., Ĥ is the Hamiltonian.

The position vectors for the nuclei and electrons shall be denoted by RA and ri,

respectively. The distance between electrons i and j will be denoted rij =| rij |=|

ri−rj |. Likewise, the distance between nuclei A and B is RAB =| RA−RB |, and the

distance between electron i and nucleus A is riA =| ri −RA |. Let ∇2
i and ∇2

A be the

Laplacian operators with respect to the ith electron’s and Ath nucleus’ coordinates.

MA is equal to the ratio of the mass of nucleus A to the mass of an electron.

In Equation (1), E is the energy (or eigenvalue of Ĥ) associated with the general

wave function (or eigenfunction of Ĥ) Φ, where Phi depends on

Φ = Φ({ri}; {RA}).

The argument ({ri}; {RA}) in the wave function means that Φ is a function of the set

of all the electronic coordinates {ri} as well as the set of all of the nuclear coordinates

{RA}. The reason for referring to this as the general wave function will become clear

after the next subsection on the Born-Oppenheimer approximation.

The Hamiltonian Ĥ must involve terms for the kinetic energies of both electrons

and nuclei, the repulsive potential energy due to electron-electron and nuclei-nuclei

interactions and finally the attractive potential energy due to electron-nuclei interac-

tions. Using atomic units and working in the position basis allows the Hamiltonian
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Ĥ for a system of N electrons and M nuclei to be written as

Ĥ = −
N
∑

i=1

1

2
∇2

i −
M
∑

A=1

1

2MA
∇2

A −
N
∑

i=1

M
∑

A=1

ZA

riA

+
N
∑

i=1

N
∑

j>i

1

rij
+

M
∑

A=1

M
∑

B>A

ZAZB

RAB
. (2)

Here ZA refers to the atomic number of the Ath nuclei. ZB is analogous. The index

j is always greater than i in the fourth term (as the index B is always greater than

A in the fifth term) to avoid double counting the same pair of electrons (nuclei).

2.1.1 The Born-Oppenheimer Approximation.

The Hamiltonian presented above leads to a Schrödinger equation Equation (1)

whose exact solution is impractical to obtain for all but the most simple cases, the

hydrogen atom being the simplest of these. If any progress is to be made beyond

these few textbook examples, one must simplify the problem with appropriate ap-

proximations. To this end we shall invoke the Born-Oppenheimer Approximation

(BOA).

The BOA relies on the following picture. The electrons move very fast compared to

the much more massive nuclei. As a result, when solving for the electronic motion the

nuclei are assumed to be stationary. This is known as the fixed nuclei approximation.

A Hamiltonian for this kind of system is greatly simplified from Equation (2) since the

nuclei’s coordinates simply label the positions of stationary point charges. Examining

Equation (2) under these conditions we see the kinetic energy term of the nuclei must

be zero since they are stationary. The repulsive potential for the nuclei is constant.

Adding this constant to the Hamiltonian will only add to its eigenvalues and do
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nothing to its wave functions. After removing these two terms we are left with

Ĥelec = −
N
∑

i=1

1

2
∇2

i −
N
∑

i=1

M
∑

A=1

ZA

riA
+

N
∑

i=1

N
∑

j>i

1

rij
. (3)

Solving a Schrödinger equation which only includes the terms in Ĥelec

Ĥelec | Φelec〉 = Eelec | Φelec〉, (4)

yields wave functions Φelec({ri}; {RA}) which depend explicitly on the electrons co-

ordinates ri but only parametrically on the nuclear coordinates RA. In addition, the

energy Eelec({RA}) is a function of the nuclear coordinates.

Since the constant nuclear repulsion term was left out of Ĥelec that energy must

be added back in if we are to get the correct potential energies. Therefore,

Etot({RA}) = Eelec({RA}) +
M
∑

A=1

M
∑

B>A

ZAZB

RAB
, (5)

which is also parametrically dependent on nuclear coordinates.

After solving the electronic problem Equation (4) one can use this solution to

formulate the problem of the nuclear motion. To handle this, the BOA makes the

following assumption: since the nuclei move so slow compared to the electrons, the

average value of the electronic coordinates (calculated from the electronic wave func-

tions Φelec({ri}; {RA})) may be substituted into the Hamiltonian in Equation (2).
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Thus, we arrive at the following form for the nuclear Hamiltonian Ĥnucl

Ĥnucl = −
M
∑

A=1

1

2MA
∇2

A +

〈

−
N
∑

i=1

1

2
∇2

i −
N
∑

i=1

M
∑

A=1

ZA

riA
+

N
∑

i=1

N
∑

j>i

1

rij

〉

+
M
∑

A=1

M
∑

B>A

ZAZB

RAB

= −
M
∑

A=1

1

2MA
∇2

A + Eelec({RA}) +
M
∑

A=1

M
∑

B>A

ZAZB

RAB

= −
M
∑

A=1

1

2MA
∇2

A + Etot({RA}). (6)

Here the 〈...〉 notation refers to the average. It is seen from this equation that

Etot({RA})provides a potential energy surface which can be used to describe the

nuclear motion. Indeed, plugging Ĥnucl in the Schrödinger equation,

Ĥnucl | Φnucl〉 = EBOA | Φnucl〉, (7)

gives a solution Φnucl for the nuclear motion, which includes translational, rotational

and vibrational information. EBOA is the BOA to the total energy and is a sum of

electronic, translational, rotational and vibrational contributions to the energy. The

BOA approximation to the general wave function from Equation (1) is

Φ({ri}; {RA}) = Φelec({ri}; {RA})Φnucl({RA}). (8)

A major goal of ab initio calculations is the accurate generation of potential energy

surfaces for nuclear motion, i.e. solving the electronic problem Equation (4) for the

energy eigenvalues Eelec({RA}) as a function of nuclear coordinates. This can be

thought of as a classical interaction potential for the interacting particles (the nuclei)

which move on classical trajectories, or it may be substituted into Equation (7) for
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a quantum treatment of the nuclear dynamics within the BOA. As such, the rest of

this chapter is devoted to solving Equation (4) and all subscripts will be dropped.

When referring to Ĥ, Φ or E assume they refer to their electronic versions unless the

text explicitly states otherwise.

2.1.2 The Symmetrization Postulate.

Thus far nothing has been said about the spin of the electron. Indeed, Ĥelec (and

therefore Φelec) only depends on the electron’s spatial coordinates, but a complete

description of the electron must take spin into consideration. To handle this an

arbitrary spin variable ω is introduced along with the spin functions α(ω) and β(ω).

The form of these functions is not explicit, but they are required to span the spin

space and they must satisfy orthonormality conditions,

∠α | β〉 = 〈β | α〉 = 0

〈α | α〉 = 〈β | β〉 = 1. (9)

Here the inner-product notation < α | β >=
∫

dω α∗(ω)β(ω) is introduced. Notice

that in this notation the variable of integration for the inner product (here ω) corre-

spond to the variable which are defined in the functions whose inner product is to be

taken (here α(ω) and β(ω)).

The electron is now to be completely described by combining its spatial variables

with its spin variable. This combination is denoted by xi,

xi = (ri, ωi), (10)

for the ith electron, and the wave function Φ of an N electron system depends on
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these variables:

Φ = Φ(x1,x2, . . . ,xN ). (11)

Although spin is now formally included in the wave function, the Hamiltonian

for the system makes no reference to it. To make spin meaningful we must fur-

ther constrain our wave functions beyond the Schrödinger equation by invoking the

symmetrization postulate of quantum mechanics [Cohen-Tannoudji et al., 2005]: a

many-electron wave function must be antisymmetric with respect to the interchange of

the coordinate x (both space and spin) of any two electrons (electrons are fermions).

That is,

Φ(x1, . . . ,xi, . . . ,xj , . . . ,xN) = −Φ(x1, . . . ,xj , . . . ,xi, . . . ,xN ), (12)

where the combined coordinates for the ith electron is exchanged with the combined

coordinates for the jth electron.

2.1.3 Orbitals.

An orbital is a wave function for a single electron. A spatial orbital ψi(r) is defined

such that | ψi(r) |2 dr is the probability of finding the electron inside an infinitesimal

volume dr centered at the point r. Any collection of spatial orbitals are assumed to

be orthonormal, that is,

〈ψi | ψj〉 =
∫

dr ψ∗
i (r)ψj(r) = δij. (13)

If the set of spatial orbitals were complete in the sense that they spanned the

space L2, then any physically acceptable function of r would be expressible as a

(possibly infinite) linear combination of them. However, computational limitations

require finite sets of spatial orbitals {ψi | i = 1, . . . , K} where K is the total number
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of spatial orbitals in the set. This finite set of spatial orbitals only spans a fraction

of the complete space. Our results will be exact (up to computational limitations) in

this subspace, but will not incorporate contributions which lie outside of the subspace.

This is the first hint of a very tricky part of this business. The art of choosing

the subspace (i.e., choosing a set of spatial orbitals ψi to begin with) which capture

the largest possible contribution to the answer for a given number of orbitals is not

always straight forward. This topic will be explored in more detail when basis sets

are covered in the Hartree-Fock section of this chapter.

To complete the introduction of the single electron wave function, all that is

needed is to add the spin functions discussed in the previous subsection. Define the

spin orbital χ by

χ(x) = ψ(r)α(ω),

or

χ(x) = ψ(r)β(ω). (14)

Our set of K spatial orbitals can now make a set of 2K spin orbitals

χ2i−1(x) = ψi(r)α(ω)

χ2i(x) = ψi(r)β(ω), (15)

where i = 1, 2, . . . , K. Since both the spatial orbitals and the spin functions are

orthonormal, this set of spin orbitals is an orthonormal set as well, and < χi | χj >=

δij.
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2.1.4 Hartree Products.

Having introduced the single electron wave function the stage is set to begin

building a multi-electronic wave function. To start, consider the following operator

ĥ(i) = −
1

2
∇2

i −
M
∑

A=1

ZA

riA
. (16)

Notice the argument of ĥ(i) implies that this operator is dependent exclusively on

the ith electron’s coordinates. Since ĥ(i) depends only upon the ith electron’s spatial

coordinates, each of the eigenfunctions of the ĥ(i) operators can be represented by a

spin orbital, see Equation (14). For an N-electron system, denote the eigenfunctions

of ĥ(1) as the set {χi}, the eigenfunctions ĥ(2) as the set {χj}, etc. For example,

ĥ(1)χi(x1) = eiχi(x1)

ĥ(2)χj(x2) = ejχj(x2)

ĥ(N)χk(xN) = ekχk(xN). (17)

Take note of the indices i, j and k in Equation (17). These indices run over the

spectrum of the operators ĥ(1), ĥ(2) and ĥ(N), respectively. Due to computational

limitations, the operators we work with will always have a finite spectrum. So, the

indices i, j and k will always be discrete and will run from one to the dimensionality

of the space.

There corresponds a ĥ(i) operator to each electron in the system. If all of these op-

erators were summed the total would add up to electronic Hamiltonian from Equation
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(3) minus the terms resulting from electron-electron repulsion, i.e.

Ĥone =
N
∑

i=1

ĥ(i)

= Ĥ −
N
∑

i=1

N
∑

j>i

1

rij
. (18)

The subscript on Ĥone is chosen to reflect that all the terms in this operator depend on

only a single electron’s coordinates. A first attempt at a multi-electron wave function

is obtained by using the eigenfunctions of Ĥone.

The first term in Ĥone depends only on electron one’s coordinates, x1, the second

term in Ĥone depends only on electron two’s coordinates, x2, etc. This continues for a

total of N terms, which is the number of electrons in the system. The wave functions

ΨHPof Ĥone are products of the eigenfunctions of the single electron operators ĥ(i)

ΨHP(x1, . . . ,xN ) = χi(x1)χj(x2) · · ·χk(xN). (19)

A many-electron wave function of this type is known as a Hartree-Product, hence the

superscript, HP.

2.1.5 Slater Determinants.

Although a Hartree-Product is a many electron wave function, it is not a can-

didate for solutions to Equation (1) because it does not satisfy the symmetrization

postulate, Equation (12). In fact, the Hartree-Product specifically relates the elec-

tronic coordinates xi to the ith electron. Said differently, the Hartree-Product distin-

guishes between identical particles (here the electrons) in direct contradiction to the

symmetrization postulate. However, if appropriate linear combinations of Hartree-

Products are formed it is possible to build fully antisymmetric wave functions out of
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them. Consider the two spin orbitals χi and χj and the two electronic coordinates x1

and x2. For a two electron system, let ΨHP
12 and ΨHP

21 be defined as follows,

ΨHP
12 (x1,x2) = χi(x1)χj(x2)

ΨHP
21 (x1,x2) = χi(x2)χj(x1). (20)

The following linear combination of these Hartree-Products is a fully antisymmetric

wave function for a two-electron system

Ψ(x1,x2) =
1√
2
(ΨHP

12 −ΨHP
21 )

Ψ(x1,x2) =
1√
2
(χi(x1)χj(x2)− χi(x2)χj(x1)). (21)

This wave function can be rewritten as a normalization factor times the determinant

of a two-by-two matrix.

Ψ(x1,x2) =
1√
2

∣

∣

∣

∣

∣

∣

∣

χi(x1) χj(x1)

χi(x2) χj(x2)

∣

∣

∣

∣

∣

∣

∣

.

The generalization of this wave function to an N-electron system is

Ψ(x1, . . . ,xN) =
1√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χi(x1) χj(x1) · · · χk(x1)

χi(x2) χj(x2) · · · χk(x2)

...
...

...

χi(xN) χj(xN) · · · χk(xN)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (22)

A wave function of this form is called a Slater determinant. Notice that the exchange

of coordinates between two electrons corresponds to the exchange of two rows in the

Slater determinant. This changes the sign of the determinant which fulfills the an-
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tisymmetric requirement of the wave function. Also, if two electrons have the same

coordinates (both space and spin) this corresponds to two equal rows in the deter-

minant, making the determinant zero. So, the Slater determinant satisfies the Pauli

exclusion principle which is another consequence of the symmetrization postulate of

quantum mechanics.

Equation (22) can be cumbersome to write out when explicitly defining which

Slater determinant one is talking about. As such, it is desirable to come up with

a short hand notation for identifying Slater determinants. Equation (22) can be

completely specified by the following symbol, which includes the normalization,

Ψ(x1, . . . ,xN ) = |χi(x1)χj(x2) . . . χk(xN)〉 .

Notice that only the diagonal elements of the determinant are included in the above

ket, and these completely specify the Slater determinant. Further, if the convention is

taken to write the orbital that corresponds to x1 first, the orbital which corresponds

to x2 second, etc. then the shorthand notation can be further simplified to

Ψ(x1, . . . ,xN) = |χi χj . . . χk〉 . (23)

There is a subtle but important consequence of satisfying the symmetrization pos-

tulate which is worth mentioning at this point. The Hartree-Product was based on

an independent electron model, i.e. the coulomb repulsion between electrons was

ignored. Therefore, each electron’s motion is uncorrelated in the Hatree-Product

picture. In building the Slater determinants out of Hartree-Products, coulomb in-

teraction between electrons was still ignored. However, since the probability of two

electron’s having the same coordinates (both spatial and spin) is now zero in the

Slater determinant, the motion of two electrons with the same spin is now correlated
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in this picture. In other words, two electrons with the same spin will avoid each other

spatially. The motion of two electrons with opposite spins remains uncorrelated. The

source of this correlation is purely a quantum mechanical effect which is a direct

consequence of the symmetrization postulate and is called exchange correlation. See

reference Szabo and Ostlund [1989] for a more detailed derivation of how exchange

correlation arises mathematically.

For simplicity, from this point forward Slater determinants will simply be referred

to as determinants.

2.1.6 Operators and Matrix Elements.

It has been shown that determinants satisfy the quantum mechanical requirements

on a wave function. In the ab initio process the states of a physical system are

represented by linear combinations of very specifically designed determinants (see

the section of this chapter on Hartree-Fock). It is necessary to determine how to

find the matrix elements for the various operators of quantum chemistry between

different determinants. These matrix elements are expressed in terms of integrals

over electronic coordinates. A notation for these integrals must first be established.

Very often in this subject one encounters integrals of the same form. These

common integrals come in two flavors: integrals involving only one electronic co-

ordinate (one-electron integrals) and integrals involving two electronic coordinates

(two-electron integrals). These integrals are further categorized by whether we are

integrating over spatial or spin orbitals. The notation for these special integrals is

summarized in the Table 1. Be careful to note that, for the two electron integrals,

the conventional notation for spatial integrals verses spin integrals differs in the ar-

rangement of both coordinates and complex conjugates. Also, P̂12 is the permutation

operator for electronic coordinates x1 and x2. When acting on a function of one of

24



Table 1. Notations for one- and two-electron integrals over spin orbitals (χ) and spatial
orbitals (ψ)

Spin Orbitals
< i|ĥ|j >=

∫

dx1 χ∗
i (x1)ĥ(r1)χj(x1)

< ij|kl >=< χiχj|χkχl >=
∫

dx1dx2 χ∗
i (x1)χ∗

j(x2)r
−1
12 χk(x1)χl(x2)

< ij||kl >=< ij|kl > − < ij|lk >=
∫

dx1dx2 χ∗
i (x1)χ∗

j(x2)r
−1
12 (1− P̂12)χk(x1)χl(x2)

Spacial Orbitals
(i|ĥ|j) = hij = (ψi|h|ψj) =

∫

dr1 ψ∗
1(r1)ĥ(r1)ψj(r1)

(ij|kl) = (ψiψj|ψkψl) =
∫

dr1dr2 ψ∗
i (r1)ψj(r1)r

−1
12 ψ

∗
k(r2)ψj(r2)

Jij = (ii|jj) Coulomb integrals

Kij = (ij|ji) Exchange integrals

these coordinates, this operator’s effect is to interchange these two coordinates. i.e.,

P̂12 [χi(x1)χj(x2)] = χi(x2)χj(x1).

It is worth noting at this point that special care must be taken when comparing

determinants. Due to the notation that is employed here, interchanging two orbitals

in the expression for the determinant is equivalent to interchanging two columns in

Equation (22). The effect of this is to simply negate the resulting determinant, i.e.,

|χ1 . . . χaχb . . . χN〉 = − |χ1 . . . χbχa . . . χN〉 .

As a result, when comparing two determinants one must pay special attention to the

order of their orbitals. For a more detailed discussion of how this works, see reference

Szabo and Ostlund [1989].
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Having established a notation for electronic integrals it is now possible to state the

rules for determining the matrix elements of an arbitrary quantum chemical operator.

Consider two different determinants, denoted |K〉 and |L〉 respectively. For any generic

linear operator, Ô, the form of the equation for its matrix element between |K〉 and

|L〉, denoted 〈K| Ô |L〉, varies based on how the spin orbitals which comprise |K〉 differ

from the spin orbitals which comprise |L〉.

Let

|K〉 = |χ1 . . . χmχn . . . χN〉 ,

then we consider |L〉 to have one of the following forms

|L〉 = |K〉 = |χ1 . . . χmχn . . . χN〉 (24)

|L〉 = |χ1 . . . χpχn . . . χN〉 (25)

|L〉 = |χ1 . . . χpχq . . . χN〉 . (26)

The first of these is when |L〉 is simply equal to |K〉. The second form is when |L〉

differs from |K〉 by one spin orbital. Finally, the third form is when |L〉 differs by

|K〉 by two spin orbitals. If |L〉 differs from |K〉 by more than two spin orbitals, the

matrix element of any quantum chemical operator between these two determinants

will be zero.

Just as for electronic integrals, quantum chemical operators come in either one-

electron, Ô1, or two-electron, Ô2, form. One-electron operators appear in the form

Ô1 =
N
∑

i=1

ĥ(i), (27)

where ĥ(i) depends on only the ith electrons coordinants. Two-electron operators
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Table 2. Matrix elements between determinants for one-electron operators

Ô1 =
∑N

i=1 ĥ(i)

Case 1: |K〉 = |χ1 . . . χmχn . . . χN〉

〈K| Ô1 |K〉 =
∑N

i=1 〈i| ĥ |i〉

Case 2: |K〉 = |χ1 . . . χmχn . . . χN〉
|L〉 = |χ1 . . . χpχn . . . χN〉

〈K| Ô1 |L〉 = 〈m| ĥ |p〉

Case 3: |K〉 = |χ1 . . . χmχn . . . χN〉
|L〉 = |χ1 . . . χpχq . . . χN〉

〈K| Ô1 |L〉 = 0

appear in the form

Ô2 =
N
∑

i=1

N
∑

j>i

v̂(i, j) ≡
∑

i<j

v̂(i, j), (28)

where v̂(i, j) is an operator involving the ith and jth electronic coordinates. In the

follow table of matrix elements for two-electron operators, we will take v̂(i, j) to be

the coulomb repulsion between electrons, i.e.

v̂(i, j) = r−1
ij .

Tables 2 and 3 summarize the evaluations of matrix elements for one- and two-

electron operators
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Table 3. Matrix elements between determinants for two-electron operators

Ô2 =
∑

i<j r
−1
ij

Case 1: |K〉 = |χ1 . . . χmχn . . . χN〉

〈K| Ô2 |K〉 = 1
2

∑N
i=1

∑N
j=1 〈ij| |ij〉

Case 2: |K〉 = |χ1 . . . χmχn . . . χN〉
|L〉 = |χ1 . . . χpχn . . . χN〉

〈K| Ô2 |L〉 =
∑N

i=1 〈mi| |pi〉

Case 3: |K〉 = |χ1 . . . χmχn . . . χN〉
|L〉 = |χ1 . . . χpχq . . . χN〉

〈K| Ô2 |L〉 = 〈mn| |pq〉

2.2 Hartree-Fock

In beginning chemistry classes students are taught a simple picture in which the

electrons belonging to molecules occupy molecular orbitals. This picture is, in fact,

only an approximation, albeit a very important one, called the Hartree-Fock approxi-

mation. The utility of the Hartree-Fock approximation lies not just in the predictions

one can make with the theory, but it also acts as a stepping stone to more involved

and accurate pictures of molecules. Very few ab initio methods bypass this approxi-

mation. In this section the Hartree-Fock approximation will be discussed as well as

its implementation in a computational environment.

2.2.1 The Hartree-Fock Equations.

The simplest multi-electronic wave function considered here is one which is repre-

sented by a single determinant. Consider an arbitrary determinant |Ψ〉. The energy
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of a system described by this wave function is given by the expectation value of the

wave function with the electronic Hamiltonian Equation (3) for an N electron system

E = 〈Ψ| Ĥ |Ψ〉 .

Variation of this wave function is obtained by varying the spin orbitals which comprise

the determinant. The variational principle [Cohen-Tannoudji et al., 2005] says that

the best possible determinant for the ground state of a system is the one with the

smallest energy. Denote the determinant which minimizes the energy by |Ψ0〉 and let

this determinant have the following form

|Ψ0〉 = |χ1 . . . χaχb . . . χN〉 .

Then the minimum energy E0 is

E0 = 〈Ψ0| Ĥ |Ψ0〉

=
N
∑

i=1

〈i| ĥ |i〉+
1

2

N
∑

i=1

N
∑

j=1

〈ij| |ij〉 . (29)

Using functional variation (see Szabo and Ostlund [1989] for details) on the set of

spin orbitals {χi} subject to the constraint that they remain orthonormal, one arrives

at the following integro-differential equation

ĥ(1)χa(1) +
∑

i #=a

[∫

dx2 |χi(2)|2 r−1
12

]

χa(1)

−
∑

i #=a

[∫

dx2χ∗
i (2)χa(2)r

−1
12

]

χi(1) = εaχa(1), (30)
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where εa is the orbital energy of χa. If M is the total number of nuclei then

ĥ(1) = −
1

2
∇2

1 −
M
∑

A=1

ZA

r1A
. (31)

Introducing the following two operators (which are referred to as the Coulomb and

exchange operators, respectively)

Ji(1) =

∫

dx2 |χi(2)|2 r−1
12

Ki(1) =

∫

dx2χ
∗
i (2)r

−1
12 P̂12χi(2), (32)

simplifies Equation (30) greatly, which becomes

[

ĥ(1) +
∑

i #=a

Ĵi(1)−
∑

i #=a

K̂i(1)

]

χa(1) = εaχa(1). (33)

The operator enclosed by brackets in the Equation (33) is called the Fock operator

f̂(1) = ĥ(1) +
∑

i #=a

Ĵi(1)−
∑

i #=a

K̂i(1). (34)

The integro-differential equation Equation (30) has become an eigenvalue equation

f̂(1)χi(1) = εiχi(1). (35)

2.2.2 The Hartree-Fock Approximation.

At the heart of the chemist’s view of molecular structure lies a picture which

consists of electrons occupying spin orbitals. These spin orbitals are formed out of

spatial orbitals, the location of which are centered on atoms and molecules. This is,

in fact, an approximation called the Hartree-Fock (HF) Approximation. When the
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electronic configuration distributes the electrons throughout the spin orbitals with

the lowest possible energies εi, so that the energy of the electronic state of the system

E0 is minimized, then the determinant representing this state is the HF ground state

|Ψ0〉 and the orbitals {χi : i = 1, . . . , N} satisfy Equation (35). This set of orbitals

are said to be the exact HF orbitals.

The Fock operator is functionally dependent on its own eigenfunctions. Therefore,

it is not a linear operator and Equation (35) is not a linear eigenvalue problem. To

see this more concretely, it is convenient to rewrite the Fock operator in a more

illuminating form and discuss some of its properties. Observe that

f̂(1) = ĥ(1) + v̂HF(1), (36)

where, assuming that Fock operator is acting upon orbital χa,

v̂HF(1) =
∑

i #=a

Ji(1)−
∑

i #=a

Ki(1). (37)

If the second term in Equation (36) were absent, then this operator would simply

be the Hamiltonian for the ath electron in a field of fixed point nuclei, and the Fock

operator would be linear. All interaction between electrons is contained in v̂HF(1).

Now, if this was the true potential for this situation, then v̂HF(1) would just be

the coulomb interaction between electrons. However, in the HF approximation this

potential has been simplified. Looking at the first part of v̂HF(1), the sum over

Coulomb operators

Ji(1)χa(1) =

[
∫

dx2 |χi(2)|2 r−1
12

]

χa(1).

The quantity dx2 |χi(2)|2 represents the probability of finding the electron in orbital χi
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inside an infinitesimal volume centered on x2. Multiplying this term by the Coulomb

interaction an electron in orbital χa would feel if the ith electron were in this spot,

and then integrating over the entire volume results in an averaging of the effects on

the ath electron due to the Coulomb interaction with the ith electron. This is summed

over i so that the average Coulomb interaction of all other electrons is what the ath

electron sees.

Looking at the second part of v̂HF(1), the sum over exchange operators is given

by

Ki(1)χa(1) =

[
∫

dx2χ
∗
i (2)r

−1
12 P̂12χi(2)

]

χa(1)

=

[
∫

dx2χ
∗
i (2)r

−1
12 χa(2)

]

χi(1).

If the ith orbital and the ath orbital have opposite spins, then this term is zero. If the

spins are the same, this term gives rise to what is called exchange correlation. This is

a consequence of the symmetrization postulate of quantum mechanics. Its presence is

completely unaccounted for in classical theories. The sum of all the exchange effects

on the ath electron is included in v̂HF(1).

Both the Coulomb and exchange operators require a knowledge of the eigenfunc-

tions of the Fock operator. Equation (35) is therefore non-linear, and its solution

must be obtained in and iterative manner. In practice, one begins with a guess at the

eigenfunctions. Forming the Fock operator and then solving Equation (35) generates

new eigenfunctions. This process is repeated until self-consistency is reached. This

is the essence of the Self-Consistent Field (SCF) method, which is the name of the

process by which one solves the Fock eigenvalue equation.
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2.2.3 Basis Sets and the Roothaan Equations.

Up to this point spin orbitals have been referred to in only a general way. No

effort has been made to describe how one actually generates a spin orbital. To begin

this process only restricted spin orbitals will be considered here. A restricted spin

orbital is of the following form

χi(x) =











ψi/2(r)α(ω) : i is even

ψ(i+1)/2(r)β(ω) : i is odd.
(38)

Given a set of K spatial functions, {ψi : i = 1, . . . , K}, one can form 2K restricted

spin orbitals. In addition, the Hartree-Fock ground state determinant |Ψ0〉 will be

assumed to be in closed shell form. This means that there are an even number of

electrons in the N electron system, and for each spatial orbital which is used to make

one of the ground state spin orbitals, both spin up and spin down versions of that

spatial orbital are included in the ground state

|Ψ0〉 = |χ1χ2 . . . χ2i−1χ2i . . . χN−1χN〉 . (39)

Special note should be taken here. In the restricted spin orbital formalism there are

a pair of electrons, one spin up and the other down, that share the same spatial

orbital. Due to the nature of spin correlation, the spatial motion of electrons with

the same spin is correlated via the symmetrization postulate of quantum mechanics.

It is entirely conceivable that two electrons which share the same spatial orbital in

the restricted spin orbital formalism would feel different exchange correlation effects

due to their different spins. As such, it is arguable that all electrons should have their

own spatial functions. There is a formalism for spin orbitals which does this very

thing, the orbitals of this formalism being called unrestricted spin orbitals. Further
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information on unrestricted spin orbitals can be found in Szabo and Ostlund [1989].

Such orbitals are not used in any of the ab initio techniques employed in this work,

and will not be considered further in this report.

In order to build spin orbitals one must find an appropriate set of spatial or-

bitals. Toward this goal it is beneficial to simplify the Fock eigenvalue equation,

Equation (35), by integrating out the arbitrary spin variable ω. First, suppose

χ2i(x) = ψi(r)α(ω). The results are similar for the case where χ2i+1 is dependent on

β(ω). The simplification of the Fock eigenvalue equation is accomplished by multi-

plying Equation (35) by α∗(ω) and integrating over ω

[
∫

dω α∗(ω)f̂(x)α(ω)

]

ψi(r) = εiψi(r)

∫

dω α∗(ω)α(ω)

= εiψi(r), (40)

where the second line follows due to the orthonormality of the spin functions.

Evaluating the integral on the left hand side of Equation (40) is tedious and its

derivation can be found in Szabo and Ostlund [1989]. The result is a spatial Fock

eigenvalue equation

f̂(r)ψi(r) = εiψi(r), (41)

where

f̂(r) = ĥ(r) +
N/2
∑

i

2Ĵi(r)− K̂i(r). (42)

The operators Ĵi and K̂i are the spatial versions of the Coulomb and exchange oper-

ators

Ĵi(r1) =

∫

dr2 ψ
∗
i (r2)r

−1
12 ψi(r2)

K̂i(r1) =

∫

dr2 ψ
∗
i (r2)r

−1
12 P12ψi(r2). (43)
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The expression for the ground state energy E0 has become

E0 = 〈Ψ0| Ĥ |Ψ0〉

= 2
N
∑

i=1

〈i| ĥ |i〉+
N
∑

i=1

N
∑

j=1

[2Jij −Kij] . (44)

See Table 1 for the meaning of Jij and Kij.

It is Equation (41) which must be solved to find the Hatree-Fock ground state

wave function and energy. Numerical approaches to solving this equation do exist for

atoms, however no numerical approaches exist for molecules. Instead of dealing with

this equation it is possible to reduce Equation (41) to a purely algebraic equation,

which can be solved with standard matrix methods. To do this requires the idea of a

basis set.

A basis set is a set of known spatial functions that are linearly independent and

span the D-dimensional subspace of spacial function (typically atomic like orbitals)

{φj(r) : j = 1, . . . , D} where D is the number of functions in the set. This set is

partitioned up into distinct subests where all the spatial functions of a particular

subset are centered on one of the nuclei. There will be as many of these subsets as

there are nuclei. If the total set is linearly independent then D is the dimensionality

of the space which the set spans. Ideally its possible to have an infinite basis set. Due

to computational limitations this will never happen. The Hartree-Fock ground state

spatial orbitals are then expanded in terms of this basis set

ψi(r) =
D
∑

j=1

Cjiφj(r). (45)

When working with a specific basis set each spatial orbital ψi will be determined

uniquely by its coordinates Cji for all j = 1, . . . , D.

Inserting the above expansion (Equation (45)) of the spatial orbitals into Equation
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(41) yields

f̂(r)
D
∑

j=1

Cjiφj(r) = εi

D
∑

j=1

Cjiφj(r). (46)

Multiplying from the left by φ∗
k(r) and integrating over dr gives

D
∑

j=1

Cji

∫

dr φ∗
k(r)f̂(r)φj(r) = εi

D
∑

j=1

∫

dr φ∗
k(r)φj(r). (47)

At this point it is required that several matrices be introduced. All of the following

matrices are square and have dimension D. The first is the overlap matrix S whose

elements are

Skj =

∫

dr φ∗
k(r)φj(r). (48)

This is a Hermitian matrix and would be the unit matrix of dimension D if the known

functions φi(r) were orthonormal. The second matrix that needs introduction is the

Fock matrix F whose elements are

Fkj =

∫

dr φ∗
k(r)f̂(r)φj(r). (49)

This, too, is a Hermitian matrix. The third matrix, denoted C, is simply made up of

the coefficients of the spatial orbitals in the basis set as defined in Equation (45)

C =



















C11 C12 · · · C1D

C21 C22 · · · C2D

...
...

...

CD1 CD2 · · · CDD



















. (50)
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Finally, the last matrix that needs introduced is denoted by ε and has the form

ε =



















ε1 0 · · · 0

0 ε2 · · · 0

...
...

...

0 0 · · · εD



















. (51)

This matrix has the spatial orbital energies along its diagonal and zeros everywhere

else.

In introducing the previous matrices a little hand waving occurred which war-

rants attention. When the spatial orbitals where expanded in terms of the basis

set Equation (45) the focus was on generating the spin orbitals which comprise the

Hartree-Fock ground state. In an N electron system (here N is assumed even due to

the closed shell formulation of the Hartree-Fock ground state) one would need N spin

orbitals to do this. Since two spin orbitals can be made out of every spatial orbital,

and each spatial orbital which is included must come with both and alpha and beta

spin pair, only N/2 spatial orbitals are required. Looking at Equation (45) the index

j runs from one to D, the number of spatial functions in the basis set. However, the

index i runs from one to N/2. In the recently introduced matrices C is square with

dimensionality D. Although there must be D rows since this index runs over the

basis set, there should only be N/2 columns since only this many spatial orbitals are

needed. In addition, the matrix of orbital energies should be square, but it should

only contain N/2 rows and columns, unlike the D rows and columns it has.

What is happening here is that more molecular orbitals have been made out

of the atomic basis sets than are needed to form the Hartree-Fock ground state.

These extra orbitals are still present in the above matrices. Only the orbitals which

make up the ground state will be optimized by the SCF procedure, while the extra

37



orbitals will remain unoptimized. All we will be guaranteed of is all spatial orbitals

made will be orthonormal. Beyond this, the extra orbitals don’t contribute to the

calculation and don’t even need to be present for the SCF to work. However, they are

calculated because they will be useful when it comes time to consider the configuration

interaction method.

Having these matrices firmly in hand, it is time to write down Roothaan’s equa-

tions. This is a rewrite of Equation (41) in matrix form.

FC = SCε. (52)

Roothaan’s equations present an example of a generalized eigenvalue problem.

This is very similar to a standard eigenvalue problem, except the basis that is being

employed is not necessarily orthonormal. This is a consequence of the set of known

spatial functions {φj(r)} which we choose to form the basis set. The solution of the

Roothaan’s equations simply adds the extra steps of changing to an orthonormal basis

before solving the eigenvalue problem, and then changing back to the original basis

afterwards. The details of this process can be found in Szabo and Ostlund [1989].

2.2.4 The Self Consistent Field Procedure.

Armed with the content of this chapter up to this point, it is now possible to

discuss the self consistent field (SCF) procedure, at least at a cursory level. As was

mentioned before, an SCF calculation is a numerical routine which arrives at an

approximation of the Hartree-Fock ground state wave function |Ψ0〉 for a particular

molecular arrangement, i.e. a particular set of nuclear coordinates for some physical

system consisting of nuclei and electrons. An outline of the SCF procedure follows.

1. Identify the charge ZA and location RA of all nuclei in the system. Choose a

set of spatial functions {φj(r)} to form the basis set.
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2. Formulate a guess at the starting electronic wave function for the system.

3. Form the Fock matrix F from the guess for the electronic wave function.

4. Solve Roothaan’s equations for a new guess at the electronic wave function.

5. If the new wave function has changed more than a set tolerance then go back

to step 3 using the new wave function. If the wave function has converged then

use the current wave function to calculate the electronic energy of the system.

Under the Born-Oppenheimer Approximation, the solution to the electronic Hamil-

tonian depends parametrically on the coordinates of all the nuclei in the system. To

begin the SCF procedure step one sets up the nuclear arrangement. It is also nec-

essary to identify the set of spatial functions in which we shall expand the spatial

orbitals which form the Hartree-Fock ground state. If one were to have a complete

set of spatial functions at one’s disposal, then the SCF procedure would produce the

exact Hartree-Fock ground state orbitals and wave function. Since such a complete

set would need to be infinite, there is no such complete set of spatial functions avail-

able. Therefore, the result of the SCF procedure can only be considered exact (within

computational limitations) in a subspace of the total space for the problem. Due to

this the choice of basis set is not altogether straight forward, although there exists

insight which makes this process easier than stumbling around blindly in the dark.

For more information on this subject see Szabo and Ostlund [1989].

Step two of the SCF procedure calls for an initial guess at the ground state wave

function of the N electron system. While many different approaches for this ex-

ist, two of the more common approaches are called Ĥcore and Huckle. The Ĥcore

approach starts with the electronic Hamiltonian and removes all terms involving

electron-electron interaction. It then solves this Hamiltonian, which is the equiva-

lent of a system of N electrons traveling in the field of the nuclei without interacting
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at all with each other, as the initial guess for the SCF. The Huckle approach involves

making an empirical guess for ground state wave function. The last three steps of

the SCF procedure are self explanatory, although there is a considerable amount of

detail involved in their implementation.

The ground state wave function supplies a knowledge of the ground state energy,

along with numerous other physical quantities of interest, for the particular nuclear

arrangement which is considered. Multiple SCF’s at different nuclear coordinates can

produce a potential energy surface which defines the nuclear motion of a system in

the ground state.

2.3 Configuration Interaction

Configuration Interaction (CI) is an ab initio method which approaches solving

the electronic Hamiltonian for the system in a direct fashion by expanding it in a ba-

sis of determinants and diagonalizing to find the eigenvalues and wave functions for

the different states. The basis used to expand the Hamiltonian is generated from the

results of a SCF calculation, so SCF (or MCSCF, which will be discussed later in this

chapter) is a prerequisite for CI. If one were not limited by computational constraints

CI would produce exact results within the confines of the Born-Oppenheimer approx-

imation. This section discusses extensions to our description of the wave function for

a state of the system which is required for the CI formalism. In addition, it discusses

the various approaches to CI, i.e. different ways to form the determinantal basis.

2.3.1 Excited Determinants.

With the introduction of the basis set {φj : j = 1, . . . , D} in the SCF procedure

2D spin orbitals were generated, although only N of these were needed to form the

Hatree-Fock ground state determinant |Ψ0〉. Indeed, it was only these N spin orbitals,
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the Hatree-Fock orbitals, which were optimized during the SCF procedure. The other

2D −N orbitals did not take part in the optimization, although we are assured that

all 2D spin orbitals are orthonormal. Denote the extra 2D − N orbitals as virtual

orbitals. With all of these orbitals available, many more determinants can be made

than just |Ψ0〉. In fact, the total number of determinants which may be formed is

just the number of ways N electrons may be arranged in 2D spin orbitals. This is

given by the binomial coefficient

Number of Determinants =







2D

N






=

(2D)!

N !(2D −N)!
. (53)

Since |Ψ0〉 is considered the ground state determinant, all other determinants are

called excited determinants. A convenient way of labeling these determinants is to

use the Hartree-Fock ground state as a base line and keep track of how much each

determinant differs from |Ψ0〉, i.e. how many spin orbitals does the excited deter-

minant possess which are not present in the Hatree-Fock ground state determinant?

Remember, |Ψ0〉 is defined as

|Ψ0〉 = |χ1 . . . χaχb . . . χN〉 .

In this notation the indices a, b, . . . run over the Hatree-Fock spin orbitals. When

refering to virtual orbitals the indices r, s, . . . will be used. The first category of

excited determinants will be defined as any determinant which differs from |Ψ0〉 by

only one spin orbital. A determinant of this type will be called a singly excited

determinant and will be represented by

|Ψr
a〉 = |χ1 . . . χrχb . . . χN〉 . (54)
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The next category of excited determinants will be those which differ from |Ψ0〉 by

two orbitals. These determinants will be called doubly excited determinants and have

the form

|Ψrs
ab〉 = |χ1 . . . χrχs . . . χN〉 . (55)

Continuing in this way one can define triply |Ψrst
abc〉, quadruply |Ψrstu

abcd〉, . . ., N -tuply

|Ψrs...
ab...〉 excited determinants.

2.3.2 Multiconfigurational Wave Functions.

In a Hartree-Fock calculation one attempts to find the best representation of the

ground state of the system using an N -electron wave function of single determi-

nant form. This representation is constrained by both the Born-Oppenheimer and

Hartree-Fock approximations. This begs the question: Is it possible to get a better

approximation of the ground state of the system by using more than one determinant

to represent the wave function?

Suppose the SCF procedure was carried out using a complete basis set {φj(r)}.

If one were to form all possible determinants from the spin orbitals generated by the

SCF this set {|Ψ0〉 , |Ψr
a〉 , |Ψrs

ab〉 , . . .} would form a complete basis for the N -electron

space. As such, any state of the system |Φ〉 could be expressed as a linear combination

of these determinants

|Φ〉 = C0 |Ψ0〉+
N
∑

a=1

2D
∑

r=N+1

Cr
a |Ψr

a〉+
∑

a<b

∑

r<s

Crs
ab |Ψrs

ab〉+ . . . (56)

The meaning of a < b and r < s in the last term of the previous equation is that a

and r will run over their normal values, 1 to N and N + 1 to 2D respectively, while

b and s will run from a + 1 to N and r + 1 to 2D respectively. This avoids double

counting the contribution of any determinant.
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A wave function expanded in such a basis of determinants is called a multiconfig-

urational wave function.

2.3.3 Correlation Eneregy.

The only form of electron correlation that the Hartree-Fock approximation handles

explicitly is the exchange correlation which arrises by imposing the symmetriztion

postulate on the form of the wave function. The Coulomb interaction inbetween

electrons is handled only in an average way. Even if one were working with complete

basis sets the energy obtained, the so called the Hartree-Fock limit E0, would not be

the exact ground state energy E0. In fact E0 > E0 because of the variational principle.

The difference Ecorr where

Ecorr = E0 − E0, (57)

is always negative and is called the correlation energy, since the source of this energy

is interacting electrons. It is the goal of the configuration interation, as well as other

post Hartree-Fock methods, to recover as much of this correlation energy as possible.

2.3.4 Configuration Interaction.

The previous section asserts that if we start with a complete basis set then the

Hartree-Fock procedure generates a complete N -electron basis within which any state

of the system, not just the ground state, may be exactly represented. Armed with

such an N -electron basis it is possible to approach solving Equation (4) directly by

expanding the electronic Hamiltonian within the basis and diagnolizing the result-

ing matrix. Unfortunately a complete basis set must be infinite and computational

limitations require finite dimensional basis sets. One can still form a basis of determi-

nants from the Hartree-Fock procedure, but this basis will only span a subspace of the

N -electron space. Nevertheless such an effort can still produce approximations to not
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only the ground state wave function, but excited state wave functions as well. This

process is called full CI (FCI). The FCI matrix is the matrix formed by expanding

the electronic Hamiltonian in the discrete basis of determinants.

The Hartree-Fock procedure always produces a discrete number of determinants in

which to expand the electronic Hamiltonian, but just how many determinants of some

n excitations does it produce? Given 2D spin orbitals the Hartree-Fock ground state

|Ψ0〉 will contain N of these orbitals. This leaves 2D −N orbitals unoccupied in the

ground state, denote these virtual orbitals. For some specific number of excitations

n, this number represents how many orbitals must be chosen out of the ground state

and replaced with virtual orbitals. This can occur in




N

n



 possible ways. Likewise,

the n orbitals chosen from the set of virtual orbitals results in




2D

n



 combinations.

The product of these two is the number of determinants of n excitations made out of

the basis set and generated during the Hartree-Fock procedure.

Number of determinants of n excitation =







N

n













2D

n






. (58)

Consider the exact ground state of the electronic Hamiltonian, denote it |Φ0〉.

Rewriting the expansion of |Φ0〉 the following way

|Φ0〉 = c0 |Ψ0〉+ cS |S〉+ cD |D〉+ cT |T 〉+ . . . , (59)

will allow for a much simpler expression for the FCI matrix. Here we have simply

lumped all coefficients and determinants of n excitations into a single term. For

example, all determinants of single excitations have been lumped into |S〉 and their

coefficients lumped into cS. This is done because determinants of the same excitation

share many properties in common, as is explained in the next paragraph.
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Before writing down the expression for the FCI matrix a few points should be

considered. First, due to Brillouin’s theorem [Szabo and Ostlund, 1989] all matrix

elements between the Hartree-Fock ground state |Ψ0〉 and any singly excited states

|S〉 are zero. Second, from the rules derived for matrix elements earlier in the chapter,

any element of the FCI matrix which is formed between two determinants that differ

by more than two excitations is automatically zero. Lastly, a value of zero for a

matrix element between two states means that the states do not mix directly. By mix

it is meant that the states are correlated. However, the first state may mix with other

states which mix directly with the second state. For example, |Ψ0〉 does not mix with

states of single excitation. It does mix with states of double excitations, and states

of double excitations mix with states of single excitation. In this way states which do

not mix directly still can have an effect on each other, although usually this effect is

much smaller than that of determinants which mix directly. In addition to what has

been discussed in this paragraph the spin of determinants and molecular symmetry

can be used to simplify the FCI matrix by determining that certain matrix elements

must be zero.

Since the FCI matrix is Hermitian only the upper triangular portion will be

needed.

































〈Ψ0| Ĥ |Ψ0〉 0 〈Ψ0| Ĥ |D〉 0 0 · · ·

〈S| Ĥ |S〉 〈S| Ĥ |D〉 〈S| Ĥ |T 〉 0 · · ·

〈D| Ĥ |D〉 〈D| Ĥ |T 〉 〈D| Ĥ |Q〉 · · ·

〈T | Ĥ |T 〉 〈T | Ĥ |Q〉 · · ·

〈Q| Ĥ |Q〉 · · ·
...

































. (60)

The the diagonalization of this matrix provides a series of eigenvalues. The lowest
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of these is an upper bound to the ground state energy. The next lowest is an upper

bound to the first excited state, and so on. The wave functions associated with these

eigenvalues are approximations to the N -electron wave function for the associated

state.

2.3.5 Singles and Doubles CI.

By the nature of the binomial coefficient the number of determinants which can

be produced from the Hartree-Fock procedure quickly grows very large, even with a

modest amount of basis functions and electrons. This leads to a FCI matrix which

becomes too large to be diagonalized by modern computers. As a result, the prospect

of implementing FCI quickly becomes computationally impractical. Therefore, in or-

der to salvage the method some approach to truncating the FCI basis of determinants

must be developed.

A quick and easy way to truncate the determinantal basis is to exclude all de-

terminants of a certain excitation or higher. A common form of this truncation is

called configuration interaction singles and doubles(CISD). In this method only de-

terminants of at most two excitations are kept in the basis. This is especially useful

for approximating the correlation energy to obtain the exact ground state since dou-

bly excited determinants are the only ones which mix directly with the Hartree-Fock

ground state. Single excitations are not as important for this purpose because they

contribute very little to the correlation energy. However, they are useful in calculat-

ing other physical properties of the ground state and there are so few of them that

including them does not complicate the calculation in a significant way.
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The truncated FCI matrix takes on the following form for CISD













〈Ψ0| Ĥ |Ψ0〉 0 〈Ψ0| Ĥ |D〉

〈S| Ĥ |S〉 〈S| Ĥ |D〉

〈D| Ĥ |D〉













. (61)

Although this approach can do quite well with the ground state, excited state

information is not expected to be very accurate. This is because the excited states

mix directly with determinants of higher than double excitation. Additionally, the

molecular orbitals which are used to form the excited determinants have not been

optimized by the SCF like the orbitals in the Hartree-Fock ground state. In order to

handle excited states one must include higher excitations in the determinantal basis.

However, including all the triple excitations makes the determinantal basis much too

large for even systems with moderately sized basis sets and number of electrons. In

the truncated CI approach, the determinants with an even number of excitations

recover a vast majority of the correlation energy, while determinants with an odd

number of excitations have very little impact. Thus after CISD one would go to

CISDTQ and skip the triple step entirely. This combined with the computational

inability to perform even triple excitations makes many problems untenable with this

approach. However, if we employ a truncation scheme which will cherry pick among

the determinants of higher than double excitation, choosing some subset of them to

be included in the truncated FCI matrix, we can make significantly more progress.

Thus far we have been considering systems dominated by one electronic configuration,

namely the Hartree-Fock ground state |Ψ0〉. The path toward a smarter choice for

the truncation for the FCI matrix is to consider systems dominated by more than one

electronic configuration.
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2.4 Multi-configurational Self-Consistent Field

As its name implies, Multi-configurational Self-Consistent Field (MCSCF) is an

extension to the SCF method (and the Hartree-Fock approximation). Like SCF,

MCSCF is an iterative procedure where one begins with a guess, feeds it into the

non-linear differential equations and then uses the results to form the next guess.

During this process the spatial orbitals used in the calculation are optimized. Unlike

SCF, MCSCF allows for multiple electronic configurations through the use of multi-

ple reference wave functions (as opposed to Hartree-Fock’s use of just one reference

Slater determinant). As a result it optimizes more of the spacial orbitals than a SCF

calculation. Every spacial orbital used in the MCSCF expansion of the wave function

gets optimized during the MCSCF procedure. MCSCF can also handle excited states

in addition to the ground state. The spatial orbitals can be optimized for any partic-

ular state, or they can be optimized to give the best results for some combination of

states. One can even apply different weights for different states in the optimization

process. Due to the computational demands of the MCSCF procedure relatively few

determinants can be handled. This severely limits the quality of energies calculated

by MCSCF, specifically the method’s ability to capture the correlation energy due to

the Coulomb interaction between electrons. However, the mulitreference character of

the MCSCF wave function allows it to incorporate well the correlation between states

when their energies become nearly degenerate. This type of electron correlation is

called static correlation and is something single reference systems like Hartree-Fock

and CISD fail to capture well. MCSCF works well in conjunction with an multirefer-

ence extension to CISD in cases where both static and Coulomb correlation energies

are important. The multireference extension to CISD will be discussed next.
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2.4.1 The MCSCF Procedure.

Given a basis set consisting of D linearly independent spatial functions an SCF

calculation will produce 2D spin orbitals. Out of all these orbitals only N orbitals are

optimized by the SCF calculation, leaving 2D −N orbitals unoptimized. A MCSCF

calculation builds upon the ideas of the SCF. Instead of solving for the best (in a

variational sense) wave function of single determinant form, a MCSCF wave function

allows for a multireference wave function of the following form

|ΨMCSCF〉 =
∑

I

cI |ΨI〉 , (62)

where the |ΨI〉’s are some subset of determinants which form the full expansion in

Equation (56). Each of the spin orbitals which form the various |ΨI〉’s includes a

spatial orbital ψi(r) which has its own expansion coefficients in terms of the basis set,

see Equation (45).

An MCSCF calculation, similarly to a standard SCF calculation, is an iterative

procedure which optimizes, according to the variational principle, not only the ex-

pansion coefficients cI of a state of the system but also the expansion coefficients of

the orbitals which comprise the different determinants |ΨI〉. Through choosing which

determinants to include in the MCSCF expansion one is able to optimize more of

the spin orbitals than just the ones required to form the Hartree-Fock ground state

|Ψ0〉. In addition, an MCSCF calculation is not limited to only the ground state as

is a SCF calculation, but it can provide excited state information as well. It can

optimize the expansions in terms of the determinants chosen for any single state,

ground or excited, or even multiple states simultaneously. Optimizing for multiple

states simultaneously will lead to different orbital optimizations than if one were to

consider just a single state. So, the orbitals are optimized in a way to give the best
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overall results for a multitude of states or the best orbitals for any particular state

considered in isolation. The general equations which must be solved for an MCSCF

calculation are considerably more involved than those of the Hartree-Fock procedure

(Roothaan’s equations in the closed shell restricted Hartree-Fock case). A detailed

discussion of the implementation of MCSCF may be found in Helgaker et al. [2000].

2.4.2 Multireference Configuration Interaction Singles and Doubles.

For small systems quite accurate results may be obtained with the use of the

MCSCF technique. Due to computational limitations, as the size of the system

increases the number of determinants used in the MCSCF expansion Equation (62) of

the wave functions of interest must be limited to a number usually much smaller than

even a basis of determinants constructed for a singles and doubles CI calculation.

As such, MCSCF by itself is not a very useful technique for most realistic problems

where the Coulomb correlation between electrons is significant. That being said

MCSCF maintains its utility through its ability to improve the results of other ab

initio calculations.

MCSCF’s ability to optimize more spatial orbitals than what are required for the

Hartree-Fock ground state provides a means to improve a singles and doubles CI

calculation. This is accomplished by using these optimized orbitals in the construc-

tion of the basis of determinants for the CI expansion. However, as was mentioned

above, due to the computational limitations of the MCSCF procedure the number of

determinants it can handle is usually much less than the number in even a singles

and doubles CI basis set. As such there’s no way it can optimize all the orbitals used

in all determinants in the set generated by the CI truncation scheme. Some subset

of the molecular orbitals generated from the atomic basis sets must be selected for

use in the MCSCF calculation. The way I do this is by using a complete active space
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37 Rb Electrons    1s2 2s2 2p6 3s2 3p6 3d10     4s2 4p6 5s1

External SpaceDoubly Occupied
Additional
Molecular
Orbitals

Core Electrons

Reference
States

2 He Electrons                                                     1s2

Rb  1s2 2s2 2p6 3s2 3p6 3d10     He 1s2 Rb 4s2  Rb 4p6      Rb 5s1 Rb 5p0

Active Space

Figure 1. The reference states used in calculating the M +Ng potential energy curves.
Reference states are written in terms of the atomic states to which they dissociate in the
separated atom limit. My choice of active space results in four reference determinates
corresponding to the ground and first three excited states of the alkali metal atom.

(CAS).

In the CAS method determinants for the multireference wave function are con-

structed as follows. All doubly occupied molecular orbitals of the Hartree-Fock ground

state are present and doubly occupied in all of the determinants for the wave function

expansion. All singly occupied molecular orbitals of the Hartree-Fock ground state in

addition to some subset of orbitals formed from the atomic bases sets but not included

in the Hartree-Fock ground state form the active space. Any electrons which occupied

the orbitals which came from the Hartree-Fock ground state are also placed into the

active space. One can then imagine the set of all permutations of the electrons within

the various orbitals of the active space. We form the reference determinates for the

multireference wave function expansion by appending one of the permutations from

the active space to the doubly occupied orbitals in the Hartree-Fock ground state.

Figure 1 shows an example of a set of reference determinants generated from the
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CAS approach for the Rb + He calculations examined in this work. All other M + Ng

combinations differ only in the doubly occupied orbitals and have the same structure

for the active space. We write the molecular orbitals in terms of the dissociated atom

limit, and these reference states dissociate to the 2S1/2, 2P1/2, and 2P3/2 alkali metal

states with the noble gas in the ground state. This active space has four molecular

orbitals and one electron, thus there are four ways to permute the electron among

these orbitals. This results in four reference state determinants for the multirefernce

wave function expansion. It is the molecular orbitals which are used to form the

reference determinants which are optimized by the MCSCF, and in such a way that

one can weight whichever states one’s interested in. For the calculations in this work

I weight all four states obtained from the four reference determinants equally.

Once the MCSCF is completed, the reference states and their orbitals are opti-

mized and a multirefernce configuration interaction singles and doubles (MRCISD)

is performed. This works very similarly to a CISD, except that each reference deter-

minant is used as a base from which to make single and double excitations. These

excitations are made by placing electrons into molecular orbitals which lie in the ex-

ternal space, so no active space orbital may be excited into. Since we are performing

double excitations on reference determinants which are already singly occupied, we

are effectively mixing in some but not all triple excitations. The electronic Hamil-

tonian is then expanded in terms of the N electron basis set formed from all of the

determinants generated by these excitations, as well as the reference determinants

themselves. One then just has to diagonalize to find the electronic wave functions

and energy levels.

The advantage of using MCSCF over SCF as a precursor to the CI calculation

is that the MCSCF will optimize all orbitals of the active space, where as the SCF

optimizes only the molecular orbitals comprising the Hartree-Fock ground state de-
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terminant. As the reference determinants formed from the CAS method are the most

physically relevant determinants it is beneficial to optimize all the orbitals which

comprise these determinants. In addition, in MCSCF the orbitals may be optimized

for whatever state (or states) are of interest, where as the SCF optimizes only for the

ground state. Following a MCSCF with a MRCISD calculation recovers much of the

Coulomb correlation energy missed by the MCSCF.
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III. M+Ng Potential Energy Curves

It is shown in Sanders [1973] that one can use measured broadening and shifting

coefficients to calculate a difference potential (DP) of the Lenard-Jones form which,

when used in the Anderson Talman line shape theory, will yield back the measured

broadening and shifting coefficients. These DPs were calculated from measured co-

efficients of rubidium with a variety of collisional partners in Rotondaro and Perram

[1997], and from measured coefficients of cesium with a variety of collisional partners

in Pitz et al. [2009], and Pitz et al. [2010]. Such a DP is shown in Figure 2. Note that

the Lenard-Jones DP has a repulsive wall around ≈ 10Å and a minimum of about

≈ 0.8cm−1 at ≈ 12.5Å. It is natural to assume that the Lenard-Jones DP contains

information about what the real DP must look like. In this chapter we will explore

how the ab initio potential energy curves (PECs) dramatically change the picture

of what the real DPs look like. Later is this work we will learn what features the

real DPs share with the Lennard-Jones DPs so as to yield the same broadening and

shifting coefficients.

3.1 MCSCF PECs

3.1.1 Description of the MCSCF calculations.

In this section several types of calculations have been employed to compute M +

Ng PECs, including restricted open-shell Hartree-Fock (ROHF), MCSCF, MRCISD

[Knowles et al., 2000] and first order relativistic corrections, including spin-orbit [Fe-

dorov et al., 2003]. Here a MRCISD calculation with first order relativistic corrections

will be refered to as a spin orbit configuration interaction (SOCI) calculation. A series

of X2Σ, A2Π and B2Σ curves have been computed at the MCSCF level for alkali-

metal atoms M = Li, Na, K, Rb and Cs and noble-gas atoms Ng = He, Ne and Ar
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Figure 2. A Lennard-Jones difference potential derived from broadening and shifting
measurements of Rb + He.

and provide a semi-quantitative picture of the interaction. This allows the compar-

ison of various features for the different combinations. In addition, X2Σ+
1/2, A

2Π1/2,

A2Π3/2 and B2Σ+
1/2 curves have been generated for Li + He using SOCI. All calcula-

tions performed in this section were made using the General Atomic and Molecular

Electronic Structure System (GAMESS) program [Schmidt et al., 1993].

The basis sets used for the MCSCF calculations are the split-valance Def2SVP

[Weigend and Ahlrichs, 2005]. The basis set used for the Li + He SOCI calculation is

the quadruple zeta Def2QZVPP [Weigend and Ahlrichs, 2005]. These basis sets have

been obtained from the EMLS Basis Set Exchange [Feller, 1996, Schuchardt et al.,

2007]. For alkali-metal atoms Li through K and for all noble-gas atoms considered,

the basis sets include all the electrons. However, twenty-eight core electrons of the

rubidium atom and forty-six core electrons of the cesium atom have been replaced

with Stuttgart effective core potentials (ECP) [Leininger et al., 1996]. The reference

space for the MCSCF calculation consists of four determinants obtained from an

active space with one electron in the 2S and 2P orbitals on the alkali-metal atom,

as shown in Figure 1. All other electrons remain doubly occupied including those on
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the noble-gas atom, which eliminates electron correlation contributions to the inter-

atomic interaction. These molecular states dissociate to the appropriate atomic states

of the alkali-metal atom with the noble-gas atom in the ground state.

The active space for the Li + He SOCI curves consists of all doubly occupied

orbitals and the singly occupied orbital in the Hartree-Fock ground state determinant,

as well as the three lowest-energy orbitals unoccupied in the Hartree-Fock ground state

determinant. After the MRSDCI is complete spin-orbit corrections are computed

using the full Pauli-Breit operator [Fedorov et al., 2003].

3.1.2 Comparison of MCSCF vs. SOCI curve for Li + He.

The MCSCF M + Ng curves provide a picture of the interaction between M

and Ng as well as a systematic way to see similarities and differences for different

combinations of alkali-metal atoms and noble-gas atoms. Before proceeding to discuss

the MCSCF curves it is informative to check the accuracy these surfaces provide by

comparing them with the SOCI calculation of the Li + He curve. These two curves

are plotted in Figure (3).

The main features (the shoulder in the B2Σ state, the well in the A2Π state, etc.)

for both plots are similar. However, the shoulder in the B2Σ curve near R = 4a0

is significantly smaller in the SOCI curve. The X2Σ curve changes very little with

a slight lowering of the repulsive wall which causes it to grow more slowly with

decreasing internuclear separation (R). This is seen to much greater degree in the

B2Σ curve. In addition, the B2Σ curves decrease more slowly for R greater than five

Bohr radii (a0). The main quantitative change in the A2Π curve can be seen in the

well region, for which experimental data is available and listed in Table (4). While

the MCSCF and SOCI curves exhibit differences, their over all similarity suggests

that the basic picture of the M +Ng interaction is captured by the MCSCF curves.
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Figure 3. Comparison of Li + He MCSCF (solid) vs. MRSDCI (dashed)

Table 4. A2Π Well for Li + He

Method rmin Depth

MCSCF 3.60 546
SOCI 3.43 907
exp1 3.37(3) 1020(20)

1Lee and Havey [1991]
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3.1.3 Results of PEC calculations.

The results of the MCSCF calculations of the excited A2Π and B2Σ states are

presented in Figures 4-8. In these figures the asymptotic limit of the 2P state of the

alkali-metal atom has been set to zero. As expected, all of the repulsive walls move to

larger values of R as the size of the atoms involved increases. Each of the A2Π curves

demonstrate a shallow well which tends to get deeper as the noble-gas atoms and the

alkali-metal atoms become heavier. Lithium is an exception to this rule, exhibiting a

deeper well for helium than for neon. Each B2Σ state, with the exception of Na + Ne

and Na + Ar, reveals a shoulder in the rise of the repulsive barrier. This shoulder is

most pronounced for lithium and tends to drop off in abruptness as the alkali-metal

atom under consideration gets heavier. The ground X2Σ curves are shown in Figures

9-13. These curves are mostly repulsive, exhibiting very shallow wells at R > 10a0,

ranging in depth from 1cm−1 to 40cm−1. This is consistent with the work of Goll

et al. [2006]. Note that in these Figures 9-13 the energy scale is too large to see the

wells.

A close up of the asymptotic limit for the 2P1/2 and 2P3/2 for the SOCI with

spin-orbit corrections calculation of Li + He is shown in Figure 14 between 10a0

and 50a0. The 2P1/2 state of lithium has been chosen as the zero for the plot. In

the asymptotic limit the degenerate 2P3/2 levels with mj = ±3
2 correspond to the

A2Π3/2 curve while the mj = ±1
2 levels correspond to the B2Σ curve. The area

of the plot around R = 17a0 where the B2Σ curve exhibits a well is an avoided

crossing. Non-adiabaticity in this region is one of the two mechanisms responsible for

collisionally induced fine structure transitions in the lithium during the interaction

with the helium. The second mechanism is a Coriolis coupling between the 2Π3/2 and

2Π1/2 curves that becomes important at smaller values of R [Elward-Berry and Berry,

1980].
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Figure 5. MCSCF excited surfaces of Na + Ng
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Figure 6. MCSCF excited surfaces of K + Ng
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Figure 7. MCSCF excited surfaces of Rb + Ng
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Figure 8. MCSCF excited surfaces of Cs + Ng
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Figure 9. MCSCF ground surfaces of Li + Ng
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Figure 10. MCSCF ground surfaces of Na + Ng
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Figure 11. MCSCF ground surfaces of K + Ng
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Figure 12. MCSCF ground surfaces of Rb + Ng
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Figure 13. MCSCF ground surfaces of Cs + Ng
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Figure 14. Asymptotic limit of Li + He for its excited states

3.1.4 The evolution of the line broadening picture as a result of the

ab initio calculations.

Up to this point PECs have been computed for the interaction between the alkali-

metal atoms M = Li, Na, K, Rb and Cs with the noble-gas atoms Ng = He, Ne and

Ar at the MCSCF level. A comparison between the MCSCF Li + He curves and the

SOCI Li + He curves indicate that the MCSCF curves provide a semi-quantitative

picture of the M +Ng interactions. The SOCI Li + He curves also show that when

spin orbit effects are included the A2Π curve spits into A2Π1/2 and A2Π3/2 curves. DPs

given by ∆VΠ1/2
(R) = A2Π1/2(R)−X2Σ(R), ∆VΠ3/2

(R) = A2Π3/2(R)−X2Σ(R), and

∆VΣ(R) = B2Σ(R)−X2Σ(R) can be used to investigate line broadening mechanisms

in OPAL systems. These DPs, calculated using our more advanced PECs discussed

next, are shown in Figures 30, 31, and 32. The DPs generated from the ab initio

PECs dramatically differ from the Lennard-Jones DPs.

The classical impact theory of pressure broadening takes as input these DPs and
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returns a Lorentzian line shape with a width and shift. For the broadened D1 line this

DP is simply ∆VΠ1/2
(R). However, as seen in Figure (14), if the M atom starts in the

2P3/2 state then, depending on its mj value, the molecular molecular dynamics will

be governed by either the A2Π3/2 curve or the B2Σ curve. This implies that the line

shape for the D2 state will have two DPs, ∆VΠ3/2
(R) and ∆VΣ(R), which determine

its form.

The remainder of this chapter will be dedicated to quantitatively improving the

M + Ng PECs and discussing the trends there in. In Chapter V we will explore

how two very clearly different sets of DPs can yield the same broadening and shifting

coefficients, as well as how different molecular states which are degenerate in the

asymptotic limit combine to form one line shape.

3.2 Multireference Configuration Interaction Singles and Doubles Poten-

tial Energy Curves

3.2.1 Computational Approach.

The X2Σ+
1/2, A

2Π1/2, A2Π3/2, and B2Σ+
1/2 PECs and dipole transition moments

of M + Ng are computed at the spin-orbit multi-reference singles and doubles con-

figuration interaction (SOCI) level for M = K,Rb,Cs and Ng =He,Ne,Ar using the

COLUMBUS suite of programs [Lischka et al., 1981, Shepard et al., 1988, Lischka

et al., 2001, 2006, Yabushita et al., 1999]. The small core Stuttgart relativistic pseu-

dopotentials (PPs) and corresponding basis sets [Lim et al., 2005] are used for the

alkali-metal atoms in these calculations. These PPs consist of all but nine valance

electrons for each alkali-metal atom. For an ns1 alkali-metal atom, the nine valance

electrons are the (n−1)s2, (n−1)p6, and ns1 electrons. The Def2-TZVPP all electron

segmented contracted Gaussian basis sets [Weigend and Ahlrichs, 2005] are used for

the noble-gas atoms.
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The SOCI calculation employs state-averaged multi-configuration self-consistent

field (MCSCF) reference orbitals [Blank et al., 2010]. In terms of the dissociated

atom limit, the ns1 2S ground and all three np1 2P excited states of the alkali-metal

atom are included in the state averaging procedure with equal weights. The complete

active space consists of one electron in the ns and three np orbitals, and the resulting

four configuration state functions (CSFs) comprise the reference space for the SOCI

calculation. For these calculations all single and double excitations of the nine alkali-

metal electrons and the two, ten, and eighteen noble-gas atom electrons, for He, Ne,

and Ar respectively, are used to generate the spin adapted CSFs that comprise the

SOCI n-electron basis. The maximum multiplicity of any of the CFSs is six, and the

number of CSFs included in the SOCI calculations range from ≈ 106 for K + He

to ≈ 108 for Cs + Ar. While significant computational savings occur when the core

orbitals of Ne and Ar are frozen, slightly lower variational energies are obtained for

our calculations by leaving all noble-gas atom electrons active.

Several other active spaces were considered for various M + Ng combinations

to explore possible improvements to the SOCI calculation. Each additional active

space considered includes only the ns alkali-metal electron and is extended beyond

the nsnp active space by including additional alkali-metal atom orbitals. For Rb

+ He the additional active spaces are 5s5p6s6p4d and 5s5p6s6p4d7s7p5d, and the

corresponding SOCI results in the asymptotic limit of large R are summarized in

Table 5. In this limit, the SOCI energies approach the experimental D1 and D2

values [nis] as the size of the active space increases. For smaller values of R the PECs

computed using different active space configurations differ by nearly the same overall

energy offset as observed in the asymptotic limit. As a result, all calculations are

performed using an nsnp orbital active space and offset in the asymptotic limit of

R = 100 Å to the NIST D1 and D2 energies [nis]. Specifically the X2Σ+
1/2 PECs are
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Table 5. Various active space configurations labeled by the rubidium atomic orbitals for
Rb + He at R = 100 Å. The first two configurations include a Davidson-Silver correction,
and the largest configuration includes a renormalized Davidson correctionDavidson and
Silver [1977]. Energies are in cm−1. The empirical NIST values for the 2P1/2 and 2P3/2

atomic excitation energies of Rb are 12 579 cm−1 and 12 815 cm−1, respectivelynis. The
Rb spin-orbit splitting, ∆ = 236 cm−1.

Configuration 2P1/2
2P3/2 ∆

5s5p 12 555 12 754 199
5s5p6s6p4d 12 555 12 764 209
5s5p6s6p4d7s7p5d 12 591 12 804 213

offset to zero, the A2Π1/2 PECs are offset to the 2P1/2 energy, and the A2Π3/2 and

B2Σ+
1/2 PECs are offset to the 2P3/2 energy.

Upon completion of the SOCI calculation an a posteriori Davidson-Silver correc-

tion is performed to ameliorate size consistency error [Davidson and Silver, 1977]. For

these calculations we did not correct for basis set superposition error (BSSE). As a

result we expect our calculations to somewhat over estimate well depths. The coun-

terpoise (CP) correction [Boys and Bernardi, 1970] is often used to address BSSE.

However, the CP technique tends to over correct for BSSE and yield an under esti-

mate of the well depth [Iwata, 2011]. It would appear that the best way to control

for BSSE is to explore a hierarchy of basis sets to calculate energies with and without

the CP correction [Helgaker et al., 2000]. For a suitably chosen hierarchy, the CP

corrected and uncorrected energies will converge. In this case an extrapolation to the

complete basis set limit is reasonable and will also eliminate basis set incompleteness

error (BSIE). For many systems BSIE is significantly larger than BSSE [Balabin,

2010] and is likely to be the largest source of error in our calculations. Both BSSE

and BSIE occur in the ground and excited curves, and the degree to which they

are present can be estimated by comparison with experiment and other theoretical

calculations.
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Figure 15. The X2Σ+

1/2, A
2Π1/2, A

2Π3/2, and B2Σ+

1/2 curves of Rb + Ne. The asymptotic

limit of the X2Σ+

1/2 curve is at 0 cm−1. The excited curves are offset in the asymptotic

limit to the NIST D1 (for A2Π1/2) and D2 (for A2Π3/2 and B2Σ+

1/2) values of Rbnis.

3.2.2 Results and Discussion.

The X2Σ+
1/2, A

2Π1/2, A2Π3/2, and B2Σ+
1/2 PECs for Rb + Ne are shown in Figure

15. In the separated atom limit the X2Σ+
1/2 curve corresponds to the Rb 2S1/2 ground

state energy level, the A2Π1/2 curve corresponds to the Rb 2P1/2 energy level, and

the A2Π3/2 and B2Σ+
1/2 curves correspond to the Rb 2P3/2 energy level. The X2Σ+

1/2

curve is mostly repulsive, with a shallow 14.4 cm−1 well in the region of R ≈ 6 Å. The

B2Σ+
1/2 curve also exhibits a shallow 0.7 cm−1 well further out toward the asymptotic

limit in the range of R ≈ 9 Å, as well as a shoulder on the repulsive wall at smaller

values of R.
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An expanded view of the excited state curves of Rb + Ne is shown in Figure

16 to exemplify details common to all M + Ng pairs. Moving in the direction of

decreasing R from the asymptotic limit, the A2Π3/2 and the B2Σ+
1/2 curves diverge at

approximately R ≈ 8.5 Å. The A2Π3/2 curve decreases in energy below the asymptotic

2P3/2 value and roughly follows the A2Π1/2 curve. These two A2Π curves exhibit

relatively large well depths compared to the shallower ground state X2Σ+
1/2 well.

Moreover, the minima of the two A2Π wells occur at approximately the same value

of R = rmin = rmin1. In addition to exhibiting a minimum at R = rmin1 the A2Π1/2

curve also exhibits a local minimum of depth Dmin2 at R = rmin2 which is separated

from the deep well by a barrier of height Vb at R = rb.

The equilibrium positions of all wells and barriers for the PECs are tabulated in

Table 6 and the well depths and barrier heights are tabulated in Table 7. Where

possible these are compared to experiment and other theoretical calculations. The

equilibrium and barrier positions in Table 6 are all in agreement to within a few

percent, and most values are in agreement to within 1− 2%. The well depths listed

in Table 7 are in greatest disagreement with the DFT based calculations [Zbiri and

Daul, 2004, Goll et al., 2006]. Excluding the DFT results, the well depths are in

agreement to within about 20 − 30% for the X2Σ+
1/2 curve and to within 5 − 10%

for the A2Π1/2 and A2Π3/2 curves. The larger relative error in the ground state well

depths is primarily due to their smaller values.

The PECs for all M + Ng combinations are presented in Figures 17 through 20

and grouped by molecular term symbol. Figure 17 displays all X2Σ+
1/2 PECs, Figure

18 all B2Σ+
1/2 PECs, Figure 19 all A2Π1/2 PECs, and Figure 20 all A2Π3/2 PECs.

In Figsures 17 through 20 the PECs associated with one alkali-metal are artificially

offset from those of another for clarity. Potassium curves are asymptotically set to

0 cm−1, rubidium to 250 cm−1, and cesium to 500 cm−1.
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1/2 curves for all M + Ng pairs. Offsets are the same as in Figure
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Figure 19. The A2Π1/2 curves for all M + Ng pairs. Offsets are the same as in Figure
17.
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Figure 20. The A2Π3/2 curves for all M + Ng pairs. Offsets are the same as in Figure
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Table 6. Equilibrium and barrier positions (Å), as defined in Figure 16, for all M +Ng
curves. The pseudopotential calculations by Pascale [1983] and the DFT calculations
by Zbiri and Daul [2004] report energies for the A2Π curve and are listed under both
the A2Π1/2 and A2Π3/2 columns for ease of comparison.

M+Ng X2Σ+
1/2 A2Π1/2 A2Π3/2 B2Σ+

1/2

rmin rmin1 rb rmin2 rmin rmin

KHe 6.35 2.86 6.72 9.42 2.86 10.27
theo1 - 2.8 - - 2.8 -
theo2 - 2.8 - - 2.8 -
KNe 5.66 3.12 7.20 8.15 3.12 9.42
theo3 5.97 - - - - -
KAr 5.40 3.39 - - 3.39 8.36
exp4 5.3 - - - - -
exp5 5.404(5) 3.37(3) - - 3.34(3) 7.10
theo6 5.13 3.41 - - 3.41 -
theo3 5.322 - - - - -
RbHe 6.61 3.12 5.50 9.10 3.12 10.48
theo7 - 3.21 5.3 - 3.21 -
theo1 - 3.22 - - 3.22 -
theo2 - 3.3 - - 3.3 -
RbNe 6.09 3.33 5.40 9.21 3.33 10.16
theo3 6.19 - - - - -
RbAr 5.82 3.60 - - 3.60 8.57
theo3 5.45 - - - - -
CsHe 6.93 3.44 4.87 9.21 3.44 10.58
theo1 - 3.38 - - 3.38 -
theo2 - 3.49 - - 3.49 -
CsNe 6.46 3.60 5.03 8.78 3.55 10.37
theo3 6.46 - - - - -
CsAr 6.09 3.81 6.14 7.46 3.81 8.89
exp8 5.50 - - - - -
theo9 5.59 - - - - -
theo3 5.59 - - - - -
1Zbiri and Daul [2004]
2Pascale [1983]
3Goll et al. [2006]
4Figl et al. [2004]
5Bokelmann and Zimmermann [1996]
6Rhouma et al. [2002]
7Hirano et al. [2003]
8Buck and Pauly [1968]
9Merritt et al. [2009]
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Table 7. Well depths and barrier heights (cm−1), as defined in Figure 16, for all M +Ng
curves. Note that a negative value for Vb corresponds to a local maximum that is less
than the asymptotic 2P1/2 atomic energy. The pseudopotential calculations by Pascale
[1983] and the DFT calculations by Zbiri and Daul [2004] report energies for the A2Π
curve and are listed under both the A2Π1/2 and A2Π3/2 columns for ease of comparison.

M+Ng X2Σ+
1/2 A2Π1/2 A2Π3/2 B2Σ+

1/2

De De1 Vb De2 De De

KHe -8.7 -199.3 1.6 -2.1 -220.6 -1.8
theo1 - -480 - - -480 -
theo2 - -245 - - -245 -
KNe -17.1 -164.3 -1.9 -2.2 -184.8 -1.2
theo3 -5.6 - - - - -
KAr -60.2 -429.9 - - -450.8 -9.5
exp4 -40.65 - - - - -
exp5 -40.1(6) -405(15) - - -427(15) -23
theo6 -59 -421 - - -440 -
theo3 -41.7 - - - - -
RbHe -8.7 -95.9 20.0 -1.2 -159.1 -0.3
theo7 - -102.1 26.5 - -176.8 -
theo1 - -276 - - -276 -
theo2 - -134 - - -134 -
RbNe -14.4 -67.1 10.2 -1.2 -125.8 -0.7
theo3 -5.0 - - - - -
RbAr -49.0 -255.2 - - -315.7 -7.3
theo3 -38.6 - - - - -
CsHe -9.6 6.3 57.7 -1.9 -125.5 -0.6
theo1 - -230 - - -230 -
theo2 - -112 - - -112 -
CsNe -12.9 -14.1 34.7 -1.7 -128.4 -0.7
theo3 -4.7 - - - - -
CsAr -48.3 -192.8 -12.3 -16.6 -315.3 -8.1
exp8 -45 - - - - -
theo9 -39.6 - - - - -
theo3 -39.6 - - - - -
1Zbiri and Daul [2004]
2Pascale [1983]
3Goll et al. [2006]
4Figl et al. [2004]
5Bokelmann and Zimmermann [1996]
6Rhouma et al. [2002]
7Hirano et al. [2003]
8Buck and Pauly [1968]
9Merritt et al. [2009]
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The X2Σ+
1/2 ground curves shown in Figure 17 all exhibit shallow wells with min-

ima in the range of R ≈ 5 − 7 Å. The depths of these wells increase as the mass of

the noble-gas atom in the M +Ng pair increases. Also, for a given noble-gas atom,

the well depths are similar regardless of the alkali-metal atom with which it is paired.

An exception to this trend occurs for K + Ar where the X2Σ+
1/2 well is deeper by a

factor of one and a half when compared to the Rb + Ar and Cs + Ar X2Σ+
1/2 wells.

The equilibrium position for these wells increases as the mass of the alkali-metal atom

increases. However for a given alkali-metal atom, the equilibrium position of these

wells decreases as the mass of the noble-gas atom increases. This decrease in equi-

librium position may be attributed to the increase in attractive dispersion force as

the number of noble-gas atom electrons increases [Stone, 1996]. A similar trend in

the equilibrium position of the X2Σ+
1/2 ground curves was also observed by Goll et al.

[2006].

The excited B2Σ+
1/2 curves are shown in Figure 18. They each exhibit a shoulder

at values of R = 3 − 5 Å and a very shallow well at values of R = 7 − 9 Å. These

shallow B2Σ+
1/2 wells do not appear on the scale of the plot in Figure 18. An expanded

view of this B2Σ+
1/2 well for Cs + Ar is shown in Figure 21, where the well appears at

approximately the same value of R for which the B2Σ+
1/2 and A2Π3/2 curves diverge.

The B2Σ+
1/2 shoulders occur highest up on the repulsive wall for potassium, followed

by rubidium and then cesium. For a given alkali-metal atom, the shoulders are most

pronounced for argon and lowest in energy, and least pronounced for helium and

highest in energy. The neon shoulders are very similar to argon and occur at roughly

the same energies. For Cs + Ar this feature is so pronounced that the repulsive

wall actually stops rising and decreases, forming a local minimum, before becoming

repulsive again. These shoulders have been attributed by Pascale and Vandeplanque

[1974] to mixing with higher excited states that correlate in the dissociated atom limit
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Figure 21. An expanded view of the B2Σ+

1/2 well for Cs + Ar. The well occurs where

the B2Σ+

1/2 and A2Π3/2 PECs diverge. Similar behavior is observed for all M +Ng pairs.

to the (n − 1)2D3/2 and (n − 1)2D5/2 alkali-metal manifolds [Ehara and Nakatsuji,

1995].

In Figure 19 each of the A2Π1/2 curves are qualitatively similar but demonstrate

considerable quantitative variation. For a given alkali-metal atom, the well depths

De1 are the deepest for Ar, shallowest for Ne, with He being somewhat deeper than

Ne. An exception to this ordering is Cs where the He well is shallower than the Ne

well. The equilibrium position R = rmin1 of the A2Π1/2 wells increases as either the

alkali-metal atom or noble-gas atom mass increases. Since the A2Π1/2 minima lie

closer to the repulsive wall than the X2Σ+
1/2 wells, Coulomb and exchange repulsion
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dominate, and polarization is less important. As a result the equilibrium positions

increase with the atomic number of the noble-gas atom rather than decrease as they

do for the X2Σ+
1/2 curves. It is interesting to note that the A2Π1/2 well depths are

linearly correlated to the difference of the average ionization energies of M and Ng

from their first excited state manifolds. This suggests that there is a simple model

for the A2Π well depth similar to charge-resonance models used to describe excimer

luminescence [Shirai et al., 2011, Nowakowska et al., 1997, Chow and Johansson,

1995].

The barrier heights, Vb, of the A2Π1/2 curves can be used together with the well

depths De2 to compute a relative barrier height Vb−De2. This relative barrier height

increases as the mass of the alkali-metal atom increases. For a given alkali-metal

the relative barrier height also increases as the mass of the noble-gas atom decreases.

These barriers at R = rb are accompanied by shallow wells at R = rmin2 and, together

with the shallow wells exhibited by the B2Σ+
1/2 curves, are associated with radial

derivative coupling between the A2Π1/2 and B2Σ+
1/2 states [Mies, 1973]. Note that a

negative value for Vb corresponds to a local maximum that is less than the asymptotic

2P1/2 atomic energy. Also, note that K + Ar and Rb+Ar are the only M + Ng

combinations whose A2Π1/2 curves do not exhibit a barrier.

The A2Π3/2 curves shown in Figure 20 are similar to the A2Π1/2 curves. The

A2Π3/2 well depths, De, follow the same trend as the A2Π1/2 well depths, De1, with

regard to the mass of the alkali-metal and noble-gas atoms. The A2Π3/2 curves differ

from the A2Π1/2 curves in that De is greater than De1 for all nine M +Ng pairs, and

the A2Π3/2 curves exhibit no secondary minima. The absence of secondary minima

occurs because there is no radial derivative coupling between the A2Π3/2 states and

other states nearby in energy. It is interesting to note that the equilibrium positions

of the wells in both the A2Π1/2 and A2Π3/2 curves are nearly equal to each other and
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Table 8. Rb + He A2Π3/2 vibrational energy level differences (in cm−1) for ∆ν = 1.

∆E This Work Exp1 Theory2

E1 − E0 55.47 65.8(3) 60.5
E2 − E1 33.10 43.7(2) 39.2
E3 − E2 17.72 23.2(7) 18.2
E4 − E3 9.57 8.8(6) 11.9
E5 − E4 4.47 - 7.9
1Mudrich et al. [2008]
2Hirano et al. [2003]

to the minimum of the A2Π curve obtained when spin-orbit coupling is neglected.

An analysis of the vibrational energy levels (VELs) for the M + Ng systems

show that all X2Σ+
1/2, A

2Π1/2, and A2Π3/2 curves exhibit weakly bound vibrational

states. The VELs are computed with a finite basis representation of the vibrational

Hamiltonian, where the rotational degree of freedom is ignored (J = 0). Vibrational

spectra have been observed for the A2Π3/2 electronic state of Rb + He [Mudrich et al.,

2008], the ground X2Σ+
1/2 and excited A2Π electronic states for K + Ar [Bokelmann

and Zimmermann, 1996], and the A2Π1/2 and A2Π3/2 curves of Cs + He [Enomoto

et al., 2002]. Hirano et al. [2003] have computed VELs for the A2Π3/2 curve of Rb

+ He. The difference between VELs for ∆ν = 1 are tabulated in Table 8 for Rb +

He and Table 9 for K + Ar, while the absolute VELs measured from dissociation are

tabulated in Table 10 for Cs + He.

As listed in Table 8, the computational results predict the presence of six VELs for

the Rb + He A2Π3/2 curve, however only five levels are observed. The experimental

differences listed in this table were fit by Mudrich et al. [2008] to a Morse potential.

The Morse fit is compared with the A2Π3/2 curve in Figure 22. The Morse potential

exhibits a deeper well, while our A2Π3/2 curve approaches equilibrium more slowly.

The VELs are included in Figure 22 for comparison purposes.
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Table 9. K + Ar X2Σ+ and A2Π vibrational energy level differences in cm−1 for ∆ν = 1.

∆E This Work Exp1 This Work This Work Exp1

X2Σ+
1/2 X2Σ A2Π3/2 A2Π1/2 A2Π

E1 − E0 9.55 8.77
E2 − E1 8.69 7.53
E3 − E2 7.77 6.25

E7 − E6 27.24 27.41 26.45
E8 − E7 24.07 24.27 22.86
E9 − E8 21.11 21.35 19.57
E10 − E9 18.38 18.69 16.55
E11 − E10 15.91 16.31 13.63
1Bokelmann and Zimmermann [1996]

Our calculations of the K + Ar X2Σ+
1/2 VELs indicate that there are twelve bound

vibrational states. The first three VEL differences for ∆ν = 1 are listed in table

9. These calculations also indicate that the K + Ar A2Π1/2 curve has twenty-two

bound vibrational states, and the A2Π3/2 curve has twenty-four. Several ∆ν = 1

VEL differences for the A2Π1/2 and A2Π3/2 curves are also listed in table 9 where

ν ranges from six to ten. Theoretical ∆ν = 1 values are listed in table 9 only if

there is a corresponding experimental value for comparison. The VELs predicted for

the A2Π1/2 and A2Π3/2 curves are nearly the same, being most similar for the lower

VELs. This reflects the similarity between the A2Π1/2 and A2Π3/2 curves that occurs

because the A2Π1/2 curve for K + Ar has only one local minimum for all R. The

experimental results tabulate ∆ν = 1 VEL differences for the A2Π level.

Experimental and calculated VELs are listed in table 10 for the A2Π1/2 and A2Π3/2

curves of Cs + He. As seen in Fig. 19, the bottom of the Cs + He A2Π1/2 well lies

above its asymptotic energy. However calculations predict that this well does support

one quasi-bound VEL which has also been experimentally observedEnomoto et al.

[2002]. The A2Π3/2 curve is predicted to support six bound VELs as compared to five
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Table 10. Cs + He A2Π1/2 and A2Π3/2 vibrational energy levels in cm−1 relative to the
Cs 2P1/2 and 2P3/2 levels, respectively. The A2Π1/2 curve exhibits a single quasi bound
state with a positive VEL.

Electronic Vibrational This Work Exp1

State State

A2Π1/2 ν = 0 50.0 48.35

A2Π3/2 ν = 0 -95.0 -84.89
ν = 1 -51.1 -45.09
ν = 2 -25.1 -19.79
ν = 3 -11.6 -5.90
ν = 4 -4.0 -0.51
ν = 5 -0.3 -

1Enomoto et al. [2002]

experimentally observed VELs. Note that predictions for the VELs of A2Π1/2 and

A2Π3/2 curves of K + Ar are very similar, while predictions for the same two curves

of Cs + He are significantly different. This reflects the trend for the relative barrier

height Vb − De2 to increase as the mass of the alkali-metal atom increases and the

mass of the noble-gas decreases. As the relative barrier height increases, the A2Π1/2

and A2Π3/2 curves become more dissimilar causing a greater disparity between the

corresponding VELs.

The PECs of M +Ng pairs can be used to predict alkali-metal atom line shapes

that are broadened by collisions with noble-gas atomsAllard and Kielkopf [1982],

Szudy and Baylis [1996]. In the semi-classical Anderson-Talman model of line broad-

ening, the alkali-metal atom D1 and D2 line shapes are governed in part by DPs, ∆V ,

given by the difference between PECs. In the case of the D1 line, the A2Π1/2 curve

correlates with the 2P1/2 atomic energy level, and the line shape is determined by the

single DP, ∆V = A2Π1/2 −X2Σ+
1/2, when non-adiabatic effects are ignored. For the

D2 line, both the A2Π3/2 and the B2Σ+
1/2 curves correlate with the 2P3/2 atomic energy

level, and the line shape is therefore determined by two DP, ∆V = A2Π3/2 −X2Σ+
1/2
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and ∆V = B2Σ+
1/2−X2Σ+

1/2. When non-adiabatic effects are included, all four PECs

are expected to contribute to both the D1 and D2 line broadening.

To better understand the general shape of the DPs, four plots for Cs + Ar are

shown in Fig. 23 using a common R axis. The first plot at the top of the figure

shows the excited A2Π1/2, A2Π3/2, and B2Σ+
1/2 curves, while the second plot from the

top of the figure shows the ground X2Σ+
1/2 curve. The PECs in the first plot use the

same zero as the second plot and, as mentioned before, are offset in the asymptotic

limit R = 100 Å to the alkali-metal atom D1 and D2 NIST valuesnis. The third

plot from the top shows the ∆V = A2Π1/2 − X2Σ+
1/2, ∆V = A2Π3/2 − X2Σ+

1/2, and

∆V = B2Σ+
1/2 −X2Σ+

1/2 DPs in units of nm. Finally, the transition dipole moments

| < X2Σ+
1/2|D|A

2Π1/2 > |, | < X2Σ+
1/2|D|A

2Π3/2 > |, and | < X2Σ+
1/2|D|B

2Σ+
1/2 > |

are shown in the fourth plot at the bottom of the figure. Similar to the PECs, the

dipole matrix elements are offset using the NIST Einstein A coefficientsnis.

DPs ∆V can be used to compute collisionally broadened line shapes, I(ω), in

the quasistatic limitSzudy and Baylis [1975], Allard and Kielkopf [1982], Szudy and

Baylis [1996] where,

I(ω) ∝
∑

c

R2
c |D(Rc)|2

∣

∣

∣

∣

d(∆V )

dR

∣

∣

∣

∣

−1

Rc

×nNg exp

(

−
X2Σ+

1/2(Rc)

kBT

)

. (63)

In Equation 63, D(Rc) is the transition dipole matrix element, nNg is the concen-

tration of the noble-gas, kB is Boltzmann’s constant, T is the absolute temperature,

X2Σ+
1/2(Rc) is the ground state PEC, and Rc(ω) are Condon points given by the

solutions to the equation ∆V (Rc) = !ωSzudy and Baylis [1996]. Here it is assumed

that the concentration of the alkali-metal gas is low relative to nNg, and the line

broadening occurs only as a result of M +Ng collisions.
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Figure 23. The Cs + Ar B2Σ+

1/2, A
2Π1/2, and A2Π3/2 curves are shown in the first plot,

and the second plot shows the X2Σ+

1/2 curve. The PECs use the same zero as the
second plot and are offset in the asymptotic limit to the alkali D1 and D2 valuesnis.
The third plot shows potential differences and the fourth plot shows transition dipole
matrix elements.
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For a given value of ω, the Boltzmann factor in Equation (63) governs the prob-

ability for which a given M + Ng pair will be at a separation distance Rc(ω). The

product of the Boltzmann factor and nNg defines an effective concentration, neff (Rc),

and for Cs + Ar at T = 400K this corresponds to neff (3.5 Å) ≈ 0.1n0. Because the

Boltzmann factor drops off rapidly at lower values of Rc, this term dominates the ex-

pression for I(ω) for values of Rc < 3.5. For a given value of ω for which Rc(ω) > 3.5

the intensity will depend on the value of the dipole matrix element and the deriva-

tive of the DP. In Fig. 23 the Cs + Ar dipole matrix elements vary on the order of

5− 10% for R ranging from R = 3.5Å to the asymptotic limit. The DPs for Cs + Ar

in Fig. 23 exhibit extrema that correspond to singularities in I(ω) given by Equa-

tion (63). The B2Σ+
1/2 − X2Σ+

1/2 DP exhibits three extrema, one in the asymptotic

limit, one at R ≈ 4.5, and one at R ≈ 2.6. The extremum in the asymptotic limit

corresponds to the D2 atomic line core, and the extremum at R ≈ 4.5 corresponds

to a satellite blue shifted from line core. The extremum at R ≈ 2.6 corresponds to

a red shifted satellite. However it is allowed by the Boltzmann distribution only at

sufficiently high temperatures. The A2Π1/2 −X2Σ+
1/2 and A2Π3/2 −X2Σ+

1/2 DPs also

exhibit extrema in the asymptotic limit corresponding to the D1 and D2 line cores,

respectively, and extrema at small values of R corresponding to red shifted satellites

that are suppressed by the Boltzmann distribution.

Predictions for the positions of blue shifted satellites of the alkali-metal atom

D2 transitions are reported in table 11 along with comparisons to experiment. The

predicted satellite peaks are all shifted in the blue direction from the observed satellite

peaks by approximately 12−20nm. The predicted satellite peaks occur as a result of

the shoulder exhibited by the B2Σ+
1/2 curves. For the Stuttgart basis set used in these

calculations, it is likely that this shoulder is not accurately computed, which gives

rise to the discrepancy between predicted and observed blue satellites. However, our
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calculations do capture the trends observed in the experimental data. As seen in table

11, the experimentally observed satellite peak for Cs + He at 827nm is significantly

more blue shifted than the peaks for Cs + Ne and Cs + Ar at 837nm and 838nm,

respectively. Our theoretical predictions mirror this pattern where, for a given alkali-

metal atom, the blue peaks for neon and argon are relatively close in wavelength and

the helium peak is significantly more blue shifted. These peaks correspond to the

B2Σ+
1/2 shoulder that, as seen in Fig. 18, occurs highest in energy for M + He and at

lower but similar energies for M + Ne and M + Ar. For rubidium the experimental

data identifies neon and argon satellites at 752nm and 754nm, respectively, while

no experimental data could be found for helium. It is possible to make a prediction

for the Rb + He satellite by computing the difference between the calculated Rb +

Ne and Rb + He satellites in table 11 and subtracting it from the experimental Rb

+ Ne satellite. This procedure yields 733nm for the Rb + He satellite peak. The

same procedure applied to cesium yields 825nm for the Cs + He satellite compared

to the experimental value of 827nm. For potassium no experimental data could be

found. However, the surfaces suggest that the K + He satellite will be significantly

more blue shifted than the K + Ne and K + Ar satellites. A second trend in table

11 is observed where, for a given noble-gas atom, the satellite is more blue shifted as

the mass of the alkali-metal atom decreases. This corresponds to B2Σ+
1/2 shoulders in

Fig. 18 which occur highest in energy for K + Ng, followed by Rb + Ng, and lowest

in energy for Cs + Ng.
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Table 11. Positions (nm) of blue shifted satellites associated with the difference poten-
tials B2Σ+

1/2 −X2Σ+

1/2 extrema. The D2 column lists the atomic alkali transition.

M +Ng D2nis This Work exp1 exp2 exp3 exp4

K + He 692.7
K + Ne 764.7 718.0
K + Ar 713.7
Rb + He 720.5
Rb + Ne 778.2 739.9 754 752
Rb + Ar 736.2 755.5 754
Cs + He 810.9 827
Cs + Ne 850.1 822.8 837 837
Cs + Ar 820.6 838
1Carrington and Gallagher [1974]
2Drummond and Gallagher [1974]
3Readle et al. [2009]
4Hedges et al. [1972]
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IV. Collisional broadening

All matter interacts with electromagnetic radiation by absorbing and emitting

photons. Not all photons will interact with a particular atomic or molecular species,

only those whose energies correspond to allowed transitions between the electronic

states of said species. Therefore, the emission spectrum of such a species would consist

of several narrow spectral lines at the energies of these transitions.

There are many effects which alter the resulting spectral lines from the above

picture. The uncertainty principle of quantum mechanics relates the uncertainty in

an excited state’s energy to it lifetime. This effect results in an unshifted Lorentzian

line profile centered on the corresponding electronic (fundamental) transition for the

species. This type of broadening is referred to as natural broadening. The motion of

the emitters results in Doppler shifts in their emitted frequency. Averaging these ef-

fects over all motions of the emitters results in a Gaussian spectral line. This is called

Doppler broadening. Finally, interactions with neighboring atoms and molecules per-

turbs a particular species’ energy levels during the interaction. The combined effects

of these perturbations over many collisions results in a Lorentzian line shape which

is broadened from the natural line shape and shifted from the fundamental transition

frequency. This effect on the spectral lines is called pressure broadening since increas-

ing the pressure increases the frequency of the collisions. When one measures the

spectrum of a particular species the preceding effects combine, along with effects of

the medium through which the radiation travels to the point of observation, to form

the overall spectrum which is observed.

In this chapter a general theory of pressure broadening will be presented.
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4.1 The General Anderson-Talman Theory

The general Anderson-Talman theory assumes the atom is a classically oscillating

dipole. Such an oscillation can be imagined as the oscillation of a spring and its

associated fundamental frequency. If this atom were isolated it would simply radiate

at the fundamental angular frequency of its oscillation, ω0. If this single atom made

up the entire physical system, the differential equation describing the oscillation would

be
d2x(t)

dt2
+ ω2

0x(t) = 0.

The situation is complicated by collisions with other atoms, here referred to as

perturbers, which influence the angular frequency of the oscillation during the colli-

sion. As such, the angular frequency of oscillation will be time dependent, φ(t), and

the differential equation governing the oscillation becomes

d2x(t)

dt2
+ φ2(t)x(t) = 0. (64)

To model this time-dependent angular frequency one must know the binary interaction

potentials between the emitter and each perturber. If Ej(R(t)) and Ei(R(t)) are

the upper and lower surfaces of such an interaction potential, where R(t) is the

internuclear separation of the emitter and perturber, and if the system is made up of

just the emitter and one perturber, then the time dependent angular frequency can

be written

φ(t) = !
−1[Ej(R(t))− Ei(R(t))]

If the asymptotic energies are denoted Ej0 and Ei0 so that Ej(R(t)) = Ej0+Vj(R(t))
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and Ei(R(t)) = Ei0 + Vi(R(t)) then the time dependent angular frequency becomes

φ(t) = !
−1[Ej0 − Ei0] + !

−1[Vj(R(t))− Vi(R(t))]

= ω0 + Vij(R(t)), (65)

where Vij(R(t)) = Vj(R(t)) − Vi(R(t)) is the term which measures the deviation

from the fundamental frequency due to the position of the perturber. If there are N

perturbers in the system, then this expression generalizes to the following, which for

convenience in what follows is defined to be the time derivative of some function η(t)

dη(t)

dt
≡

N
∑

k=1

V k
ij (Rk(t)). (66)

This allows the following expression for ω(t)

φ(t) = ω0 +
dη(t)

dt
. (67)

The function η(t) contains all the time dependence of the angular frequency. The

collision is assumed to start at time t = 0. The angular frequency is unperturbed at

this time forcing dη(0)
dt = 0 (i.e. all the perturbers are in the asymptotic limit at this

time).

Substituting Equation (67) into Equation (64) and working to zeroth order in

powers of ω−1
0 yields the approximate solution [Trigt, 1966]

x(t) = x0 exp

{

i

∫ t

0

dτ φ(τ)

}

= x0 exp

{

iω0t+ i

∫ t

0

dτ
dη(τ)

dτ

}

= x0 exp {i(ω0t+ η(t))} , (68)
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where i = sqrt−1 and

η(t) =

∫ t

0

dτ
N
∑

k=1

V k
ij (Rk(τ)). (69)

In this theory one is not interested in the absolute but rather the relative intensity

spectrum. Due to this, the constant x0 will not be needed as the intensity spectrum

will be normalized in the end and will be dropped for the rest of this discussion.

The intensity spectrum of the emitted radiation is given by the modulus square

of the Fourier transform of the solution to the differential equation in Equation (64)

I(ω) ∝
∣

∣

∣

∣

∫ +∞

−∞

dt exp {−iωt}x(t)
∣

∣

∣

∣

2

I(ω) ∝
∣

∣

∣

∣

∫ +∞

−∞

dt exp {−iωt}x(t)
∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ +∞

−∞

dt exp {−iωt} exp {i(ω0t+ η(t))}
∣

∣

∣

∣

2

=

[
∫ +∞

−∞

dt1 exp {iωt1} exp {−i(w0t1 + η(t1))}
]

×
[
∫ +∞

−∞

dt2 exp {−iωt2} exp {i(w0t2 + η(t2))}
]

=

∫ +inf

−∞

dt1

∫ +∞

−∞

dt2 exp {iω(t2 − t1)}

× exp {i(ω0(t2 − t1) + η(t2)− η(t1))} . (70)

At this point a change of variables is made in the integral over t2 where t1 is held

constant. Let s = t2−t1, then ds = dt2 and t2 = s+t1. Substituting these expressions

into Equation (70) and dropping the now obsolete subscript on t1 yields

I(ω) =

∫ +∞

−∞

dt

∫ +∞

−∞

ds exp {−iωs} exp {i(ω0s+ η(s+ t)− η(t))} . (71)
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The following definition is made to simplify this expression for the intensity.

∆η(t, s) ≡ η(s+ t)− η(t)

=

∫ s+t

0

N
∑

k=1

V k
ij (Rk(t))−

∫ t

0

N
∑

k=1

V k
ij (Rk(t))

=

∫ s+t

t

N
∑

k=1

V k
ij (Rk(t))

=
N
∑

k=1

∫ s+t

t

V k
ij (Rk(t)). (72)

Substituting Equation (72) into Equation (71) and rearranging yields

I(ω) =

∫ +∞

−∞

ds exp {−iωs}
{
∫ +∞

−∞

dt exp {i(ω0s+∆η(t, s))}
}

. (73)

The term in braces is a function of s, but it is not just any function. Define now the

correlation function

Φ′(s) ≡
∫ +∞

−∞

dt exp {i(ω0s+∆η(t, s))} . (74)

Substituting this into Equation (71) yields

I(ω) =

∫ +∞

−∞

ds exp {−iωs}Φ′(s). (75)

This illuminating form of the intensity reveals that it can be written as a Fourier

transform of the correlation function. To simplify this, another change of variables

ω → ω + ω0 in Equation (73) is made so that now ω measures the angular frequency

from line center instead of from zero. This leads to the simplification

I(ω + ω0) =

∫ +∞

−∞

ds exp {−iωs} .
{
∫ +∞

−∞

dt exp {i∆η(t, s)}
}

(76)
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The term in brackets is now defined as the line-center correlation function

Φ(s) ≡
∫ +∞

−∞

dt exp {i∆η(t, s)} , (77)

and the line center intensity becomes

I(ω + ω0) =

∫ +∞

−∞

ds exp {−iωs}Φ(s). (78)

Picking on the line center correlation function

Φ(s) =

∫ +∞

−∞

dt exp {i∆η(t, s)}

=

∫ +∞

−∞

dt exp

{

i
N
∑

k=1

∫ s+t

t

dt′V k
ij (Rk(t

′))

}

=

∫ +∞

−∞

dt
N
∏

k=1

exp

{

i

∫ s+t

t

dt′V k
ij (Rk(t

′))

}

. (79)

The integral over t in Equation (79) amounts to an average over a long time interval

of a single emitter undergoing many collisions in this time. Since the collisional process

is random, this picture is equivalent to an average over many emitters undergoing

collisions in a short time interval all starting at the same initial time, here taken to

be t = 0. The perturbers are assumed to follow straight line trajectories. Since the

motion of the perturbers is isotropic and independent of each other they can all be

assumed to travel in the x direction. Under these assumptions the position of the

individual perturbers can be given the following functional form

Rk(t) = [b2k + (x0k + vt)2]
1
2 , (80)

where for the kth perturber bk is the impact parameter and x0k is the initial position.
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Under these assumptions the time average in Equation (79) becomes an average over

collisions, denoted here as 〈. . .〉collisions, the line center correlation function becomes

Φ(s) =

〈

N
∏

k=1

exp

{

i

∫ s

0

dt V k
ij ([b

2
k + (x0k + vt)2]

1
2 )

}

〉

collisions

. (81)

At this point the perturbers are assumed to be identical (so they have the same

interaction potential) and to act independently of each other. This allows the average

of the product to be written as a product of the average

Φ(s) =

[〈

exp

{

i

∫ s

0

dt Vij([b
2 + (x0 + vt)2]

1
2 )

}〉

collisions

]N

. (82)

The average over collisions is calculated by averaging over all initial positions of

perturbers within a given volume V = 2π
∫

bdb
∫

dx0 yielding

Φ(s) =

[

2π

V

∫ ∫

V

b db d x0 exp

{

−i

∫ s

0

dt !−1Vij([b
2 + (x2

0 + vt)2]
1
2 )

}]N

=

[

1−
2π

V

∫ ∫

V

b db d x0

×
(

1− exp

{

−i

∫ s

0

dt !−1Vij

(

[b2 + (x2
0 + vt)2]

1
2

)

})]N

. (83)

In Equation (83) the line center correlation function has the form [1 − g]N . For

g , 1 and N - 1 this form can be approximated [1− g]N ∼= exp{−Ng}. Since g has

a 1
V
in front, if the number density, n, is held constant while making the volume very

large, the line center correlation function becomes

Φ(s) = exp{−ng(s)}, (84)
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where

g(s) = 2π

∫ +∞

0

b db

∫ +∞

−∞

dx0

×
[

1− exp

{

−i

∫ s

0

dt !−1Vij([ρ
2 + (x0 + vt)2]

1
2 )

}]

. (85)

Equations (84) and (85) form the basis for the general Anderson-Talman theory of

spectral line broadening by collisions. The generality of the Anderson-Talman theory

is illuminated by exploring two limiting cases.

4.1.1 Impact Approximation.

When the average velocity of the perturbers is high and the number density of the

perturbers is low, it is possible to simplify the expression for the line center correlation

function Equation (84). These conditions are equivalent to letting s → ∞.

Consider the line center correlation function as s grows very large. The perturber

will travel in the x-direction from x0 to x0+vs during the time given for the collision.

A large value for s results in a large distance traveled in the x-direction. In other

words the perturbers are moving along very fast and only stay in the range of the

interaction potential for a very short time. These are the conditions that meet what

is called the impact approximation. It has been shown by Anderson [1952] that under

these conditions g(s) may be written

g(s) = (α0 + iβ0) + (α + iβ)s, (86)

where

α = 2πv

∫ +∞

0

b db

[

1− cos

{

(!v)−1

∫ +∞

−∞

dxV ([b2 + x2]
1
2 )

}]

, (87)
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β = 2πv

∫ +∞

0

b db sin

{

(!v)−1

∫ +∞

−∞

dxV ([b2 + x2]
1
2 )

}

, (88)

and the additive constant α0 + iβ0 is usually taken to be zero. Substituting these

expressions into Equation (84) results in

Φ(s) = exp{n(α + iβ)s}. (89)

The Fourier transform of this correlation function leads to an intensity spectrum

which is a shifted and broadened Lorentzian. The unnormalized form of this is

I(ω) =
1

(ω − ω0 − nβ)2 + (nα)2
. (90)

The shift is proportional to nβ and the broadening is proportional to nα. As Michel-

son observed in 1895 [Michelson, 1885], these two quantities are linearly dependent

on pressure.

4.1.2 Quasi-Static Approximation.

There are two conditions under which one arrives at another limiting expression for

g(s). If the pressure is increased dramatically by pumping more and more perturbers

into the constant volume then the collision frequency is so high that the emitter

is always undergoing a collision. At any point in time there there is some random

number of perturbers in some random configuration around each emitter. When the

average over a long time period for a single emitter is replaced with the average over

collisions for many emitters under these conditions the positions of the perturbers in

each collision can be considered constant. The other condition which leads to this

limit is when the temperature is dropped very low causing the average velocity of the

perturbers to be very small.
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This other limit is achieved by letting s → 0. In this case the interaction potential

in g(s) is no longer time dependent, being only a function of R. Changing to spherical

coordinates yields

g(s) = 2π

∫ +∞

0

b db

∫ +∞

−∞

dx0

×
[

1− exp

{

−i

∫ s

0

dt !−1Vij([ρ
2 + x2

0]
1
2 )

}]

=

∫

V

dV
[

1− exp

{

−i

!
Vij(R)s

}]

= 4π

∫ +∞

0

dr r2
[

1− exp

{

−i

!
Vij(R)s

}]

. (91)

4.2 Computational model of AT theory

The remainder of this chapter details my work on computationally modeling the

Anderson-Talman general theory of pressure broadening(AT). The goal is to calculate

g(s) as given in Equation (85) for a particular difference potential (DP) and value of

the velocity. Imagine a half plane where the horizontal axis is labeled by x ranging

from −∞ < x < ∞ and the vertical axis is labeled by b ranging from 0 ≤ b < ∞. The

emitting atom is located at the origin. Consider all perturbers moving in the positive

x direction with constant velocity v̄. In this case the value of b becomes the impact

parameter. By virtue of the cylindrical symmetry of the collision, if one carries out

the integration in this half plane then one can just multiply the result by 2π to get

the correct answer. Define (x0,b) as the initial point of the perturber, s as the time

it moves along its trajectory, ! as Plank’s constant divided by 2π, and ∆V (R) is the

DP evaluated at internuclear separation R. It is now possible to define the following

function,

θ = θ(x0, b, s) ≡ −!
−1

∫ s

0

dτ ∆V
(

[b2 + (x0 + v̄τ)2]1/2
)

, (92)
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and g(s) becomes,

g(s) = 2π

∫ ∞

0

b db

∫ ∞

−∞

dx0 {1− exp{iθ(x0, b, s)}} . (93)

g(s) is a complex function. Its real and imaginary parts are given by,

Re[g(s)] = 2π

∫ ∞

0

b db

∫ ∞

−∞

dx0 {1− cos{θ(x0, b, s)}}

Im[g(s)] = 2π

∫ ∞

0

b db

∫ ∞

−∞

dx0 {− sin{θ(x0, b, s)}} . (94)

The above formulation, while elegant mathematically, is computationally imprac-

tical. This is due, in part, to a rapidly oscillating integrand for a portion of the

integral over x0. Another issue is the above equations contain many computational

redundancies. Modifying the above equations to eliminate these redundancies greatly

reduces the amount of operations needed to perform the evaluation of g(s). As an

example of the computational effort required in directly integrating the above equa-

tions, an adaptive Gauss-Kronrod quadrature implemented in the Matlab program-

ming environment was used to evaluate g(s) for only one value of s did not complete

after several days of running on a modern PC. A different approach is warranted for

numerical integration of an arbitrary potential.

The above equations can be simplified for the purposes of computational expe-

diency by taking advantages of certain properties of ∆V (R). As seen in Figure 24

∆V (R) → 0 as R → ∞, so ∆V (R) is a slowly varying function for sufficiently large

values of R. However, as one moves in from the asymptotic limit, one reaches a point

where ∆V (R) begins to change more appreciably. With this in mind, the following

two variables are introduced: rl is the value of R beyond which ∆V (R) is effectively

zero for computational purposes and rs is the value of R where ∆V (R) begins to

change rapidly. Just by how much ∆V (R) needs to change with respect to R for
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Figure 24. The Lenard-Jones difference potential derived from measurements of the
D2 line of Rb perturbed by He. The difference potential is considered effectively zero
beyond rl and rapidly changing for R < rs. This latter assumption is only true if the
region of R < rs contains no extremums.

the change to be considered appreciable will become an adjustable parameter to the

numerical calculation. Hence forth the region of the potential in between rs and rl

will be denoted as the long range portion of ∆V (R), while the region between zero

and rs will be denoted as the short range portion of ∆V (R). The DP is assumed to

be zero for R > rl.

Figure 25 pictorially represents the inner and outer regions of the DP in the (x, b)

plane and demonstrates two possible cases for the integration over x0 dependent on

the value of b for which this integration takes place. In case I b is greater than or

equal to rs and trajectories along this impact parameter will only interact with the

long range portion of the DP. In case II b is smaller than rs and trajectories along this

impact parameter will interact with both the long and short range parts of ∆V (R).

The integral over b can be broken up into two integrals: the first ranging from zero

to rs and the second ranging from rs to rl. Both of these cases will be considered
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(x0,b)

(x0,b)
Case I

Case II

(x0+vs,b)

(x0+vs,b)

rs

rl

Figure 25. All perturbers are assumed moving in the positive x-direction with constant
velocity and different impact parameters b. Two possible cases are treated and shown
in the figure, one where b < rs and the other for rs ≤ b < rl.

separately in what follows.

4.2.1 Case I: b ≥ rs.

Before proceeding it is beneficial to construct some useful quantities. First, given

b, the values of x where a trajectory intersects the circle of radius rl are

x−
l (b) ≡ −(r2l − b2)1/2 (95)

and

x+
l (b) ≡ (r2l − b2)1/2. (96)
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Another useful quantity is the time required for a perturber located at x−
l (b) to travel

to x+
l (b). This is given by,

tr(b) ≡
x+
l (b)− x−

l (b)

v̄
. (97)

It will be shown that all numerical calculations for this value of b become redundant

when s ≥ tr(b), that is all calculations required to know g(s > tr(b)) will have been

calculated when s = tr(b). Thus, these values can simply be stored when s = tr(b)

and then reused for greater values of s instead of inefficiently recalculated.

In order to numerically calculate g(s) one must choose a set of values for s and

then evaluate g(s) at each of these points. For a given value of s and b, only a certain

subset of the possible values for x0 whose resultant trajectories cross the non-zero

region of the DP will yield any contribution to g(s). The values of x0 which fit this

criteria fall in the range x−
l (b)− v̄s < x0 < x+

l (b). Thus,

∫ ∞

−∞

dx0 {· · · } =

∫ x+
l (b)

x−

l (b)−v̄s

dx0 {· · · }, (98)

where,

{· · · } ≡ 1− exp{iθ(x0, b, s)}. (99)

The DP’s radial nature makes it symmetric about the b axis. This allows for a

simplification of the expression in Equation (98) for s ≤ tr(b). Define the distance

between the limits in the right hand side of Equation (98) as,

d = d(b, s) ≡ x+
l (b)− x−

l (b) + v̄s. (100)
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b

Case I

rs

rl
(vs/2,b)(−vs/2,b)

Figure 26. The nature of the spherical symmetry of the binary interaction causes the
sum of all trajectories such that x0 < − vs

2
be equal to the sum of the trajectories such

that x0 > − vs
2
. A numerical routine need only calculate one of these, multiplying the

result by two and saving half the work. Note that as s increases the starting point of
the symmetrical trajectory drifts back to smaller values of x0.
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Consider the trajectory which has the initial condition,

x0 = x+
l (b)−

d

2

= x+
l −

1

2
(x+

l (b)− x−
l (b) + v̄s)

= x+
l −

1

2
(2x+

l (b) + v̄s)

= −
v̄s

2
. (101)

Thus this trajectory starts at the point (− v̄s
2 , b) and ends at the point ( v̄s2 , b), covering

symmetric regions of the DP. Now, if one imagines integrating over x0 from x−
l (b)− v̄s

to − v̄s
2 then one is integrating over all trajectories from the one whose end point is

equal to x−
l (b) to the beginning of the symmetric trajectory just described. On the

other hand, if one integrates over x0 from − v̄s
2 to x+

l (b) one is integrating over all

trajectories beginning with the symmetric trajectory to the trajectory which begins

at x0 = x+
l (b). Since the potential is symmetric about the b axis the integration over

these two sets of trajectories is equivalent and one can write,

∫ x+
l (b)

x−

l (b)−v̄s

dx0 {· · · } = 2

∫ x+
l (b)

x+
l (b)− d

2

dx0 {· · · }

= 2

∫ x+
l (b)

−v̄s/2

dx0 {· · · } (102)

For s ≤ tr(b), Equation (102) holds and its integral must be handled numerically.

The situation changes when s > tr(b) and the remainder of this section will discuss

these modifications.

Define the following useful quantities, dependent only on b, which are both eval-

uated when s = tr(b),

φI(b) ≡

[

2

∫ x+
l (b)

−v̄s/2

dx0 {· · · }

]

s=tr(b)

, (103)
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and,

θmax(b) ≡ θ(x−
l (b), b, tr(b)). (104)

The quantity θmax(b) is the result of performing a line integral over a trajectory

which entirely passes through the interaction region of the potential at a given impact

parameter. The range of x0 for which θ(x0, b, s) = θmax(b) is given by x−
l (b)− v̄(s−

tr(b)) ≤ x0 ≤ x−
l , and θ(x0, b, s) is constant over this region. Breaking up the original

integral in Equation (98) with this in mind one arrives at,

∫ x+
l (b)

x−

l (b)−v̄s

dx0 {· · · } =

∫ x−

l (b)−v̄(s−tr(b))

x−

l (b)−v̄s

dx0 {· · · }

+

∫ x−

l (b)

x−

l (b)−v̄(s−tr(b))

dx0 {· · · }

+

∫ x+
l (b)

x−

l (b)

dx0 {· · · }. (105)

The first and third terms in this equation pick up all the values of x0 which have not

yet reached θmax (and the values of x0 > x−
l (b) never will). The sum of these two

terms is what is captured in Equation (103). Therefore, the first and third terms in

Equation (105) may be replaced by φI(b) and are no longer functions of s. As for the

second term in Equation (105), θ(x0, b, s) is constant over the range of the integral

and equal to θmax. One can then write,

∫ x−

l (b)

x−

l (b)−v̄(s−tr(b))

dx0 {· · · } = {· · · |θ=θmax}
∫ x−

l (b)

x−

l (b)−v̄(s−tr(b))

dx0

= {· · · |θ=θmax}v̄(s− tr(b)). (106)
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Combining the above results one can finally write,

∫ ∞

−∞

dx0 {· · · } = 2

∫ x+
l (b)

x−

l (b)− d(b,s)
2

dx0 {· · · }, s < tr(b)

φI(b) + {· · · |θ=θmax}v̄(s− tr(b)), s ≥ tr(b). (107)

As s becomes large enough, all contributions from the integrals over x0 for b ≥ r1

become linear with s. Further, for s > tr(b) the evaluation of the integral over x0

requires no new numeric effort, only the values φI(b) and θmax are required. Therefore

any new numeric calculations would be redundant and s = tr(b) is the time beyond

which these redundancies would occur.

4.2.2 Case II: b < rs.

In this region of b, in addition to the values of x−
l (b) and x+

l (b) defined above, the

following definitions will be useful,

x−
s (b) ≡ −(r2s − b2)1/2, (108)

and,

x+
s (b) ≡ (r2s − b2)1/2. (109)

The s in the above subscripts stands for short-range potential. As in case I there

will be a redundant time here. An exploration of the integral over x0 will illuminate

the proper definition the redundant time in case II. In this pursuit the following

definitions will prove useful,

ts(b) ≡
x+
s (b)− x−

s (b)

v̄
, (110)
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and,

tl(b) ≡
x+
l (b)− x+

s (b)

v̄
. (111)

The time defined by ts(b) is the time it takes a trajectory to cross the short-range

portion of ∆V . Analogously the time defined by tl(b) is the time it takes a trajectory

to cross the long range portion of the potential, either on the negative or positive

portions of the x-axis. This means that the time it takes to cross the entire range of

the potential for a given impact parameter is ts(b) + 2tl(b) (spoiler: this total time is

the tr(b) for case II).

To proceed in analyzing case II consider that Equation (98) still holds, and the

integral over x0 can be further broken up as follows,

∫ ∞

−∞

dx0 {· · · } =

∫ x−

s (b)−v̄s

x−

l (b)−v̄s

dx0 {· · · }+
∫ x+

s (b)

x−

s (b)−v̄s

dx0 {· · · }

+

∫ x+
l (b)

x+
s (b)

dx0 {· · · }. (112)

Consider the first and third terms in this expression. Notice that the distance from

the lower limit to the upper limit is the same in each term. The spherically symmetric

nature of the DP implies that the integration of all the trajectories ending in the long-

range portion of ∆V on the negative side of the x-axis is equivalent to integrating all

trajectories which begin in the long-range portion of ∆V on the positive side of the

x-axis. Thus one can write,

∫ x−

s (b)−v̄s

x−

l (b)−v̄s

dx0 {· · · }+
∫ x+

l (b)

x+
s (b)

dx0 {· · · } = 2

∫ x+
l (b)

x+
s (b)

dx0 {· · · }. (113)

The integral on the right hand side of Equation (113) starts from zero when s = 0

and grows to a maximum contribution at s = tl(b). After this time the value of the

integral becomes constant and may be stored for future use instead of expending more
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computational resources on its evaluation. This discussion motivates the following

definition,

φl(b) =

[

2

∫ x+
l (b)

x+
s (b)

dx0 {· · · }

]

s=tl(b)

(114)

The quantity φl(b) represents the maximal and constant contribution to the integral

over x0 of the terms in Equation (113) for s ≥ tl(b).

The second term in Equation (112) warrants some special consideration and is

restated here for emphasis,
∫ x+

s (b)

x−

s (b)−v̄s

dx0 {· · · } (115)

The range of this integral contains every value of x0 whose trajectory will cross the

short range portion of the potential for the given value of s. To further break this

integral up one must consider several ranges of time.

For s ≤ ts(b) every trajectory starting from an x0 in the range of Equation (115)

will either start or end in the short-range portion of ∆V . Therefore, the values

of θ(x0, b, s) for x0 in close proximity to each other will be changing considerably,

and the integrands belonging to the integral over x0 will be oscillating very quickly.

As a result, the integral over this range of x0 can be approximated. For the real

part Re[{· · · }] = 1 − cos{θ(x0, b, s)} the integrand rapidly oscillates between zero

and two over a region of x defined by the limits of the integral. In the limit of

infinite frequency this oscillation will pick up exactly half the area of the box, i.e.

x+
s (b)−x−

s (b)+v̄s. For the imaginary part Im[{· · · }] = −sin{θ(x0, b, s)} the integrand

rapidly oscillated between the values of negative one and one, thereby canceling any

positive contribution with an equal amount of negative contribution. In summation,

for s < ts(b) one can write,

∫ x+
s (b)

x−

s −v̄s

dx0 {· · · } ≈ x+
s (b)− x−

s (b) + v̄s. (116)
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When s = ts(b) then the above integral reaches its maximum for the real part (the

imaginary contribution is always zero). Define the following quantity which is equal

to Equation (116) for s = ts(b),

φa(b) ≡

[

∫ x+
s (b)

x−

s −v̄s

dx0 {· · · }

]

s=ts(b)

= 2(x+
s (b)− x−

s (b)). (117)

φa(b) approximates the total contribution of trajectories which either begin or end in

the short-range portion of ∆V for all s ≥ ts(b).

Next consider the range of time ts(b) < s ≤ ts(b) + tl(b). For this range one can

break up Equation (115) in the following manner,

∫ x+
s (b)

x−

s (b)−v̄s

dx0 {· · · } =

∫ x+
s (b)−v̄s

x−

s (b)−v̄s

dx0 {· · · }+
∫ x−

s (b)

x+
s (b)−v̄s

dx0 {· · · }

+

∫ x+
s (b)

x−

s (b)

dx0 {· · · }. (118)

Consider the first and third terms in this equation. First note that the differences of

their limits are the same. The first term represents all trajectories which end in the

short range portion of the potential. The third term represents all the trajectories

which begin in the short range portion of the potential. As a result, the integrands

for these regions will be rapidly oscillating and the results above for s < ts(b)may be

applied to these integrals. As a consequence both of these terms are equal to each

other and their sum is equal to φa(b).

As for the second term in Equation (118), this represents all of the trajectories

which begin inn the long-range portion of ∆V on the negative side of the x-axis, pass

entirely through the short-range portion of ∆V , and end in the long-range portion of

∆V . An example of one of these trajectories is shown in Figure 27.
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x0

b

r1

r0

(x0,b) (x0+vs,b)

Figure 27. An example of a trajectory which starts in the long range portion of the
potential, passes through the short range portion, and ends again in the long range
portion.

When s = ts(b) this term is zero as no trajectories fit the criteria given in Figure

27. Only the value of x0 = x−
s (b) has a trajectory that completely crosses the inner

potential. As s grows more and more values of x0 have this type of trajectory,

specifically the ones falling in the range x−
s (b) − v̄(s − ts(b)) < x0 ≤ x−

s (b). This

continues until s grows to the value s = ts(b)+tl(b) when the second term in Equation

(118) reaches its maximum amount of contribution. This is because at this time all

trajectories starting from a x0 in the range x−
l (b) < x0 < x−

s (b) entirely cross the

short-range portion of ∆V and end in the long-range portion of ∆V on the positive

side of the x-axis. Each trajectory which entirely cross the short-range portion of ∆V

will pick up the same contribution to θ(x0, b, s) during this time which will be defined

as,

θs(b) ≡ θ(x−
s (b), b, ts(b)). (119)

This means that the differences in θ(x0, b, s) for these values of x0 are due to sampling
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different portions of the long-range portion of ∆V . Therefore these variations will be

small and the integrand for the integration over x0 will no longer be rapidly oscillating.

If one considers the evaluation of θ(x0, b, s) for the second term in Equation (118)

it is possible to write,

θ(x0, b, s) = −!
−1

∫ s

0

dτ ∆V (· · · )

= −!
−1

∫ s1

0

dτ ∆V (· · · )− !
−1

∫ s2

s1

dτ ∆V (· · · )

−!
−1

∫ s

s2

dτ ∆V (· · · )

= −!
−1

∫ s1

0

dτ ∆V (· · · ) + θs(b)− !
−1

∫ s

s2

dτ ∆V (· · · ), (120)

where ∆V (· · · ) = ∆V ([b2 + (x0 + v̄τ)2]1/2), s1 = s1(x0, b) ≡ (x−
s (b) − x0)/v̄, and

s2 = s2(x0, b) ≡ (x0 − x+
s (b))/v̄.

Note that for ts(b) < s < ts(b)+tl(b) one can write x+
s (b)−v̄s = x−

s (b)−v̄(s−ts(b)).

All of this allows one to write, for ts(b) < s ≤ ts + tl,

∫ x+
s (b)

x−

s (b)−v̄s

dx0 {· · · } =

∫ x−

s (b)

x−

s (b)−v̄(s−ts(b))

dx0 {· · · }+ φA(b). (121)

Now consider the range of s where ts(b) + tl(b) < s ≤ ts(b) + 2tl(b). In this case

Equation (115) can be written,

∫ x+
s (b)

x−

s (b)−v̄s

dx0 {· · · } =

∫ x+
s (b)−v̄s

x−

s (b)−v̄s

dx0 {· · · }+
∫ x−

l (b)

x+
s (b)−v̄s

dx0 {· · · }

+

∫ x+
l (b)−v̄s

x−

l (b)

dx0 {· · · }+
∫ x−

s (b)

x+
l (b)−v̄s

dx0 {· · · }

+

∫ x+
s (b)

x−

s (b)

dx0 {· · · } (122)

The first term in this equation represents all trajectories which end inside the short
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range potential, while the last term represents all trajectories which start in this

region. As before, these two terms are equal and their sum is equal to φA(b).

At this point it is useful to consider that, for this range of s, the limit x+
s (b)− v̄s =

x−
l (b) − v̄(s − [ts(b) + tr(b)]) and x+

l (b) − v̄s = x−
s (b) − v̄(s − [ts(b) + tr(b)]). These

relationships help to simplify the limits on the integrals in the above expression.

Examining the second term in Equation (122) one can see that the upper and

lower limits are the same for s = ts(b)+ tl(b), thus this term equals zero for this value

of s. As s grows this term captures all the trajectories which start outside the full

range of the potential (i.e. x0 < x−
l (b)) and pass through the DP far enough to end

in the second part of the long range potential. An example of this kind of trajectory

is shown in Figure 28.

As s increases to s = ts(b) + 2tl(b) the range of x0 whose trajectories fit this

description grows to x+
s (b) − v̄s < x0 < x+

l (b) − v̄s. The difference of the the upper

and lower limits of this range is equal to x+
l − x+

s , so the full span of the long-range

portion of ∆V on the positive side of the x-axis has trajectories ending in it which

are due to the second term in Equation (122). As time increases beyond this value

the range of x0 whose trajectories meet this condition stays the same in length, as

the endpoints of the range both move the s = ts(b)+ tl(b) to a maximum contribution

when s = ts(b) + 2tl(b) and be constant beyond this time.

To calculate a value of θ(x0, b, s) for the second term in Equation (122) first define,

θl(b) ≡ θ(x−
l (b), b, tl(b))

= θ(x+
s (b), b, tl(b)). (123)
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b

r1

r0

(x0+vs,b)(x0,b)

Figure 28. An example of a trajectory which starts outside the full range of the po-
tential, passes through the first long range and short range portions, and ends in the
second long range portion.

This allow one to write,

θ(x0, b, s) = −!
−1

∫ s

0

dτ ∆V (· · · )

= −!
−1

∫ s1

0

dτ ∆V (· · · )− !
−1

∫ s2

s1

dτ ∆V (· · · )

−!
−1

∫ s

s2

dτ ∆V (· · · )

= θl(b) + θs(b)− !
−1

∫ s

s2

dτ ∆V (· · · ). (124)

Here s1, s2, and ∆V (· · · ) carry their same definition as in Equation (120).

Now consider the third term in Equation (122). This term is equivalent to the

second term in Equation (118) in so far as it represents all trajectories of the type

in Figure 27. At the beginning of this time interval, when s = ts(b) + tl(b), every

trajectory starting in the range x−
l (b) ≤ x0 < x−

s (b) falls into this category and the

contribution of this term is at a maximum. As s increases the range of x0 which
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b

r1

r0

(x0,b) (x0+vs,b)

Figure 29. An example of a trajectory which starts inside the long range of the poten-
tial, passes entirely through the short range and second long range portions, and ends
outside the full range of the potential.

produces trajectories in this category reduces, being x−
l (b) ≤ x0 < x−

s (b) − v̄(s −

[ts(b) + tl(b)]). All trajectories which fall into this category disappear completely for

s ≥ ts(b) + 2tl(b) and this term goes to zero when s = ts(b) + 2tl(b). Evaluations of

θ(x0, b, s) for values of x0 in this term can be made using Equation (120).

The fourth term in Equation (122) is the final term in this equation to consider.

Just as in the case of the second term in this equation, the fourth term starts as

zero when s = ts(b) + tl(b) due to the upper and lower limits being the same. As s

increases, this term captures all trajectories which begin in the range x−
s (b) − v̄(s −

[ts(b) + tl(b)]) ≤ x0 < x−
s (b), pass entirely through the short-range portion of ∆V as

well as the long-range portion of ∆V on the positive side of the x-axis, ending totally

outside the range of the potential. An example of this kind of trajectory is given in

Figure 29. As s goes to s = ts(b) + 2tl(b) this term grows to a maximum because at

this value of s all trajectories starting in the range x−
l (b) ≤ x0 < x−

s (b) fall into this

category.
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To calculate a value of θ(x0, b, s) for the fourth term in Equation (122) one can

write,

θ(x0, b, s) = −!
−1

∫ s

0

dτ ∆V (· · · )

= −!
−1

∫ s1

0

dτ ∆V (· · · )− !
−1

∫ s2

s1

dτ ∆V (· · · )

−!
−1

∫ s

s2

dτ ∆V (· · · )

= −!
−1

∫ s1

0

dτ ∆V (· · · ) + θs(b) + θl(b). (125)

It is worth exploring the relationship between the second and fourth terms in

Equation (122). Over the range ts(b) + tl(b) < s ≤ ts(b) + 2tl(b) both of these terms

start at zero and, as can be seen when considering the symmetry of the potential

about the b-axis, they both accumulate to the same value. Now, consider the first

time increment above the lower limit. The second term picks up a small contribution

to the negative side of x−
s (b) while the fourth term picks up the same symmetric region

to the positive side of x+
s (b). Thus both terms accumulate the same contribution for

this step. This pattern continues over the entire range of s in this interval, and at

each time the contributions of the two terms is the same.

With all of these considerations it is possible to write for ts(b) + tl(b) < s ≤

ts(b) + 2tl(b),

∫ x+
s (b)

x−

s (b)−v̄s

dx0 {· · · } =

∫ x+
l (b)−v̄s

x−

l (b)

dx0 {· · · }

+2

∫ x−

s (b)

x+
l (b)−v̄s

dx0 {· · · }+ φa(b) (126)

The final range of s to be considered is s > ts(b) + 2tl(b). Now Equation (115)
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can be written in the following illuminating form,

∫ x+
s (b)

x−

s (b)−v̄s

dx0 {· · · } =

∫ x+
s (b)−v̄s

x−

s (b)−v̄s

dx0 {· · · }+
∫ x+

l (b)−v̄s

x+
s (b)−v̄s

dx0 {· · · }

+

∫ x−

l (b)

x+
l (b)−v̄s

dx0 {· · · }+
∫ x−

s (b)

x−

l (b)

dx0 {· · · }

+

∫ x+
s (b)

x−

s (b)

dx0 {· · · }. (127)

Here the first and last terms should be looking very familiar. They encompass all

the trajectories which end in or start from, respectively, the short range potential.

They are equal and their sum is φA(b). Further, the second and fourth terms of

this equation correspond to the second and fourth terms in Equation (122). They

represent all trajectories which are represented in Figures 28 and 29. As was noted

before these terms grow to a maximum contribution when s = ts(b) + 2tl(b) and

remain constant thereafter. Also, they are equal to each other at all values of s,

being zero for s ≤ ts(b) + tl(b). For convenience define the following quantity,

φs(b) ≡ φa(b) +

[

2

∫ x−

s (b)

x+
l (b)−v̄s

dx0 {· · · }

]

s=ts(b)+2tl(b)

(128)

φs(b) is equal to the sum of the first, second, fourth, and last terms in Equation

(127). That leaves the third term as the last one to be considered. This term contains

all trajectories which pass entirely through the full range of the potential. As such,

they will all accumulate the same value of θ(x0, b, s). Define this value as,

θmax ≡ θs(b) + 2θl(b). (129)

Since θ(x0, b, s) is constant over this range terms involving it come outside of the
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integral and we have,

∫ x−

l (b)

x+
l (b)−v̄s

dx0 {· · · } = {· · · |θ=θmax}v̄(s− [ts(b) + 2tl(b)]) (130)

So for s > ts(b) + 2tl(b) one can write,

∫ x+
s (b)

x−

s (b)−v̄s

dx0 {· · · } = φs(b) + {· · · |θ=θmax}v̄(s− [ts(b) + 2tl(b)]). (131)

Define the following quantity,

φII(b) ≡ φs(b) + φl(b). (132)

φII(b) represents all calculations which eventually become redundant, i.e. they be-

come constant with time. The entire integral over x0 in Case II may now be expressed

as,

∫ ∞

−∞

dx0 {· · · } = 2

∫ x+
l (b)

x+
s (b)

dx0 {· · · }+ (x+
s (b)− x−

s (b) + v̄s), s < tl(b)

= φl(b) + (x+
s (b)− x−

s (b) + v̄s), tl(b) ≤ s < ts(b)

=

∫ x−

s (b)

x−

s (b)−v̄(s−ts(b))

dx0 {· · · }+ φa(b) + φl(b), ts(b) ≤ s < ts(b) + tl(b)

=

∫ x+
l (b)−v̄s

x−

l (b)

dx0 {· · · }+ 2

∫ x−

s (b)

x+
l (b)−v̄s

dx0 {· · · }+ φa(b) + φl(b),

ts(b) + tl(b) ≤ s < ts(b) + 2tl(b)

= {· · · |θ=θmax}v̄(s− [ts(b) + 2tl(b)]) + φII(b),

s ≥ ts(b) + 2tl(b) (133)

Since the integral over x0 becomes linear in s when s ≥ ts(b) + 2tl(b) the time for
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which the numerical calculations becomes redundant in case II is,

tr(b) ≡ ts(b) + 2tl(b), b < rs. (134)

These results clearly show the linear dependence of g(s) on s as s → ∞. In this

computational scheme g(s) becomes linear when s > max{tr(b)} where values of b

from both Case I and Case II are considered.

4.2.3 Conclusions of the computational model.

The results contained in Equations (107) and (133) were modeled in C++ and

tested extensively. I first tested my results against code that calculates g(s) for a

Lennard-Jones type potential. Then I compared my results for a square well against

an analytic result reported in Allard [1978]. Finally, another code developed by

Gorden Hager (private communication 2014) implements the AT model by first fitting

the DP to a power series in inverse powers ofR. A comparison of our two codes showed

that we obtained the same results.

A comparison of run times showed that taking advantage of the spherical nature of

the DP reduced the time of calculation by a half. Storing the results of the various φ’s

discussed above also resulted in significant time savings, though not quite as much as

taking advantage of the symmetry. Another way to save time is to store the current

valuse of θ(x0, b, s0). This way when one visits this point (x0, b) again for a later

value of s = s1, the integration over time only has to be performed from s0 to s1

and added to the previously stored value instead of integrating all the way from 0 to

s1. One more significant optimization which was performed has to do with memory

efficiency. If one codes up Equations (107) and (133) directly, then one first starts

with a particular time s = s0, then calculates g(s0). This means one must visit each

unique point (x0, b) on a two dimensional grid and then perform the integral over
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time. As one increases the size of the grid by making the points more closely spaced,

the memory requirements for storing all of the θ values becomes unmanageably large

very quickly, certainly much earlier than the calculation will converge. The way that

I resolved this was to swap the order of the loop over s and the loop over b. So the

code first considers a given b = b0, and then calculates that impact parameter’s effect

on g(s) for all the values of s one wishes to consider. Thus, the θ’s only need to be

stored for that one b, and can be thrown away when moving on to the next impact

parameter to consider. This reduces the two-dimensional array which stores θ to a

one-dimensional array, effectively reducing the memory requirements to the square

root of the memory needed for the two dimensional array.

The code is designed to take the values of rs and rl as parameters from the user. It

is expected that if the value of rs entered is too large than the model won’t converge

properly due to treating too big a region of the potential as rapidly changing. Thus,

one can start with a large value of rs and then slowly reduce it until the results

converge. This is precisely what was observed in tests. It was also observed that

as one further decreases rs → 0 from where it converged at first the results of the

calculation don’t change. A value of rs = 0 is effectively like treating the whole

problem in the context of case I. This means that numerically integrating straight

through the inner region of the DP is perfectly accurate. Also, one would expect that

a case II treatment would slightly improve run times as it handles certain parts of

the integration analytically, however no slow down was noticed by doing everything

with case I.
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V. Results of the Anderson-Talman Model Calculations

In this chapter I use the AT theory, reviewed extensively by Allard and Kielkopf

[1982], to compute the broadening(α) and shifting(β) coefficients, as well as the asym-

metries, of the line shapes of K, Rb, and Cs perturbed by He, Ne, and Ar. This theory

assumes that the dipole transition moment between states remains constant for the

duration of each collision. The correction for the variance of the dipole moment with

R used by the authors above is shown to only have a significant effect in the wings

of the line profile, especially in the vicinity of any satellite features which occur in a

region of the PEC where the dipole transition moment is changing appreciably. Thus,

their theory and ours are effectively the same when considering only the Lorentzian

line core. A theoretical understanding of the molecular potentials, including the ef-

fects of the spin-orbit interaction, is required for this approach to calculating the line

profile. I use my own ab initio PECs (see Chapter III), which have been developed

for this purpose, as input to the theory. I explore the temperature dependence of the

coefficients and asymmetry over a range of 50K to 3000K. The results are compared

to other calculations which use the quantum theory due to Baranger and the same ab

initio PECs. I also compare my results to other theoretical and experimental results

where available.

5.1 Theory

The formulation of the non-degenerate semi-classical AT theory is reviewed in

Allard and Kielkopf [1982] and extended to handle degenerate atomic levels by Al-

lard et al. [1999, 1994]. We briefly summarize the theory here starting with the

non-degenerate case where the line shape is given by I(ω, T ), ω is the angular fre-

quency measured from the unshifted line center, and T is the temperature. The inten-
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sity, I(ω, T ) is proportional to the Fourier transform of the autocorrelation function

Φ(s, T ),

I(ω, T ) =

∫ ∞

−∞

Φ(s, T )eiωsds (135)

where,

Φ(s, T ) = exp{−ng(s, T )}, (136)

and,

g(s, T ) =

∫ ∞

0

f(v, T )g(s, v) dv (137)

with,

g(s, v) = 2π

∫ ∞

0

b db

∫ ∞

−∞

dx0 (138)

×
[

1− exp

{

−i

∫ s

0

!
−1∆V [R(t)]dt

}]

.

Here n is the number density of the perturbing gas, s is time, f(v, T ) is the Maxwell

speed distribution, ∆V (R) is the difference potential (DP), and R(t) is the time-

dependent internuclear seperation and will be discussed further below. The DP is a

function of internuclear separation, R, and is given by ∆V (R) = (Vi(R) − Vf (R)) −

(Ei − Ef ) where Vi(R) and Vf (R) are M + Ng PECs. As R → ∞, Vi(R) → Ei

and Vf (R) → Ef where Ei and Ef are the initial and final atomic energies of the

transition for which the line shape is being calculated.

The full integration used to compute g(s, v) is performed over all space using

cylindrical coordinates where the integral over the azimuthal angle yields the factor
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of 2π in Equation (138). The emitter is stationary at the origin and the remaining

integrations in Equation (138) are over impact parameter b and initial condition x0

of a perturber with reduced mass µ of the M + Ng pair. The perturber is assumed

to move in a straight line with constant speed v in the positive x-direction, where

x = x0 + vt. The straight line trajectory together with the impact parameter, b,

yields an internuclear separation given by R(t) = (b2 + (x0 + vt)2)1/2. Finally, an

average over the Maxwell speed distribution, f(v, T ), is performed in Equation (137)

to obtain g(s, T ) as a function of temperature. As an approximation to the average

over speed, the integral in Equation (137) may be omitted and g(s, v) may instead be

evaluated at the average atomic speed v̄(T ) = (8kT/πµ)1/2 where k is Boltzmann’s

constant.

In the impact limit the number density of perturbers is low and g(s, v) must

be computed for sufficiently large s so that the autocorrelation function given by

Equation (136) decays to zero. In the limit s → ∞, g(s, v) → gI(s, v) where gI(s, v)

is a linear function of time,

gI(s, v) = {α(v) + iβ(v)}s+ {α0(v) + iβ0(v)}. (139)

Either an average over speed or the substitution v = v̄(T ) yields gI(s, T ) and, through

Equations (135) and (136), an analytic expression for the intensity,

I(ω, T ) = 2 exp (−nα0)

(

nα cos(−nβ0)− (ω − nβ) sin(−nβ0)

(ω − nβ)2 + (nα)2

)

. (140)

When α0 = 0 and β0 = 0 the intensity in Equation (140) becomes Lorentzian with

a half width at half max given by nα and a shift given by nβ. In the impact limit,

the broadening coefficient α and shifting coefficient β may be written explicitly as,
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α(v) = 2πv

∫ ∞

0

b db (1− cos {θ(v, b)}) , (141)

and

β(v) = 2πv

∫ ∞

0

b db sin {θ(v, b)} , (142)

where the accumulated phase θ(v, b) is given by,

θ(v, b) = (!v)−1

∫ ∞

−∞

∆V [(b2 + x2)1/2]dx. (143)

In Equation (139), α0(v) is the intercept of the real part of gI(s, v) and, as a scale

factor for the total line shape in Equation (140), may be eliminated from considera-

tion by rescaling the intensity. The asymmetry coefficient β0(v) is the intercept of the

imaginary part of gI(s, v) and in Equation (140) parameterizes the line shape asym-

metry. While expressions for α(v) and β(v) in the impact limit are given by Equations

(141) and (142), there is no corresponding impact limit expression for β0(v). To com-

pute β0(v), the full integral for g(s, v) in Equation (138) must be evaluated. For this

reason, all calculations of the broadening, shifting, and asymmetry coefficients in this

paper are performed using Equation (138) where a linear fit to g(s, v) is performed

in the limit s → ∞ . The slope of the linear fit to the real part of g(s, v) is α(v) and

the slope and intercept of the linear fit to the imaginary part of g(s, v) are β(v) and

β0(v) respectively. Even though we use Equation (138) for all calculations, we are

able interpret our results for α(v) and β(v) using Equations (141) and (142) because

we are evaluating g(s, v) in the impact limit of large s.

For each M + Ng pair there are four PECs, VX2Σ1/2
(R), VA2Π1/2

(R), VA2Π3/2
(R),

and VB2Σ1/2
(R). As the internuclear separation R → ∞, the ground X2Σ1/2 PEC

correlates with the ground 2S1/2 alkali-metal atom energy level, the excited A2Π1/2
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PEC correlates with the excited 2P1/2 alkali-metal atom energy level, and the excited

A2Π3/2 and B2Σ1/2 PECs correlate with the excited 2P3/2 alkali-metal atom energy

level. The four PECs of each M +Ng pair are used to compute three DPs required

by AT theory to calculate the D1 and D2 line shapes,

∆VΠ1/2
(R) = (VA2Π1/2

− VX2Σ1/2
)− ED1

∆VΠ3/2
(R) = (VA2Π3/2

− VX2Σ1/2
)− ED2 (144)

∆VΣ1/2
(R) = (VBΣ1/2

− VX2Σ1/2
)− ED2.

where ED1 and ED2 are the atomic alkali-metal atom D1 and D2 transition energies,

subtracted so that ∆V → 0 as R → ∞.

When non-adiabatic effects are neglected, the D1 line shape in AT theory is de-

termined by a single DP, ∆VΠ1/2
(R). The situation is more complicated for the

D2 line shape where two DPs, ∆VΠ3/2
(R) and ∆VΣ1/2

(R), must both be considered

when calculating the line shape. This is accomplished by modifying the autocorrela-

tion function in Equation (136) to include a weighted sum [Allard et al., 1994] over

gi(s, T ), where i = Π3/2,Σ1/2 labels the DP used in Equation (138) to compute the

corresponding gi(s, v),

Φ(s, T ) = exp

(

−n
∑

i

πigi(s, T )

)

. (145)

To determine the weights, πi, we make the approximation that the dipole transi-

tion moments are constant and equal to the asymptotic atomic value for the duration

of each collision. This essentially reduces the dipole autocorrelation formulation of

gi(s, v) discussed by Allard et al. [1999] to the AT expression in Equation (138),

slightly modified to include a factor of dPS/(2dPS). Here the quantity dPS is the
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dipole matrix element between the 2P3/2 and 2S1/2 atomic states. This yields a weight

πi = 1/2 for each gi(s, T ) used in Equation (138). As discussed by Allard et al. [1999]

the approximation of constant dipole moment primarily influences the line wing and

is not expected to significantly effect broadening, shifting and asymmetry coefficients

of the line core.

5.2 Difference Potentials

The DPs in Equation (144) are calculated using VX2Σ1/2
(R), VA2Π1/2

(R), VA2Π3/2
(R),

and VB2Σ1/2
(R) PECs [Blank et al., 2012] and are plotted in Figures 30-32. Each figure

also contains an inset illustrating the asymptotic form of these curves. The variation

between these 27 DPs, three for each of the nine M +Ng pairs, provides a rich com-

putational laboratory to study the relationship between PECs and spectral line shape

as determined by AT theory. For all M + Ng systems, DPs originating from either

the A2Π1/2, A2Π3/2, or B2Σ+
1/2 PECs share the same qualitative features.

When considering the approach of a perturber from the asymptotic limit, the

∆VΠ1/2
DPs plotted in Figure 30 all slowly rise to a maximum of less than 40cm−1

before decreasing. These maxima are caused in part by a local maxima in the A2Π1/2

PECs together with the wells in the ground X2Σ+
1/2 PECs, both which occur at

roughly the same R. As illustrated in Figure 31 the ∆VΠ3/2
DPs essentially decrease

as R decreases from the asymptotic limit. This occurs because the onset of the deeper

wells in the A2Π3/2 PECs offset the effect of the shallow wells in the X2Σ1/2 ground

state PECs. However, because the onset of the X2Σ1/2 wells occurs at slightly larger

R that the onset of the A2Π3/2, there is a very small maximum in the ∆VΠ3/2
DPs at

R ≈ 8Å as shown in the inset in Figure 31. The ∆VΣ1/2
DPs are plotted in Figure

32 and are qualitatively similar to the ∆VΠ1/2
DPs shown in Figure 30, however, the

maxima of the ∆VΣ1/2
DPs occur at much higher energies and for smaller values of
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Figure 30. The ∆VΠ1/2
difference potentials for all M +Ng combinations.

R than the maxima exhibited by the ∆VΠ1/2
DPs. These larger peaks in the ∆VΣ1/2

DPs occur because the VB2Σ1/2
PECs all exhibit a barrier as R decreases, followed

by a shoulder at fairly high energies. It is the location and shape of these shoulders

which give rise to the maxima seen in the ∆VΣ1/2
DPs. The energies of these maxima

correspond to the frequency, measured from line center, of satellite peaks [Blank et al.,

2012] predicted to appear by the AT theory [Allard and Kielkopf, 1982]. At values of

R ≈ 10Å several of the ∆VΣ1/2
DPs exhibit a very shallow well as shown by the inset

in the Figure 32. These wells correspond to a very shallow well in the B2Σ+
1/2 PECs

caused by diabatic coupling between the A2Π1/2 and B2Σ+
1/2 electronic states.

At values of R ≈ 3.0Å all DPs in Figures 30-32 are decreasing in energy as R

decreases. At even smaller values of R ≈ 1-2Å not shown in the figures, the DPs turn

around and start to increase rapidly in energy with decreasing R.
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Figure 31. The ∆VΠ3/2
difference potentials for all M +Ng combinations.
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Figure 32. The ∆VΣ1/2
difference potentials for all M +Ng combinations.
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5.3 Computational Details

The broadening α(T ), shifting β(T ), and asymmetry β0(T ), coefficients are cal-

culated by numerically evaluating g(s, v) in Equation (138). A linear fit to g(s, v) is

performed in the impact limit s → ∞ where the slope of the real part of g(s, v) is

the broadening coefficient α(v), and the slope and intercept of the imaginary part of

g(s, v) are the shifting coefficient β(v) and asymmetry coefficient β0(v), respectively.

An average over the Maxwell speed distribution is performed to yield the coefficients

as a function of temperature.

An analysis of the impact limit of g(s, v) in Equation (138) used to compute α(v)

and β(v) can be performed by examining the integrands, αint(v, b) and βint(v, b), of

Equations (141) and (142),

αint(v, b) = b [1− cos {θ(v, b)}] , (146)

and

βint(v, b) = b sin {θ(v, b)} . (147)

A plot of these integrands calculated using the Cs + He ∆VΣ1/2
DP is shown in Figure

33 along with the ∆VΣ1/2
DP and θ(v, b) as defined in Equation 143. The total area

under the integrands yields α and β up to a factor of 2πv. With the exception of the

regions b ≈ 1.8Å and b ≈ 3.75Å, the integrands rapidly oscillate with some average

wavelength λ̄ until b = b0, where b0 is defined by the largest value of b for which

θ(v, b) = ±π. As b increases beyond b0, αint decays to zero, and βint oscillates for one

more quarter cycle and then decays to zero as well. The bounds on the oscillation

amplitude for αint are between 0 and 2b, and and for βint are between −b and b. For

values of the impact parameter in the range 0 ≤ b ≤ b0, λ̄ is large and θ(v, b) ∼ λ̄b.
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In the limit of large λ̄ over this range of b,
∫

b db cos(λ̄b) → 0 and
∫

b db sin(λ̄b) → 0.

As a result, when Equations (146) and (147) are integrated from b = 0 to b = b0

the area under αint is approximately b20/2 and the area under βint is approximately

zero. As illustrated in Figure 34, the impact parameter b = b0 can therefore be used

with Equations (141) and (142) to define an effective hard sphere contribution to the

broadening and shifting coefficients,

αhs(v, b0) = 2πv

∫ b0

0

b db [1− cos {θ(v, b)}] (148)

≈ vπb20

and,

βhs(v, b0) = 2πv

∫ b0

0

b db sin {θ(v, b)} (149)

≈ 0.

The broadening and shifting coefficients given by Equations (141) and (142) may then

be re-expressed as the sum of this effective hard sphere contribution together with a

long range correction,

α(v) = αhs + αlr (150)

β(v) = βhs + βlr

where the long range corrections are given by,
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Figure 33. The Cs + He ∆VΣ1/2
difference potential is plotted along with the corre-

sponding integrands αint and βint given by Eqs. (146),(147), and θ(v, b) given by Eq.
(143) calculated at v̄(T = 500K). Note that ab initio calculations were not performed
for R < 1.6Å and the Cs + He ∆VΣ1/2

DP is linearly extended for values of R < 1.6Å.

αlr(v, b0) = 2πv

∫ ∞

b0

b db [1− cos {θ(v, b)}] , (151)

and

βlr(v, b0) = 2πv

∫ ∞

b0

b db sin {θ(v, b)} . (152)

Values of the impact parameter in Equations (148) and (149) for which b < b0 cor-

respond to straight line trajectories that explore the short range region of the DPs.

Any variability in the short range DPs, and by extension the short range PECs, will

not significantly alter the rapid oscillations of αint and βint for impact parameters

0 ≤ b ≤ b0. As a result, the effective hard sphere broadening contribution given by

αhs ≈ vπb20 in Equation (148) is sensitive to the PECs only through the value of b0,

130



0 2 4 6 8 10

−5

0

5

10

15

 

 

0

20

40

 

 

Figure 34. Integrands αint and βint given by Eqs. (146) and (147) computed using
the Cs + He ∆VΠ3/2

DP at v̄(T = 1000K) are plotted on the bottom. The integrals

2πv̄
∫ b
0
db′ αint(b′) and 2πv̄

∫ b
0
db′ βint(b′) are plotted on the top and closely follow the effec-

tive hard sphere value until b = b0.
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and both broadening and shifting coefficients given by Equations (148) and (149) are

not sensitive to the details of the short range PECs for R < b0.

Values of the impact parameter in Equations (151) and (152) for which b > b0

correspond to straight line trajectories that sample the asymptotic region of the DPs.

The long range contributions to the broadening and shifting coefficients given by

Equations (151) and (152) are therefore sensitive to the DPs, and by extension the

PECs, through the value of b0. Because θ(v, b) does not rapidly oscillate for b > b0,

both αlr(v, b0) and βlr(v, b0) are also sensitive to the details of the long range PECs

for R > b0. In this long range region, αint(v, b) will approach zero as a quadratic

function of θ(v, b) while βint(v, b) will approach zero as a linear function of θ(v, b). As

a result αlr(v, b0) is less sensitive to the long range PECs than βlr(v, b0).

The broadening coefficient α(v) given by Equation (150) is therefore determined in

large part by an effective hard sphere term αhs that is sensitive to the PECs through

the value of b0, together with a long range correction term αlr that is sensitive to

the long range details of the PECs through αint, where αint decays quadratically

with θ(v, b) to zero. In contrast, the shifting coefficient β(v) given by Equation

(150) is determined almost entirely by the long range term βlr and is therefore more

sensitive to the long range details of the PECs through βint, where βint decays linearly

with θ(v, b) to zero. This lower sensitivity of α(v) to the details of the PECs yields

general agreement between broadening coefficients calculated using different M +Ng

PECs and general agreement with experimental observation. In contrast, the shifting

coefficient is more sensitive to the details of the long range PECs where a difference of

less than a wave number over 10−20Å can significantly change the value obtained for

β(v) and may even change the sign of the shifting coefficient. As a result, there can be

significant disagreement between various calculations and experimental observations

of the shifting coefficient.
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This sensitivity of the shifting coefficient to the long range PECs is also expected

to be present in the dipole autocorrelation formulation [Allard et al., 1999] where the

dipole autocorrelation formulation essentially reduces to AT theory in the line core.

An increased sensitivity of the shifting coefficient to the long range PECs compared

to the broadening coefficient appears in the full quantum mechanical Baranger theory

[Baranger, 1958] as well through the cosine and sine terms in Equations (141) and

(142) where θ(v, b) is replaced by θ(E, J) = φi(E, J)− φf (E, J). In Baranger theory

the φi(E, J) and φf (E, J) are scattering phase shifts computed using the Vi(R) and

Vj(R) PECs and are functions of kinetic energy, E, and total angular momentum, J

[Loper, 2013, Loper and Weeks, in preparation].

It is interesting to note that the rapid oscillation of αint and βint in Figure 33

is interrupted at impact parameters b ≈ 1.8Å and b ≈ 3.75Å. These windows of

interruption occur at values of bi where θ(v, bi) = θi is an extremum, and the width of

the window depends on how rapidly θ(v, b) varies in the vicinity of the ith extremum.

The area under the window of interruption depends on this width and on the value

of θi. The integrands, αint and βint, shown in Figure 33 are calculated using a mean

speed v̄(T ) = (8kT/πµ)1/2 corresponding to a temperature T = 500K. The speed

dependence enters the calculation of the integrands through the v−1 term in Equation

(143). An increase in v(T ) will therefore reduce the overall amplitude of θ(v, b) causing

the θi to decrease. As illustrated in Figure 35, when θi changes value, αint and βint will

oscillate into and out of these windows of interruption and cause the total area under

αint and βint to oscillate. These oscillations are illustrated in Figure 36 as a function

of T for the Cs + He B2Σ+
1/2 DP where the approximation v = v̄ is made. The

oscillations are eliminated when the approximation v = v̄ is replaced by an average

over the Maxwell speed distribution. As illustrated in Figure 36, the average result

can substantially differ from the v = v̄ approximation at higher temperatures.
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Figure 35. The integrand αint given by Eq. (146) is computed using the Cs+He ∆VΣ1/2

DP for several different values of v̄(T) and corresponds to the window of interruption
at b ≈ 3.75Å in Fig. 33.
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Figure 37. Predicted broadening (half-width) coefficients for the D1 line of all M +Ng
combinations.

5.4 Results

The temperature dependence of the broadening coefficients for the D1 and D2

alkali-metal atom line shapes of all M + Ng combinations is plotted in Figures 37

and (38), respectively, over a range of T = 50− 3000K. These figures show that the

broadening coefficient for the M+Ng pairs is roughly grouped according to noble-gas

atom, with M + He combinations showing the most broadening, followed by M +

Ne and then M + Ar. A strong dependence on noble-gas atom is clearest for the D2

broadening coefficients, where the argon, neon, and helium groups exhibit no overlap,

and is also evident to a lesser degree for the D1 curves. This trend occurs because the

average over speed in Equation (137) is weighted in favor of α(v) in Equation (141)

for which v is inversely proportional to the square root of the reduced mass.

The relationship between DPs and the broadening coefficient α(T ) as determined
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Figure 38. Predicted broadening (half-width) coefficients for the D2 line of all M +Ng
combinations.

by AT theory is explored in Figure 39. The value of R = b0 at which the DPs in

Figure 39 exhibit sufficient amplitude for θ(v, b0) = ±π defines the effective hard

sphere contribution to α(T ). As R decreases from the asymptotic limit in Figure

39, the B2Σ+
1/2 DP is the first to depart from zero and reach a value for which

θ(v, b0) = ±π. This is followed at a smaller value of R = b0 for the A2Π1/2 DP, and

then finally the A2Π3/2 DP. The effective hard sphere contribution to the broadening

coefficients, αhs = vπb20, is therefore largest for ∆VΣ1/2
(R) followed by∆VΠ1/2

(R), and

then ∆VΠ3/2
(R), and the broadening coefficients α(T ) exhibit the same ordering as

shown in Figure 39.

As mentioned in the previous section, an increase in v will reduce the overall

amplitude of θ(v, b) in Equation (143), and thereby lower the value of b = b0 for

which θ(v, b0) = ±π. The rate at which b0, and by extension αhs, changes is also

a function of the DP. As seen in Figure 40, b0 ≈ 7.2Å at 100K, and as seen in
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Figure 39. The Cs + He ∆VΠ1/2
, ∆VΠ3/2

, and ∆VΣ1/2
DPs are plotted on the bottom and

the corresponding broadening coefficients α(T) are plotted on the top. The A2Π3/2 and
B2Σ+

1/2 broadening coefficients are plotted here separately. Their weighted average in

Eq. (145) is used to compute the D2 broadening coefficient.

Figure 39 the ∆VΠ1/2
DP is similar to the ∆VΣ1/2

DP near R ≈ 7.2Å where they are

both monotonically decreasing functions of R. As a result, values of αhs computed

using ∆VΠ1/2
will be similar at lower temperatures to values of αhs computed using

∆VΣ1/2
. At a higher temperature T = 2000K, b0 ≈ 4.1Å in Figure 40, and as seen in

Figure 39 the ∆VΠ1/2
DP is similar to the ∆VΠ3/2

DP near R ≈ 4.1Å where they are

both monotonically increasing functions of R. As a result, values of αhs computed

using ∆VΠ1/2
will be similar at higher temperatures to values of αhs computed using

∆VΠ3/2
. This behavior is seen in Figure 39 where the A2Π1/2 broadening coefficient

closely follows the B2Σ1/2 broadening coefficient at low temperatures and crosses over

at higher temperatures to follow the A2Π3/2 broadening coefficient.

The D1 and D2 broadening coefficients plotted in Figures 37 and 38) are smooth,

monotonically increasing functions of temperature and are fit by a power law given

138



0 1 2 3 4 5 6 7 8 9 100

5

10

15

b(Å)
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Figure 40. The integrand αint(v, b) given by Eq. (146) is calculated using the Cs
+ He A2Π1/2 DP and plotted for several different temperatures. As the temperature
increases from 100K in the bottom panel to 2000K in the top panel, the value of b0 drops
from 7.2Å down to 4.1Å. As b0 decreases it crosses through a window of interruption
corresponding to the maximum in ∆VΠ1/2

at R=5.9Å and becomes somewhat ambiguous
at 1000K.
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by cT d with fit parameters c and d listed in Table 12. The D2 broadening coefficients

are given by the weighted average of the A2Π3/2 and B2Σ+
1/2 broadening coefficients

in Equation (145) and are fit to cT d with residuals that differ from unity by less than

10−4 in all cases. This suggests that the A2Π3/2 and B2Σ+
1/2 broadening coefficients

may be individually fit to cT d with the same power d. This was verified for all

M+Ng pairs, where the value of d for the A2Π3/2 and B2Σ+
1/2 broadening coefficients

are essentially identical to the D2 values of d listed in Table 12. The values of the

parameter c for the A2Π3/2 broadening coefficients are smaller than the values of c for

the B2Σ+
1/2 broadening coefficients as seen in Figure 39 for Cs + He. Note that the

residuals listed in Table 12 for the D1 fit are smaller than those for the D2 fit. This is

caused by the crossover of the A2Π1/2 broadening coefficients from B2Σ+
1/2 behavior at

low temperature to A2Π3/2 behavior at high temperature as shown in Figure 39 for Cs

+ He. Note also that the broadening coefficients all have a temperature dependence

of T d<1/2. If the temperature dependence of the broadening coefficient was solely due

to the v term in front of the integral over impact parameter in Equation (141) then

α(T ) would be proportional to T d=1/2. It is the v−1 term in front of the integral for

θ(b, v) in Equation (143) that gives rise to this reduced value of d < 1/2.

The temperature dependence of the shifting coefficients for the D1 and D2 line

shapes of all M +Ng combinations is shown in Figures 41 and 42, respectively. The

shifting coefficients are grouped according to noble-gas atom, with the helium curves

being the highest, followed by neon, and then finally argon. As with the broadening

coefficients, this trend occurs because the average over speed in Equation (137) is

weighted in favor of β(v) in Equation (142) for which v is inversely proportional to

the square root of the reduced mass. As illustrated in Figure 41, the M + He and

M + Ne D1 shifting coefficients are all positive over the entire temperature range,

while the M + Ar D1 shifting coefficients are all negative for small T and then all
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Figure 41. Predicted shifting coefficients for the D1 line of all M +Ng combinations.
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Figure 42. Predicted shifting coefficients for the D2 line of all M +Ng combinations.
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Table 12. Results of fitting the broadening coefficients to a functional from of cT d where
T is in Kelvin and the broadening coefficients are in 10−20cm−1/cm−3. These expressions
are valid for temperatures ranging from 50− 3000K.

D1 D2
M+Ng c d Residual c d Residual
KHe 0.1669 0.2924 0.9873 0.1150 0.4025 1.0000
KNe 0.1802 0.2173 0.9925 0.05803 0.4116 1.0000
KAr 0.1383 0.2507 0.9954 0.04767 0.4246 1.0000
RbHe 0.4631 0.1871 0.9717 0.1262 0.3968 1.0000
RbNe 0.1574 0.2796 0.9594 0.05735 0.4104 1.0000
RbAr 0.07604 0.3674 0.9840 0.04188 0.4316 1.0000
CsHe 0.4114 0.2359 0.9437 0.1329 0.3997 0.9999
CsNe 0.08034 0.3907 0.9902 0.05813 0.4168 1.0000
CsAr 0.03828 0.467 0.9988 0.04299 0.4314 1.0000

become positive as T increases. It is interesting to note that the K + He D1 shifting

coefficient in Figure 41 exhibits a maximum at T≈ 750K and then decreases as the

temperature increases, and both the K + Ne and K + Ar shifting coefficients increase

with temperature until T≈ 2000k where they become constant. In Figure 42, the

M + He and M + Ne D2 shifting coefficients are also all positive over the entire

temperature range while the M + Ar shifting coefficients are all negative over the

entire temperature range.

The relationship between DPs and the shifting coefficient β(T ) as determined by

AT theory is explored in Figure 43 where it is observed that the A2Π1/2 and B2Σ+
1/2

shifts are always positive over the range of T considered while the A2Π3/2 shifts are

always negative. At lower temperatures the sign of the shifting coefficient correlates

with the sign of the DP at R = b0, where for R > 5Å, ∆VΠ1/2
and ∆VΣ1/2 are both

positive, while ∆VΠ3/2
is negative. At higher temperatures, larger values of v̄(T ) will

lower θ(v, b) and decrease the value of b = b0. At b0 ≈ 5Å some fraction of the straight

line trajectories in Equation (143) will begin to explore regions for which ∆VΠ1/2
is

negative. This reduces the rate at which the D1 shifting coefficient increases and, as

seen in Figure 43, this occurs at a temperature of T≈ 1000K.
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Figure 43. The Cs + He ∆VΠ1/2
, ∆VΠ3/2

, and ∆VΣ1/2
DPs are plotted on the bottom

and the corresponding shifting coefficients β(T) are plotted on the top. The A2Π3/2 and
B2Σ+

1/2 shifting coefficients are plotted here separately. Their weighted average in Eq.

(145) is used to compute the D2 shifting coefficient.
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As the mass of the alkali-metal atom in the M +Ng pair decreases, the maximum

of the ∆VΠ1/2
peak in Figure 30 is observed to decrease. At a fixed temperature

and speed, a lower peak height will correspond to a smaller value of b0 as defined

by θ(v, b) = ±π using Equation (143). As a result, b0 will be smallest for K + Ng

followed by b0 for Rb + Ng and then Cs + Ng. For a fixed temperature, the speed

will increase as the reduced mass decreases and b0 will therefor be smallest for K

+ He, followed by b0 for K + Ne and then K + Ar. As a result, the straight line

trajectories parameterized by b " b0 in Equation (142) will explore regions for which

∆VΠ1/2
is negative at lower temperatures for K + Ng compared to Cs + Ng and

Rb + Ng. This causes the K + He D1 shifting coefficient in Figure 41 to exhibit a

maximum at T≈ 750K and then decrease as the temperature increases, and causes

both the K + Ne and K + Ar shifting coefficients to increase with temperature until

T≈ 2000k where they become constant. Similar behavior for Rb + Ng and Cs + Ng

is expected at higher temperatures.

It is interesting to note that the M + Ar B2Σ+
1/2 DPs shown in the inset of Figure

32 all exhibit very shallow wells with depths that are on the order of 0.5 cm−1. At

temperatures below T ≈ 1500K the value of b0 is sufficiently large so that a majority

of trajectories used to compute βlr sample this negative region of the DP. As a result,

the B2Σ+
1/2 shifting coefficients shown in Figure 44 are negative for T< 1500K, and

illustrate the extreme sensitivity of the shifting coefficients to the long range features

of the DPs for R > b0. At higher temperatures T > 1500K, the value of b0 becomes

sufficiently small so that more trajectories used to compute βlr sample the positive

region of the DP and β(T ) becomes positive. Similar behavior is observed for the M

+ Ar D1 shifting coefficients in Figure 41 where the negative shifting coefficients at

lower temperatures correspond to the shallow well in the M + Ar ∆VΠ1/2
DPs shown

in the inset in Figure 30.
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Figure 44. The shifting coefficient β(T ) computed using the M+Ar ∆VΣ1/2
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DPs shown in the inset in Fig. 32 and illustrate the sensitivity of the
shifting coefficients to the PECs.
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Figure 45. Predicted asymmetry coefficients for the D1 line of all M+Ng combinations.
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Figure 46. Predicted asymmetry coefficients for the D2 line of all M+Ng combinations.
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The temperature dependence of the asymmetry coefficients for the D1 and D2

line shapes of all M +Ng combinations is shown in Figures 45 and 46, respectively.

As illustrated in Figure 45, the K + Ng, Rb + Ng, and Cs + He D1 asymmetry

coefficients at low temperatures either rapidly rise or start at a peak value and then

decay back to zero as the temperature increases with the K + He D1 becoming slightly

negative. The rate of decay correlates strongly with alkali-metal atom where the K

+ Ng asymmetry coefficients decay most rapidly followed by Rb + Ng and then Cs

+ Ng. For any given alkali-metal atom the asymmetry coefficients decay the most

rapidly for helium, followed by neon, and then argon, with the exception of the K

+ Ar asymmetry coefficient which decays at nearly the same rate as the K + Ne

asymmetry coefficient. The D2 asymmetry coefficients in shown in Figure 46 exhibit

the strongest dependence on temperature at lower values of T. As the temperature

increases, all of the D2 asymmetry coefficients become nearly constant with little

dependence on temperature at higher values of T.

5.5 Comparison with other work

Broadening and shifting coefficients calculated using semiclassical AT theory are

compared in Table 13 with a variety of experimental observations made at specific

temperatures. The AT broadening and shifting coefficients are also compared in

Table 13 with broadening and shifting coefficients computed using a fully quantum

mechanical calculation [Loper, 2013, Loper and Weeks, in preparation] that employs

the Baranger theory of line broadening [Baranger, 1958]. The PECs used for the quan-

tum mechanical Baranger calculations listed in Table 13 are the same as those used

for the semiclassical AT calculations. This enables the comparison of semiclassical

AT results with fully quantum mechanical Baranger results without the ambiguity

introduced by the use of different PECs. The percentage error of the broadening
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coefficients computed using Baranger theory relative to the broadening coefficients

computed using AT theory is in general larger for the D1 line than for the D2 line.

The largest errors in the D1 line are ≈ 30% for K + Ne, Rb + He, Rb + Ne, and Cs

+ He. The D2 lines exhibit errors of ≈ 10% or less with the exception of the Rb +

Ar D2 line with and error of ≈ 20%. The percentage error of the D1 and D2 broad-

ening coefficients computed using AT theory relative to experimental observation are

≈ 15% with the exception of the M + Ar pairs and the K + Ne D1 line. The K +

Ne D1 line exhibits a relative error of ≈ 30%, and all the M + Ar values are very

nearly a factor of two too small, most likely because of errors in the long range region

of the M + Ar PECs. There is very little agreement in Table 13 between shifting

coefficients computed using AT theory, shifting coefficients computed using Baranger

theory, and experimental shifting coefficients for both the D1 and D2 lines.

A comparison of several different theoretical results for the D1 and D2 broad-

ening coefficients of K + He is shown in Figure 47 for a range of temperatures

T= 50 − 3000K. Included in Figure 47 are broadening coefficients computed using

AT theory, broadening coefficients computed using Baranger theory with the same

PECs used for the AT calculations [Loper, 2013, Loper and Weeks, in preparation],

broadening coefficients computed using Baranger theory with an alternative choice

of PECs [Mullamphy et al., 2007], and broadening coefficients computed using the

dipole autocorrelation formulation [Allard et al., 2007]. Fairly good agreement is ob-

served for broadening coefficient of the D2 line given the variety of theoretical models

and various PECs used for the calculations. Agreement for the D1 line remains fairly

strong for the broadening coefficients computed using AT theory and the broaden-

ing coefficients computed using the dipole autocorrelation formulation [Allard et al.,

2007], with the Mullamphy et al. [2007] results predicting a somewhat higher value

for the D1 broadening coefficients at higher temperatures.
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Table 13. A comparison of broadening and shifting coefficients computed using semi-
classical AT theory to experiment and other theory. The Theory B column gives
the results of full quantum mechanical Baranger calculations Loper [2013], Loper and
Weeks [in preparation] using the same potentials used for the AT results listed in the
Theory AT column. Note that radial derivative coupling is ignored for the D1 coeffi-
cients listed in the Theory B column. Temperatures are in Kelvin and the coefficients
in 10−20cm−1/cm−3. Note that for the K + Ng combinations the theory was calculated
at T = 410K while the experiment gave a range of T = 400− 420K.

Theory AT Theory B Exp
M+Ng Temp α β α β α β Ref
KHe
D1 410 0.97 0.58 0.91 -0.15 0.82 0.24 1

D2 410 1.29 0.09 1.35 0.01 1.09 0.13 1

KNe
D1 410 0.68 0.37 0.49 -0.11 0.45 -0.22 1

D2 410 0.69 0.04 0.73 0.06 0.62 -0.33 1

KAr
D1 410 0.64 0.11 0.52 -0.04 1.30 -1.23 1

D2 410 0.61 -0.14 0.68 -0.18 1.05 -0.81 1

RbHe
D1 394 1.47 0.79 1.07 -0.82 1.29 0.64 2

D2 394 1.35 0.15 1.45 -0.16 1.36 0.05 2

RbNe
D1 394 0.82 0.22 0.55 -0.24 0.67 -0.12 2

D2 394 0.67 0.05 0.71 0.00 0.64 -0.33 2

RbAr
D1 394 0.64 -0.03 0.53 -0.30 1.23 -0.92 2

D2 394 0.55 -0.09 0.67 -0.29 1.20 -0.78 2

CsHe
D1 323 1.56 0.49 1.13 0.06 1.35 0.47 3

D2 313 1.32 0.14 1.43 0.82 1.11 0.07 4

CsNe
D1 313 0.70 0.16 0.59 0.03 0.59 -0.17 3

D2 313 0.64 0.05 0.71 0.37 0.53 -0.28 4

CsAr
D1 313 0.57 -0.08 0.54 0.30 0.99 -0.70 3

D2 313 0.51 -0.10 0.50 0.28 0.89 -0.67 4

1Lwin and McCartan [1978]
2Rotondaro and Perram [1997]
3Pitz et al. [2009]
4Pitz et al. [2010]
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Table 14. A comparison of Cs + Ng asymmetry coefficients computed using semiclassi-
cal AT theory with experiment Hager et al. [2014] at T = 323K. Coefficients have units
of 10−20cm3.

CsHe CsNe CsAr
Theory Exp Theory Exp Theory Exp

D1 12.0 6.2 9.8 6.8 5.4 -41
D2 3.3 2.7 3.2 -0.2 0.3 -27

A similar comparison of several different theoretical results for the D1 and D2

shifting coefficients of K + He is shown in Figure 48 for a range of temperatures

T= 100 − 800K. Included in Figure 48 are shifting coefficients computed using AT

theory, shifting coefficients computed using Baranger theory with the same PECs

used for the AT calculations [Loper, 2013, Loper and Weeks, in preparation], and

shifting coefficients computed using Baranger theory with an alternative choice of

PECs [Mullamphy et al., 2007]. Unlike the broadening coefficients shown in Figure

47 there appears to be little agreement between the various calculations, even up to

the sign of the shifting coefficient.

The general agreement between broadening coefficients exhibited in Table 13 and

Figure 47 and general disagreement between shifting coefficients exhibited in Table 13

and Figure 48 most likely occurs because the broadening coefficients computed using

AT theory are fairly insensitive to the PECs while the shifting coefficients computed

using AT theory are very sensitive to the details of the long range PECs.

Asymmetry coefficients are compared with experiment in Table 14. With the

exception of the Cs + He D2 asymmetry coefficient there appears to be significant

error in the calculated asymmetries as compared with experiment. In the absence

of a simplified expression for β0 analogous to Equations (141) and (142) for the

broadening and shifting coefficients, it is difficult ascertain precisely why this is the

case. One possibility is that the intercept of the imaginary part of g(s, v) shares the

same sensitivity to the long range PECs as exhibited by the slope of the imaginary
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Figure 47. A comparison of broadening coefficients computed using the semiclassical AT
theory with other theoretical calculations. Loper Loper [2013] and Loper and Weeks [in
preparation] compute broadening coefficients using the quantum mechanical Baranger
theory with the same PECs used for the AT calculations. Note that radial derivative
coupling is ignored for the Loper D1 coefficients. Allard et al. [2007] compute α(T ) using
the dipole autocorrelation formulation, and Mullamphy et al. [2007] compute α(T ) using
quantum mechanical Barringer theory. Both Allard et al. [2007] and Mullamphy et al.
[2007] employ different PECs than those used for the AT calculations.

part of g(s, v).
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VI. Conclusions

I calculate ground and excited state PECs for nine different M +Ng pairs. The

curves are obtained via a state-averaged multi-configurational self-consistent field

calculation followed by a spin-orbit multi-reference singles and doubles configuration

interaction calculation. Davidson-Silver corrections are made to the potential en-

ergy curves and transition dipole moments are computed. I then use these PECs to

compute broadening, shifting, and asymmetry coefficients using the semiclassical AT

theory of spectral broadening. The same level of theory is used for all potential energy

curve calculations which facilitates the identification of trends that occur as different

alkali-metal atoms and noble-gas atoms are considered. These trends are confirmed

through a variety of experimental observations including spectroscopic parameters,

vibrational energy levels, and collisionally broadened D1 and D2 lines. In particular

we are able to predict trends in the position of the collisionally induced D2 satellite

peak and, using our calculations together with experimental data, make a prediction

for the absolute position of the Rb + He satellite peak.

My potential energy curves for alkali-metal atom and noble-gas atom pairs have

been useful for predicting a wide variety of behaviors including non-adiabatic cou-

pling [Belcher, 2011, Lewis, 2011], cross sections for fine structure transitions [Lewis,

2011], and collisionally induced spectral broadening [Loper, 2013]. The curves are

used here to compute broadening, shifting and asymmetry coefficients using AT the-

ory. The coefficients are compared with experimental observations at several different

temperatures, with coefficients computed using the semiclassical dipole autocorrela-

tion formulation of spectral broadening [Allard et al., 2007], and with two different

calculations that use the quantum mechanical Baranger theory of spectral broad-

ening [Mullamphy et al., 2007, Loper, 2013, Loper and Weeks, in preparation]. In

general there is reasonable agreement on the broadening coefficients and very little
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agreement on the shifting coefficients between the various theoretical calculations and

experiment.

I observe that for some systems the difference between coefficients computed using

an average over the Maxwell speed distribution and coefficients computed using an

average speed can differ on the order of ten percent. I also observe that the broadening

coefficients calculated using AT theory may be expressed as the sum of an effective

hard sphere contribution and a long range contribution. The effective hard sphere

contribution depends on the value of impact parameter for which the accumulated

phase has become sufficiently large but is otherwise insensitive to the PECs. The long

range contribution to the broadening coefficient depends on the long range form of

the PECs with an integrand that decays to zero quadratically with the accumulated

phase. The shifting coefficients may also be expressed as the sum of an effective hard

sphere contribution and a long range contribution. However, the effective hard sphere

contribution to the shifting coefficient is approximately zero. As a result, the shifting

coefficient is determined almost entirely by the long range form of the PECs with an

integrand that decays linearly to zero with the accumulated phase. This causes the

shifting coefficients to be much more sensitive to the details of the long range PECs

compared with the broadening coefficients. A small difference in the long range

region of the PECs of less than a wave number over 10− 20Å can make a significant

difference in the value of the shifting coefficient. I attribute the general agreement

of broadening coefficients to the similarity of the hard sphere contribution across a

variety of different PECs. Because of the long range contribution, the broadening

coefficient is still sensitive to the long range form of the PECs. As such general

agreement is possible using AT, but getting more than about three significant digits

would be a great challenge. I attribute the general disagreement on the shifting

coefficients to the much greater sensitivity of β(T ) to the long range form of the
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PECs. This sensitivity of the broadening and shifting coefficient to the long range

region of the PECs presents a significant challenge. This challenge is so great that even

testing the Anderson-Talman theory’s predictions of the line core will be impossible

until highly accurate PECs are available.

It is important to note that several different PECs may yield nearly the same

broadening and shifting coefficients. For example, the shifting and broadening co-

efficients computed using the DPs in Figures (30) and (32) at some particular tem-

perature can be used to compute a set of alternative ∆V6−12 DPs [Hindmarsh and

Farr, 1972, Rotondaro and Perram, 1997]. While agreement on broadening and shift-

ing coefficients between two different sets of potentials may be achieved at a single

temperature, they will in general disagree at different temeperatures. As a result,

comparison between various theories and experiment should be made over a range of

temperatures whenever possible.

Several possible improvements to this work are worth discussing. The largest

source of error in these calculations is likely to be basis set incompleteness error, and

improvements to the potential energy curves can be made through the consideration

of a hierarchy of basis sets, both with and without counterpoise corrections, to explore

the complete basis set limit. The counterpoise corrections have the added benefit of

ameliorating the basis set superposition error. One could also fit an analytic function

to the inner region of the ab initio PECs while simultaneously forcing the long range

form of the function to be a power series in inverse powers of R, with coeficients

determined by theory, as in Roy et al. [2009]. Another possibility is to use Anderson-

Talman together with an empirical line shape to start with an ab initio PEC and then

iteratively reverse engineer a difference potential which reproduces the line shape.

This ’Anderson-Talman’ difference potential could then be used to calculate other

chemical properties to test its validity. Finally, a study of the line wing is possible,
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and the inclusion of a time-dependent dipole transition moment in the line shape

theory can improve the results [Allard et al., 1999].
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