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Abstract

Background: Phlebotomus papatasi vectors zoonotic cutaneous leishmaniasis. Previous expression of recombinant
P. papatasi acetylcholinesterase (PpAChE1) revealed 85% amino acid sequence identity to mosquito AChE and
identified synthetic carbamates that effectively inhibited PpAChE1 with improved specificity for arthropod AChEs
compared to mammalian AChEs. We hypothesized that the G119S mutation causing high level resistance to
organophosphate insecticides in mosquitoes may occur in PpAChE1 and may reduce sensitivity to inhibition. We
report construction, expression, and biochemical properties of rPpAChE1 containing the G119S orthologous mutation.

Methods: Targeted mutagenesis introduced the G119S orthologous substitution in PpAChE1 cDNA. Recombinant
PpAChE1 enzymes containing or lacking the G119S mutation were expressed in the baculoviral system. Biochemical
assays were conducted to determine altered catalytic properties and inhibitor sensitivity resulting from the G119S
substitution. A molecular homology model was constructed to examine the modeled structural interference with
docking of inhibitors of different classes. Genetic tests were conducted to determine if the G119S orthologous codon
existed in polymorphic form in a laboratory colony of P. papatasi.

Results: Recombinant PpAChE1 containing the G119S substitution exhibited altered biochemical properties, and
reduced inhibition by compounds that bind to the acylation site on the enzyme (with the exception of eserine).
Less resistance was directed against bivalent or peripheral site inhibitors, in good agreement with modeled inhibitor
docking. Eserine appeared to be a special case capable of inhibition in the absence of covalent binding at the acylation
site. Genetic tests did not detect the G119S mutation in a laboratory colony of P. papatasi but did reveal that the
G119S codon existed in polymorphic form (GGA + GGC).

Conclusions: The finding of G119S codon polymorphism in a laboratory colony of P. papatasi suggests that a single
nucleotide transversion (GGC → AGC) may readily occur, causing rapid development of resistance to organophosphate
and phenyl-substituted carbamate insecticides under strong selection. Careful management of pesticide use in IPM
programs is important to prevent or mitigate development and fixation of the G119S mutation in susceptible pest
populations. Availability of recombinant AChEs enables identification of novel inhibitory ligands with improved efficacy
and specificity for AChEs of arthropod pests.
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Background
Leishmaniasis is a widespread debilitating and neglected
disease of intertropical and temperate regions affecting
millions of people throughout the world. The most
common form is cutaneous leishmaniasis, with an estimated
0.7 to 1.3 million new cases annually, caused by flagellated
protozoans in the genus Leishmania transmitted by the bite
of several sand fly species [1-3]. Leishmania major is the
predominant pathogen of zoonotic cutaneous leishmaniasis
that is vectored (transmitted) in the Middle East, Asia,
Africa and Southern Europe by Phlebotomus papatasi
(Scopoli) [4-6]. The vector of cutaneous leishmaniasis,
P. papatasi, impacted U.S. military readiness and operations
in Iraq and Afghanistan [7-10], and the ability to control
P. papatasi is important to millions of people in endemic
areas of the world. The primary means to control zoonotic
leishmaniasis transmission is through reduction of rodent
habitat or rodent treatment to reduce local sand fly
populations and the use of chemical insecticides and
insecticide-treated bednets to reduce human bites by
sand flies [2,11-17]. Organophosphate and carbamate
insecticides may be used for control of insect vectors
of infectious disease, acting through the inhibition of
acetylcholinesterase in the central nervous system.
We previously reported genetic and biochemical properties
of recombinant acetylcholinesterase (AChE) of P. papatasi
(rPpAChE1), and noted that PpAChE1 had 85% amino acid
sequence identity to AChEs of Culex pipiens and Aedes
aegypti mosquito species [18]. Point mutations resulting in
production of an altered, insensitive AChE comprise a
major mechanism of resistance to organophosphate and
carbamate insecticides [19-21], and preliminary evidence of
organophosphate resistance has been reported in sand
flies [22-24]. It was previously hypothesized that the
major mutation responsible for high level resistance
to organophosphate inhibition in mosquito AChE (G119S,
Torpedo AChE nomenclature [25]) [26-28] may occur
in P. papatasi [18]. Here, we report the construction,
baculoviral expression, and biochemical properties of
recombinant PpAChE1 (rPpAChE1) containing the G119S
orthologous mutation.

Methods
Targeted mutagenesis and baculoviral expression of
rPpAChE1-G119S
A baculovirus expression vector containing the cDNA
encoding PpAChE1 [18] was used as the template for
targeted mutagenesis. A serine codon (AGC) was substituted
for the glycine codon (GGA) at nucleotide positions 837-839
[GenBank: JQ922267] to generate the G119S orthologous
mutation (Torpedo AChE nomenclature) in PpAChE1
cDNA. Essentially, high-fidelity PCR utilized phosphorylated
primers (SigmaGenosys, St. Louis, MO) PpAChE768U25-
GGC (5′Phos-CTTCTACTCAGGAACATCCACACTC-3′)

and PpAChE748L20-OPR (5′Phos-CTACCACCGAAGATC
CATAG-3′) with Phusion HotStart DNA polymerase
(New England BioLabs, Ipswich, MA) and template
DNA (pBlueBac4.5/V5-His containing PpAChE1 coding
sequence [18]) preincubated at 98°C for 30 sec followed
by 25 cycles of 10 sec at 98°C, 45 sec at 65°C, and 5 min
at 72°C with a final 10 min incubation at 72°C. The
amplified product was ligated using a Quick Ligation™
Kit (New England BioLabs) according to the manufac-
turer’s instructions, transformed into chemically compe-
tent TOP10 E. coli cells (Life Technologies, Carlsbad, CA)
and plated onto L-agar plates containing 100 μg/ml
carbenicillin (Sigma Chemical Co, St. Louis, MO).
Transformant colonies were selected, plasmid DNA
sequenced to verify correct construction of the PpAChE1
containing the G119S orthologous mutation, cotrans-
fected with Bac-N-Blue DNA into Sf21 insect cell culture
for baculovirus expression, and initially characterized in
microplates using a modified Ellman’s assay as described
previously [18].

Sand flies, RNA, cDNA synthesis, and agarose gel
electrophoresis
Sand flies used in this study were from a laboratory colony
of P. papatasi maintained at the USDA-ARS, Knipling-
Bushland U.S. Livestock Insects Research Laboratory in
Kerrville, Texas. Sand fly colony derivation, maintenance,
preparation of RNA, cDNA synthesis and agarose gel
electrophoresis were as previously described [18].

Anticholinesterases as probes of enzyme function
The experimental anticholinesterases used in this study
for enzyme characterization are shown in Figure 1. They
were synthesized and purified via established methods
[29-31] and had purities of at least 95%. The synthesized
experimental carbamates were as follows: 1, 2-((2-ethylbu-
tyl)thio)phenyl methylcarbamate; 2, 3-(tert-butyl)phenyl
methylcarbamate; 3, 1-(sec- butyl)-1H-pyrazol-4-yl methyl-
carbamate; 4, 1-isopentyl-1H-pyrazole-4-yl methylcarba-
mate; 5, 1-isobutyl-1H-pyrazol-4-yl methylcarbamate; 6,
N1,N6-bis(1,2,3,4-tetrahydroacridin-9-yl)hexane-1,6-diamine;
and 7, N1,N7-bis(1,2,3,4-tetrahydroacridin-9-yl)heptane-
1,7-diamine. In addition, a range of commercially available
AChE inhibitors were purchased. The inhibitors eserine
(99% pure), propoxur (99%), carbofuran (99%), donepezil
(98%), tacrine (99%), and ethidium bromide (95%) were
all purchased from Sigma–Aldrich (St. Louis, MO, USA).
D-Tubocurarine (99%) was obtained from Alfa Aesar (Ward
Hill, MA, USA).

Biochemical characterization and inhibition assays
In this study, three categories of AChE inhibitors were
chosen to define the pharmacological profiles of wild
type and G119S rPpAChEs. They included catalytic site
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inhibitors (organophosphates, carbamates, tacrine, and
eserine), peripheral site inhibitors (tubocurarine and
ethidium bromide), and bivalent inhibitors (bis(8)-tacrine,
bis(12)-tacrine, and donepezil). Note that tacrine differs
from the other catalytic site inhibitors in that it is reversible,
and does not covalently bind the catalytic serine. Tacrine
binds in the choline-binding site, and does not extend into

the oxyanion hole or acyl pocket [32]. The compounds
were made into stock solutions by dissolving in DMSO,
and all enzyme assays were run in constant 0.1% DMSO as
a carrier. Inhibition of rPpAChE by these inhibitors
was determined using the Ellman assay in a 96-well
plate configuration [33]. The rPpAChE cell lysates were
pre-incubated with at least six concentrations of inhibitors

Figure 1 Chemical structures and names of experimental anticholinesterases used in this study. Bold numbers beside the names denote
the compounds as presented in the text. For the bis(n)-tacrines, “n” refers to the number of methylene groups in the linker. Each compound was
assigned to an inhibitor class as given in Table 1.
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for 30 minutes at room temperature prior to adding
300 μM 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB) and
400 μM acetylthiocholine enzyme substrate (AcSCh),
which were both dissolved in 0.1 M sodium phosphate
buffer, pH 7.0. The kinetic reading of absorbance at
405 nm was started immediately after adding DTNB
and AcSCh with a Dynex Triad multimode plate reader
(Dynex Technologies, Chantilly, VA, USA). Inhibitor
concentration-response curves and inhibition parameters
were constructed by nonlinear regression to a four
parameter logistic equation using GraphPad Prism 4.0c
software (GraphPad Software, San Diego, CA, USA).

Construction of a ligand docking molecular homology
model of PpAChE1
A molecular homology model of P. papatasi AChE1
(wild type) was built in ICM [34] by homology [35] based
on a 2.6 Å resolution mouse AChE X-ray structure,
Protein Data Base code 4B84 [36]. The template enzyme
has 48% overall identity with the target sequence. Local
homology in the active site region was significantly
stronger. Seven tightly bound water molecules in the
vicinity of the active site in the template structure
were transferred into the model and their positions
were refined by energy optimization (water molecules
number 46, 49, 52, 55, 71, 72 and 146). The G119S
mutation (position 256 in PpAChE1 sequence, GenBank:
AFP20868.1) was next introduced into the model (in
ICM). After optimization of the side chain conformation
within the otherwise rigid protein, residual clashes of S256
with F425 and Y258 (P. papatasi numbering) were
detected. The F425 clash was relieved by relaxation of its
side-chain, while the Y258 clash could not be relieved by
side chain relaxation alone but was resolved after backbone
relaxation within the G255-S259 residue window (i.e.,
a loop including ±1 residue around S256 and Y258 each).
Relaxation resulted in 1.1 Å /0.6 Å RMSD displacement
of, respectively, all heavy atoms/only backbone atoms
within this region. Docking of representative ligands was
performed in ICM Docking module [37,38]. For ligands
with a covalent inhibition mechanism (carbamates), the
tetrahedral transition state on the reaction pathway
between non-covalently bound inhibitor and acylated
enzyme was modeled, using ‘covalent docking’ protocol
in ICM [34]. Because observed AChE ligand-bound
conformations often vary in the sidechain conformation of
residue F/Y330 (T. californica numbering) in the active
site gorge, a multiple receptor conformation ‘4D docking’
approach [39] was applied to sample two rotamers of
Y465 (P. papatasi numbering). Three lowest-scoring
conformations were retained in each docking simulation,
visually inspected and compared to available X-ray
structures of the same or similar ligands bound to AChE
(of other species such as mouse and T. californica). The

final models chosen were either the lowest or second-
lowest conformation (the latter was selected if it was in a
significantly better agreement with experimentally observed
interaction modes). To identify potentially adverse
interactions caused by the G119S (Torpedo californica
numbering) mutation, docked ligand/PpAChE (wt) com-
plexes were superimposed with PpAChE1-G119S model
and superimposed structures were analyzed for ligand/
PpAChE-G119S clashes.

Test for G119S codon sequence in P. papatasi laboratory
colony PpAChE1
The PCR-RFLP assay of Weill et al. [28] was modified
to test for the presence of the G119S orthologous
mutation in our laboratory colony of P. papatasi. A
segment of P. papatasi genomic or cDNA was amplified
by PCR using primers PpAChE-793U17 (5′-CCACGTCC
CAAAAACTC-3′) and PpAChE-842 L23 (5′-GAGTGTG
GATGTTCCTGAGTAGA-3′) and the 72 bp amplicon
was tested for the presence of the G119S orthologous
codon by incubation with Alu I restriction endonuclease
(New England BioLabs) followed by gel electrophoresis.
Positive (G119S orthologous rPpAChE1, this report) and
negative (wild type rPpAChE1, [18]) control templates were
used to validate the assay. If the G119S orthologous codon
was present in the template, Alu I digestion resulted in
cleavage of the DNA amplicon to 25 bp and 47 bp
segments. A similar PCR-RFLP test was used to test
for sequence polymorphisms (GGA vs GGC) in the
G119S orthologous codon, using PCR primers PpAChE-
814U26AluC (5′-GTTATGCTATGGATCTTCGGTGG
TAG-3′) and PpAChE-854 L22 (5′-TCGTACACATC
GAGTGTGGATG-3′). Alu I digestion of the 54 bp ampli-
con produced 28 bp +36 bp fragments if position 839
[GenBank: JQ922267] was the C nucleotide. Positive and
negative control templates were used to validate the assay.

Results
Targeted mutagenesis and baculoviral expression of
rPpAChE1-G119S
The rPpAChE1 constructed by targeted mutagenesis
(rPpAChE1-G119S) was completely sequenced and verified
to contain the G119S orthologous codon (AGC) at
nucleotide positions 837–839 [GenBank: JQ922267] of
rPpAChE1 cDNA (Figure 2). As shown in Figure 3, the

Figure 2 Partial PpAChE1 cDNA sequence containing G256S
codon identified as OP-R in An. gambiae (G119S) and other
insects. Numbers designate beginning and ending nucleotide
sequence numbers from GenBank JQ922267.1.
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single amino acid substitution (G119S) in rPpAChE1-G119S
resulted in greater than 1000-fold reduction in sensitivity
to paraoxon inhibition compared to rPpAChE1 (wild
type). The G119S orthologous substitution also exhibited
a 4-fold increased Km (Michaelis-Menten constant; i.e.,
concentration of substrate producing ½ maximal velocity)
for the substrate acetylthiocholine (AcSCh), where the
Km (μM) values were 24 and 98 for rPpAChE1and
rPpAChE1-G119S, respectively.

Biochemical characterization and inhibition assays
As shown in Figure 3, paraoxon was a potent inhibitor of
wild type enzyme (rPpAChE1), but not rPpAChE1-G119S.

The other anticholinesterases (Figure 1) demonstrated a
wide range of potencies as well as resistance ratios for the
inhibition of both strains of rPpAChE (Table 1). The
calculated IC50 values and confidence limits had correlation
coefficients, R2, of at least 0.95, except those curves with
very wide confidence limits due to the high resistance of
the G119S rPpAChE to OPs and carbamates. For wild type
rPpAChE, all of the catalytic site inhibitors and bivalent
inhibitors showed moderate to high potencies to inhibit
enzyme activity, with IC50 values from the middle
nanomolar (e.g., propoxur and paraoxon) to sub nanomolar
concentrations (compound 7), although most compounds
fell in the range of 3–76 nM (Table 1). On the other hand,
the two peripheral site inhibitors had low potencies for
rPpAChE inhibition of 17 μM (ethidium bromide) and
143 μM (tubocurarine) analogous to similarly low affinity
of the peripheral site inhibitor propidium for mammalian
AChE [40].
In contrast, the G119S rPpAChE showed strong resist-

ance to the organophosphates (paraoxon and malaoxon)
and all phenyl-substituted methylcarbamates (compounds
1, 2) with resistance ratios over 450. Interestingly, a
group of alkyl-substituted pyrazole carbamates (compounds
3, 4, and 5), which include a smaller ring than phenyl
methylcarbamates, had much lower resistance ratios
(18–64 fold) compared to phenyl methylcarbamates
(Table 1). All other peripheral site inhibitors, bivalent
inhibitors, and a catalytic site inhibitor, tacrine, showed
the lowest resistance ratios, which were ≤7.

Figure 3 Relative sensitivity of the altered rPpAChE1-G119S
enzyme to paraoxon inhibition was reduced by over 1000-fold
as a result of the single amino acid substitution.

Table 1 Inhibition of rPpAChE1 and rPpAChE1-G119S by different classes of AChE inhibitors

Compound Inhibitor class Wild type rPpAChE1 G119S rPpAChE1 Resistance
RatioaIC50 (95% CI) aIC50 (95% CI)

Paraoxon acylation site 2.863 (1.862–4.401) 3,819 (3,205–4,550) 1336

Malaoxon acylation site 4.361 (3.184–5.972) 1,972 (1,665–2,340) 452

Eserine acylation site 3.2 (2.6–4.0) 86 (73–102) 27

Propoxur acylation site 220 (147–329) 4,227,000 (−−)b 19,213

Carbofuran acylation site 24 (17–33) 124,000 (−−) 5,200

1 acylation site 14 (10–19) 236,800 (7,404–7,575,000) 17,000

2 acylation site 36 (28–48) 123,100 (−−) 3,400

3 acylation site 13 (9.4–19) 235 (164–336) 18

4 acylation site 75 (36–152) 4,775 (3,048–7,482) 64

5 acylation site 76 (50–117) 2,128 (1,267–3,573) 28

Tacrine choline binding site 67 (56–81) 388 (318–473) 5.8

6 bivalent 0.42 (0.35–0.52) 2.7 (2.3–3.2) 6.4

7 bivalent 14 (13–15) 35 (28–42) 2.5

Donepezil bivalent 52 (39–70) 262 (202–341) 5.0

Tubocurarine peripheral site 143,200 (94,630–216,700) 661,800 (290,000–1,511,000) 4.6

Ethidium Bromide peripheral site 17,100 (13,890–21,060) 6,433 (4,380–9,448) 0.4
aIC50 = inhibitor concentration producing 50% inhibition of activity (in nM), where (95% CI) = 95% confidence interval.
b(−−) denotes wide confidence limits from incomplete inhibition of rPpAChE1-G119S.
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An exception was eserine, which despite having a large
pyrroloindole ring system, displayed much less cross
resistance than the phenylcarbamates, but a bit more than
tacrine and the bivalent inhibitors (Table 1). Current data
with wild type rPpAChE showed good correlation to
that previously published for 11 compounds (eserine,
propoxur, carbofuran, tacrine, d-tubocurarine, ethidium
bromide, donepezil, 1, 2, 6, and 7), which differed only in
that a shorter 10 min preincubation with inhibitor was used
[29]. The data sets collected in both studies for rPpAChE
were not normally distributed (D’Agostino & Pearson
omnibus normality test), but were highly correlated with
nonparametric Spearman r = 0.884 (0.59-0.97; 95% CL) and
two-tailed P < 0.0006.

Inhibitor docking in a molecular homology model of
PpAChE1
A molecular homology model of PpAChE1 (Figure 4)
was constructed based on murine AChE. Selected inhibi-
tors were docked into the model which was then adjusted
for the G119S (T. californica numbering) mutation at

PpAChE1 position 256. As shown in Figure 4, propoxur
(4a) docked into the molecular homology model exhibits a
fairly large region of Van der Waals overlap, suggesting that
the G119S mutation (S256 in the model) results in a large
interference with propoxur docking, in agreement with the
results presented in Table 1 (resistance ratio 19,213).
Eserine (4b) appears to exhibit a similarly large region
of Van der Waals overlap, suggesting that it should
also exhibit a significantly high resistance ratio in the
G119S mutant; however, the experimentally measured
resistance ratio (Table 1) is only 27. Compound 4 (4c)
exhibits a significantly reduced Van der Waals overlap, in
relative agreement with the measured resistance ratio of
only 64. Tacrine (4d) is not directly impacted by the
G119S substitution, but may be somewhat affectedby
desolvation of the catalytic serine (S336) exhibiting a
resistance ratio of only 5.8. Donepezil (4e) also shows no
direct impact with the G119S substitution and provides a
minimal resistance ratio of only 5. Similarly, ethidium (4f)
exhibits no interaction with the G119S substitution (S256)
and exhibits a resistance ratio of 0.4.

a) b) c)

d) e) f)

Figure 4 Representative inhibitors (from Table 1) docked into PpAChE1 (wild type) and superimposed into the G119S (PpAChE position
S256) mutant: 4a) propoxur, a phenylcarbamate; 4b) eserine, a cationic carbamate; 4c) pyrazolecarbamate (compound 4), a ‘small core’
carbamate; 4d) tacrine, a non-covalent active site inhibitor; 4e) donepezil, a bivalent inhibitor; 4f) ethidium, a peripheral site inhibitor. Van
der Waals surfaces of the inhibitor (green) and mutated serine S256 (PpAChE1 sequence numbering) hydroxyl (red) are shown. Red contour lines
delineate the overlap (clash) region (where present). Key residues such as W221 (active site ‘floor’), W417 (peripheral site wall), catalytic serine S336 and
histidine H576, as well as sidechains F425 and Y258 most affected by the mutation at G/S256 are shown in ball-and-stick representation.
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Test for G119S codon sequence in P. papatasi laboratory
colony PpAChE1
The PCR-RFLP assay adapted from Weill et al. [28] failed
to demonstrate the presence of the G119S orthologous
mutation in our laboratory colony of P. papatasi; however,
direct sequencing of a small percentage of cDNA
clones that included the codon corresponding to the
G119S orthologous site in PpAChE1 and a PCR-RFLP
assay designed to detect the presence of a GGC codon at
nucleotide positions 837–839 [GenBank: JQ922267]
both indicated the presence of polymorphic GGC/GGA
sequence at the codon position orthologous to the G119S
mutation in mosquitoes (Figure 5). Preliminary data sug-
gests that the GGC codon at this locus is present in our la-
boratory flies at an estimated frequency between 10-20%.

Discussion
The G119S mutation of rPpAChE has significant effects
on the catalytic properties and inhibitor sensitivity of the
enzyme. The four-fold increase seen in Km is similar to
the two-fold increase in Km seen in the G119S mutant
of Anopheles gambiae AChE [30]. Furthermore, high
enzyme resistance ratios are seen for aryl methylcarbamate
(e.g., propoxur, carbofuran), as was seen for AgAChE-G119S
[30,41]. High resistance ratios are also seen for paraoxon
and malaoxon. Like the aryl methycarbamates, these
compounds acylate the active site serine (acylation
site inhibitors) and extend into the oxyanion hole,
where G119 is located. In contrast, the pyrazol-4-yl
methylcarbamates (Table 1, compounds 3–5) possess
significantly smaller insensitivity ratios, as we previously

observed for AgAChE-G119S [30]. The smaller volume of
pyrazol-4-yl core inhibitors (Figure 1, compounds 3–5)
relative to aryl methylcarbamates presumably allows them
to effectively enter the crowded active sites of G119S
mutant Anopheles gambiae AChE and rPpAChE1-G119S.
Tacrine is also a catalytic site inhibitor, but unlike
carbamates and organophosphates, binds in the choline-
binding site, rather than the oxyanion hole. Thus, tacrine
inhibition is largely unaffected by the G119S mutation
and the resistance ratio is only 5.8 (Table 1). Similarly
low resistance ratios are seen for bivalent inhibitors
(compounds 6,7, and donepezil) and peripheral site
inhibitors. Since neither class of inhibitor bind AChE
near G119S, the mutation does not affect inhibition
by these compounds.
The molecular homology model docking of selected

inhibitors (Figure 4) is in good general agreement with
the measured resistance ratios of selected inhibitors. The
G119S mutation (S256) in the PpAChE1 model (Figure 4)
interferes with positioning of phenylcarbamates for
acylation transition state, while for non-covalent inhibitors
there are no direct steric issues. Desolvation of serine OH
might explain small residual resistance. The exception is
the docking model for eserine (Figure 4b), which is a
special case among carbamates because as a bulky cationic
lipophilic moiety, it may function as a non-covalent inhibi-
tor even if acylation (i.e., covalent inhibition mechanism) is
impaired by the mutation. For the three carbamates,
docking was done assuming a covalent inhibition mechan-
ism (actual models are of the acylation transition state).
If eserine is modeled non-covalently, it could still have
hydrophobic and cation-pi interactions at least as exten-
sive as tacrine, therefore this discrepancy may not have so
much to do with homology model accuracy as with more
complex mechanistic issues.
In summary, results indicate that the single amino acid

substitution orthologous to the G119S mutation responsible
for high level resistance to organophosphate and carbamate
insecticides in mosquitoes can also generate high level
resistance to inhibition by acylation site inhibitors in
recombinant P. papatasi AChE1. The recent reports of
aryl methylcarbamates that were shown to have improved
targeting of pest AChEs relative to mammalian AChEs
[41,42], suggests that use of the recombinant enzymes
with various amino acid substitutions may offer platforms
for SAR modeling and in vitro screening to design
and identify novel inhibitors with specific targeting of
insecticide-insensitive AChEs that also exhibit improved
mammalian safety profile. Further studies are planned or
underway to evaluate the effects of additional mutations in
PpAChE1, to evaluate the presence of G119S orthologous
codon polymorphism in natural populations of P. papatasi,
to evaluate additional synthetic ligands to assess their
efficacy against wild type and “mutant” forms of rPpAChE1,

Figure 5 PCR-RFLP assay for polymorphism in laboratory P.
papatasi. Template DNA (as indicated for each lane) was amplified by
PCR then subjected to digestion with Alu I and electrophoretically
separated on a 4% Metaphor agarose gel. Lane: Std, DNA size
standards; 1, no template negative control; 2, wild type PpAChE1
plasmid; 3, PpAChE1-G119S plasmid; 4–6, genomic DNA extracted from
individual P. papatasi colony females fed sugar water only, no blood.
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and to utilize molecular modeling and structure activity
relationships (SARs) to improve construction and selection
of inhibitory lead chemical structures.
In mosquitoes, the G119S substitution produces high

level organophosphate and carbamate insecticide resistance
but also a high fitness cost (in the absence of insecticide)
when homozygous [43-45], presumably due to 30-fold
reduction in turnover number for substrate and approxi-
mately 70% decrease in cholinergic activity [46]. Reduction
in G119S allele frequency was reported in Lebanon over a
3–4 year period presumably resulting from switching to
pyrethroids for mosquito control and loss of the G119S
allele due to fitness cost in the absence of inhibitor
selection pressure [47]. In spite of the fitness cost,
the G119S-containing ace-1 allele is widespread
throughout the world [48] and the fitness cost may be re-
duced in the presence of kdr-resistance to pyrethroids [49]
or by duplication of the ace-1 allele to permit maintenance
of a heterozygous state, essentially fixing it in the
population [50-52]. Agricultural pesticide use and
mosquito control efforts have largely resulted in the
spread of the ace-1 duplication in West Africa [53].
Together, these findings provide strong warnings
about the need for careful use of insecticides that
provide strong selection for resistance to organophosphates
and carbamates. Once the G119S substitution occurs,
pyrethroid use may allow reduction of the frequency of the
G119S allele [47], or selection for kdr-based resistance to
pyrethroids may result in multiple-resistant pest popula-
tions by reducing fitness cost of the G119S allele [49]. The
finding of G119S orthologous codon polymorphism in a
laboratory colony of P. papatasi strongly suggests that a
single nucleotide transversion (GGC→AGC) might readily
occur, causing relatively rapid development of resistance to
organophosphate insecticides if subjected to strong selec-
tion. Careful management of pesticide use in IPM programs
is important to prevent or mitigate development and
fixation of the G119S mutation in susceptible pest popula-
tions. Availability of the recombinant AChEs may enable
identification of novel inhibitory ligands with improved
efficacy and specificity for AChEs of arthropod pests.

Conclusions
We demonstrated that the G119S orthologous substitution
in PpAChE1 produces high levels of resistance to OP and
carbamate inhibitors, suggesting a strong likelihood of re-
sistance development if the subject codon is polymorphic
(GGA+GGC) in natural populations of P. papatasi. PCR
and sequencing tests indicate that the G119S orthologous
codon is polymorphic (GGA or GGC) in our laboratory
P. papatasi colony. We are currently seeking P. papatasi
specimens from natural populations worldwide to deter-
mine if the G119S orthologous codon is polymorphic in
natural populations.

As noted by Weill et al., “The development of new
insecticides that can specifically inhibit the G119S
mutant form of acetylcholinesterase-1 will be crucial
in overcoming the spread of resistance” [26]. Use of the
recombinant P. papatasi AChE1 and revised molecular
models may facilitate rapid screening in silico and in vitro
to identify novel PpAChE1 inhibitor ligands, and compara-
tive studies on biochemical kinetics of inhibition.
Construction and expression of mutant forms of PpAChE1
will facilitate the development of rapid molecular assays
and other tools to screen and characterize mutations giving
rise to organophosphate-insensitive PpAChE1. Addition of
new molecular data on PpAChE1may also be used in
modeling studies to predict in vivo insecticidal activity
for novel inhibitors as described by Naik et al. [54].
Availability of the recombinant PpAChE1 will enable the
creation of mechanism-based screens to discover more
effective inhibitors that may be developed to innovate
safer vector control technologies.
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