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ABSTRACT 

The 2010 Deepwater Horizon (DWH) oil slick caused by the explosion of the Macondo 

well was the worst man-made disaster in the history of the Gulf of Mexico, and the 

largest marine spill in the history of the petroleum industry. We provide an overview of 

our efforts to monitor the extent of these slicks using automated algorithms for the 

Moderate Resolution Imaging Spectroradiometer (MODIS), and the Synthetic Aperture 

Radar (SAR). We discuss the advantages and limitations of each of the methods in 

detection of oil from space, and suggest that the NIR bands may be the best option to 

monitor emulsified oil when using passive sensors. Additionally, we discuss current 

laboratory-based efforts to measure oil thickness via holographic interferometry, and 

propose this as an ideal technique for future remote sensing of oil. 
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RESUMEN  

El derrame de petróleo causado por la explosión del pozo petrolero Macondo y 

conocido con el nombre de Deepwater Horizon (DWH) o el Horizonte de Aguas 

Profundas, fue el peor desastre causado por el hombre en la historia del Golfo de 

México, así como el derrame marino más grande en la historia de la industria petrolera.    

Presentamos un resumen de nuestros esfuerzos para detectar y monitorear la extensión 

del derrame automáticamente, usando datos del Radiómetro Espectral de Resolución 

Moderada (MODIS) y del Radar de Apertura Sintética (SAR).    Así mismo discutimos 

las ventajas y las limitaciones de cada uno de los métodos en la detección de petróleo.   

Sugerimos que las bandas del Infrarojo cercano (NIR) son la mejor opción para 

monitorear emulsiones de petróleo con sensores pasivos.  Además, relatamos nuestros 

esfuerzos de laboratorio para medir el espesor de la capa de petróleo, y proponemos que 

esta es una técnica ideal para implementarse en futuros sensores remotos.   

Key words: Detection of petroleum, Interferometry, lasers, MODIS, SAR 

Palabras Claves: Detección de petróleo, Interferometría, Laseres, MODIS, SAR 

INTRODUCTION 

Oil, oil wastes, and general petroleum contamination pose environmental risks to the 

Gulf of Mexico waters. Primary inputs come from oceanic transportation and tanking, 

recreational activities, ship/platform and coastal facilities spills, oil exploration, 

atmospheric deposition, and non-point sources derived from human activities on land 

[National Research Council (NRC), 2003].    The Gulf of Mexico (GOM) is particularly 

vulnerable to oil contamination because it is a semi-enclosed basin, which receives the 

industrial waste of 87.3 million people who live in its drainage basin [Broadus and 
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Vartanov, 1994].  It is also the sixth largest hydrocarbon basin of the world, which 

produces 23% (roughly 10 million cubic feet per day) of the USA gas production and 

30% (1.5 million barrels per day) of its oil production.  The GOM and Outer 

Continental Shelf (OCS) contain approximately 3,800 fixed platforms that extract 

hydrocarbons constantly.  2000 of those are large platforms and 1000 are constantly 

manned. These are connected to the mainland by 37,000 miles of pipelines. With 42 

million acres under lease, and many more deep water platforms expected to be 

constructed in the near future, the GOM oil leaks are bound to increase.   Gas and oil 

leakage are inherent casualties of the business of extracting oil.  Even if these were to be 

totally controlled, oil and gas seeps naturally at the bottom of the Gulf and reaches the 

surface intermittently. The leak areas have been estimated to cover approximately ~850 

sq. km and ~150 sq. km of the northern and southern Gulf, respectively [MacDonald et 

al. 2004].  Those from the northern Gulf yield about 140,000 tons of oil per year 

[Kvenvolden & Cooper, 2003].   

In spite of the constant danger of petroleum leakage, there is currently no means to 

monitor the leakages on an operational basis.   Agencies usually take action after oil 

slicks are reported by individuals, ships or airplanes.   Our goal was to demonstrate the 

building of a system that could automatically detect the presence of oil in imagery of the 

Moderate Resolution Spectral Radiometer (MODIS) and the Synthetic Aperture Radar 

(SAR). Our effort started one year prior to the DWH oil spill occurrence.  The data 

which became available to the project from this occurrence enhanced our work and 

enabled us to expand into laboratory work, which would not have been feasible 

otherwise. In this paper, we present the results of our initial and current efforts on oil 

slick detection.   



4 

 

METHODS 

The first approach relies on the remote identification of oil slicks using mathematical 

tools such as edge detectors, polygon algorithms and neural networks in both the 

MODIS and SAR data.  The second approach includes laboratory analyses to 

characterize oil and non-oiled water through interferometric holography.    

The MODIS Algorithm  

 

Passive sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS), 

are not an ideal tool for oil detection, but their data are highly desirable because of their 

coverage frequency.  The visible channels, in particular cannot differentiate oil under 

nadir or near-nadir conditions because of the absence of a spectral signature specific for 

oil.  Oil is easily detected in the sun glint portion of the swath where the specular 

reflectance of the sun over the ocean surface is a function of the oceanic surface slope 

[Hu et al., 2003].  The reflectance at the sea surface was first described and quantified 

by Cox and Munk, [1954].  In this classic work, they showed that the sea surface could 

be represented by a collection of mirror-like planar surfaces, each having a 

characteristic slope. The probability that a facet reflects specularly the incident radiation 

from the sun to the sensor depends on the wind speed and direction, and sea state.  Oil 

on the surface of the ocean reduces the surface slope and modifies the sensors 

acquisition geometry.  Thus, the oil patch appears bright amidst a less illuminated 

surface.  The amount of energy received at the sensor is also a function of the thickness 

of the oil patch.  Heavy crude oil will absorb much of the radiation and return a reduced 

signal, while thinner layers may not be able to drastically change the ocean slope, and 

not be detected at all.  Figure 1 presents a MODIS image under sun glint conditions.  

The bright reflectance in the middle of the Gulf identifies the DWH oil spill.    
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Figure 1.  MODIS imagery of the NE Gulf of Mexico for May 17, 2010.  Bright pixels 

in the center belong to the DWH oil slick. 

  

The MODIS algorithm consists of edge detection, edge sealing and polygon algorithms.   

It is a modified version of an algorithm previously developed by Gallegos et al, (1993) 

to identify and remove clouds in data from the Advanced Very High Resolution 

Radiometer (AVHRR).  Because the oil pool is only apparent in the glinted imagery, the 

algorithm is applied to the specular reflectance of the MODIS visible bands.  The first 

step in the edge detection procedure requires the computation of the Gray Level Co-

Occurrence (GLC) matrix. The (i,j)th element of the matrix is the relative frequency of 

occurrence of gray level i and gray level j when separated by a distance or displacement 

vector (Δx, Δy) within a window or local neighborhood of size M x N. 

Given a range of intensity levels from 0 to L-1, the GLC matrix is calculated from  
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For this specific study, the size of the local neighborhood (window) was initially set to 3 

x 3 pixels separated by a distance Δx = 1 , and Δy= 1.  The small window size and 

displacement vector was chosen to allow the smallest changes in intensity to be detected 

over small distances.  The computations of the GLC matrix result in a second-order 

probability matrix of size L x L from which the cluster shade, a measure of the local 

variation in intensity between pixels, is calculated for each local neighborhood.   
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i and j are estimates of mean intensity calculated from the weighted summations of 

rows and columns of the matrix: 
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These computations produce a new image in which the center of each neighborhood is 

replaced with a cluster shade value.  Edges are produced at the site of the neighboring 

pixels whose cluster shade values are opposite in sign (zero crossing) and where both 

have cluster shade intensities greater or equal to a chosen threshold. The default 

threshold is 3.  This value is altered to adjust the computation and the generation of 

edges to larger and more distinguishable targets. 

 

 After the zero crossing test most of the edges are in place.  However, some of these 

occur as isolated strings which are not attached to other edges.  To enable these strings 

to join other strings, new thresholds and conditions for edge forming are set.  For an 

array to enter the new computations, its center pixel must be greater or equal than a new 
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threshold.   The default threshold is 1.  The procedure can be repeated as many as 17 

times.  Both the threshold and the repetition times can be altered to suit the needs of the 

target detection.   Edge pixels are = 0, and non-edge pixels = 1.  

 

The algorithm exploits differences in radiances to create edges.  Heterogeneous waters 

produce large number of edges and homogenous few edges. After the zero crossing test 

most of the edges are in place.  However, this simple edge detection is insufficient to 

identify targets because some edges occur as isolated strings.  To remove the strings or 

to join them with other larger and most significant strings, which may or may not be 

part of a target of interest, a new zero-crossing test is implemented.  The default 

threshold is 1.  3x3 arrays or windows of non-edge pixels are examined.  For an array to 

qualify for this test its center must be greater or equal than the new threshold and one of 

its pixels must be an edge pixel.  New edges are generated at the site of those pixels 

whose value is greater than and opposite in sign to the new threshold.  The procedure 

can be repeated as many times as desired.  To avoid excessive computation a number 

passes between 10 and 25 is desirable.  The default value is 17.   

 

The result of this last computation is a binary image which contains areas of non-edge 

pixels surrounded by edge pixels.  Initially, each line of data is screened for contiguous 

non edge pixels.  Upon encountering the beginning of a string in a cluster of non-edge 

pixels, the algorithm assigns it a unique 16-bit identification number.  It continues to 

search for other contiguous non-edge pixels until the entire scene is segmented into 

clusters separated from each other by edges.  Because this procedure generates a large 

number of clusters, some of which may be noise, the very small clusters are eliminated 

from consideration if the number of non-edge pixels in the cluster is smaller than the 
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number of pixels in its edge boundary.  Then statistics are run on the pixels on either 

side of the edge surrounding the cluster.   For a cluster to be considered “useful” the 

inside pixels must have a value equal or higher than the outside pixels. Glinted water 

has higher reflectance than non-glinted water. 

A modified version of the algorithm was applied to nadir and near nadir MODIS near-

infrared bands (NIR) centered at 1.24 m (band 5).  At NIR wavelengths greater than 

0.8 µm, seawater is highly absorbent, and the water leaving radiance is assumed to be 

negligible (black pixel). Although this is quite true of open waters, it is not so for 

coastal waters where sediment and other particulates have signals at these wavelengths. 

Additionally, floating vegetation (i.e.,Sargassum spp.) and thick and emulsified oil can 

be observed at NIR wavelengths, due to their backscattering properties.  During the 

DWH oil spill, Clark et al, [2010] measured the reflectance of fresh oil at NIR 

wavelengths under laboratory conditions, and indicated that detection of oil over water 

was a function of the oil:water ratio, and oil thickness could be estimated from 

diagnostic organic C-H absorptions centered at 1.20 um, 1.73 um, and 2.37 um (Fig 2).  

 

 

 

 

Figure 2: Oil reflectance after Clark et al. (2010).  The vertical broken lines depict the 

approximate location of MODIS band 5 (1.24 m) and band 7 (2.13 m). 
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In this figure, oil thickness is calculated from the difference between the shoulders and 

the bottom of the indentations in the spectra.  Clark et al, (2010) applied their laboratory 

findings to the data of the Airborne Visible/Infrared Spectrometer (AVIRIS) for 

estimating oil thickness and volume of oil spilled, with a high level of success. The 

estimations were mostly for surface oil since light penetrates only a m in the NIR. 

The MODIS bands that approximate the oil diagnostic bands are centered at 1.24 m 

and 2.13m, neither of which could be used to estimate oil thickness. In spite of this, 

the thick and emulsified oil, which tends to form clumps and float at the surface of the 

water, has a reflectance different from that of the surrounding clear waters.  It provides 

a unique opportunity to test edge detection algorithms.  For this effort, we used a 

modified version of the algorithm previously described for sun glinted MODIS data.  

The polygon algorithm was modified to accept a minimum reflectance of 2, and a 

minimum number of pixels within a polygon (cluster) of 400.    

The SAR Oil Mapping Algorithm 

The ability of SAR to detect features at the ocean’s surface depends on the interaction 

between the SAR pulse of microwave energy and the sea-surface. The radar return from 

contrasting roughness components of the sea surface, which ranges from capillary 

waves to short gravity waves produce characteristic patterns in the radar imagery [Holt, 

2000]. Ocean slicks are a subset of ocean features detected in SAR data. They are areas 

of distinctly contrasting brightness against the radar backscatter produced by wind-

generated Bragg waves at length scale of ~1 to 10cm.   SAR shows the reflectivity of 

the sea surface in radar frequencies, which is significantly decreased in the presence of 

slicks which damp capillary surface waves.  SAR data suffers from many false alarms 
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associated with fresh water slicks, calm winds which tend to generate flat surfaces, 

wave shadows behind land or structures, submerged weed beds, and organic exudates 

from marine organisms, which produce signatures similar to those of oil slicks under 

calm wind conditions [Fingas and Brown, 2006]. 

  

The methodology used with the SAR data included a version of a Feed-Forward Neural 

Network (FFNN) classification method, known as the Textural Classifier Neural 

Network Algorithm (TCNNA), developed by Garcia-Pineda
6
 (2008).  For this effort the 

methodology was improved and automated.  It has 46 inputs, 5 hidden layers and a log-

sigmoid transfer function at the output layer (Figure 3).  Outputs are either 0= no slick, 

and 1= slick.  

 
         Figure 3. Architecture of the Textural Classifier Neural Network Algorithm 

   

This method has been successful at extracting targets (oil seeps) and rapidly interpreting 

images collected under a wide range of environmental conditions.  Interpreted images 
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produce binary arrays with imbedded geo-reference data that are easily stored and 

manipulated in GIS software.  The TCNNA was tuned for larger spills during the DWH 

spill.  It uses SAR data and wind parameterizations from the CMOD model, which 

provides the backscattering coefficient according to wind speed, wind direction, and 

incidence angle. The algorithm relies on two neural nets (NN).  The first is a mask 

which identifies and isolates ‘oil-like’ pixels in the imagery based on their backscattered 

energy, incidence angle, and wind speed.  The results of the first NN feed into the 

second.  The second NN performs a statistical textural classification on the ‘oil-like’ 

pixels.  For the classification, it relies in bounding arrays centered on the pixel to be 

classified.  The arrays are 21x21 or 51x51 pixels, which are used to remove non-oil 

pixels at different spatial resolutions.   Texture measures such as average, smoothness, 

third moment, entropy and uniformity are computed for each of the arrays. Of these, the 

measurements with the highest weights on the classification are third moment and 

entropy. The results are binary files with values 0 for non-oil and 1 for oil. The output 

of the TCNNA algorithm is a binary image that can be converted into a polygon layer in 

a GIS program.  

Laboratory Experiments 

Neither field collections nor laboratory experiments were planned for the original effort 

on oil detection.  Nevertheless, it would have been a missed opportunity not to observe 

the DWH oil slicks, and to collect and analyze samples. The in situ collections which 

entailed measuring oil reflectance with a field radiometer did not yield new insights into 

the behavior of the oil at visible wavelengths.  The laboratory experiments, which relied 

on holographic interferometry, produced interesting results.   Samples were collected 

from areas of fresh petroleum located approximately five miles away from the Macondo 



12 

 

well in the Gulf of Mexico.  The samples were stored in dark bottles, sealed and 

maintained on ice in dark coolers until shipped. Water samples from areas not impacted 

by the oil were also collected, filtered with Glass Fiber Filters (GFF), and stored in the 

same manner as the oil.  Upon reaching the laser laboratories at Alabama A & M 

University, a sample of both oil and filtered seawater was placed in small shallow 

containers for interferometric measurements. Filtering the seawater was necessary to 

obtain Colored Dissolved Organic Matter (CDOM), an important constituent of coastal 

waters, which could confound the oil signal in these areas The scheme used for 

measurement appears in Figure 4. 

             

             Figure 4.  Scheme used for holographic interferometric measurements 

In this figure, a beam from an HE-Ne laser (0.632 um) passing through a lens (F= 5cm) 

was shined onto a sample of oil-on-water or filtered sea water.  The instantaneous field 

of view for the oil was ~12 cm and that for the seawater was ~4 cm in diameter. The 

beams reflected from the top and bottom of the sample formed interference patterns.  

These were projected onto the screen, which was placed 3 m away from the samples.  

The patterns were photographed from the screen.  
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RESULTS 

Testing of the algorithm on oil seeps from the Gulf of Mexico and on the DWH oil 

slicks revealed that it performs well at the edges of the sun glint pool, which is the most 

difficult task in this type of identification.  An example of its performance on oil seeps 

can be viewed in Figure 5.  In this Figure, thin slicks one or two pixels (~2 km) in width 

cannot readily be detected because of the threshold values.  There is a trade-off between 

identifying the large pools and leaving out the thin lines, or identifying the thin lines 

and misidentifying large portions of the oil pool.     How much of the oil pool is 

identified depends on the oil to water ratio, and whether or not there is enough contrast 

between pixels to obtain a stable edge, that it is not removed by the polygon algorithm.  

 

 

 

 

 

 

 

 

 

(a)                                                                          (b)               

 

Figure 5.  (a) Oil slicks apparent in the sun glint of MODIS imagery (b) The same oil 

slicks overlaid by the result of the MODIS algorithm (yellow pixels). 

Clouds and cloud shadows pose a major problem to the identification of oil in sun 

glinted imagery.   The high and cold clouds have similar reflectance as those of the 

bright pixels in the oil-contaminated sun glint pool.  Cloud shadows introduce dark 

spots, which end up producing texture in the water, where it does not exist.  Until a 
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more accurate cloud masking technique can be found for MODIS data in the sunglint 

area, the algorithm designed to identify oil plumes in its glinted imagery works only on 

cloud free scenes,  

The initial results of the MODIS algorithm testing on the 1.24 m NIR imagery is 

presented below.   Figure 6a depicts the southern portion of the Mississippi River Delta. 

The large dark feature to the right of it belongs to the DWH oil spill as it appeared on 

May 23, 2010. Figure 6b shows the entire Mississippi sound, where land is identified by 

the red pixels, and clouds as the gray pixels.  The oil pool, identified by the MODIS oil 

algorithm, appears as the large black and white textured feature between the Delta and 

the parenthesis drawn in the scene for reference purposes.  Other black and white areas 

around the coast are misinterpretations of the algorithm, which will have to be corrected 

in future versions.  This portion of the MODIS algorithm is still a work in progress. 

       

(a)                                                             (b)  

Figure 6. (a) The Mississippi River Delta. Gray colors are oil and sediment mixture, 

black mass to the right is oil.  (b) Oil identified by MODIS algorithm is white textured 

feature next to the parenthesis. 
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The most successful identification of oil pools from space was obtained with the 

TCNNA algorithm on SAR data.   Although the algorithm does not perform as well on 

large oil pools as it does on the smaller seeps, it is without a doubt an excellent oil 

detection tool.  The performance of this algorithm on SAR data is presented in Figure 7. 

A more in-depth description of the TCNNA algorithm performance during the DWH oil 

spill can be found in Garcia-Pineda et al, (2013). 

 
 

(a)                                                                      (b) 

Figure 7.  (a) An oil slick observed by SAR on May 2, 2010, (b) Results of the TCNNA 

algorithm. 

Figure 7a presents one of the Experimental Marine Pollution Surveillance Reports, 

created by NOAA to monitor the displacement of the DWH oil slicks.  The Report has a 

description panel on the left and a SAR image for May 2, 2010 on the right.  The dark 

shades on the water indicate low backscattering due to oil.  The location of the Macondo 

well is denoted by the red dot.   Figure 7b shows a shape file which was produced when 

the binary image resulting from the TCNNA algorithm was converted into a polygon 

layer by a GIS program.   Notice the close resemblance of the oil features in both the 

SAR and the shape file. 
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The holographic interference patterns using a HeNe red laser enabled the 

characterization of both samples, oil-on-water and filtered sea water or CDOM.  The 

holographic interference pattern was produced by the interference of the wave reflected 

from the oil surface and wave reflected from the water on which the oil was floating.  

The results from the interferometric work appear in Figure 8. In this figure, clear water 

appears as black and the CDOM and oil appear as red. Figure 8a shows the 

interferometric pattern of CDOM, which appears flat with some structure but no fringes.  

Conversely, Figure 8b, which belongs to the oil has many fringes and a distinct shape.  

Estimates of oil thickness can be accomplished by counting the number of fringes on 

the interferograms and multiplying these by the laser wavelength (0.633 m). 

The fringes are created when the droplet of water spreads over the water surface.  They 

are the result of interference between the reflected beam of light from the front surface 

of the oil and a plane wave reflected from the surface water.   

 

                  
 

Figure 8. (a) Interference pattern of (CDOM) (IFOV= 4 cm); (b) Interference pattern of 

crude oil in water (IFOV= 12 cm).  Screen distance is 3 m for both. 

CONCLUSIONS 

It became apparent during the DWH oil spill that in spite of the many space sensors 

currently flying, none of them could provide accurate quantitative assessments needed 
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for petroleum slick containment and for assessment of the ecological impacts of the 

spill.  MODIS, in spite of its daily data acquisition, could only provide useful data 

during sun glint.  SAR data was constrained by its 30 m resolution, wind, and other 

artifacts that confound the interpretation of the data.  Oil thickness, the most important 

parameter in an oil spill could only be determined from the surface film at NIR 

wavelengths from the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS).    

 

The analyses performed by our group for the MODIS and SAR data did not expand the 

capabilities for detection of these sensors. They only automated the identification of oil-

like features, which currently are manually obtained. The MODIS algorithm can outline 

the edge of an oil slick in the glinted image of visible channels as long as the oil slicks 

are thicker than 2 pixels.  The adapted MODIS algorithm for the NIR band at 1.24 m 

identifies with high accuracy the thick and emulsified oil, exclusively.  Sediment-laden 

coastal waters, such as those of the Mississippi Sound challenge the performance of the 

algorithm because of their high reflectance.  We are currently, devising methodology to 

separate the sediment laden texture from that of the oil in the MODIS algorithm.  

Clouds and cloud shadows pose major problems for the sun glinted and the NIR 

analyses.  

 

The TCNNA algorithm for SAR performs extremely well on oil seeps, but it needs 

manual removal of some of the polygons (false positives) that are created during the 

identification of large oil pools.   In spite of this, the TCNNA was transferred to 

NOAA/Satellite Analyses Branch (SAB) in 2011, for testing, and future operational 

work.   
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The interferometric work had interesting results and relevance to oil spill detection from 

space.  It demonstrated that this method can identify oil thickness, and separate this 

signal from that of CDOM in the ocean.  An ideal space sensor for oil detection would 

be one that combines fluorescence spectroscopy and interferometry for oil 

characterization.  Such a sensor does not currently exist, but we suggest that it is needed 

and should be planned for future space missions.  
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