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ABSTRACT siderations in terms of protecting critical informatiorisu
We consider the problem of sampling a node-weightedVvhen the value of a node indicates whether the node is
graph. The objective is to infer the values of all nodes frominfected, our results also apply to inferring, trackinggan
that of a minimum subset of nodes by exploiting corre-controlling epidemics, worms and virus in communication
lations in node values. We first introduce the concept ohetworks, and cascading failures in infrastructure netaior
information dominating sefiDS). A subset of nodes in a This problem may also be applicable to data compression,
given graph is an IDS if the value of these nodes is suffigiven that the identified subset of nodes completely repre-
cient to infer the information state of the entire graph. Wesents the information of the entire network.
focus on two fundamental algorithmic problems: (i) how ] o
to determine whether a given subset of vertices is an IDSL.1  Information Dominating Set

(if) how to construct a minimum IDS. Assuming binary we present an algorithmic study of critical sampling over
node values and the local majority rule, we show that thgjraphs. We first introduce the concept of information
first problem is co-NP-complete and the second problem igominating set (IDS). A subset of nodes in a given node-
NP-hard in a general network. We then show that in acyC”Q\/eighted graph is an IDS if knowing the values of nodes
graphs, both problems admit linear-complexity solutionsn this subset is sufficient to infer the values of all nodes
by establishing a connection between the IDS problemf, the graph. We focus on two fundamental questions: (i)
and the vertex cover problem. For general graphs, we dgjiven a subset of nodes, how to determine whether it is an
velop algorithms for solving both problems based on thaps:; (ii) how to construct an IDS with a minimum number
Concept ofessential differential setThese results find ap- of nodes for a gi\/en graph_ The former is referred to as the
plications in opinion sampling such as political pollingdan |DS checker (IDSC) problem, and the latter the minimum
market survey in social-economic networks, and inferringps (MIDS) problem.

epidemics and cascading failures in communication an

infrastructure networks. 9Vh|le the concept of IDS applies to general information

and information correlation models, in this paper, we focus
Index Terms— sampling; information dominating set; NP- On binary node values and adopt the local majority rule to

complete; opinion polling; social networks. model node correlation. Specifically, each node in the given
graph has a binary value that is consistent with the majority
1 Introduction opinion of its neighbors. Binary node values are sufficient

) ) ~_to model yes/no opinions in social-economic networks and
In this paper, we introduce and study the problem of crititg indicate whether a node is infected in the study of epi-
cal sampling in node-weighted graphs. The objective is tjemics and cascading failures. Local majority rule is also

infer the values of all nodes in a given graph from that ofcommonly used in studying opinion dynamics in social net-
a minimum subset of nodes by exploiting correlations inyorks (see, for example, [1, 2]).

node values. . L
For binary node values and under the local majority cor-

This problem is motivated by opinion sampling in social yg|ation model, we show that the IDSC problem is co-NP-
or economic networks for applications such as politicalcomplete and the MIDS problem is NP-hard in a general
polling and market survey. Specifically, in social and infor graph. We then focus on graphs with special structures, in
mation networks, it is often necessary to gauge the ge”erﬁhrticular, acyclic graphs. We show that in acyclic graphs,
opinion of a large population on a certain issue. SinCeoth IDSC and MIDS problems admit linear-complexity
polling often incurs a cost (either monetary or in terms ofgg|utions by establishing a connection between the IDS
delay), an important question is how to infer the opinion ofproplem and the vertex cover problem. Our technique for
the entire network through a strategic sampling of a minegstaplishing the hardness of the IDS problems is based
imum subset of nodes by exploiting correlations in nodeyn a novel graph transformation that transforms the ID-
opinions. S problems in a general graph to that in an odd-degree
Besides the applications in social-economic networks, th@raph. This graph transformation technique not only gives
problem of critical sampling over graphs and the result@n approximation algorithm to the NP-hard problem, but
obtained in this paper also bear significance in identifyingalso provides a useful tool for general studies related to
critical nodes in information networks. Identifying such the local majority rule. For general graphs, we develop an
critical nodes has important applications in learning and i efficient algorithm based on the concept of essential differ
ference under resource constraints as well as security cogntial set to solve both the IDSC and the MIDS problems.
This approach applies to general node values and general
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1.2 Related Work G is a binary opinion profile such that for each vertex

Statistical sampling is a classic problem developed by Neyth® number of its same-minded neighbors is greater than or
man in 1934 [3]. Different from the deterministic model dual to the number of its opposite-minded neighbors. In
and the algorithmic approach taken in this paper, statistiother V\{OVQS, th? opinion of gach vertex is consistent with
cal sampling assumes that the value associated with eal}€ Majority opinion among its neighbors. If there is no
node is a random variable obeying a known probabilitySUch majority opinion, this vertex may take either opinion.
distribution, and designing the sampling strategy amount§id 1 demonstrates a valid opinion profile

to choosing the probability with which each node will be
sampled. More recent work on statistical sampling can be
found in [4-7].

Inrecentyears, the concept of uniqueness set in a graph was Vg V6

proposed and studied in [8, 9] for sampling Paley-Wiener_. 1: The col fverti s their opini In thi

functions on graphs. However, the uniqueness set is diffef-'9 1: The colors of vertices represents their opinions. In this ex
tf the inf tion dominati th the f ample, the opinion profile is (1,1,1,0,0,0,0) and it is adalpin-

en_ romtnein o_rma 1on oml_na m_g s_e ecau_se e_ ormef,, profile. Though the neighbors of bath andv7 are half black

uniquely determines a bandwidth limited function while the, 51 white they are still valid based on the definition.

information on IDS uniquely determines the information in

the rest of the graph.

U1 Us

U3 V4

Thevalid opinion profile set of a given graplt is the set

o __of all valid opinion profiles orG.
The minimum vertex cover (MVC) [10, 11] and the mini-

mum dominating set (MDS) [12, 13] are related to the IDSA‘n information dominating sefiDS) in a given graptG

problem. The MVC asks for a minimum subset of vertices> & _subset of_vgrtlcel@ s V su_ch_that u_n_der any opinion
ofile, the opinions of vertices iy is sufficient to infer the

such that each edge in the original graph is adjacent to &

least one vertex in this subset. And the MDS asks for é)pinions of all the other vertices. Based on the definition,

minimum subset such that each vertex is either in this subI-DS has an important property as follows.

set or adjacent to at least one vertex in this subset. Th.F>r0perty L. A subset of vertu;e@ c_)fg grath is an IDS
minimum IDS problem is inherently more complex than' ._for any pair of different valid opinion profiles, v, there
MVC and MDS. For instance, as shown in this paper, it jsSXIsts a vertex € D such thau, # v,.

co-NP-complete to verify whether a given subset is an IDSThe significance of Property 1 is that it provides a way to
while MVC and MDS have trivial polynomial time check- determine whether a subset of vertices is an IDS or not
ers simply based on their definitions. without considering any specific inference method. It is

The local maiori leh ; : ._used repeatedly in this paper. Fig. 2 demonstrates the valid
e local majority rule has been adopted in studying oplnOpinion orofile set and an IDS.

ion dynamics in social networks (see, for example, [1, 2]).
The focus there is on characterizing the evolution of netWe focus on two problems on IDS. The IDS checker (ID-
work opinions when each node dynamically changes itSC) problem, seeks to determine whether a given set is an
opinion by following the majority opinion of its neighbors. IDS. The second problem we consider is the main objective
But absent from that line of work is the inference problem,of this paper, which is to find the minimum IDS (MIDS).
which is the main objective of this paper: we aim to in-In hardness analysis, the corresponding decision problem
fer the network opinionafter the opinion of each node has is: given a graplt: and a parametek, does there exist an

reached an equilibrium value. IDS D in G with size at most:.
2 Problem Formulation D = ¢
In this section, we introduce the concept of IDS and formu- % % %2 w2 U6 T2 gy %6 U2 g 6

late the IDSC and the MIDS problems. While the concept., . o , .

fIDS lies t itical i f hs with | ig. 2: There are only four valid opinion profiles on this graph.
o applies to critical sampling of graphs with genera By Property 1, subsefws, v4} is an IDS.
node weights and node correlations, we present the basi¢ .
concepts and main results in the context of opinion samé-2 Odd-degree Graph Transformation

pling where nodes are binary valued satisfying the localVe propose a graph transformation that allows us to study

majority rule. both the IDSC and the MIDS problems by considering odd-

) L. degreed graphs only without losing generality of the rasult
2.1 Information Dominating Set This transformation plays an important role in the hardness
Given a grapiG = (V, E) with n = |V| vertices, aina-  analysis and algorithm development given in subsequen-
ry opinion profile on G is a binary vectof.,, , ..., u,,)  tsections.

indicating wheregvi € {Q, 1} represents t_he opinion of =i en an arbitrary grapty = (V, E), we first copy every
vertexv;. For a given a binary opinion profileon &, the  \ertex and edge t6”. Then, for every even degree vertex
neighbors of a vertex; are partitioned into two groups: i, G, we attach an auxiliary neighber; (see Fig. 3).

the same-minded and opposite-minded neighbors, depengg cqi ¢ theodd-degree transformatioof G. Given any
ing on whether they share the same opinion with In

] ) " . valid opinion profilex in GG, we construct its odd-degree
Fig. 1, th_e sar_ne-mmdgd nag_hborsugfarevl,vg while  ransformation opinion profile’ by 1/, = u,, andu!, =
its opposite-minded neighboris. [i, . In other words, those vertices derived from the original
A valid opinion profilep, under thelocal majority rulein  graph take the original opinions, and every auxiliary verte



take the opinion of the vertex to which it is attached. Fig. 3mum IDS.
demonstrates an example of the odd-degree transformati@fj,ce the non-leaf minimum vertex cover can be solved in

from G to G and a valid opinion profil to 1" linear time by a greedy algorithm, we can solve the MIDS
on trees in linear time.

5 IDS in General Graphs

V1 V3
20 In this section, we develop an efficient algorithm for solv-
ing both the IDSC and the MIDS problems in general
Fig. 3: An example of the odd-degree transformation fréhto  graphs. Based on the definition of IDS and Property 1, a
G’. The round vertices id’ are derived fronG and the square brute-force solution to these problems is to consider every
vertices are the auxiliary vertices. It also shows the oelgree  pair of valid opinion profiles. However, given the expo-
transformation fromu to /. nential order of the number of valid opinion profiles, this
The following theorem establishes a reduction from bo”hpproach require®(22") time complexity. To address this
IDSC and MIDS inG:' to the corresponding problems@.  jssye, we introduce a concept called #esential differen-
All results in this paper are stated without proof due 1o th&;a| set(EDS) that is much smaller in number than the valid
space limitation. o _ opinion profile pairs, but still contains all the informatio
Theorem 1. There exists an ID® in G if and only if there  needed for solving both the IDSC and the MIDS problems.
exists an IDSD’ in G’ s_l_Jch that for any vertex; € D,  ap efficient algorithm, referred to as the wall separation
eitherv; € D’ or its auxiliary vertexu; € D', algorithm, is then developed to find the EDS.
Based on Theorem 1, for both the IDSC and MIDS prob-, . . .
lems, it suffices to consider only odd-degree graphs. Un—5'1 Essential Differential Set
less otherwise noted, the graphs considered in the remaiM/e define Essential Differential Set (EDS) and establish

ing part of this paper are all Odd_degree graphs_ the connection between EDS and the IDS prOblemS.
. A set representatio () of a opinion profileu is the set
3 Hardness AnaIyS|s of vertices with opinionl in g, i.e., the setS(n) = {v €

In this section, we study the computational hardness of IDV |n, = 1}. A differential setD(y, v) is the exclusive dis-
SC and MIDS. The following theorem establishes the cojunction of the sets representing two valid opinion profiles
NP-completeness of the IDSC problem. i.e., D(u,v) = S(u) ® S(v). Theessential differential
Theorem 2. Given a graphG and a subset of vertice®,  setis the family of all differential sets such that no other
it is co-NP-complete to determine whethris an IDS of  differential set is a subset of any set in the EDS. Based on
G. Property 1 a subsd? is an IDS if each differential set con-

Since the checker problem is co-NP-complete, the minit@ins at least one vertex from, i.e., subseD is a hitting
mum IDS problem may not belong to NP space. The folSet of the family of differential sets. The following theare

lowing theorem establishes the NP-hardness of the I\/||D§)rmally establishes the connection between EDS and IDS.
Theorem 5. A subset of vertice® in a graphG is an IDS

problem. , c e -
Theorem 3. Given a graphG, it is NP-hard to find the I andonlyifDis a hitting set of the EDS .
minimum IDS. Based on Theorem 5, given the EFSof a graphG, we
. . can solve the IDSC problem by checking whether the given
4 IDS in Acyclic Graphs subset is a hitting set @b or not. And furthermore, the

In this section, we consider both IDSC and MIDS problemMIDS problem becomes the minimum hitting set problem.
in acyclic graphs. An acyclic graph is a forest (i.e., a col-In Sec. 5.3, we demonstrate that the average size of EDS
lection of trees). Since each connected component of thé much smaller than the average number of valid opinion
graph can be considered separately when studying the iDyofiles in all our simulation cases. Hence the concept of
problems, it suffices to focus on trees. We show, in LemEDS significantly reduces the problem size. What remains
ma 1, that an IDS without any leaf node is a vertex covels to find the EDS given a gragghi. We propose a wall sep-

in an odd-degree tree. Since both an IDS or a vertex coveration algorithm in the next subsection for this problem.
with leaf vertex can be transformed into a same size IDS %6 2 The Wall Separation Algorithm

a vertex cover without any leaf vertex, respectively, we can ] . ]
solve IDSC and MIDS by solving the vertex cover problem Based on its definition, the EDE of a given grapt can

Lemma 1. Given an odd-degree tre@, an IDS that does be found by the following steps: list all the valid opin-
not contain any leaf is also a vertex coverch ion profiles by exhaustive search; list all differentialsset

) ) by considering all pairs of valid opinion profiles; elimieat
The following lemma extends this result to any IDS. those differential sets that are proper super sets of other d
Lemma 2. Given any IDSD, 3 an IDS D’ that contains

> ifferential sets. However, this procedure requires all the
no leaf nodes and has a size smaller than orequdlio 5jig opinion profiles. We propose a wall separation algo-

With Lemma 2, we can solve the IDSC on a tree by checksithm (WSA) that utilizes a double layered “wall” to parti-
ing whether its non-leaf transformation is a vertex covertion this problem to smaller sub-problems and increase the
Furthermore, the following theorem provides us a way toefficiency. Before that, let us first define some terminolo-
find the MIDS. gy used in the algorithm. Aopinion sub-profileu"' is an
Theorem 4. The non-leaf minimum vertex cover is a mini- opinion profile on a subset of vertic&s. The opinions of
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Fig. 4: The sub-profiles are on the vertices enclosed by the box. X

In (a), it is not a VOSP since vertex has opinion0 (denoted 1 ® o ” 0 *

by white) but two of its three neighbors have opinibifdenoted

by black). In (b), it is a VOSP even though in a complete validFig. 5: The average size of EDS compared with the average num-
opinion profile, all three vertices are either all black dvéhite. ber of valid opinion profiles and the number of differentiats
Parametep = 0.2 in the random graph model. The average is
taken over 100 Monte Carlo runs.

size

the remaining vertices are undeterminedvalid opinion

sub-profile(VOSP) .V is a opinion sub-profile such that Exhaustive search vs. WSA
there is no known violation of the local majority rule for e .
any vertex. Fig. 4 demonstrates two examples of opinion 1000 | —e—Wsh
sub-profiles, one of which is valid, the other is not. 7o haustive search /

o
3
3

A VOSP "' underanother VOSR/"2 such that/; N1, =

(), denoted by."*|v"2, is an opinion sub-profile such that
the combination of both sub-profiles (an opinion profile
such that the opinions ow; follows 1'*, the opinions of
V5 follows v¥> and the opinions of the remaining vertices
are unknown) is still valid.

Average running time (s)
IS @
3 3
3 3

3
3

ac

Numbher of vertices

Now consider that grapty is partitioned intok + 1 non-
overlapping parts: a “double-layered wall" andk other
subgraph$/7, . .., Vi such that the distance betwegrand

V; is at least3 hops. The following theorem states that
under such a partition, given a particular sub-profile on the

wall W, the sets of VOSPs oW, . . ., Vi are independent. tions that do not have identical VOSPs ung#r and ]’ .
Theorem 6. Given a graph’, consider an arbitrary par- e insertD(u}V, i) U (Uf’le(MXit mie uj‘(;t i) in-
tition of its vertices{W, V1, ..., Vi } such that the distance 4 i for every,, j/. The following theorem establishes the
between; andV; for arbitrary i # j is at least3. There 4 rectness of the algorithm.

exists a valid opinion profile in G if and only if there ex-  thaorem 7. The family of setsE, generated by WSA, is

Fig. 6: The running time of exhaustive search algorithm and the
WSA algorithm. Parameter = 0.2 in the random graph model.
The average is taken over 100 Monte Carlo runs.

i w i, W Vi w

ists a VOSR/™ and VOSPs/™ [, ..., v** [ under  yhe EDS of the given grapi is the EDS of the given graph
v such that all the VOSPs are consistent with a

Based on Theorem 6, we proposed the wall separation algQyhat remains is to find a partitiofi, Vi, ..., Vi.}. Note

rithm that contains two main steps. At the first step, WSA4t only the efficiency but not the correctness of the al-
lists all the VOSPs on the wall and all the VOSPs on 84ch  4ithm depends on the partition. Since the algorithm is

under every VOSP on the wall. At the second step, it buildgyqminated by the first step, a good partition would ensure
the EDS based on the results in the first step. Additionallyy, ot o1 parts have the same size. In our simulation, we use
there is a pre-processing algorithm that provides the-parth greedy algorithm to find the partition as follows. First,
tion of the graph. Based on Theorem 6, the partition of thg e caiculate the shortest distances between all pairs of ver
graph does not affect the correctness of the algorithm. Ifices Then we start from a random vertex and sequentially
only affects the time complexity of the two steps. We firstsgacy: — 1 other vertices that on average are farthest away
describe the algprlthm. And we then give one realization of.;, 41 previous vertices. We use theseertices as seed
the pre-processing. to grow toV4, . .., Vi by sequentially adding new adjacent
Given the graph and a partition{W, V1,..., Vi }, the verticestoV; if the distance between any two sets is at least
step 1 of WSA first lists all VOSP$u}",...,uv } on 3. The procedure stops either if there is no vertex to add in
W by searching. Then for ea V,‘fl we list all VOSPs orthe number of remaining vertices are smaller than that of
{my" |, )V} for everyV; undery}”. largest among;.

In the second step, we construct the EDS by consecutively.3  Simulations

inserting candidate subsets to a fantilyf sets in a special
way: if the candidatéD is not a super set of any element
in £, we addD in E and remove any element ifi that

We compare the size of EDS to the size of all VOSPs and
the size of all the differential sets under a random graph

) : model where an edge occurs with probabilityndepen-

ISa SUPer set OD"/_ F';/St’ f‘?r avgy _VOSP“YV on th? wall dently. As demonstrated in Fig. 5, the size of the EDS is
W, we insertD (u;" |1, iy iy ) into E for everyi and  gjgnificantly smaller than the number of valid opinion pro-
everyj, j'. Then, for every pair of VOSPg" andu;”, we files and the number of all the differential sets. Fig. 6 shows
compare the sets of VOSPs of each partifiGrunder these  the running time of WSA and exhaustive search algorithm
two sub-profiles to check whether there exjs}s|u/” and 1o generate EDS under the same random graph model. The
M}/f n)Y that are identical. Let™™ ..., Vi be those parti- improvementin efficiency is clear.
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