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ABSTRACT
We consider the problem of sampling a node-weighted
graph. The objective is to infer the values of all nodes from
that of a minimum subset of nodes by exploiting corre-
lations in node values. We first introduce the concept of
information dominating set(IDS). A subset of nodes in a
given graph is an IDS if the value of these nodes is suffi-
cient to infer the information state of the entire graph. We
focus on two fundamental algorithmic problems: (i) how
to determine whether a given subset of vertices is an IDS;
(ii) how to construct a minimum IDS. Assuming binary
node values and the local majority rule, we show that the
first problem is co-NP-complete and the second problem is
NP-hard in a general network. We then show that in acyclic
graphs, both problems admit linear-complexity solutions
by establishing a connection between the IDS problems
and the vertex cover problem. For general graphs, we de-
velop algorithms for solving both problems based on the
concept ofessential differential set. These results find ap-
plications in opinion sampling such as political polling and
market survey in social-economic networks, and inferring
epidemics and cascading failures in communication and
infrastructure networks.

Index Terms— sampling; information dominating set; NP-
complete; opinion polling; social networks.

1 Introduction
In this paper, we introduce and study the problem of criti-
cal sampling in node-weighted graphs. The objective is to
infer the values of all nodes in a given graph from that of
a minimum subset of nodes by exploiting correlations in
node values.

This problem is motivated by opinion sampling in social
or economic networks for applications such as political
polling and market survey. Specifically, in social and infor-
mation networks, it is often necessary to gauge the general
opinion of a large population on a certain issue. Since
polling often incurs a cost (either monetary or in terms of
delay), an important question is how to infer the opinion of
the entire network through a strategic sampling of a min-
imum subset of nodes by exploiting correlations in node
opinions.

Besides the applications in social-economic networks, the
problem of critical sampling over graphs and the results
obtained in this paper also bear significance in identifying
critical nodes in information networks. Identifying such
critical nodes has important applications in learning and in-
ference under resource constraints as well as security con-
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siderations in terms of protecting critical information hubs.
When the value of a node indicates whether the node is
infected, our results also apply to inferring, tracking, and
controlling epidemics, worms and virus in communication
networks, and cascading failures in infrastructure networks.
This problem may also be applicable to data compression,
given that the identified subset of nodes completely repre-
sents the information of the entire network.

1.1 Information Dominating Set
We present an algorithmic study of critical sampling over
graphs. We first introduce the concept of information
dominating set (IDS). A subset of nodes in a given node-
weighted graph is an IDS if knowing the values of nodes
in this subset is sufficient to infer the values of all nodes
in the graph. We focus on two fundamental questions: (i)
given a subset of nodes, how to determine whether it is an
IDS; (ii) how to construct an IDS with a minimum number
of nodes for a given graph. The former is referred to as the
IDS checker (IDSC) problem, and the latter the minimum
IDS (MIDS) problem.

While the concept of IDS applies to general information
and information correlation models, in this paper, we focus
on binary node values and adopt the local majority rule to
model node correlation. Specifically, each node in the given
graph has a binary value that is consistent with the majority
opinion of its neighbors. Binary node values are sufficient
to model yes/no opinions in social-economic networks and
to indicate whether a node is infected in the study of epi-
demics and cascading failures. Local majority rule is also
commonly used in studying opinion dynamics in social net-
works (see, for example, [1,2]).

For binary node values and under the local majority cor-
relation model, we show that the IDSC problem is co-NP-
complete and the MIDS problem is NP-hard in a general
graph. We then focus on graphs with special structures, in
particular, acyclic graphs. We show that in acyclic graphs,
both IDSC and MIDS problems admit linear-complexity
solutions by establishing a connection between the IDS
problem and the vertex cover problem. Our technique for
establishing the hardness of the IDS problems is based
on a novel graph transformation that transforms the ID-
S problems in a general graph to that in an odd-degree
graph. This graph transformation technique not only gives
an approximation algorithm to the NP-hard problem, but
also provides a useful tool for general studies related to
the local majority rule. For general graphs, we develop an
efficient algorithm based on the concept of essential differ-
ential set to solve both the IDSC and the MIDS problems.
This approach applies to general node values and general
correlation models.
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1.2 Related Work
Statistical sampling is a classic problem developed by Ney-
man in 1934 [3]. Different from the deterministic model
and the algorithmic approach taken in this paper, statisti-
cal sampling assumes that the value associated with each
node is a random variable obeying a known probability
distribution, and designing the sampling strategy amounts
to choosing the probability with which each node will be
sampled. More recent work on statistical sampling can be
found in [4–7].

In recent years, the concept of uniqueness set in a graph was
proposed and studied in [8, 9] for sampling Paley-Wiener
functions on graphs. However, the uniqueness set is differ-
ent from the information dominating set because the former
uniquely determines a bandwidth limited function while the
information on IDS uniquely determines the information in
the rest of the graph.

The minimum vertex cover (MVC) [10, 11] and the mini-
mum dominating set (MDS) [12, 13] are related to the IDS
problem. The MVC asks for a minimum subset of vertices
such that each edge in the original graph is adjacent to at
least one vertex in this subset. And the MDS asks for a
minimum subset such that each vertex is either in this sub-
set or adjacent to at least one vertex in this subset. The
minimum IDS problem is inherently more complex than
MVC and MDS. For instance, as shown in this paper, it is
co-NP-complete to verify whether a given subset is an IDS,
while MVC and MDS have trivial polynomial time check-
ers simply based on their definitions.

The local majority rule has been adopted in studying opin-
ion dynamics in social networks (see, for example, [1, 2]).
The focus there is on characterizing the evolution of net-
work opinions when each node dynamically changes its
opinion by following the majority opinion of its neighbors.
But absent from that line of work is the inference problem,
which is the main objective of this paper: we aim to in-
fer the network opinionsafter the opinion of each node has
reached an equilibrium value.

2 Problem Formulation
In this section, we introduce the concept of IDS and formu-
late the IDSC and the MIDS problems. While the concept
of IDS applies to critical sampling of graphs with general
node weights and node correlations, we present the basic
concepts and main results in the context of opinion sam-
pling where nodes are binary valued satisfying the local
majority rule.

2.1 Information Dominating Set
Given a graphG = (V,E) with n = |V | vertices, abina-
ry opinion profileµ onG is a binary vector(µv1 , . . . , µvn)
indicating whereµvi ∈ {0, 1} represents the opinion of
vertexvi. For a given a binary opinion profileµ onG, the
neighbors of a vertexvi are partitioned into two groups:
the same-minded and opposite-minded neighbors, depend-
ing on whether they share the same opinion withvi. In
Fig. 1, the same-minded neighbors ofv3 arev1, v2 while
its opposite-minded neighbor isv4.

A valid opinion profileµ under thelocal majority rule in

G is a binary opinion profile such that for each vertexvi,
the number of its same-minded neighbors is greater than or
equal to the number of its opposite-minded neighbors. In
other words, the opinion of each vertex is consistent with
the majority opinion among its neighbors. If there is no
such majority opinion, this vertex may take either opinion.
Fig 1 demonstrates a valid opinion profileµ.

Fig. 1: The colors of vertices represents their opinions. In this ex-
ample, the opinion profile is (1,1,1,0,0,0,0) and it is a valid opin-
ion profile. Though the neighbors of bothv1 andv7 are half black
half white, they are still valid based on the definition.

Thevalid opinion profile setU of a given graphG is the set
of all valid opinion profiles onG.

An information dominating set(IDS) in a given graphG
is a subset of verticesD ⊆ V such that under any opinion
profile, the opinions of vertices inD is sufficient to infer the
opinions of all the other vertices. Based on the definition,
IDS has an important property as follows.
Property 1. A subset of verticesD of a graphG is an IDS
iff. for any pair of different valid opinion profilesµ, ν, there
exists a vertexv ∈ D such thatµv 6= νv.

The significance of Property 1 is that it provides a way to
determine whether a subset of vertices is an IDS or not
without considering any specific inference method. It is
used repeatedly in this paper. Fig. 2 demonstrates the valid
opinion profile setU and an IDS.

We focus on two problems on IDS. The IDS checker (ID-
SC) problem, seeks to determine whether a given set is an
IDS. The second problem we consider is the main objective
of this paper, which is to find the minimum IDS (MIDS).
In hardness analysis, the corresponding decision problem
is: given a graphG and a parameterk, does there exist an
IDSD in G with size at mostk.

Fig. 2: There are only four valid opinion profiles on this graph.
By Property 1, subset{v3, v4} is an IDS.

2.2 Odd-degree Graph Transformation
We propose a graph transformation that allows us to study
both the IDSC and the MIDS problems by considering odd-
degreed graphs only without losing generality of the results.
This transformation plays an important role in the hardness
analysis and algorithm development given in subsequen-
t sections.

Given an arbitrary graphG = (V,E), we first copy every
vertex and edge toG′. Then, for every even degree vertex
vi in G′, we attach an auxiliary neighborui (see Fig. 3).
We callG′ theodd-degree transformationof G. Given any
valid opinion profileµ in G, we construct its odd-degree
transformation opinion profileµ′ by µ′

vi
= µvi andµ′

ui
=

µvi . In other words, those vertices derived from the original
graph take the original opinions, and every auxiliary vertex



take the opinion of the vertex to which it is attached. Fig. 3
demonstrates an example of the odd-degree transformation
fromG to G′ and a valid opinion profileµ to µ′.

Fig. 3: An example of the odd-degree transformation fromG to
G′. The round vertices inG′ are derived fromG and the square
vertices are the auxiliary vertices. It also shows the odd-degree
transformation fromµ toµ′.
The following theorem establishes a reduction from both
IDSC and MIDS inG to the corresponding problems inG′.
All results in this paper are stated without proof due to the
space limitation.
Theorem 1. There exists an IDSD in G if and only if there
exists an IDSD′ in G′ such that for any vertexvi ∈ D,
eithervi ∈ D′ or its auxiliary vertexui ∈ D′.

Based on Theorem 1, for both the IDSC and MIDS prob-
lems, it suffices to consider only odd-degree graphs. Un-
less otherwise noted, the graphs considered in the remain-
ing part of this paper are all odd-degree graphs.

3 Hardness Analysis
In this section, we study the computational hardness of ID-
SC and MIDS. The following theorem establishes the co-
NP-completeness of the IDSC problem.
Theorem 2. Given a graphG and a subset of verticesD,
it is co-NP-complete to determine whetherD is an IDS of
G.

Since the checker problem is co-NP-complete, the mini-
mum IDS problem may not belong to NP space. The fol-
lowing theorem establishes the NP-hardness of the MIDS
problem.
Theorem 3. Given a graphG, it is NP-hard to find the
minimum IDS.

4 IDS in Acyclic Graphs
In this section, we consider both IDSC and MIDS problem
in acyclic graphs. An acyclic graph is a forest (i.e., a col-
lection of trees). Since each connected component of the
graph can be considered separately when studying the IDS
problems, it suffices to focus on trees. We show, in Lem-
ma 1, that an IDS without any leaf node is a vertex cover
in an odd-degree tree. Since both an IDS or a vertex cover
with leaf vertex can be transformed into a same size IDS or
a vertex cover without any leaf vertex, respectively, we can
solve IDSC and MIDS by solving the vertex cover problem.
Lemma 1. Given an odd-degree treeG, an IDS that does
not contain any leaf is also a vertex cover inG.

The following lemma extends this result to any IDS.
Lemma 2. Given any IDSD, ∃ an IDSD′ that contains
no leaf nodes and has a size smaller than or equal toD.

With Lemma 2, we can solve the IDSC on a tree by check-
ing whether its non-leaf transformation is a vertex cover.
Furthermore, the following theorem provides us a way to
find the MIDS.
Theorem 4. The non-leaf minimum vertex cover is a mini-

mum IDS.

Since the non-leaf minimum vertex cover can be solved in
linear time by a greedy algorithm, we can solve the MIDS
on trees in linear time.

5 IDS in General Graphs
In this section, we develop an efficient algorithm for solv-
ing both the IDSC and the MIDS problems in general
graphs. Based on the definition of IDS and Property 1, a
brute-force solution to these problems is to consider every
pair of valid opinion profiles. However, given the expo-
nential order of the number of valid opinion profiles, this
approach requiresO(22n) time complexity. To address this
issue, we introduce a concept called theessential differen-
tial set(EDS) that is much smaller in number than the valid
opinion profile pairs, but still contains all the information
needed for solving both the IDSC and the MIDS problems.
An efficient algorithm, referred to as the wall separation
algorithm, is then developed to find the EDS.

5.1 Essential Differential Set
We define Essential Differential Set (EDS) and establish
the connection between EDS and the IDS problems.

A set representationS(µ) of a opinion profileµ is the set
of vertices with opinion1 in µ, i.e., the setS(µ) = {v ∈
V |µv = 1}. A differential setD(µ, ν) is the exclusive dis-
junction of the sets representing two valid opinion profiles,
i.e., D(µ, ν) = S(µ) ⊕ S(ν). The essential differential
set is the family of all differential sets such that no other
differential set is a subset of any set in the EDS. Based on
Property 1 a subsetD is an IDS if each differential set con-
tains at least one vertex fromD, i.e., subsetD is a hitting
set of the family of differential sets. The following theorem
formally establishes the connection between EDS and IDS.
Theorem 5. A subset of verticesD in a graphG is an IDS
if and only ifD is a hitting set of the EDS ofG.

Based on Theorem 5, given the EDSE of a graphG, we
can solve the IDSC problem by checking whether the given
subset is a hitting set ofD or not. And furthermore, the
MIDS problem becomes the minimum hitting set problem.
In Sec. 5.3, we demonstrate that the average size of EDS
is much smaller than the average number of valid opinion
profiles in all our simulation cases. Hence the concept of
EDS significantly reduces the problem size. What remains
is to find the EDS given a graphG. We propose a wall sep-
aration algorithm in the next subsection for this problem.

5.2 The Wall Separation Algorithm
Based on its definition, the EDSE of a given graphG can
be found by the following steps: list all the valid opin-
ion profiles by exhaustive search; list all differential sets
by considering all pairs of valid opinion profiles; eliminate
those differential sets that are proper super sets of other d-
ifferential sets. However, this procedure requires all the
valid opinion profiles. We propose a wall separation algo-
rithm (WSA) that utilizes a double layered “wall” to parti-
tion this problem to smaller sub-problems and increase the
efficiency. Before that, let us first define some terminolo-
gy used in the algorithm. Anopinion sub-profileµV ′

is an
opinion profile on a subset of verticesV ′. The opinions of
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Fig. 4: The sub-profiles are on the vertices enclosed by the box.
In (a), it is not a VOSP since vertexv has opinion0 (denoted
by white) but two of its three neighbors have opinion1 (denoted
by black). In (b), it is a VOSP even though in a complete valid
opinion profile, all three vertices are either all black or all white.

the remaining vertices are undetermined. Avalid opinion
sub-profile(VOSP)µV ′

is a opinion sub-profile such that
there is no known violation of the local majority rule for
any vertex. Fig. 4 demonstrates two examples of opinion
sub-profiles, one of which is valid, the other is not.

A VOSPµV1 underanother VOSPνV2 such thatV1∩V2 =
∅, denoted byµV1 |νV2 , is an opinion sub-profile such that
the combination of both sub-profiles (an opinion profile
such that the opinions onV1 follows µV1 , the opinions of
V2 follows νV2 and the opinions of the remaining vertices
are unknown) is still valid.

Now consider that graphG is partitioned intok + 1 non-
overlapping parts: a “double-layered wall”W andk other
subgraphsV1, . . . , Vk such that the distance betweenVi and
Vj is at least3 hops. The following theorem states that
under such a partition, given a particular sub-profile on the
wall W , the sets of VOSPs onV1, . . . , Vk are independent.
Theorem 6. Given a graphG, consider an arbitrary par-
tition of its vertices{W,V1, . . . , Vk} such that the distance
betweenVi andVj for arbitrary i 6= j is at least3. There
exists a valid opinion profileµ in G if and only if there ex-
ists a VOSPνW and VOSPsνV1 |νW , . . . , νVk |νW under
νW such that all the VOSPs are consistent withµ.

Based on Theorem 6, we proposed the wall separation algo-
rithm that contains two main steps. At the first step, WSA
lists all the VOSPs on the wall and all the VOSPs on eachVi

under every VOSP on the wall. At the second step, it builds
the EDS based on the results in the first step. Additionally,
there is a pre-processing algorithm that provides the parti-
tion of the graph. Based on Theorem 6, the partition of the
graph does not affect the correctness of the algorithm. It
only affects the time complexity of the two steps. We first
describe the algorithm. And we then give one realization of
the pre-processing.

Given the graphG and a partition{W,V1, . . . , Vk}, the
step 1 of WSA first lists all VOSPs{µW

1
, . . . , µW

ml
} on

W by searching. Then for eachµW
ml

, we list all VOSPs
{µVi

1
|µW

l , . . . , µVi

ml

i

|µW
l } for everyVi underµW

l .

In the second step, we construct the EDS by consecutively
inserting candidate subsets to a familyE of sets in a special
way: if the candidateD is not a super set of any element
in E, we addD in E and remove any element inE that
is a super set ofD. First, for any VOSPµW

l on the wall
W , we insertD(µVi

j |µW
l , µVi

j′ |µ
W
l ) into E for everyi and

everyj, j′. Then, for every pair of VOSPsµW
l andµW

l′ , we
compare the sets of VOSPs of each partitionV i under these
two sub-profiles to check whether there existsµVi

j |µW
l and

µVi

j′ |µ
W
l′ that are identical. LetV i1 , . . . , V i

k′ be those parti-
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tions that do not have identical VOSPs underµW
l andµW

l′ .

We insertD(µW
l , µW

l′ ) ∪ (∪k′

t=1
D(µ

Vit

jt
|µW

l , µ
Vit

j′
t

|µW
l′ )) in-

toE for everyjt, j′t. The following theorem establishes the
correctness of the algorithm.
Theorem 7. The family of sets,E, generated by WSA, is
the EDS of the given graphG is the EDS of the given graph
G.

What remains is to find a partition{W,V1, . . . , Vk}. Note
that only the efficiency but not the correctness of the al-
gorithm depends on the partition. Since the algorithm is
dominated by the first step, a good partition would ensure
that all parts have the same size. In our simulation, we use
a greedy algorithm to find the partition as follows. First,
we calculate the shortest distances between all pairs of ver-
tices. Then we start from a random vertex and sequentially
selectk− 1 other vertices that on average are farthest away
from all previous vertices. We use thesek vertices as seed
to grow toV1, . . . , Vk by sequentially adding new adjacent
vertices toVi if the distance between any two sets is at least
3. The procedure stops either if there is no vertex to add in
or the number of remaining vertices are smaller than that of
largest amongVi.

5.3 Simulations
We compare the size of EDS to the size of all VOSPs and
the size of all the differential sets under a random graph
model where an edge occurs with probabilityp indepen-
dently. As demonstrated in Fig. 5, the size of the EDS is
significantly smaller than the number of valid opinion pro-
files and the number of all the differential sets. Fig. 6 shows
the running time of WSA and exhaustive search algorithm
to generate EDS under the same random graph model. The
improvement in efficiency is clear.
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