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ABSTRACT 

Due to the increasing availability of data and wider use of analytics, the ingredients for increased reliance 
on modeling and simulation are now present. Tremendous progress has been made in the field of 
modeling and simulation over the last six decades. Software and methodologies have advanced greatly.  
In the area of weather, future-casts based on model predictions have become highly accurate and heavily 
relied upon.  This is happening in other domains, as well. In a similar vein, drivers may come to rely upon 
future-casts of traffic that are based on predictions from models fed by sensor data. The need for and the 
capabilities of simulation have never been greater. This panel will examine the future of research in 
modeling and simulation by (1) examining prior progress, (2) pointing out current weaknesses and 
limitations, (3) highlighting directions for future research, and (4) discussing support for research 
including funding opportunities. 

1 INTRODUCTION 

Today’s application models and algorithmic methods employed in these models enable to represent, 
analyze, and predict behaviors of complex systems with unprecedented accuracy, and new modeling and 
simulation approaches can enable decision support systems thus advancing to role of modeling and 
simulation beyond the traditional analysis, and design or understanding roles of Modeling & Simulation 
(M&S), to having essential role in the operational cycle real time decision support on complex systems be 
they natural or engineered. In that context the presentations of the four panelists address the future of 
research opportunities and new capabilities from the following perspectives: Sustainable M&S Research 
for Science and Engineering (Yilmaz); Simulating Large Systems (Taylor); Parallel and Distributed 
Simulation (Fujimoto); and Dynamic Data Driven Applications Systems (Darema). 

2 SUSTAINABLE M&S RESARCH FOR SCIENCE & ENGINEERING (LEVENT YILMAZ) 

Solutions to scientific and engineering problems increasingly depend on the credibility and quality of 
simulation research. 
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As the complexity of problems continues to grow, simulation-based science and engineering is becoming 
central to understanding, exploring, predicting, and influencing the behavior of artificial, physical, and 
natural systems. In a complex, dynamic, and evolving science-based innovation and knowledge 
landscape, the prominence and sustained vitality of the M&S discipline will rely on three critical pillars: 
(1) credibility, (2) relevance, and (3) accessibility of research. 

2.1 The Credibility of M&S Research 

According to the Merriam-Webster dictionary, credibility is the quality of being believed or accepted as 
true, real, or honest. Prior extensive research in verification and validation resulted in sound principles 
and guidelines for assuring the veracity of simulation results. However, growing credibility gap due to 
wide spread relax attitudes in communication of research artifacts is giving rise to the need for systematic 
reproducibility of simulation experiments and replication of models. Furthermore, disputes such as 
Climate Gate (Economist 2010) and article retractions due to unverified code and data (Chang et al. 2006; 
Alberts 2010) suggest a pressing need for greater transparency in M&S research. 
 As a fundamental principle of science, reproducibility aims to bring credibility and to instill 
confidence in research (Fomel and Claerbout 2009; Stodden 2010). It refers to the ability to recreate 
simulation results from existing simulation code and data. Specifically, in collaborative research 
involving remote teams reproducibility becomes a prerequisite. On the other hand, although exposure to 
simulation software is important, if done too early, it leads to the adoption of the assumptions of the 
original developer, resulting in the loss of independence necessary to replicate a model (Yilmaz 2013).  
 Scientific workflow systems (Anand et al. 2009; Oinn et al. 2004) and provenance-based tracking of 
research artifacts help improve reproducibility of experiments, and hence the adoption of these general 
purpose systems are expected to grow. In this context, the M&S community can play a critical role in 
developing proper standards for scholarly communication of reproducible simulation-based research. 
Specifically, independent replication of models, which is a weakness of existing workflow systems, can 
be addressed by recent developments in Model-Driven Engineering, which facilitates automated 
transformation of models across formalisms, to support cross-validation, reuse, and model longevity. 
Besides, stochastic simulation experiments involve strategic (e.g., design of experiments) and tactical 
plans (e.g., how many runs needed) that are often implicit and hence cannot be reliably reproduced, unless 
explicitly specified and managed. Therefore, to support their management, tools and environments are 
necessary to assist the overall simulation experiment lifecycle, which includes design of experiments, 
automated synthesis and deployment of experiment scripts, aggregation and analysis of data, and 
refinement and online adaptation of experiment designs through feedback as learning takes place.  

The provision of such automated tools will help improve the state of the art and practice in 
replicability of models and reproducibility of simulation experiments. In the short term, however, authors 
can provide hyperlinks to simulation code and data, or use open-source environments such as Source-
Forge or Github for transparency. To facilitate publishing, citing, maintaining, and discovering research 
data, authors can use infrastructures such as the DataVerse Network Project (http://thedata.org). Funding 
opportunities can incentivize further development and adoption of research practices that streamline 
reproducibility. For instance, funding agencies can support research groups that implement reproducible 
research to facilitate discerning the information requirements and tools that improve the practice of model 
replication and simulation experiment management. Also, funding that support formation of research 
communities and communities of practice can sustain maintainable and reproducible research. 

2.2 The Relevance and Accessibility of M&S Research 

Research is a creative endeavor that requires both novelty and usefulness. As discussed in (Yilmaz and 
Smith 2008), the prominence of M&S in scientific and engineering research requires proper alignment of 
the discipline, the field, and the stakeholders, including the practitioners. The academic  M&S literature is 
extensive and full of rigor, which is important for diligence and precision. The rigor and diligence brought 
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by the academic language often requires practitioners to wade through pages of information to access and 
discern relevant information. However, communicating research results to stakeholders in an accessible 
language using the right platform will be mutually beneficial to both the practitioners and the researchers. 
Contextualizing solutions and ensuring that research is relevant and reflects the present and future needs 
will require publishing evidence-based short papers using non-academic language while validating the 
findings in a specified context.  
 Practitioners often consult with books, blogs, forums, online video tutorials, forums, and brief one-to-
two page experience reports. To bridge the theory and practice divide, new communication channels and 
collaboratories are needed to improve the communication gap. For instance, the monthly Newsletter of 
the Society for Modeling and Simulation International was recently rejuvenated to provide researchers 
and practitioners a medium to discuss research problems and technical solutions in a practical context. 
Researchers may venture into various alternative dissemination channels such as wikis, social networks, 
and blogs to improve the practical utility and accessibility of their research. Research publications are 
critical to demonstrate the reliability, validity, and integrity of results; however, decision-makers and 
practitioners often need best practices, prescriptive guidance, and customizable generic solutions that are 
effective in addressing well-defined problems. 
 M&S scholarship equipped with the tools of the digital age, is expected to improve the compatibility, 
trialability, observability, and traceability of research artifacts. Compatibility refers to portability or 
accessibility of simulation artifacts on technical platforms for use by others that aim to reproduce the 
results of a study. Trialability ensures repeatability of experiments and generating the data. Observability 
is needed to not only introspectively access artifacts to improve understandability, but also to examine the 
outputs for comparison to reference data published in the manuscript. Transparency reflects the 
responsibility of scholars to register simulation artifacts along with the publication to enable 
legitimization and access by others. Among the incentives for transparency are reputation, visibility, and 
developing a community of practice around the artifacts produced during research. Journals and funding 
agencies can play a significant role by implementing policies that encourage provision of models and 
code, while requiring reproducibility reviews prior to publication. Maintenance of reproducible 
simulation artifacts for the purpose of preserving and persistent availability is essential to facilitate their 
continuous use. As the M&S community, we need to pay attention to not only the technical infrastructure, 
but also social and legal context. Social context focuses on the formation of community of practice 
around artifacts and governance of their further development and maintenance. Legal context involves 
intellectual property management schemes and access rights. As we extend the relevance and access of 
our research products, it will be necessary to institute copyright management mechanisms for data and 
simulation code, as well as the media components and the published manuscript. The use of open 
licensing schemes adopted by the Open-Access and Open-Data projects under the Creative Commons 
(http://creativecommons.org) framework can secure intellectual property rights, while maximizing access 
and citation to various types of digital research artifacts. 

3 SIMULATING LARGE SYSTEMS (SIMON TAYLOR)  

A “large” system may be one in which aspects of the scope, complexity, size and of the system in terms 
of structure and/or data make it challenging to model and to simulate.  For example, a coronary system 
might involve a range of different subsystems representing different aspects of the heart from fluid flow, 
to molecular processes and disease progression.  A healthcare pathway system may consist of many 
different subsystems representing different stages of a patient’s primary and secondary care.  A supply 
chain may consist of many different manufacturing systems and economic systems that represent the 
supply and demand of a joint enterprise.  Modeling a large system might use hybrid techniques that 
combine discrete and continuous methods to create submodels representing different subsystems or 
functions that are combined to make the model.  Some of these submodels might already exist and could 
be reused.  Models would be developed using different M&S software and languages.  Large system 
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models might require access to many potentially large datasets.  Simulating a large model could be very 
demanding in terms of computing power.  A single run of the simulation might run very slowly.  Even if a 
single run ran in an acceptable time, many runs would be needed during verification and validation as 
well as during experimentation.  Also, it would be surprising if a large model was created by a single 
person.  It is reasonable to assume that large models would be developed by a team of modelers 
(potentially many teams of modelers).  How could these modeling teams and their development efforts be 
coordinated?  
  In many ways the above mirrors experiences of researchers in some scientific areas such as high 
energy physics, astronomy and bioinformatics.  In these researchers work together in international 
multidisciplinary teams (sometimes called virtual research communities (VRCs) or communities of 
practice (COPs)) towards their goals.  These can involve the creation of large multi-scale, multi-paradigm 
models which demand huge amounts of computing power to simulate them.  Their work is supported by 
an integrated framework of Information and Communication Technologies (ICT) termed e-Infrastructures 
or Cyberinfrastructures.  A typical e-Infrastructure architecture is shown in figure 1.  From the bottom up 
high performance networks such as GEANT (www.geant.net), along with other commonly accessible 
networks (e.g. the Internet) support the high speed transfer of data between e-Infrastructure facilities.  
These include Distributed Computing Infrastructure facilities (such as Grid Computing, Cloud Computing 
or dedicated specialist High Performance Computing platforms), data infrastructures for storage and 
curation, and sensor and instrumentation networks.   Almost complete single sign-on access to these are 
provided by an Authentication and Authorization Infrastructure supported by Certification Authorities 
and Identity Federations.   
 

 
Figure 1: A Typical e-Infrastructure Architecture (eI4Africa.eu). 

VRC access is supported by a science gateway that provides convenient access to applications and 
services deployed across the potentially worldwide facilities of an e-Infrastructure.  A strong element of 
this is that all the e-Infrastructure services are supported by a range of standards and services (see 
https://wiki.egi.eu/wiki/Standards for an overview of standards in the area; Eduroam is an example of a 
worldwide service that provides roaming network access across research and education networks). In 
Europe e-Infrastructures are developed and maintained by EGI.EU with support from the European 
Commission and member nations.  Other initiatives are promoting and developing e-Infrastructures in 
other regions and other sectors. The eI4Africa project (eI4Africa.eu), for example, is developing science 
gateways for African-based VRCs (see the African Science Gateway https://sgw.africa-grid.org/).  The 
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CloudSME project uses a similar architecture with elements of workflow specification to develop e-
Infrastructures for simulation end users in manufacturing and engineering (www.cloudsme.org). 
 Large international networks of scientists are benefiting from advanced ICT infrastructures that are 
enabling them to make scientific breakthroughs that would arguably be impossible without this 
technological support.  It could be argued that our M&S community is made up of many VRCs that 
contribute to the advancement of science and industry.  As outlined above, the needs of modeling and 
simulating large systems has a parallel to the experiences of international communities of scientists. As 
the last of these projects indicate, some work is in progress to link these two “worlds” together.  However, 
there is much more work to be done if our M&S communities are ever to take on the challenges and to 
create the clear benefits of modeling and simulating larger and more complex models.   

4 PARALLEL AND DISTRIBUTED SIMULATION (RICHARD FUJIMOTO) 

Parallel and distributed simulation is concerned with the technologies associated with distributing the 
execution of a single run of a discrete event simulation program across multiple processors (Fujimoto 
2000). Parallel discrete event simulation (PDES) focuses on high performance computing systems while 
distributed simulation is concerned with exploiting distributed computing platforms that can cover a much 
broader geographic extent ranging from machines interconnected through a local area network to globally 
distributed computers communicating via the Internet. While the central goal of PDES is to accelerate the 
execution of the simulation, the goals of distributed simulations are often broader, and can include 
objectives such as reuse of existing simulations or exploitation of geographically distributed resources 
such as equipment or people that are difficult or costly to co-locate. 

Early work in PDES focused on the synchronization algorithm that is required to ensure that the 
parallel execution of the simulation produces exactly the same results as a sequential execution on a 
single processor. The parallel and distributed simulation field began in the late 1970’s with seminal work 
by Chandy, Misra, and Bryant who defined the synchronization problem and a solution approach that has 
come to be known as conservative synchronization (Bryant 1977, Chandy and Misra 1979). An 
alternative approach known as optimistic synchronization was developed in the 1980’s, originating with 
seminar work by Jefferson who developed the Time Warp algorithm (Jefferson 1985). The study of PDES 
synchronization algorithms flourished in the 1980’s and 1990’s. 

At the same time, much of the work in distributed simulation originated with the SIMNET project in 
the 1980’s that focused in interoperability among simulation (Miller and Thorpe 1995). The field 
developed through subsequent efforts  both in technology development and standardization, included 
efforts such as Distributed Interactive Simulation (IEEE Std 1278.1-1995 1995, IEEE Std 1278.2-1995 
1995) the Aggregate Level Simulation Protocol (Wilson and Weatherly 1994), and the High Level 
Architecture standard (IEEE Std 1516-2010 2010). 

4.1 Parallel and Distributed Simulation Today 

The field has enjoyed many impressive technical successes over the years. Numerous case studies have 
demonstrated the ability of PDES technology to accelerate the execution of discrete event simulations. 
For example, (Fujimoto et al. 2003) examined packet-level simulation of computer communication 
networks on supercomputers. Experiments yielded performance as high as over 200 million events 
processed per second using a conservative synchronization algorithm executing on a supercomputer using 
1,536 processors. By comparison, comparable simulators executing on a sequential machine yielded 
performance less than 200,000 events per second. Later studies using a synthetic benchmark called 
PHOLD yielded performance exceeding 529 million events per second using an optimistic 
synchronization algorithm on a 16,384 processor IBM Blue Gene machine (Perumalla 2007). Recently, 
Barnes et. al were able to achieve 504 billion events per second using almost 2 million cores of a Blue 
Gene/Q machine (Barnes et al. 2013). 
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It may be noted that these three studies yielded event rate performance per core of 138K 
events/second/core (in 2003), 32K (in 2007), and 256K (in 2013), representing only a factor of 2 
improvement in single core performance over the last 10 years. These data highlight the fact that 
performance improvements are being driven almost entirely by increases in parallelism. This is not 
surprising. Processor clock rates have seen only modest increases since 2005 due to physical constraints 
concerning heat dissipation, resulting in an explosion in the number of cores in supercomputer 
architectures since 2005. Throughout much of the 1990’s and up until 2005 the most powerful 
supercomputers contained only thousands of cores. The most powerful machines today contain millions. 
Despite these successes, PDES technology has yet to penetrate the broader modeling and simulation 
industry. The vast majority of discrete event simulation executed today, even those modeling large-scale 
systems, execute on sequential computers. In (Fujimoto 1993) several challenges that stood in the way of 
widespread adoption of PDES technology were presented. Among the avenues that were proposed to 
achieve wider acceptance, the application library and automated parallelization approaches have perhaps 
seen the most progress. The application library approach is exemplified by Qualnet (Scalable Network 
Technologies 2012) that enables one to configure a network simulation from a graphical user interface 
while hiding the details of parallel execution in an underlying simulation executive. In the automated 
parallelization arena, the “self-federating” approach where multiple instantiations of a single sequential 
simulation are created and interconnected, with each modeling a portion of the overall system has 
emerged as a practical approach to realizing parallel simulations. For example, each sequential simulation 
might model a sub-network of a large telecommunications system. Examples of this approach include 
(Nicol and Heidelberger 1996, Riley et al. 2004) among others. Because this approach effectively 
involves federating a sequential simulation with itself in a parallel or distributed computing environment, 
it avoids many of the interoperability issues that arise when federating different simulators. 

Similarly, the penetration of distributed simulation technology into the broader modeling and 
simulation industry still has a long ways to go. (Strassburger, Schulze et al. 2008) reports the findings of a 
peer study in the context of distributed virtual environments that indicate the technology is widely 
believed to have the potential for broad impact, but widespread adoption in industry has not yet 
materialized. Massive, multiplayer on-line game systems represent one area where the technology has 
seen extensive commercial use. Nevertheless, widespread adoption of the technology does not appear to 
have reached its fullest potential. In (Taylor, Mustafee et al. 2009) the authors articulate the need for new 
standards to help address this issue by increasing interoperability of simulation models and tools. 

4.2 Challenges 

Below we describe several challenges to help guide the parallel and distributed simulation field in 
directions that we believe will significantly increase the impact of this technology. 

4.2.1 Scalable PDES Simulations of Realistic Networks  

A substantial amount of effort in the past decade has focused on the topology of networks that arise in 
real-world applications. One class of topologies that have become known as scale-free networks (Barabasi 
and Albert 1999) have been observed to arise in many different applications. A scale-free network is one 
where the node degree follows a power law distribution. A distinguishing characteristic of scale-free 
networks is a significant number of nodes, referred to as hub nodes, contain a large node degree, while 
most nodes, often referred to as leaf nodes, contain relatively small degree. This is in stark contrast to the 
regular, symmetric networks typically used in large-scale PDES performance studies thus far. Such 
networks often have high degree hub nodes that turn into bottlenecks for PDES computations. Scale-free 
networks have received a considerable amount of attention in recent years because it has been observed 
that many real-world systems contain networks that exhibit the scale-free property (Wang and Chen 
2003). For example, it is widely believed that the autonomous system (AS) level topology of the Internet 
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is scale-free (Faloutsos et al. 1999, Faloutsos et al. 2003, Zhang et al. 2011). In the broad area of systems 
biology, the study of complex biological systems, protein-protein interaction networks have been 
demonstrated to follow scale-free distributions (Kitano 2002). Some financial networks such as the 
interbank payment network exhibit scale-free behavior (Soramaki et al. 2007). Social networks, the 
world-wide-web, the internal structuring of superconductors, the airline transportation network, and 
human interaction networks such as models of the spread of diseases have been reported to exhibit scale-
free properties. 
 The network topology has a large impact on the efficiency of parallel discrete event simulation 
techniques in terms of parallelism and overhead of the synchronization protocol. It has been observed 
empirically that the distribution of event-level parallelism in simulations of communication networks can 
lead to severe load imbalances (Liu and Chien 2004). In (D'Angelo et al.) load distribution issues in scale-
free network simulations are examined. The relationship between power law topology and parallel 
simulator performance was studied in (Pienta and Fujimoto 2013) where it was observed through both 
analytical models and simulations that very large network simulations may yield very limited parallelism. 
For example, scale-free networks containing tens of thousands of network nodes often exhibit less than 
hundred-fold parallelism, suggesting limited opportunity for existing approaches to PDES to accelerate 
performance in many real-world applications. The limited amount of parallelism in these networks 
coupled with the reliance on massive parallelism to achieve high performance on modern supercomputers 
makes exploitation of PDES challenging for many real-world applications. 

4.2.2 PDES Benchmark Programs  

One modest, albeit important challenge lies in defining new, realistic benchmark applications to evaluate 
new PDES technologies. Since its early years the PDES community has been utilizing a benchmark 
program called PHOLD as a means to evaluate performance (Fujimoto 1990). While useful in the early 
years of the field, and of some practical use today, PHOLD fails to capture many critically important 
aspects of real PDES applications. PHOLD owes its origins to another benchmark called the HOLD 
model that was used to benchmark priority queue implementations in sequential discrete event 
simulations (Jones 1986). Most uses of PHOLD use regular topologies such as a toroid or a fully 
connected network, with the message sent to a neighboring LP with any neighbor equally likely to be 
selected. PHOLD has the virtue that it is very easy to implement, which likely accounts for its popularity. 
However, PHOLD, has a number of important deficiencies that can lead to very misleading performance 
results. The first, obvious limitation is a toroid or fully connected network topology leads to highly 
symmetric and regular networks with well balanced computation workloads. The benchmarking studies 
that were described earlier that reported impressive performance results on supercomputers all utilized 
highly regular networks. Such topologies are very different from real-world networks that are typically 
irregular, with skewed degree distributions, or exhibiting scale-free properties. Further, PHOLD does not 
incorporate events with different computational requirements or different dynamics such as varying 
numbers of events scheduled from one event to the next. We believe new benchmarks that retain 
PHOLD’s easy to implement characteristic while capturing more realistic applications are needed to help 
further develop PDES technology. 

4.2.3 Large-Scale PDES Solving Grand Challenge Problems  

Large-scale PDES performance studies to date have largely been technology demonstrations rather than 
use of PDES to solve specific real-world problems. While technology demonstrations are important and 
serve a purpose, the real, lasting impact of the technology will come from its use to solve real-world 
problems that cannot otherwise be solved. With only a few exceptions, the vast majority of commercial 
simulations are sequential. For PDES to have a substantial impact in the broader modeling and simulation 
community, several technical challenges must be overcome. PDES must be largely transparent to the 
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simulation user. This requires simple simulation languages that are natural to program and readily expose 
parallelism to the underlying simulation engine. The self-federating approach described earlier offers at 
least a partial solution to this problem. Important issues such as model partitioning, load distribution, and 
synchronization must be handled automatically, and effective debugging environments must be readily 
available. Output analysis must be no more difficult than that corresponding to sequential execution. 

4.2.4 Practical, Large-Scale Simulation in the Cloud 

Cloud computing services such as Amazon Web Services’ Elastic Compute Cloud (EC2), Microsoft’s 
Azure platform, and Google’s AppEngine provide virtualized hardware and software that can be accessed 
via the web. It potentially addresses a significant impediment to the widespread adoption of PDES 
technology by lowering the barrier to gaining access to high performance computing machines. The 
cloud’s “pay-as-you-go” economic model eliminates the need to purchase, operate and maintain high 
performance computing equipment locally (Fujimoto et al. 2010). Further, by providing parallel and 
distributed simulation software as a service, cloud computing offers the ability to hide many of the 
complications of executing parallel and distributed simulation codes from the user, offering the potential 
to make exploitation of this technology much less risky than is the case today. 
 However, exploitation of PDES on the cloud introduces new challenges. Preliminary work in 
benchmarking parallel scientific programs in Amazon’s EC2 observed that parallel scientific codes 
executed over EC2 ran significantly slower compared to execution on dedicated nodes of a cluster 
(Walker 2008, Ekanayake and Fox 2009). Two issues are communications and interference. Cloud 
environments are often better at providing high bandwidth communications among applications than in 
providing low latency, and high delay variance has often been observed in practice (Walker 2008). This is 
problematic for many simulation applications that are accustomed to sending many small messages 
requiring quick delivery rather than fewer large messages requiring high bandwidth alone. Further, cloud 
environments are shared among many users, and individual users are not guaranteed exclusive access to 
the processors assigned to that user’s virtual cluster. In principle, gang scheduling techniques can be used 
to ensure an individual user is allocated a set of physical nodes at the same time instant, however, this 
property may not be guaranteed by the cloud provider. This can lead to difficulties for parallel simulation 
applications, especially those that utilize optimistic synchronization techniques. 

4.2.4.1 Real-Time Dynamic Data Driven Parallel and Distributed Simulation  

The ability to effectively exploit cloud computing for PDES applications greatly facilitates exploitation of 
the technology in real-time (or on-line) simulation applications. By this we mean the use of simulation to 
optimize operational systems while they are running. Also known as symbiotic simulations (Fujimoto et 
al. 2002) or dynamic data driven application systems (DDDAS) (Darema 2004), these systems use 
networks of fixed and/or mobile sensors, possibly coupled with the use of crowd-sourced data to develop 
a model of the current state of the system. Simulations then utilize this captured state to project future 
states and perform what-if analyses, often in conjunction with other optimization tools and techniques to 
inform operators as to how to improve system performance, or reconfigure the sensor network to improve 
system performance. Numerous applications of this technology exist, such as optimizing supply chains, 
transportation systems, communication networks and energy systems, among others. 

5 DYNAMIC DATA-DRIVEN APPLICATION SYSTEMS (FREDERICA DAREMA) 

This section discusses new directions in modeling and simulation, namely the Dynamic Data Driven 
Applications Systems (DDDAS) paradigm (Darema 1990; Darema 2000).  
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5.1 Definition of DDDAS  

DDDAS is a paradigm whereby selected on-line instrumentation-data (or archival data) are dynamically 
integrated into an executing model/simulation in a feed-back control loop, with the executing model in 
reverse guiding adaptively the instrumentation processes.  The effect of this paradigm is to create more 
efficient and more accurate modeling and simulation capabilities by either using the actual data to 
compensate for aspects of the system not captured accurately in the model/simulation, or by using the 
actual data to replace targeted parts of the computation in order to speed the modeling/simulation process  
and which can also result of enabling real-time decision support capabilities with the accuracy of full 
scale simulation; and in reverse create capabilities for more efficient and effective instrumentation 
capabilities through the modeling/simulation driven control of the instrumentation processes, for example, 
collect data in targeted and adaptive ways. Inherently, the DDDAS feed-back control loop unifies 
complex computational modeling of a system with the real-time data acquisition and control aspects of 
the system. DDDAS is also referred to as InfoSymbiotics or InfoSymbtiotic Systems (in the mid-eighties 
to early 2000 was also referred to as Gedanken Laboratory). 

5.2 Drivers and Changing Landscape in M&S 

Application systems today and those foreseen in the future, be they natural, engineered, or societal, have 
unprecedented scales of complexity, interconnectivity, and interdependence, across components of a 
system as well as across systems.  Such complex systems require more advanced methods for analysis, 
understanding, design, and management.  The methods needed go beyond the static modeling and 
simulation methods of the past.   New approaches such as DDDAS augment and enhance system 
models/simulations through continually updating critical regions of the solution space of the problem with 
information from monitoring and control/feedback aspects of the system.  The needs for autonomic 
capabilities and optimized management of engineered systems, consisting of heterogeneous and dynamic 
components and resources makes more compelling the need for new methods such as DDDAS, not only 
for the design stage of engineered systems but also for managing the operational cycle of such systems.   
 The emergence of several technological and methodological advances over the last ten years has 
resulted into an added impetus for exploiting the integration of modeling with observation and actuation 
as envisioned in the DDDAS paradigm, making DDDAS more timely than ever.  Such advances include 
the increasing emphasis in multi-scale and multi-modal modeling  – in DDDAS multiple scales may be 
invoked dynamically based on the dynamic data inputs. In addition, the emerging multicore-based 
computing technologies are transforming the computational capabilities in the high-end computing as 
well as the real-time data acquisition and control systems, with the concomitant emphasis ubiquitous 
sensing and control instrumentation capabilities.  Furthermore there is also tremendous increase in 
networking capabilities for streaming large volumes of data remotely and connecting multiple distributed 
and heterogeneous data and computation resources.   In tandem with that, there is an emerging emphasis 
of comprehensive cyberinfrastructures to support complex systems.  
 There is a triad of broad approaches used to understand and analyze the behavior of systems, be they 
natural or engineered, namely 1) theory – the theoretical concept &/or principles about a system; 2) the 
mathematical representation of these theoretical principles about the system; and 3) the experimental 
probing of the system through instrumentation.  Traditional approaches in modeling and simulation 
consider this triad of theory, M&S, and instrumentation as distinct and serially related; that is: we create a 
theoretical concept about a system, then we represent this theoretical concept through a model or sets of 
models (here model is used to denote either model or simulation), and we use the instrumentation data as 
inputs to the model and the computation results present mathematically a state (or set of states) of the 
system; subsequently we may launch additional computations of the model with other sets of data inputs, 
to compute other states of the system; based on these results, we may also change the theoretical concepts 
about the system and the corresponding models. DDDAS changes the static and serialized relation 
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between modeling/simulation of a system and the instrumentation of the system, to a dynamically 
integrated one.  

5.3 New Directions through DDDAS:  

With DDDAS, in addition to the initial data inputs, also termed as “static data inputs”, as an application 
model executes we incorporate dynamically additional data into the model – these data may be data 
acquired on-line in real-time or they can be data that have been previously acquired (archival data), and 
selected such data, are incorporated into the executing model, in selected parts of the phase space of the 
problem, as dictated by the executing model. Examples include replacing parts of the model computation 
with actual data to speed-up the modeling process, or use selected data to complement the model for the 
aspects of the system not captured at all or not captured accurately by the model.  Data assimilation is for 
example a special case of DDDAS, where actual data are used to constrain the size of the error bars (data 
uncertainties) in the solution vector of the PDE (Partial Differential Equation) representing the system;  as 
the computed data in the solution vector and their corresponding computed errors propagate through the 
simulation (the PDE solver), computed data with large uncertainties are replaced with actual data that 
have smaller error bars, and computation restarts with the resulting updated vector.  In addition in 
DDDAS the model- driven instrumentation-control entails that measurement data can be selectively 
targeted to collect the data useful to improve the accuracy of the model or to speed-up the model 
execution. Thus the DDDAS methods result into more efficient data measurement capabilities. Moreover 
in the case where measurement data result from multiple instrumentation resources (such required 
heterogeneous sensor networks) the traditional approaches select such data in static and ad-hoc ways; 
DDDAS allows dynamic and adaptive scheduling of the data collection and dynamic management and 
control of such instrumentation data resources.  Thus the DDDAS-based methods allow more efficient 
and effective utilization of such heterogeneous sensor and controller resources.   

5.4 DDDAS and Big Data - Big Computing: 

 In DDDAS the computational and instrumentation aspects of an application system  become a unified 
representation of the system, and the underlying computational and instrumentation platforms become a 
unified platform which encompasses and may span the range of platforms, from high-end and mid-range 
computing to the real-time data acquisition and control,  and to hand-held personal devices.   In DDDAS 
and with the advent of ubiquitous sensing and control, Big Computing spans beyond the exascale to 
include the computing on the multitudes of heterogeneous sensors and controllers; so here, when we refer 
to Big Computing will refer to the computing at the high-end plus the highly distributed computing on the 
collection of multitudes sensors and controllers, all-together acting as a unified platform.  Likewise, in 
DDDAS the notion of Big Data spans beyond the data generated by large scale computations and large 
instruments to also include the collection of data from the multitudes of sensors and controllers. In an era 
where we speak about Big Data and the “data deluge” challenge, the DDDAS paradigm where an 
executing model dynamically and adaptively manages the instrumentation of a collection of 
heterogeneous sensors and controllers, creates new capabilities that go beyond the traditional static and 
ad-hoc ways of managing such resources, and allows efficient management of such resources. DDDAS 
enables to collect data targeted and selective ways, as dictated by the related application system needs; in 
other words DDDAS mitigates the “data deluge” by allowing to collect and manage data in “smart ways”. 

5.5 DDDAS Technical Challenges and Opportunities for New Capabilities 

 DDDAS is a compelling paradigm, and efforts enabling the capabilities sought under the rubric of 
DDDAS span several dimensions, requiring synergistic multidisciplinary research.  DDDAS drives 
innovations in application modeling and simulation methods where executing models/simulations can 
incorporate dynamically additional data, where other application models can be dynamically invoked 
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based on the dynamic data inputs (for example multiple scales of models and models of multiple 
modalities of the system), and where in return interface with the instrumentation systems and control the 
measurement and actuation processes in these systems. In addition the models and the algorithms used in 
these models need to be tolerant in their stability and have guaranteed convergence properties when 
subject to perturbations from the dynamically incorporated data into the models and the associated 
algorithms, and need new algorithmic methods for efficient uncertainty quantification and efficient 
estimation of error propagation across dynamically invoked application models. Other advances needed 
include new system software methods to support the dynamic and adaptive runtime  requirements of such 
applications which not only entail heterogeneous underlying resource support (spanning for example from 
high-end computing to real-time), but also where the computational, memory, communication, and I/O 
requirements of such applications change depending on the dynamic data inputs. In addition, DDDAS 
environments require new methods of interfaces to and management of instrumentation resources for 
example dynamic and adaptive optimized management of heterogeneous collections of networks of 
sensors and/or networked controllers, and intelligent methods of large scale heterogeneous data 
management.  
 The approaches discussed here enable new capabilities for more accurate modeling methods for 
analysis and understanding of natural and engineered systems, and in the design and operational 
management of engineered systems, decision support methods with the accuracy of full-scale simulation 
models, and more efficient instrumentation and control methods.   All these create unprecedented 
opportunities for creating and exploiting complex engineered systems, understanding societal systems, 
and new ways of understanding natural systems and responding to natural events. Examples of advances 
and new capabilities include analysis and decision support for structural systems (Oden et al. 2012; 
Bazilevs et al. 2013; Allaire et al 2014), medical systems (Fuentes et al. 2013),  environmental systems  
(Patra et al. 2014; Douglas et al. 2006; Patrikalakis et al. 2004), and critical infrastructure systems, such 
as transportation systems (Fujimoto R. M. 2004) and electrical powergrids (McCalley et al. 2007); Celik 
et al. 2010)  as well as many other application areas (AFOSR DDDAS Program, September-October 2013 
PI Meeting; NSF Workshops  2000, 2006; AFOSR/NSF Workshop 2010; DDDAS Community Webpage 
www.dddas.org).  
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