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ABSTRACT

Space--Time Interface-Tracking Computations with Contact Between Solid Surfaces

Report Title

To address the computational challenges associated with contact between moving solid surfaces, such as those in 
cardiovascular fluid--structure interaction (FSI), parachute FSI, and flapping-wing aerodynamics, we introduce a 
space--time (ST) interface-tracking method that can deal with topology change (TC). In cardiovascular FSI, our 
primary target is heart valves. The method is a new version of the Deforming-Spatial-Domain/Stabilized ST 
(DSD/SST) method, and we call it ST-TC. It includes a master--slave system that maintains the connectivity of the 
``parent'' mesh when there is contact between the moving interfaces. It is an efficient, practical alternative to using 
unstructured ST meshes, but without giving up on the accurate representation of the interface or consistent 
representation of the interface motion. We explain the method with conceptual examples and present 2D and 3D test 
computations with models representative of the classes of problems we are targeting.
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Abstract

Space–Time Interface-Tracking Computations with Contact

Between Solid Surfaces

by

Austin J. Buscher

To address the computational challenges associated with contact between mov-

ing solid surfaces, such as those in cardiovascular fluid–structure interaction (FSI),

parachute FSI, and flapping-wing aerodynamics, we introduce a space–time (ST)

interface-tracking method that can deal with topology change (TC). In cardiovas-

cular FSI, our primary target is heart valves. The method is a new version of the

Deforming-Spatial-Domain/Stabilized ST (DSD/SST) method, and we call it ST-TC.

It includes a master–slave system that maintains the connectivity of the “parent”

mesh when there is contact between the moving interfaces. It is an efficient, practical

alternative to using unstructured ST meshes, but without giving up on the accurate

representation of the interface or consistent representation of the interface motion.

We explain the method with conceptual examples and present 2D and 3D test com-

putations with models representative of the classes of problems we are targeting.
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Chapter 1

Introduction

The material in this chapter is from [59]. Flow problems with moving boundaries

and interfaces (MBI) are encountered frequently in engineering analysis and design.

They include fluid–structure interaction (FSI), fluid–object interaction (FOI), fluid–

particle interaction (FPI), free-surface and multi-fluid flows, and flows with solid

surfaces in fast, linear or rotational relative motion. These problems pose some of the

most formidable computational challenges. The challenges include contact between

moving solid surfaces and other cases of topology change (TC), such as those in

cardiovascular FSI, parachute FSI, and flapping-wing aerodynamics. A method for

flows with MBI can be viewed as an interface-tracking (moving-mesh) technique or

an interface-capturing (nonmoving-mesh) technique, or possibly a combination of the

two.

In interface-tracking methods, as the interface moves and the spatial domain oc-

cupied by the fluid changes its shape, the mesh moves to accommodate this shape

change and to follow (i.e. “track”) the interface. The Arbitrary Lagrangian–Eulerian

(ALE) finite element formulation [26] is the most widely used moving-mesh technique,

with increased emphasis on FSI in recent years (see, for example, [41, 78, 7, 30, 33,

17, 6, 20, 8, 10, 18, 14, 13, 9, 11, 4, 24, 40, 12, 3, 22, 25, 5, 37, 38, 79, 81, 32, 16, 15,

1
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2

31, 82, 29, 23]). The Deforming-Spatial-Domain/Stabilized Space–Time (DSD/SST)

method [65, 68, 69, 67, 70, 54, 56, 16] is also a general-purpose moving-mesh tech-

nique.

Moving-mesh methods require mesh update methods. Mesh update typically con-

sists of moving the mesh for as long as possible and remeshing as needed. With the key

objectives being to maintain the element quality near solid surfaces and to minimize

frequency of remeshing, a number of advanced mesh update methods [63, 27, 66, 70]

were developed to be used with the DSD/SST method, including those that minimize

the deformation of the layers of small elements placed near solid surfaces.

Over the past 20 years the DSD/SST method has been applied to some of the most

challenging flow problems with MBI. The classes of problems solved include the free-

surface and multi-fluid flows [65, 69, 63, 62, 66], FOI [65, 68, 69, 62], aerodynamics of

flapping wings [39, 48, 50], flows with solid surfaces in fast, linear or rotational relative

motion [62, 66, 49, 47, 12, 61], compressible flows [62], shallow-water flows [66, 44],

FPI [62, 66], and FSI [39, 28, 64, 71, 70, 34, 72, 73, 43, 76, 74, 52, 35, 77, 75, 54, 53,

36, 55, 45, 56, 46, 51, 57].

As mentioned in [72], moving the fluid mechanics mesh to track a fluid–solid

interface enables us, at least for interfaces with reasonable geometric complexity, to

control the mesh resolution near that interface and obtain accurate solutions in such

critical flow regions. As also mentioned in [72], sometimes the geometric complexity of

the interface may require a fluid mechanics mesh that is not affordable or not desirable

or just not manageable in mesh moving, and this is one of the most common reasons

given for favoring an interface-capturing method. This approach can be seen as a

special case of interface representation techniques where the interface geometry is

somehow represented over a nonmoving fluid mechanics mesh, the main point being

that the fluid mechanics mesh does not move to track the interfaces. However, as

pointed out in [67], a consequence of the mesh not moving to track the interface is

17



3

that for fluid–solid interfaces, independent of how accurately the interface geometry

is represented, the resolution of the boundary layer will be limited by the resolution

of the fluid mechanics mesh where the interface is.

For interfaces with reasonable geometric complexity, if a moving-mesh method

can be used with a reasonable frequency of remeshing (see [70] for various remeshing

options), its fluid mechanics accuracy near the interface will be superior to that of

an nonmoving-mesh method. As pointed out in [72], “while it is understandable that

fixed-mesh methods become more favored when the interface geometric complexity

appears to be too high for a moving-mesh method, we need to remember that there

is a difference between making the problem computable and obtaining good fluid

mechanics accuracy near the interface.” Therefore, as also pointed out in [72], “it

is not difficult to imagine that if we lower our expectations of good fluid mechanics

accuracy near the interfaces with high geometric complexity, we can find a number

of ways to make the problem computable also with moving-mesh methods, and can

still expect to obtain good accuracy near the interfaces with reasonable geometric

complexity.” Examples of that were given in [72].

A robust moving-mesh method with effective mesh update can handle FSI or

other MBI problems even when the solid surfaces undergo large displacements (see,

for example, FPI [62, 66] with the number of particles reaching 1,000 [66], parachute

FSI [70, 72, 73, 75, 53, 55, 46, 51, 57], flapping-wing aerodynamics [48, 50], and

wind-turbine rotor and tower aerodynamics [61]. It can handle FSI or other MBI

problems also even when the solid surfaces are in near contact or create near TC, if the

“nearness” is sufficiently “near” for the purpose of solving the problem. Examples of

such problems are FPI with collision between the particles [62, 66], parachute-cluster

FSI with contact between the parachutes of the cluster [53, 55, 46, 57], flapping-wing

aerodynamics with the forewings and hindwings crossing each other very close [48, 50],

and wind-turbine rotor and tower aerodynamics with the blades passing the tower

18
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close [61].

As mentioned in [16], one of course recognizes that certain classes of interfaces

(such as free-surface and two-fluid flows with splashing) might be too complex to

deal with an interface-tracking technique and therefore, for all practical purposes,

require an interface-capturing technique. The Mixed Interface-Tracking/Interface-

Capturing Technique (MITICT) [66] was introduced in 2001 for computation of flow

problems that involve both fluid–solid interfaces that can be accurately tracked with

a moving-mesh method and fluid–fluid interfaces that are too complex or unsteady

to be tracked. Those fluid–fluid interfaces are captured over the mesh tracking the

fluid–solid interfaces. The MITICT was successfully tested in 2D computations with

solid circles and free surfaces [2, 19] and in 3D computation of ship hydrodynamics [3].

In some MBI problems with contact between the solid surfaces, the “nearness”

that can be modeled with a moving-mesh method without actually bringing the sur-

faces into contact might not be “near” enough for the purpose of solving the problem.

Cardiovascular FSI with heart valves, where the flow has to be completely blocked

at contact, is an example. The Fluid–Solid Interface-Tracking/Interface-Capturing

Technique (FSITICT) [75] was motivated by such cardiovascular FSI problems. In

the FSITICT, we track the interface we can with a moving mesh, and capture over

that moving mesh the interfaces we cannot track, specifically the interfaces where we

need to have an actual contact between the solid surfaces. A specific application of

the FSITICT was presented in [80], where the ALE method is used for interface track-

ing, and a fully Eulerian approach for interface capturing, with some 2D benchmark

problems as test computations. This specific application was extended in [80] to 2D

FSI models with flapping and contact, where the fully Eulerian interface-capturing is

complemented with mesh adaptivity.

There are many types of nonmoving-mesh methods that can compute MBI prob-

lems involving an actual contact between solid surfaces or other cases of TC. The
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immersed-boundary methods, X-FEM, and particle methods are the typical exam-

ples. Some of those methods give up on the accurate representation of the interface,

and most give up on the consistent representation of the interface motion. The

DSD/SST formulation does not need to give up on either, even where we have an

actual contact or some other TC, provided that we can update the mesh even there.

Using an ST mesh that is unstructured both in space and time, as proposed for con-

tact problems in [66], would give us such a mesh update option. However, that would

require a fully unstructured 4D mesh generation, and that is not easy in computing

real-world problems.

We want to address the computational challenges associated with contact between

moving solid surfaces and other cases of TC, including those in cardiovascular FSI,

parachute FSI, and flapping-wing aerodynamics, with the primary target in cardio-

vascular FSI being heart valves. For this purpose, we introduce in this paper an ST

interface-tracking method that can deal with TC. It is a new version of the DSD/SST

method, and we call it ST-TC. It is a practical alternative to using unstructured ST

meshes, but without giving up on the accurate representation of the interface or the

consistent representation of the interface motion, even where there is an actual con-

tact between solid surfaces or other TC. The ST-TC method is based on special mesh

generation and update, and a master–slave system that maintains the connectivity of

the “parent” mesh when there is a TC.

In Chapter 2, we provide, with two hypothetical cases, a context for TC and

explain the master–slave system and its design. In Chapter 3, we provide two con-

ceptual examples that help us explain the mesh update process. Three numerical

examples are presented, a 2D flapping pair in Chapter 4, a 3D Micro air vehicle

(MAV) in Chapter 5, and an aortic valve model with coronary arteries in Chapter 6.

The concluding remarks are in Chapter 7.
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Chapter 2

Topology change

The material in this chapter is from [59]. We consider two hypothetical cases of two

bars to provide a context for TC. In the first case, shown in Figure 2.1, the bars

Figure 2.1: Hypothetical case of two bars that are initially coinciding, with one hole
in the fluid mechanics domain (top). Then the red bar starts moving upward, creating
a second hole in the domain (bottom).

are initially coinciding, with just one hole in the fluid mechanics domain. Then the

red bar starts moving upward, creating a second hole in the domain. In the second

case, shown in Figure 2.2, the bars are initially aligned with connected ends, again

6
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Figure 2.2: Hypothetical case of two bars that are are initially aligned with connected
ends, with one hole in the domain (top). Then the red bar starts a flapping motion,
up (middle) and down (bottom), creating a second hole in the domain, except when
their ends become connected periodically during the flapping motion.

with a single hole in the domain. Then the red bar starts a flapping motion, up and

down, creating a second hole in the domain, except when their ends become connected

periodically during the flapping motion. When the red bar is in the upper position,

the part of the domain below it is connected to the part of the domain above the blue

bar. When the red bar is in the lower position, the part of the domain above it is

connected to the part of the domain below the blue bar.

These two cases are representatives of the typical TC challenges we expect to see

in the classes of MBI problems we are targeting. Especially the first case is really not

possible to treat in a consistent way without using an ST method.
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2.1 Master–slave system

We propose a very simple technique in the ST context. Having a constraint between

nodes in a finite element formulation is quite common. These constraints reduce the

number of unknowns, but in our implementation we delay that unknown elimination

until the iterative solution of the linear systems encountered at nonlinear iterations

of a time step. The iterative solution of the linear systems is performed with reduced

number of unknowns. The technique is easy to manage in a parallel-computing en-

vironment, especially if the preconditioner is simple enough. Typically we assign a

master node to each slave node, and we use only the unknowns of the master nodes

in iterative solution of the linear systems.

We can use different master–slave relationships at different time levels. This is a

practical alternative to, but less general than, using ST meshes that are unstructured

in time. Still, we can use this concept to deal with the TC cases considered above, and

the important point is that the connectivity of the “parent” mesh does not change.

Consequently, the distribution model in the parallel-computing environment does not

change during the computations with moving meshes.

With this technique, we need to implement one more functionality. We exclude

certain elements from the integration of the finite element formulation. The exclusion

principles are given below.

• Exclude all spatial elements with zero volume from the spatial integration.

• Exclude all ST elements with zero ST volume from the ST integration.

• We assume that checking if an ST element has zero ST volume is equivalent to

checking if all the spatial elements associated with that ST element have zero

volume. Therefore, for this purpose, we check the spatial-element volumes.

• To identify the spatial elements with zero volume, which should have zero Jaco-
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bian at all the integration points, instead of evaluating the Jacobians, we make

the determination for a given spatial element from the master–slave relationship

of its nodes.

2.2 Design of the master–slave system

The data we need to provide to the solver is quite simple. It is just the master–slave

relationship at each time level. However there are some restrictions, and here we

explain the three that we want to emphasize.

The first restriction is that we cannot have a node which is not part of any active

(nonzero volume) spatial element. This is because the values at such nodes would no

longer be in our equation system, and therefore would become undefined. If because

of another TC such a node comes back to the equation system later as part of an

active element, it would add an undefined component to the equation system.

The second restriction is that when we construct the ST elements, we have to have

matching lateral element-boundary faces between the active adjacent ST elements.

This condition cannot be checked on the spatial mesh. Therefore we need to check it

on the ST mesh.

The third one is related to implementation. The master–slave relationship also

extends to cases when we have boundary conditions on the master and slave nodes.

In other words, the conditions at the master node also apply to the slave nodes.
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Chapter 3

Conceptual examples

The material in this chapter is from [59].

3.1 Contraction and expansion

This is related to the first one of the two cases of TC described in Chapter 2. Con-

traction and expansion are basically the same, except having different directions in

time progression. Figure 3.1 shows a contraction example. The spatial element with

x

t

1

2

3 4 5 6

7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3

45

6 7

Figure 3.1: Contraction. The red nodes, 3 and 5, are on the contraction interface
and are contacting. The white nodes are the slaves. They are in the same position
as their masters, but for visualization purposes we slightly shift their positions in the
figure. The numbers indicate the node numbers on the parent mesh.
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nodes 1 and 2, for example, has zero volume at the first time level. However, it has

nonzero volume at the second time level, and therefore the corresponding ST element

has nonzero volume.

3.2 Flapping

This is related to the second one of the two cases of TC described in Chapter 2.

Figure 3.2 shows the red and blue bars at three instants in time as the red bar crosses

the blue bar. Figure 3.3 shows, for the flapping motion, the ST trajectories of the

x

y

t = 4.0

t = 2.0

t = 0.0

Figure 3.2: Flapping. Red and blue bars at different instants in time as the red bar
crosses the blue bar.

neighboring ends of the blue and red bars. Figure 3.4 shows the ST element edges

y

t

Figure 3.3: Flapping. The ST trajectories of the neighboring ends of the blue and
red bars.

for the line separating the two sides of the domain containing the blue and red bars

(shown as the vertical dashed line in Figure 3.2).
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y

t

Figure 3.4: Flapping. The ST element edges for the vertical dashed line in Figure 3.2.

For each side of the domain, the spatial node motions along the ST element edges

have to be designed in a fashion that does not lead to mesh entanglement. Figure 3.5

shows the master–slave relationship for the blue-bar side of the domain, and Figure 3.6

the red-bar side. In addition, those two sides are in a master–slave relationship along

y

t

Figure 3.5: Flapping. Blue-bar side of the ST boundary between the two sides.

the vertical dashed line in Figure 3.2.
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y

t

Figure 3.6: Flapping. Red-bar side of the ST boundary between the two sides.
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Chapter 4

A pair of symmetrically-flapping

surfaces (“Flapping pair”)

The material in this chapter is from [59]. We use the DSD/SST method in the

computations. The stabilization parameter τSUPS comes from the τSUPG definition

in [67], specifically the definition given by Eqs. (107)–(109) in [67], which can also be

found as the definition given by Eqs. (7)–(9) in [70], with hRGN (= hRGNT) and νLSIC

(= νLSIC−HRGN) given by Eqs. (15) and (19) in [61]. In solving the linear equation

systems encountered at every nonlinear iteration of a time step, the GMRES search

technique [42] is used with diagonal preconditioner.

4.1 Geometry, motion modeling and computational

conditions

The pair of surfaces, with zero thickness, undergo a prescribed sinusoidal flapping, as

shown in Figures 4.1 and 4.2, with a period of T = 18.0 s. The projected width of

the flapping surfaces along the horizontal axis is 1.0 m. The density and kinematic

viscosity are 1.0 kg/m3 and 1.6667×10−5 m2/s. The inflow velocity is 0.1 m/s. The

14
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t = 0, 18 t = 3

t = 6 t = 9

t = 12 t = 15

t = 0, 18 t = 3

t = 6 t = 9

t = 12 t = 15

t = 0, 18 t = 3

t = 6 t = 9

t = 12 t = 15

t = 0, 18 t = 3

t = 6 t = 9

t = 12 t = 15

t = 0, 18 t = 3

t = 6 t = 9

t = 12 t = 15

t = 0, 18 t = 3

t = 6 t = 9

t = 12 t = 15

Figure 4.1: Flapping pair. Surface positions at t = 0 (also 18), 3, 6, 9, 12 and 15 s.

Reynolds number based on these length, viscosity and velocity scales is 6,000.

The dimensions of the computational domain, in m, are 40×20, and the distance

between the inflow boundary and the leading edge is 15 m. The boundary conditions

are no-slip on the flapping surfaces, uniform horizontal velocity at the inflow, zero-

stress at the outflow, and slip at the upper and lower boundaries. We tested three

different meshes to see the influence of increased refinement in space and time. The

meshes have a structured inner zone and an unstructured outer zone, made of 4-

node quadrilateral and 3-node triangular elements, respectively. Table 4.1 shows, for

each mesh, the number nodes along each flapping surface, number of nodes in the

inner zone, total number of nodes and elements, and the number of time steps per

flapping cycle. Figures 4.3–4.6 show Mesh 1 and the inner zones for all three meshes.

During the flapping motion, only the inner mesh moves, with a special, algebraic

mesh moving technique. Figures 4.7–4.9 show, for Mesh 1, the inner mesh at different

instants during the flapping cycle.
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Figure 4.2: Flapping pair. Leading-edge position, velocity and acceleration for the
upper surface.

Mesh Surface Inner Total Elements Time
Nodes Nodes Nodes Steps

1 40 28,379 37,911 47,628 60
2 80 32,439 42,432 52,590 120
3 120 36,499 47,156 57,958 180

Table 4.1: Flapping pair. Mesh data and the number of time steps per flapping
cycle.

4.2 Computations

We use the SUPS version of the DSD/SST method (see [54, 56, 16] for the termi-

nology). Prior to the flapping motion, we compute 2,500 time steps to develop the

flow field. The time step size is 1.0 s, with 3 nonlinear iterations per time step, and

the corresponding number of GMRES iterations are 50, 100 and 150. The flapping

cycles are computed with 5 nonlinear iterations per time step, and the corresponding

number of GMRES iterations are 150, 250, 450, 650 and 900. We note that since it

is not easy to show that the solution in this test problem is accurate in terms of fluid

physics, we decided to use large numbers of GMRES iterations. We did not explore

reducing the number of GMRES iterations, because the 2D computations are not
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Figure 4.3: Flapping pair. Mesh 1.

costly. We compute the problem for two complete cycles and display the results for

the second flapping cycle. Figures 4.10–4.12 show, for the three meshes, the lift and

drag experienced by the flapping surfaces.

4.3 Results

Figures 4.13–4.15 show, for Mesh 1, the velocity magnitude at different instants during

the flapping cycle.
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Figure 4.4: Flapping pair. Mesh 1. Inner zones.
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Figure 4.5: Flapping pair. Mesh 2. Inner zones.
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Figure 4.6: Flapping pair. Mesh 3. Inner zones.
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Figure 4.7: Flapping pair. Mesh 1 at t = 0 (also 18) and 3 s.
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Figure 4.8: Flapping pair. Mesh 1 at t = 6 and 9 s.
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Figure 4.9: Flapping pair. Mesh 1 at t = 12 and 15 s.
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Figure 4.10: Flapping pair. Lift and drag for Mesh 1.
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Figure 4.11: Flapping pair. Lift and drag for Mesh 2.
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Figure 4.12: Flapping pair. Lift and for Mesh 3.
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0 0.1 0.2 0.3

Figure 4.13: Flapping pair. Velocity magnitude (in m/s) for Mesh 1 at t = 0 and 3 s.
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0 0.1 0.2 0.3

Figure 4.14: Flapping pair. Velocity magnitude (in m/s) for Mesh 1 at t = 6 and 9 s.
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0 0.1 0.2 0.3

Figure 4.15: Flapping pair. Velocity magnitude (in m/s) for Mesh 1 at t = 12 and
15 s.
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Chapter 5

Dragonfly MAV

The material in this chapter is from [60].

5.1 Geometry and flapping-motion modeling

The design of the wings is similar to the design in a toy MAV [1]. The body is the

same as the MAV body in [50].

The span of the single wing is 46.7 mm and the minimum, maximum, and average

chord lengths are 16.2, 19.2, and 17.6 mm, respectively (see Figure 5.1). The wings

have zero thickness and undergo prescribed flapping, as shown in Figures 5.2 and 5.3,

with a period of T = 0.0365 s. Figure 5.4 shows the position of the leading-edge

contact point over time. The position is measured from the body.

The density and kinematic viscosity are 1.225 kg/m3 and 1.461×10−5 m2/s. The

free-stream velocity is 4.5 m/s. The Reynolds number based on average chord length

and free-stream velocity is 5,423. Three cases are computed, with the angle of attack

α = 0◦, 5◦, and 10◦.

The dimensions of the computational domain, in spans of a single wing, are

30×20×20, and the distance between the inflow boundary and the leading edge is

10 (see Figure 5.5). The boundary conditions are no-slip on the wings and body

29
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46.7 mm

16.24 mm

Figure 5.1: Dragonfly MAV. Wing dimensions.

Figure 5.2: Dragonfly MAV. Wing configurations at t/T = 0.0, 0.1, 0.2, 0.3, 0.4, and
0.5 (left to right and then top to bottom).
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Figure 5.3: Dragonfly MAV. Wing leading edges at the same instants as in Figure 5.2.
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Figure 5.4: Dragonfly MAV. Contact point position along the leading edge over a
flapping cycle.
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of the MAV, uniform horizontal velocity at the inflow boundary, zero-stress at the

outflow boundary, and slip at the upper, lower, and side boundaries.

The meshes have structured, inner zones around the wings and an unstructured,

outer zone. Both the structured and unstructured zones consist of tetrahedral ele-

ments. For each mesh, Table 5.1 shows the number of nodes and elements. Figure 5.6

shows top view of the wing and body surface meshes. During the flapping motion,

only the mesh in the inner zones move, with a special, algebraic mesh moving tech-

nique.

The structured, inner zones consist of four parts corresponding to each wing.

Those parts each have 3×2×2 structured zones. Each zone has 20×20×20 hexahedral

clusters made of 6 tetrahedral elements. Figures 5.7 and 5.8 show, for α = 0◦, the

mesh at six equally-spaced instants in time while the wings are closing. The zones

between the upper and lower wings collapse when the wings close, and the nodes in

the neighboring zones also collapse accordingly. We note that a wing has split nodes

except on the leading and trailing edges. However, when the wings are closed, the

nodes on the upper surface of the upper wings and the lower surface of the lower

wings become masters. When the wings are partially closed, at the contact point, the

nodes on the lower surface of the upper wing are also masters while the nodes on the

upper surface of the lower wings are slaves.

5.2 Computational conditions

We use the DSD/SST-SUPS and DSD/SST-VMST (convective) techniques for the

first two and last two nonlinear iterations of each time step. The stabilization pa-

rameter τSUPS comes from the τSUPG definition in [67], specifically the definition given

by Eqs. (107)–(109) in [67], which can also be found as the definition given by Eqs.

(7)–(9) in [70], with νLSIC from Eq. (17) in [70]. The time-step size is 4.51×10−4 s.
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30 spans

20 spans

10 spans

20 spans

Figure 5.5: Dragonfly MAV. Computational domain and mesh setup. Outer bound-
aries (gray), boundaries of the inner, structured meshes (blue) and body (green).

Figure 5.6: Dragonfly MAV. Surface mesh at t/T = 0.5.
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Figure 5.7: Dragonfly MAV. Mesh (cut mid-chord) at the same instants as in Fig-
ure 5.2 (left to right then top to bottom).
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Figure 5.8: Dragonfly MAV. Mesh (cut mid-span) at the same instants as in Figure 5.2
(left to right then top to bottom).
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Table 5.1: Dragonfly MAV. Number of nodes (nn) and elements (ne) in the meshes
used.

Interface Mesh
Single Wing nn 802

ne 1,600
Body nn 8,521

ne 16,630

Volume Mesh
Inner nn 405,002

ne 2,303,920
Full (α = 0◦) nn 1,143,613

ne 6,844,706
Full (α = 5◦) nn 1,227,618

ne 7,353,540
Full (α = 10◦) nn 1,152,367

ne 6,896,762

For each angle of attack, prior to the flapping motion, we compute 550 time steps

with the geometry at t = 0 to develop the flow field. For the first 500 time steps, only

half of the computational domain is used and a slip boundary condition is enforced

on the symmetry plane. The results are then copied to the other half of the mesh for

the final 50 time steps of flow field development. The inflow velocity of 4.5 m/s is

reached by a sinusoidal ramping over the first 150 time steps, starting from 0.0 m/s.

In computing the developed flow field, the number of GMRES iterations per nonlinear

iteration is 150, 350, 450, and 800. In computing the flapping cycles, the number of

GMRES iterations is 250, 500, 750, and 1,000. We compute three flapping cycles and

display the results for the third cycle.

5.3 Results

We first present (in Figures 5.9–5.14), only for α = 10◦, results over (or in relationship

to) the MAV body and wing surfaces. Figure 5.9 shows the helicity isosurfaces. The

flow field near the wings is almost symmetric, but the flow behind the MAV is not.
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Figures 5.10 and 5.11 show pressure on the body and the wing surfaces. The pressure

is almost symmetric, and therefore we use the left and right sides of the wing pictures

for the upper and lower wings. For the body, however, both sides show the upper

surface. Figures 5.12 and 5.13 show the magnitude of shear stress on the body and

wing surfaces. Again, we use the left and right sides of the wing pictures for the upper

and lower wings, and both sides of the body for the upper surface. Figure 5.14 shows

the pressure difference between the upper and lower surfaces. The left side is for the

upper wing, and the right side for the lower wing. For the closed parts of the wings,

both sides show the difference between the lower surface of the lower wing and the

upper surface of the upper wing. Lift and drag forces are shown in Figures 5.15–5.17.

The forces are separated into the upper and lower wings, the closed wings, and the

body.
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Figure 5.9: Dragonfly MAV. Helicity isosurfaces (±5 and ±10 m2/s2) for α = 10◦ at
t/T = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 (left to right and then top to
bottom). Blue is for negative values, and red for positive.
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−100 −50 0 50 100

Figure 5.10: Dragonfly MAV. Pressure (Pa) for α = 10◦ on the body and wings at
the same instants as in Figure 5.9. The upper surface of the upper wing (left side)
and the lower surface of the lower wing (right side).

54



40

−100 −50 0 50 100

Figure 5.11: Dragonfly MAV. Pressure (Pa) for α = 10◦ on the body and wings at
the same instants as in Figure 5.9. The lower surface of the upper wing (left side)
and the upper surface of the lower wing (right side). The white regions are the closed
parts of the wings.
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0 0.01 0.02 0.03 0.04 0.05

Figure 5.12: Dragonfly MAV. Magnitude of the shear stress (Pa) on the body and the
wing surfaces at the same instants as in Figure 5.9. The upper surface of the upper
wing (left side) and the lower surface of the lower wing (right side).
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0 0.05 0.1 0.15 0.2

Figure 5.13: Dragonfly MAV. Magnitude of the shear stress (Pa) on the body and
the wing surfaces at the same instants as in Figure 5.9. The lower surface of the
upper wing (left side) and the upper surface of the lower wing (right side). The white
regions are the closed parts of the wings.
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−150 −75 0 75 150

Figure 5.14: Dragonfly MAV. Pressure difference (Pa) between the lower and upper
surfaces for α = 10◦ at the same instants as in Figure 5.9. For the upper wing and
closed wings (left side) and for the lower wing and closed wings (right side).
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Figure 5.15: Dragonfly MAV. Lift (top) and drag (bottom) for α = 0◦.
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Figure 5.16: Dragonfly MAV. Lift (top) and drag (bottom) for α = 5◦.
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Figure 5.17: Dragonfly MAV. Lift (top) and drag (bottom) for α = 10◦.
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Chapter 6

Aortic valve with coronary arteries

The material in this chapter is from [58].

6.1 Geometry and motion modeling

We create a typical aortic-valve model based on pictures, such as the one in [21]. The

model, shown in Figures 6.1 and 6.2, has three leaflets with two outlets, corresponding

to coronary arteries, and one main outlet, corresponding to the beginning of the aorta.

The outlets are extended straight in each direction. The bulges are called sinuses.

The left and right coronary arteries are attached to the left and right aortic sinuses,

respectively, and the other sinus is called the posterior aortic sinus.

The inlet and main outlet diameters are 23 mm, which correspond to a typical

aorta. The two coronary artery diameters are 2.9 mm.

We prescribe the motion of the three leaflets so that the valve closes and opens

with a period of T = 0.6 s. The inflow velocity is specified such that the average

flow rate is 5,000 ml/min. The flow rate is a time-variant function of the horizontal

projection of the open mouth area of the valve when it is open, and of the inlet-side

volume change while the valve is changing shape after it closes (see Figure 6.3). The

density and kinematic viscosity of the blood are 1,000 kg/m3 and 4.0×10−6 m2/s.
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Figure 6.1: Aortic valve with coronary arteries. Model geometry. Aorta, leaflets,
sinuses, and coronary arteries. The left coronary artery is on the right in the figure,
and the right coronary artery is on the left in the figure.
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Figure 6.2: Aortic valve with coronary arteries. Leaflets at t/T = 0.0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 (left to right and then top to bottom).
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Figure 6.3: Aortic valve with coronary arteries. Inflow profile.

The boundary conditions are no-slip on the arterial walls and valves, traction-free

at the outflow boundaries, and uniform velocity at the inflow boundary. The surface

mesh on the leaflets (shown in Figure 6.4) is made up of 8,448 nodes and 16,440

triangular elements. The arterial-wall surface mesh is shown in Figure 6.5. The mesh

has structured, inner zones around the leaflets and an unstructured, outer zone. The

inner zones consist of tetrahedral, pyramid-shaped, and wedge-shaped elements, and

the outer zone consists of tetrahedral elements. The volume mesh is made up of

1,417,910 nodes and 4,184,614 mixed elements. The mesh near the valve is shown in

Figure 6.6.

During the prescribed motion, only the inner zones move with a special, algebraic

mesh-moving technique. The positions of the nodes in the inner zones are created by

linearly interpolating the surface mesh of the zones from the closed position to the

open position. Seventy-nine layers of nodes are extruded from both the upper and

lower surfaces of the leaflets.

When the valve is completely open, all of the fluid nodes extruded from the upper

surface are slaves to the upper surface, and all of the nodes extruded from the lower

surface are masters. As the valve closes, it leaves one layer of nodes attached to the
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upper surface behind, and the leaflet surface moves to the next node position, making

those nodes slaves to the lower surface. When the valve is completely closed, all of

the fluid nodes extruded from the upper surface are masters and all of the nodes

extruded from the lower surface are slaves to the lower surface.

6.2 Computational conditions

We use the DSD/SST-SUPS and DSD/SST-VMST (convective) techniques for the

first two and last two nonlinear iterations of each time step. The stabilization pa-

rameter τSUPS comes from the τSUPG definition in [67], specifically the definition given

by Eqs. (107)–(109) in [67], which can also be found as the definition given by Eqs.

(7)–(9) in [70], with νLSIC from Eq. (17) in [70]. Prior to the prescribed motion,

we compute 150 time steps with the geometry at t = 0 to develop the flow field.

The viscosity of 4.0×10−6 m2/s is reached by ramping over the first 50 time steps

starting from the viscosity 1.31×10−3 m2/s. The ramping profile for the viscosity is

designed to result in a linear ramping for the Reynolds number. The time-step size is

6.33×10−3 s during flow-field development, and 3.00×10−3 s for the prescribed-motion

cycles. In computing the developed-flow field, the number of GMRES iterations per

nonlinear iteration is 150, 350, 450, and 800. In computing the flapping cycles, the

number of GMRES iterations is 250, 500, 750, and 1,000. We compute two cycles

and display the results for the second cycle.

6.3 Results

The global mass-balance error, normalized by the average flow rate, is less than

10%. Figure 6.7 shows the flow rate at the outlets of the coronary arteries. There

is some “negative outflow” (i.e. inflow) from the coronary arteries, however, the wall

shear stress (WSS) on the long pipes are large enough to stabilize the overall system.
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Figure 6.4: Aortic valve with coronary arteries. The leaflets surface mesh at the same
instants as in Figure 6.2.
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Figure 6.5: Aortic valve with coronary arteries. Mesh of the aortic valve, sinuses, and
coronary arteries.
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Figure 6.6: Aortic valve with coronary arteries. Mesh around the leaflets at t/T =
0.0, 0.2, 0.4, and 0.6.
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Figure 6.7: Aortic valve with coronary arteries. Flow rate at the outlets of the
coronary arteries.

Figures 6.8-6.10 show a volume rendering of the velocity magnitude. Nonsymmetric

and complex flow patterns are observed behind the valve. Figures 6.11 and 6.12

show the velocity magnitude on the “coronary plane,” where the coronary arteries

are connected to the aorta, and the “above-sinus plane,” which is 18 mm downstream

from the coronary plane. The mainstream flow oscillates away from the sinuses. This

is mainly due to the jet from the contact of the leaflets of the sinuses.

Figures 6.13 and 6.14 show pressure difference between the lower and upper sur-

faces of the leaflets. We exclude the parts where the leaflets are in contact. Fig-

ures 6.15-6.18 show WSS on the leaflet surfaces. The WSS on the lower surfaces of

the three leaflets are somewhat similar to each other. However, on the upper surfaces,

the WSS for the leaflets of the coronary sinuses are different from the WSS for the

leaflet of the posterior sinus. Figure 6.19 shows OSI on the leaflet surfaces. The WSS

vector is projected onto the open configuration to calculate OSI (see [52]).
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Figure 6.8: Aortic valve with coronary arteries. Volume rendering of the velocity
magnitude (m/s) at t/T = 0.0, 0.1, 0.2, and 0.3.
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Figure 6.9: Aortic valve with coronary arteries. Volume rendering of the velocity
magnitude (m/s) at t/T = 0.4, 0.5, 0.6, and 0.7.
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Figure 6.10: Aortic valve with coronary arteries. Volume rendering of the velocity
magnitude (m/s) at t/T = 0.8, and 0.9.
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Figure 6.11: Aortic valve with coronary arteries. The velocity magnitude on the
coronary plane (m/s) at the same time instants as in Figure 6.2.
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Figure 6.12: Aortic valve with coronary arteries. The velocity magnitude (m/s) on
the above-sinus plane at the same time instants as in Figure 6.2.
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Figure 6.13: Aortic valve with coronary arteries. Pressure difference (Pa) between
the lower and upper surfaces of the three leaflets at t/T = 0.0, 0.1, 0.2, 0.3, 0.4, and
0.5.
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Figure 6.14: Aortic valve with coronary arteries. Pressure difference (Pa) between
the lower and upper surfaces of the three leaflets at t/T = 0.6, 0.8, 0.8, and 0.9.
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Figure 6.15: Aortic valve with coronary arteries. WSS (Pa) on the lower surface of
the three leaflets at the same time instants as in Figure 6.13.
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Figure 6.16: Aortic valve with coronary arteries. WSS (Pa) on the lower surface of
the three leaflets at the same time instants as in Figure 6.14.
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Figure 6.17: Aortic valve with coronary arteries. WSS (Pa) on the upper surface of
the three leaflets at the same time instants as in Figure 6.13.
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Figure 6.18: Aortic valve with coronary arteries. WSS (Pa) on the upper surface of
the three leaflets at the same time instants as in Figure 6.14.
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Figure 6.19: Aortic valve with coronary arteries. OSI on the lower (left) and upper
(right) surfaces of the leaflets. The leaflets are in the fully open configuration, and
left, right, and posterior aortic sinuses from top to bottom, respectively.
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Chapter 7

Concluding Remarks

The material in this chapter is from [59]. We have presented an interface-tracking

(moving-mesh) method that addresses the computational challenges associated with

contact between moving solid surfaces and other cases of TC, including those in car-

diovascular FSI, parachute FSI, and flapping-wing aerodynamics, with the primary

target in cardiovascular FSI being heart valves. It is a new version of the DSD/SST

method, and we call it ST-TC. It is based on special mesh generation and update, and

a master–slave system that maintains the connectivity of the parent mesh when there

is contact or other TC. This makes the method an efficient, practical alternative to

using unstructured ST meshes, but without giving up on the accurate representation

of the interface or consistent representation of the interface motion, even where there

is contact or other TC. We explained the method with conceptual examples, and pre-

sented successful 2D and 3D computations with models representative of the classes

of problems we are targeting. We are comfortable with concluding that the ST-TC

method has the interface-tracking accuracy, the TC flexibility, and the computational

practicality.
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