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Abstract—In this paper, we consider the evaluation of informa-
tion divergence and information gain as they apply to a hybrid
random variable (i.e. a random variable which has both discrete
and continuous elements) for multi-target tracking problems. In
particular, we develop a closed-form solution for the Cauchy-
Schwarz information divergence under the assumption that the
continuous element of the random variable may be represented
by a Gaussian mixture distribution and present the associated
relationships for evaluating the Cauchy-Schwarz information
gain. The developed information gain relationships are applied to
a 0-1 target tracking problem common to space object tracking
to determine the sensitivities to the information gain due to
probability of detection, prior probability of object existence,
and measurement noise.

I. INTRODUCTION

One of the core concerns in Space Situational Awareness
(SSA) is the maintenance of a catalog of tracked objects. Since
the first launch of artificial satellites, the number of objects in
orbit coming from new launches, decommissioned satellites,
and debris created by collision of objects in orbit has posed an
ever increasing challenge to the development of space object
catalogs. As of 2006, there were approximately 9000 space
objects being tracked by the U.S. Space Surveillance Network
and maintained in the satellite catalog [1]. Currently, there are
approximately 20,000 space objects currently being tracked,
with 1000 of those objects being active objects. Furthermore,
it is estimated that 500,000 objects with a diameter larger than
one centimeter are in orbit. These numbers will inevitably
increase as more objects are launched and as more collisions
occur. The current number of objects coupled with the rapid
advances in sensor technology that enable the detection of
larger numbers of objects leads to a need for advanced strate-
gies for scheduling sensors so as to optimally utilize available
resources while maintaining accurate catalogs of space objects.
The current measure of performance for tasking is based

upon maximizing the number of observations per prioritized
objects. Given the scarcity of sensing resources, this metric
will fail to consistently acquire objects for a growing number
of detections. Mitigating this situation requires a method for
dynamically assigning which targets are to be tracked and
when they are to be tracked by a subset of the available sen-
sors. The process of dynamic sensor tasking typically employs
some measure of the information content of each available

sensor-object pair in order to formulate an optimization prob-
lem which schedules the sensors in a manner that maximizes
the information gained regarding any individual object. In
these problems, the actual measurements may be providing
different types and qualities of data (e.g. line-of-sight data or
range data). Additionally, since the sensors in a given network
are neither identical or collocated their object information
content is dependent on the dynamic environment, the sensor’s
location, orientation, and inherent accuracy. Therefore, the
amount of information that can be gained on an object is not
only a function of the target, but also of the sensor, and of the
overall problem geometry.
Previous studies have examined the utilization of myopic

algorithms for dynamic sensor tasking. For example, Erwin,
et al. detailed the implementation of Fisher information as
a measure of the information content in orbit determination
problems [2]. Subsequently, Williams, et al. extended this
approach to incorporate the utilization of the largest Lyapunov
exponent in orbit determination problems [3]. Kreucher, et
al. examined the general problem of information based sensor
management from an information-theoretic perspective utiliz-
ing the Kullback-Leibler and Rényi divergences to formulate
measures of information gain [4]. Extending the work of
Kreucher, et al., but in the context of sensor scheduling for
antisubmarine warfare, Aughenbaugh and La Cour utilized
information-theoretic information gain relationships for the
Kullback-Leibler and Rényi divergences to assess the perfor-
mance of myopic sensor scheduling problems [5]. Extending
the work of Aughenbaugh and La Cour, DeMars and Jah
developed and investigated the utilization of information gain
measures for several class of information-theoretic divergences
for the problem of sensor tasking in uncertain orbital dynam-
ical systems [6]
It is important to note that the utilization of sensor time is

both scarce and expensive. Decisions on whether to operate
a sensor in a mode which optimizes tracking capabilities
versus a mode which optimizes detection capabilities require
an assessment of how much information can be extracted
(or gained). This expected information gain will have two
(interdependent) components: one that is continuous in nature
and another that is discrete in nature. Therefore, the expected
information gain associated with each sensor assignment is
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of a hybrid nature. The final requirement, therefore, for an
effective approach to solving the SSA problem must provide
rigorous machinery for quantifying hybrid information gain
for optimal sensor allocation.
The goal of this paper is to investigate the Cauchy-Schwarz

information divergence and its associated information gain
within the multi-target tracking framework of Finite Set
Statistics (FISST) [7], [8]. Specifically, we develop a closed-
form solution for the Cauchy-Schwarz information divergence,
present a method for determining the associated information
gain, and apply the developments to a multi-target tracking
problem.
The paper is organized as follows: the problem statement

and relevant notation is provided in Section II, the basic
formulation of the Cauchy-Schwarz divergence for multi-target
problems and a closed-form solution are given in Section III,
a discussion of the Cauchy-Schwarz information gain is given
in Section IV, some results are presented in Section V, and
we conclude with some remarks in Section VI.

II. PROBLEM STATEMENT
As opposed to purely discrete or purely continuous Bayesian

inference, FISST makes use of set-valued random variables.
An example of a set-valued random variable is the state
X = {xd,x} in an SSA characterization and tracking in-
ference problem. If we let W be the set of all possible
object types, then xd ∈ W is the discrete component of the
state that describes a space object’s type (and, hence, its
dynamic model) and x ∈ R

s is the continuous component
of the s-dimensional state (e.g. the position and velocity
of an object). In detection and tracking, the system state
X = (n,X), where n is the discrete component of the state
that describes the number of objects in the search space and
XT = [xT

1 xT
2 . . . xT

n ] ∈ R
sn describes the positions and

velocities of these objects. Notice here the explicit dependence
of the dimension of the continuous state space R

sn on the
discrete component n of the state. For brevity, we simply write
X = {x1,x2, . . .xn}.
Bayes’ law for performing a measurement update step takes

on exactly the same form in the hybrid FISST approach as it
does in purely continuous and or purely discrete problems,
that is

fk+1|k+1(X |Z(k+1)) ∝ fk+1(Zk+1|X)fk+1|k(X |Z(k)) (1)

where fk+1(Z|X) is the multi-target likelihood function that
describes the likelihood of getting a measurement Zk+1 given
the state Xk+1, and Z(k) : Z1, . . . , Zk is the time sequence
of measurement sets up to time k. If desired, Eq. (1) can be
changed to an equality by dividing the right-hand side by the
Bayes’ factor, which is given by

fk+1(Zk+1|Z
(k)) =

∫
fk+1(Zk+1|X)fk+1|k(X |Z(k))δX

(2)

Notice that the integrals are set integrals. For multi-target
detection and tracking, a set integral of a scalar-valued set

function g(X) is defined to be the integral of g over the
continuous component, summed over all possible discrete
values [7], [8]∫

g(X)δX = g(X = ∅) (3)

+

∞∑
n=1

1

n!

∫
g({x1, . . . ,xn})dx1 . . . dxn

where the factorial coefficient is to take into account all the
different possible orderings of X as evaluated in the function
g.
In order to develop measures of the information gain avail-

able by scheduling measurements, we first consider measures
of the directed difference between two generalized pdfs,
namely the a priori and a posteriori pdfs, i.e. the generalized
pdfs immediately before and after processing measurement
data, respectively. Generally speaking, the information diver-
gence is a measure of distance (i.e. similarity or dissimilarity)
between two pdfs. Given an information divergence describing
the directed distance from p(X) to q(X) denoted by D[p||q],
the “distance” is called a metric if [9]
1) D[p||q] ≥ 0 with equality iff p(X) = q(X) (non-
negativity and positive definiteness),

2) D[p||q] = D[q||p] (symmetry), and
3) D[p||r] ≤ D[p||q] + D[q||r] (sub-additivity/triangle in-
equality).

Information divergences which only satisfy the first condition
are referred to as asymmetric divergences, whereas satisfaction
of the second condition necessarily removes the restriction of
referring to the divergence as asymmetric. However, in this
work, asymmetric divergences will be referred to as diver-
gences with the understanding that symmetry is not required
for the results to hold. One of the most common information
divergences is the Kullback-Leibler divergence, given by [10]

DKL[p||q] =

∫
p(X) log

p(X)

q(X)
δX (4)

which was investigated for multi-target tracking by Uney et
al. [11]. The Kullback-Leibler divergence, however, only ad-
mits closed-form solutions in special cases, such as for linear
Gaussian systems. Motivated by this fact, we consider the
Cauchy-Schwarz divergence which has a closed-form solution
for single target tracking frameworks [6].

III. CAUCHY-SCHWARZ INFORMATION DIVERGENCE
By defining a the inner-product of two square-integrable

functions p(X) and q(X) as 〈p, q〉 =
∫
p(X)q(X)δX , the

Cauchy-Schwarz inequality may be used to define the Cauchy-
Schwarz information divergence as [12]

DCS[p||q] =
1

2
log

[(∫
p2(X)δX

) (∫
q2(X)δX

)
(∫

p(X)q(X)δX
)2

]

=
1

2
log

∫
p2(X)δX +

1

2
log

∫
q2(X)δX (5)

− log

∫
p(X)q(X)δX
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where, for the purposes of this work, q(X) represents the
multi-target prior generalized pdf and p(X) represents the
multi-target posterior generalized pdf. The Cauchy-Schwarz
divergence may also be generalized to a class of informa-
tion divergences via introduction of a control parameter; this
class of information divergences is known as the Gamma
divergence, for which the Cauchy-Schwarz divergence is a
special case [9]. Additionally, the Cauchy-Schwarz divergence
is implicitly related to the quadratic entropy of Rényi, which,
for pdf r(X) is given by [13]

H
(2)
R = − log

∫
r2(X)δX

which is of the same form as the first two quantities in Eq. (5).
The Cauchy-Schwarz does not satisfy the triangle inequality
and therefore cannot be classified as a metric, but it does
satisfy the following properties [14]:

1) DCS [p||q] ≥ 0 ∀ p, q

2) DCS [p||q] = 0 ifff(X) = g(X)
3) DCS [p||q] = DCS [q||p]
4) DCS [p||q] is additive for independent events
5) DCS [c p||q] = DCS [p||q] for any c > 0

These properties illustrate that the Cauchy-Schwarz divergence
is positive semi-definite, symmetric, and scale-invariant. This
last property is a very nice feature of the Cauchy-Schwarz
divergence which we will make use of in the sequel.
For the sake of brevity and ease of notation, we restrict

our attention to a case in which there can exist at most one
object and at most one clutter point in the search space,
which we refer to as the “0-1 problem”. A summary of the
pertinent FISST equations is provided in the Appendix, and a
full treatment of the development of the FISST equations for
the 0-1 problem is given in Hussein, et al. [15].
Since we are considering the 0-1 problem, we need only to

account for the possibilities that there is no target, i.e. X = ∅,
and that there is a single target, i.e.X = {x}. Then, by Eq. (3),
the integral terms of Eq. (5) may be written as∫

p2(X)δX = p2(∅) +

∫
p2(x)dx∫

q2(X)δX = q2(∅) +

∫
q2(x)dx∫

p(X)q(X)δX = p(∅)q(∅) +

∫
p(x)q(x)dx

At this point, the prior generalized pdf is associated with q(X)
and the posterior generalized pdf is associated with p(X), such
that

p(∅) = fk+1|k+1(X = ∅|Z(k+1))

p(x) = fk+1|k+1(X = {x}|Z(k+1))

q(∅) = fk+1|k(X = ∅|Z(k))

q(x) = fk+1|k(X = {x}|Z(k))

which allows the Cauchy-Schwarz divergence for the 0-1
problem to be expressed as

DCS =
1

2
log

[
f2
k+1|k+1(X = ∅|Z(k+1)) (6)

+

∫
f2
k+1|k+1(X = {x}|Z(k+1))dx

]
+

1

2
log

[
f2
k+1|k(X = ∅|Z(k))

+

∫
f2
k+1|k(X = {x}|Z(k))dx

]
− log

[
fk+1|k+1(X = ∅|Z(k+1))

× fk+1|k(X = ∅|Z(k))

+

∫
fk+1|k+1(X = {x}|Z(k+1))

× fk+1|k(X = {x}|Z(k))dx
]

Note that in Eq. (6) we have dropped the functional depen-
dence of the Cauchy-Schwarz divergence on the pdfs for which
the divergence is computed as it is no longer ambiguous
which pdfs are the inputs. Recalling the scale-invariance
property of the Cauchy-Schwarz diverence and substituting for
fk+1|k+1(X |Z(k+1)) in Eq. (6) from the Bayes’ rule update
of Eq. (1) yields

DCS =
1

2
log

[
f2
k+1(Zk+1|X = ∅)f2

k+1|k(X = ∅|Z(k))

+

∫
f2
k+1(Zk+1|X = {x})f2

k+1|k(X = {x}|Z(k))dx
]

+
1

2
log

[
f2
k+1|k(X = ∅|Z(k))

+

∫
f2
k+1|k(X = {x}|Z(k))dx

]
− log

[
fk+1(Zk+1|X = ∅)f2

k+1|k(X = ∅|Z(k))

+

∫
fk+1(Zk+1|X = {x})f2

k+1|k(X = {x}|Z(k))dx
]

Now, we must consider different measurement sets inde-
pendently. Since we have restricted our attention to the 0-1
problem, three possible measurement sets are possible:

1) no sensor return, in which case Zk+1 = ∅
2) a single sensor return, in which case Zk+1 = {z}
3) two sensor returns, in which case Zk+1 = {z1, z2}

For each case, we apply the 0-1 problem FISST equations that
are summarized in the Appendix and developed by Hussein, et
al. [15]. Before proceeding, it is useful to define some terms
which appear repeatedly. Let p be the prior probability that
the object exists at time k, pD be the probability of detection,
and pF be the probability of false alarm. Furthermore, let us
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define I0, I2(z), and I2(z1, z2) as

I0 =

∫
f2
k+1|k(x|Z

(k))dx (7)

I1(z) =

∫
fk+1(z|x)f

2
k+1|k(x|Z

(k))dx (8)

I2(z1, z2) =

∫
fk+1(z1|x)fk+1(z2|x)f

2
k+1|k(x|Z

(k))dx

(9)

For the case of no sensor return (Zk+1 = ∅), it can be shown
that

DCS(Zk+1 = ∅) =
1

2
log

[
(1− p)2 + p2(1− pD)2I0

]
(10)

+
1

2
log

[
(1− p)2 + p2I0

]
− log

[
(1 − p)2 + p2(1 − pD)I0

]
For the case of a single sensor return (Zk+1 = {z}), it can be
shown that

DCS(Zk+1 = {z}) = (11)
1

2
log

[
(1− p)2p2F g

2(z) + p2p2F (1− pD)2g2(z)I0

+ 2p2pF (1 − pF )pD(1− pD)g(z)I1(z)

+ p2(1− pF )
2p2DI2(z, z)

]
+

1

2
log

[
(1− p)2 + p2I0

]
− log

[
(1 − p)2pF g(z) + p2pF (1− pD)g(z)I0

+ p2(1− pF )pDI1(z)
]

where g(z) is the spatial likelihood distribution function that
a clutter point generated the measurement z. For the case of
two sensor returns (Zk+1 = {z1, z2}), it can be shown that

DCS(Zk+1 = {z1, z2}) = (12)
1

2
log

[
g2(z1)I2(z2, z2) + g2(z2)I2(z1, z1)

+ 2g(z1)g(z2)I2(z1, z2)
]
+

1

2
log

[
(1− p)2 + p2I0

]
− log

[
pg(z1)I1(z2) + pg(z2)I1(z1)

]
where g(z1) is the spatial likelihood distribution function that
a clutter point generated the measurement z1 and similarly for
g(z2).
Up to this point, no explicit forms of the pdfs involved in

the computation of the Cauchy-Schwarz divergence have been
introduced, rendering the preceding results completely general
outside of the specification to the 0-1 problem. To obtain
solutions which are readily implementable in computations,
however, it is useful to specify forms of the involved pdfs
so as to obtain a closed-form solutions for Eqs. (10)–(12).
Specifically, this means that the forms of fk+1(z|x) and
fk+1|k(x|Z

(k)) need to be prescribed so that the integral terms
of Eqs. (7)–(9) may be computed and utilized in Eqs. (10)–
(12).

A. Closed-Form Solution of the Cauchy-Schwarz Divergence
To obtain closed-form solutions to the Cauchy-Schwarz

divergence equations, we first assume that the prior pdf,
fk+1|k(x|Z

(k)), and the measurement pdf, fk+1(z|x), are
represented by a Gaussian mixture and by a Gaussian, re-
spectively, such that

fk+1|k(x|Z
(k)) =

L∑
i=1

wipg(x;mi,Pi) (13)

fk+1(z|x) = pg(z;Hx,R) (14)

where pg(y;a,A) is used to denote a Gaussian pdf with mean
a and covariance A. Before proceeding further, it is worth
noting two identities regarding multiplying Gaussian pdfs. The
product of two Gaussian pdfs of the same random variable is
given by an unnormalized Gaussian pdf as [16]

pg(x;a,A)pg(x; b,B) = Γ(a, b,A,B)pg(x; c,C) (15)

where

c = C(A−1a+B−1b)

C = (A−1 +B−1)−1

Γ(a, b,A,B) = |2π(A+B)|−1/2

× exp

{
−
1

2
(a − b)T (A+B)−1(a− b)

}
The second identity states that for H , R, m, and P of
matching dimensions with R and P positive definite [17]

pg(z;Hx,R)pg(x;m,P ) = Q(z;H ,m,P ,R)pg(x;μ,Σ)
(16)

where

μ = m+K(z −Hm)

Σ = P −KHP

K = PHT (HPHT +R)−1

Q(z;H ,m,P ,R) = pg(z;Hm,HPHT +R)

To obtain closed-form solutions to the Cauchy-Schwarz
divergence of Eqs. (10)–(12), we only need to find closed-
form solutions for the integral terms of Eqs. (7)–(9). We begin
by noting that I0 may be written as

I0 =

∫
fk+1|k(x|Z

(k))fk+1|k(x|Z
(k))dx

Then, substituting for fk+1|k(x|Z
(k)) from Eq. (13) and

applying the identity of Eq. (15), it follows that I0 is given
by

I0 =

L∑
i=1

L∑
j=1

wiwjΓ(mi,mj,Pi,Pj) (17)

In a similar approach to that of computing I0, I1 may be
alternatively expressed as

I1(z) =

∫
fk+1(z|x)fk+1|k(x|Z

(k))fk+1|k(x|Z
(k))dx
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Substituting for fk+1|k(x|Z
(k)) from Eq. (13) and

fk+1(z|x) from Eq. (14), then applying the identities
of Eqs. (15) and (16), we obtain

I1(z) =
L∑

i=1

L∑
j=1

wiwjQ(z;H ,mi,Pi,R) (18)

× Γ(μi,mj,Σi,Pj)

where

μi = mi +Ki(z −Hmi)

Σi = Pi −KiHPi

Ki = PiH
T (HPiH

T +R)−1

Finally, I2 may be expressed as

I2(z1, z2) =

∫
fk+1(z1|x)fk+1|k(x|Z

(k))

× fk+1(z2|x)fk+1|k(x|Z
(k))dx

Once again, by substituting for fk+1|k(x|Z
(k)) from Eq. (13)

and fk+1(z|x) from Eq. (14), then applying the identities of
Eqs. (15) and (16), it can be shown that

I2(z1, z2) =
L∑

i=1

L∑
j=1

wiwjQ(z1,H ,mi,Pi,R) (19)

×Q(z2,H ,mj,Pj ,R)

× Γ(μ1,i,μ2,j,Σi,Σj)

where

μ1,i = mi +Ki(z1 −Hmi)

μ2,i = mi +Ki(z2 −Hmi)

Σi = Pi −KiHPi

Ki = PiH
T (HPiH

T +R)−1

Thus, a closed-form solution to the Cauchy-Schwarz infor-
mation divergence for the 0-1 problem has been obtained under
the assumptions that the state pdf may be represented as a
Gaussian mixture and that the measurement pdf may be repre-
sented as a Gaussian. To summarize, Eqs. (17), (18), and (19)
are utilized to compute I0, I2(z), and I2(z1, z2), which may
then be employed in Eqs. (10)–(12) to compute the Cauchy-
Schwarz information divergence, with the specific equation
employed being dependent upon whether there were no sensor
returns, a single sensor return, or two sensor returns.

IV. CAUCHY-SCHWARZ INFORMATION GAIN
The Cauchy-Schwarz information divergence provides a

method by which the amount of acquired information regard-
ing the state (both the discrete and continuous components)
may be determined given measurement data (i.e. no return, a
single return, or two returns). It does not, however, provide a
measure that can be used to assess future performance, i.e. in
the case that no data is yet available. For this reason, we define
the Cauchy-Schwarz information gain to be the expected value
of the information divergence over all possible measurement

outcomes. Since DCS : X × Z 
→ R
+, it is seen that by

Eq. (3), the information gain may be written as

GCS = f(Zk+1 = ∅)DCS(Z = ∅)

+

∫
f(Zk+1 = {z}DCS(Z = {z})dz

+
1

2

∫
f(Zk+1 = {z1, z2})DCS(Z = {z1, z2})dz1dz2 ,

where f(Zk+1 = ∅), f(Zk+1 = {z}, and f(Zk+1 = {z1, z2})
are the Bayes factors for the cases of no return, a single return,
and two returns, respectively. The forms of the Bayes factors
are given in the Appendix and discussed in more detail in Ref-
erence [15]. Notice here that we generalize the conventional
definition of expectations to compute the expected hybrid
information divergence. This is a mathematically well-defined
operation since the information divergence function is a real-
valued set-function. This generalization is mathematically ill-
defined if the function one is taking an expectation of is set-
valued, say in attempting to compute the expected value of a
set-valued random variable X . For more on this, see Chapter
16 of Reference [8].
Letting p∅ = (1−pF )

[
(1−p)+p(1−pD)

]
, pf = ppD(1−

pF ), pg = pF
[
(1 − p) + p(1 − pD)

]
, and pfg = ppF pD,

it follows that the Cauchy-Schwarz information gain may be
expressed as

GCS = p∅E∅ + pfEf (z) + pgEg(z) (20)

+
1

2
pfgEfg(z1, z2) +

1

2
pfgEfg(z2, z1)

where

E∅ = DCS(Z = ∅)

Ef (z) =

∫
fk+1(z)DCS(Z = {z})dz (21)

Eg(z) =

∫
g(z)DCS(Z = {z})dz (22)

Efg(z1, z2) =

∫
fk+1(z1)g(z2)DCS(Z = {z1, z2})dz1dz2

(23)

and fk+1(z) is the spatial likelihood distribution function that
the target generated the measurement, which is given by

fk+1(z) =

∫
fk+1(z|x)fk+1|k(x|Z

(k))dx

Furthermore, it is reminded that g(z) is the spatial likeli-
hood distribution function that a clutter point generated the
measurement. As before, by substituting for fk+1|k(x|Z

(k))
from Eq. (13) and fk+1(z|x) from Eq. (14), then applying
the identities of Eqs. (15) and (16), it follows that fk+1(z)
can be written as

fk+1(z) =

L∑
i=1

wiQ(z;H ,mi,Pi,R)

In general, the integral equations of Eqs. (21)–(23) admit no
known closed-form solutions, and so we compute them via
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monte carlo integration. Additionally, it should be noted that
the information gain relationship in Eq. (20) naturally decom-
poses into contributions from no return which is represented in
the first term, a single return (either target or clutter generated)
through the second and third terms, and two returns in the
fourth and fifth terms.

V. RESULTS
Given the preceding results on computing both the infor-

mation divergence and the associated information gain, there
are several ways in which the methods may be applied. For
instance, Reference [15] illustrates the information divergence
as a function of time, illustrating the effectiveness of measure-
ments in a multi-target tracking problem, and Reference [6]
illustrates the information gain as a function of time as
a potential mechanism for determining the times at which
measurements can be taken to obtain maximum information
gain.
In the sequel, we consider a fixed point in time (with a

fixed continuous state pdf) and use the information gain as
a method for determining the sensitivities to variations in
the prior probability of object existence, the probability of
detection, the probability of false alarm, and the measurement
noise. Furthermore, to illustrate the flexibility of the developed
methods, we apply the information gain calculations to two
scenarios: 1) a target which is represented by a Gaussian
distribution (in the continuous state) with a nearby object that
can generate false alarms, also with a Gaussian distribution
and 2) a target which is represent by a Gaussian mixture
distribution (in the continuous state) with a uniform clutter
distribution defined over a portion of the sensor field of view.
For both problems considered, the dynamical system model

is that of a planar two-body orbital motion problem with
a sensor that is on the surface of the Earth and can take
measurements of the target’s position. That is, the dynamical
system is given by[

ṙ

v̇

]
=

[
v

−μrr−3

]
,

where r is the inertial position of the object, v is the inertial
velocity of the object, and μ is the gravitational parameter of
the Earth. Additionally, the measurements are taken to be of
the form

z = Hx+ n ,

where H is such that Hx = r, and n is the measurement
noise, which is taken to be zero-mean with covariance R =
σ2I2×2.
A schematic representing the observational geometry for the

first scenario considered is given in Figure 1. The continuous
state target pdf is characterized by a Gaussian distribution
with 1 [km] position uncertainty and 1 [m/s] velocity uncer-
tainty. Additionally, the mean is described by an apoapsis of
42, 100 [km] and an eccentricity of 0.2. The clutter model
in this case is represented by a nearby object that generates
false returns with a pdf of g(z) = pg(z,mc,Rc), where mc

is chosen to be 100 [m] from the true object in both x and
y positions and Rc = (σc)

2I2×2 with σc = 25 [km]. The
information gain as a function of the probability of detection
is shown in Figure 2 for several values of the prior probability
of object existence. This shows that for all values of p, an
increase in pD leads to higher information gain. Additionally,
it is seen that for high values of pD a larger information gain
results from smaller p, which is largely due to the information
gained on the probability of object existence. In Figure 3, the
information gain is shown as a function of prior probability of
object existence for several values of the measurement noise,
σ. Here, it is seen that lower measurement noise leads to
higher information gain across the range of p. Additionally,
an interesting inflection point is observed for low values of
p. To explain this effect, we show the contributions to the
information gain in Figure 4, which correspond to each of the
terms in Eq. (20). This shows that for p = 0, the information
gain is zero, but for small non-zero values of p, the no return
and clutter return contributions to the information gain are
high. As p increases, these two contributions quickly decrease
and the remaining contributions become dominant. The trade-
off between the two trends causes the inflection observed in
the information gain of Figure 3.

Fig. 1. Schematic of the Gaussian target/Gaussian clutter model. The black
contour lines represent the Gaussian target pdf, the gray contour lines represent
the Gaussian clutter pdf, and the straight lines represent the sensor field of
view.

A schematic representing the observational geometry for the
second scenario considered is given in Figure 5. The continu-
ous state target pdf is generated by taking the continuous state
target pdf from the first scenario and propagating it forward for
15 hours using the AEGIS algorithm of Reference [18]. The
clutter model in this case is represented by a uniform distri-
bution within the field-of-view of the sensor. The information
gain as a function of the probability of detection is shown in
Figure 6 for several values of the prior probability of object
existence. In contrast to the first scenario, the information gain
for different values of p do not intersect. In Figure 7, the
information gain is shown as a function of prior probability of
object existence for several values of the measurement noise,
σ. Here, it is seen that lower measurement noise leads to
higher information gain across the range of p. Similar to the
first scenario, an inflection point is observed but with much
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Fig. 2. Information gain as a function of probability of detection, with
the measurement noise standard deviation taken to be σ = 1 [km], and the
probability of false alarm taken to be pF = 0.6.
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Fig. 3. Information gain as a function of prior probability of object existence,
with the probability of detection taken to be pD = 0.7, and the probability
of false alarm taken to be pF = 0.6.
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Fig. 4. Contribution of the terms in Eq. (20) to the information gain as
a function of prior probability of object existence, with the probability of
detection taken to be pD = 0.7, and the probability of false alarm taken to
be pF = 0.6.

less prominence in this case. As before, the appearance of the
inflection is due to the trade-off between the dominance of
no return and clutter return information gain for small p and
target return and two returns for large p.

Fig. 5. Schematic of the Gaussian mixture target/uniform clutter model. The
black contour lines represent the Gaussian mixture target pdf, the solid gray
region represents the Gaussian clutter pdf, and the straight lines represent the
sensor field of view.

VI. CONCLUSIONS
A method for determining the information gain in multi-

target tracking problems has been developed and applied for a
simplified 0-1 target tracking problem. A closed-form solution
for the Cauchy-Schwarz information divergence in the 0-1
target tracking problem was obtained under the assumption
that the continuous state pdf is represented by a Gaussian
mixture distribution and that the measurement pdf is repre-
sented by a Gaussian distribution. The information gain was
applied to two scenarios in space object tracking with differing
models of the continuous state distribution and the clutter pdf
model. In all cases, it was shown that lower measurement
noise leads to higher information gain. Similarly, it was shown
that higher probability of detection leads to higher information
gain. Finally, it was found that the prior probability of object
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Fig. 6. Information gain as a function of probability of detection, with
the measurement noise standard deviation taken to be σ = 1 [km], and the
probability of false alarm taken to be pF = 0.6.
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Fig. 7. Information gain as a function of prior probability of object existence,
with the probability of detection taken to be pD = 0.7, and the probability
of false alarm taken to be pF = 0.6.

existence has the most complex relationship to information
gain. In some cases, a lower prior probability coupled with
a high probability of detection leads to significantly more
information gain, but this is not always the case as the
information gain is highly situationally dependent, i.e. highly
dependent on the observation geometry, observation quality,
and prior continuous state distribution.
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APPENDIX
For completeness, we summarize the 0-1 equations derived

from FISST. The development of the following equations is
treated in Reference [15]. The equations are presented for
each of the possible measurement outcomes: 1) no return, 2)
a single return, and 3) two returns. For each outcome, the first
two equations represent the prior multi-target density function
for the cases that there is no target and that there is a target,
respectively. The second two equations represent the multi-
target likelihood function, again when there is no target and
when there is a target, respectively.
Case: Zk+1 = ∅

fk+1|k(X = ∅|Z(k)) = (1− p)

fk+1|k(X = {x}|Z(k)) = pfk+1|k(x|Z
(k))

fk+1(Zk+1 = ∅|X = ∅) = (1− pF )

fk+1(Zk+1 = ∅|X = {x}) = (1− pF )(1− pD)

Case: Zk+1 = {z}

fk+1|k(X = ∅|Z(k)) = (1− p)

fk+1|k(X = {x}|Z(k)) = pfk+1|k(x|Z
(k))

fk+1(Zk+1 = {z}|X = ∅) = pF g(z)

fk+1(Zk+1 = {z}|X = {x}) = pF (1− pD)g(z)

+ pD(1 − pF )fk+1(z|x)

Case: Zk+1 = {z1, z2}

fk+1|k(X = ∅|Z(k)) = (1− p)

fk+1|k(X = {x}|Z(k)) = pfk+1|k(x|Z
(k))

fk+1(Zk+1 = {z1, z2}|X = ∅) = 0

fk+1(Zk+1 = {z1, z2}|X = {x}) =

pF pD (g(z1)fk+1(z2|x) + g(z2)fk+1(z1|x))

In addition to the prior density and likelihood relationships, the
multi-target Bayes factors are given for the no return, single
return, and two return measurement outcomes, respectively, by

f(Zk+1 = ∅) = (1− pF )(1 − ppD)

f(Zk+1 = {z}) = pF (1− ppD)g(z)

+ ppD(1 − pF )fk+1(z)

f(Zk+1 = {z1, z2}) = ppF pD
[
g(z1)fk+1(z2)

+ g(z2)fk+1(z1)
]

1133


