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ABSTRACT

Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic 
membranes

Report Title

Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we assess 
the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on the membrane perturbing 
mechanism of antimicrobial ?-peptide–?-peptoid chimeras. Langmuir monolayers composed of 1,2-dipalmitoyl-sn-
glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive and 
Gram-negative bacteria, while lipopolysaccharide Kdo2-lipid A monolayers were mimicking the outer membrane of 
Gram-negative species. We report the results of the measurements using an array of techniques, including high-
resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial activity to 
study the molecular mechanisms of peptidomimetic interaction with bacterial membranes. We found guanidino 
group-containing chimeras to exhibit greater disruptive activity on DPPG monolayers than the amino group-
containing analogues. However, this effect was not observed for lipopolysaccharide monolayers where the difference 
was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the insertion activity 
of these antimicrobials into both model membrane systems examined, which may be useful for future cellular 
localization studies.
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Antimicrobial peptides or their synthetic mimics are a promising class of potential new antibiotics. Herein we
assess the effect of the type of cationic side chain (i.e., guanidino vs. amino groups) on themembrane perturbing
mechanism of antimicrobialα-peptide–β-peptoid chimeras. Langmuirmonolayers composed of 1,2-dipalmitoyl-
sn-glycero-3-phosphatidylglycerol (DPPG) were used to model cytoplasmic membranes of both Gram-positive
andGram-negative bacteria, while lipopolysaccharide Kdo2-lipid Amonolayersweremimicking the outermem-
brane of Gram-negative species.We report the results of themeasurements using an array of techniques, includ-
ing high-resolution synchrotron surface X-ray scattering, epifluorescence microscopy, and in vitro antimicrobial
activity to study themolecular mechanisms of peptidomimetic interaction with bacterial membranes. We found
guanidino group-containing chimeras to exhibit greater disruptive activity on DPPGmonolayers than the amino
group-containing analogues. However, this effectwas not observed for lipopolysaccharidemonolayerswhere the
difference was negligible. Furthermore, the addition of the nitrobenzoxadiazole fluorophore did not reduce the
insertion activity of these antimicrobials into both model membrane systems examined, which may be useful
for future cellular localization studies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Antimicrobial peptides (AMPs) are ubiquitous in nature; present in
virtually all organisms they serve as endogenous antibiotics through
the innate immune response [1,2]. Members of this class of compounds
have been studied extensively due to their potential as promising alter-
native antibiotics to treat disease caused by the growing number of re-
sistant pathogenic microbes [1–4]. It is generally believed that AMPs
exert their direct killing of invading pathogens by selectively interacting
with the negatively charged bacterial surfaces over the globally neutral
(zwitterionic) eukaryotic cellmembranes. Themechanismbywhich the
membranes are permeated is not completely understood, and several
models have been proposed based on studies conducted with various
peptidic structures [1]. Moreover, recent studies have shown that
some of these chemotypes are endowed with additional intracellular

modes of action such as interference with cell wall biosynthesis or im-
munomodulatory effects [5–9]. These findings complicate the under-
standing of this class of compounds even further and have called for
the use of a perhaps more appropriate class designation, host-defense
peptides (HDPs) [3].

Despite their diversity in amino acid sequence, lipophilicity and sec-
ondary structure [10], most HDPs share common features including
positive net charge and generally amphipathic nature, separating
hydrophilic and hydrophobic residues to the opposite faces of the
molecule [11–13]. Typically, positive net charge of naturally occurring
peptides is contributed by the guanidino groups of the arginine (Arg)
[14,15] and/or amino groups of the lysine (Lys) residues [16–18]. Both
Arg and Lys side chains are generally thought to promote the initial
long range electrostatic attractive forces that guide antimicrobials
towards the negatively charged bacterial membranes [19]. However,
guanidino groups have higher acid dissociation constant (pKa) due
to efficient resonance stabilization of the charged protonated state
together with efficient solvation in water, which makes them stronger
bases and, thus, better suited for stable electrostatic interactions with
the negatively charged phosphodiester and phosphomonoester groups
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of phospholipids [20–24]. Examples of naturally occurring AMPs con-
taining arginine rather than lysine residues include several members
of the cathelicidin family, such as indolicidin and tritrpticin [25,26].
Also, in peptides having high content of both arginine and lysine resi-
dues such as the defensins, these residues are not randomly distributed
within their sequence and their ordering implies a significance greater
than just a net positive charge [27]. Muhle and Tam [28] found that
Arg-to-Lys substitution in a cyclic disulfide-stabilized peptide decreased
activity against Gram-negative bacteria. Nakase et al. demonstrated
improved membrane permeability of antimicrobial peptide (RLA)
with lysine substituted by arginine [29]. Other studies have shown
that for lactoferricin B and bactenecin 5, which have no hemolytic
activity, the replacement of arginine for lysine reduced antibacterial ac-
tivity [30]. So, the incorporation of guanidino groups into the peptide
side chains may have its appeal in drug design [31–33].

However, there are concerns related to the use of α-peptides in a
clinical setting due to their high cost ofmanufacturing [34] and inherent
susceptibility to proteases [35], which has led to numerous studies
aimed atmimicry of peptides using non-natural compounds. Thus, a va-
riety of classes such as β-peptides [36–38], oligoureas [39], arylamides
[40,41], N-substituted oligoglycines (peptoids) [42–44], cyclic D,L-α-
peptides [45–47], hybrid peptidomimetics [33,48–50], and polymers
[51–53] have been designed to mimic the function of AMPs.

α-Peptide–β-peptoid chimeras represent a distinct class of
peptidomimetics with backbone composed of alternating peptide and
β-peptoid residues [33,50,54–56]. In the present study we elucidate
the role of the cation type on the antimicrobial properties of this
type of synthetic AMP mimics using two α-peptide–β-peptoid chi-
meras (KβNspe and RβNspe), which differ from each other solely
in the identity of cationic functionality [amine (lysine) vs. guanidino
group (homoarginine)]. In addition, because fluorophore-labeled ana-
logues of AMPs, which retain antimicrobial activity, constitute powerful
tools for studying mechanisms of action and cellular localization, we
also prepared and evaluated nitrobenzoxadiazole (NBD)-labeled oligo-
mers NBD-KβNspe and NBD-RβNspe (Fig. 1A).

Regardless ofwhether the primarymode of action is of amembrane-
disrupting nature or entails perturbation of intracellular targets, the

initial interaction between antimicrobial and bacteria involves the cell
surface. A fundamental understanding of these lipid–antimicrobial
interactions is therefore important for the future design of improved
antibiotics for potential clinical use. Since cell membranes have a
complex structure and are currently not applicable for highly sensitive
surface X-ray scattering methods, the model systems are generally
employed to undertake detailed mechanistic studies of membrane-
associated processes [57–61]. Previously, the membrane-destabilizing
effects of the α-peptide–β-peptoid chimeras have only been investigat-
ed in model liposomes prepared from phosphatidylcholine (PC), a
phospholipid found predominantly in eukaryotic cells [55]. However,
PC-containing systems do not adequately represent bacterial envelope,
and furthermore, these compounds have not been investigated using
sensitive X-ray methods before.

In order to model the outer surface of Gram-positive and Gram-
negative bacteria we have employed insertion assay experiments on
two separate Langmuir monolayers composed of 1,2-dipalmitoyl-sn-
glycero-3-phosphatidylglycerol (DPPG) and truncated lipopolysaccha-
ride (LPS) Kdo2-Lipid A, respectively (Fig. 1B). The reason behind this
choice of lipids is that Kdo-2 lipid A constitutes the hydrophobic core
of outer LPS envelope in most Gram-negative bacteria, while PGs are
predominant anionic phospholipid species within cytoplasmic mem-
branes of both Gram-negative and Gram-positive strains. This approach
has been successfully used in conjunction with liquid surface X-ray
scattering to study bacterial membrane lysis by human antimicrobial
peptide LL-37 [60], protegrin-1 [57,62], gramicidin [63] and SMAP-29
[61] antimicrobial peptides as well as by peptide mimics [44,49,59,64].

2. Experimental section

2.1. Monolayer construction

Both DPPG and Kdo2-Lipid A were purchased from Avanti Polar
Lipids (Alabaster, AL) and were used without further purification.
To form the monolayer systems both DPPG and Kdo2-Lipid A were
first dissolved in chloroform–methanol (65:25) at a concentration of
0.2 mg/mL. Using a microliter syringe (Hamilton) the solutions were

A B

Fig. 1. Molecular structures of the tested chimeras (A) and lipids used for modeling bacterial cell membranes (B).
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then spread on the surface of a Dulbecco's phosphate buffered saline
(DPBS) (Invitrogen, Carlsbad, Ca) void of calcium and magnesium ions
contained in a single barrier Langmuir trough. Over 15 min the organic
solvents evaporated to form a self-assembledmonolayer. Themonolay-
er was then compressed to a biologically relevant packing density of
30 mN×m−1, which was monitored by a Wilhelmy plate. This surface
pressure and a temperature of 22± 0.5 °Cweremaintained throughout
the experiment. As a result, if changes in the surface pressure occur, the
barrier will have to move in order to maintain the set surface pressure.
Such change in barrier position then allows for change in area/lipidmol-
ecule or area/LPSmoleculeΔA to be calculated. Once themonolayerwas
compressed the chamber containing the Langmuir trough was sealed
and purged with helium to lower the oxygen levels in the chamber,
whichminimizes background X-ray scattering during the X-ray experi-
ments [58,65].

2.2. X-ray reflectivity (XR)

XR gives the information about electron density gradient along the
plane perpendicular to the surface of a monolayer as well as about the
film thickness [66–68]. A slab-model, also known as a box model, was
used to analyze XR data. This model is based on the Parratt recursive
method [69] that describes the interface as a stack of slabs with distinct
electron densities (ρ), and thicknesses (l) [70–74]. The final fit was
achieved by minimizing the χ2 value while ensuring that parameters
obtained were physically relevant. The software used to fit experimen-
tal XR data was RFit2000 [75–77]. In addition to model-dependent
approach, model-independent stochastic fitting, where the electron-
density profile is parameterized using cubic B-splines was also per-
formed [78].

2.3. Grazing-incidence X-ray diffraction (GIXD)

Grazing incidence X-ray diffraction measurements were performed
to monitor the effect of compound insertion on the molecular packing
of the lipidmonolayers [79]. Lipidfilms spread at the air–water interface
may be described by a large number of two-dimensional crystalline
domains of ordered hydrocarbon chains randomly oriented around
the surface normal [80]. In a GIXD experiment, the momentum transfer
has a horizontal and vertical component, Qxy and Qz [81]. The Qxy

positions of the observed Bragg peaks yield the repeat distances,
dhk = 2π / qhk for the 2D lattice, from which specific parameters (a, b,
γ) of the crystal system can be extracted. From the full-width half-
maximum(FWHM) values of Bragg peaks, the in-plane coherence length,
Lxy was calculated using the Scherrer formula, Lxy = 0.9 × 2π / FWHM.
The intensity distribution along the Bragg rod was measured at Bragg
peak positions to evaluate the tilt of acyl chains.

All X-ray measurements were done at sector 9-ID at the Advanced
Photon Source (APS) of Argonne National Labs (Chicago IL) with an
X-ray wavelength of 0.9202 Å. After XR and GIXD were performed on
a given monolayer system α-peptide–β-peptoid hybrids were intro-
duced into the system using a bent needle syringe (Hamilton). The nee-
dle is placed underneath the barrier and the compounds were injected
underneath the monolayer to mimic the approach of the compound
from the extracellular fluid to the outer leaflet of the membrane. After
injection both XR and GIXD measurements were taken for comparison.

2.4. Real-time epifluorescence microscopy (EFM) imaging

Morphological changes of DPPG filmswere studied on amicroscopic
level before and after the introduction ofα-peptide–β-peptoid chimeras
according to protocols previously described [64,82]. Briefly, the
Langmuir trough setup and procedures used in the formation of the
lipid monolayers were essentially the same, except that a 0.1 mol% of
lipid-linked Texas Red dye [TR-DHPE (Molecular Probes, Eugene, OR)]
was premixed with stock DPPG solution. A heated glass-plate was

placed over the trough to reduce contamination and evaporation of
the subphase during the experiment.

2.5. Chemical synthesis

2.5.1. Fmoc-Lys(Dde)-βNspe-OH (8)

Fmoc-Lys-βNspe-OH (7) (1.61 g, 2.96 mmol) and iPr2NEt (1.4 mL,
8.0 mmol) were dissolved in DMF (30mL), and added acetyl dimedone
(913 mg, 5.0 mmol). After stirring for 18 h, the solvent was evaporated
in vacuo and the crude product redissolved in EtOAc (100 mL). The
solution was washed with 1 M HCl (aq) (2 × 100 mL) and water (2 ×
100 mL), dried (Na2SO4), filtered, and evaporated in vacuo to give
1.22 g (82%) of the desired product as a white solid. 1H NMR
(300 MHz, CD3OD), δ 1.48 (m, 2H, H-7), 1.66/1.56* (2 × d, 3H, J =
7.0 Hz, H-4), 1.68–1.82 (broad m, 4H, H-6, H-8), 2.17/2.51 (3 × m, 2H,
H-1), 2.27*/2.28/2.51*/2.52 (4 × m, 6H, H-11, H-12) 3.19/3.38 (2 × m,
2H, H-2), 3.48 (m, 5H, H-9, H-10), 4.17 (m, 1H, H-15), 4.27–4.43
(broad m, 2H, H-14), 4.52*/4.81 (2 × m, 2H, H-5) 5.42/5.81* (2 × q,
1H, J = 7.0 Hz, H-3), 7.23–7.41 (broad m, 9H, Ph, Fmoc ArH), 7.66
(m, 2H, Fmoc ArH) 7.79 (d, 2H, J = 7.5 Hz, Fmoc Ar). [α]589.2: −46°
(c = 1.0, 293 K, CHCl3). UPLC-MS gradient A, tR = 2.20 min (N95),
MS: (m/z) [M + H]+ calcd. for C32H38N3O5

+: 708.9, found: 708.6.
HRMS: (m/z) [M + H]+ calcd. for C32H38N3O5

+: 708.3643, found:
708.3649 (ΔM = 0.8 ppm).

2.5.2. Solid-phase synthesis of 9
Fmoc-protected Rink amide resin (590 mg, 0.25 mmol) was treated

with piperidine–DMF (1:4, 5 mL, 2 × 20 min), and washed with DMF,
MeOH, and CH2Cl2 (3 × 5 mL). Oligomerization was performed with
a mixture of Fmoc-Lys(Dde)-βNspe-OH (8) (750 mg, 1.1 mmol,
4.5 equiv), HBTU (417 mg, 1.1 mmol, 4.5 equiv), and iPr2NEt
(0.38 mL, 2.2 mmol, 9 equiv) in DMF (5mL), which were preincubated
for 10 min before being added to the Rink amide resin and shaken for
18 h. After each coupling the resin was washed with MeOH, DMF and
CH2Cl2 (3 × 5 mL). Fmoc deprotection was achieved with piperidine–
DMF (1:4, 5 mL, 2 × 20 min) followed by DBU–piperidine–DMF
(2:2:96, 5 mL, 2 × 20 min), after each deprotection step the resin was
washed using the same procedure as above. This three-step coupling/
deprotection sequence was performed 6 times to give the resin-bound
oligomer.

2.5.3. Ac-(Lys-βNspe)6-NH2 (KβNspe)
The terminal amino groups of (9) (100 mg, 0.024 mmol) were

capped with a mixture of Ac2O–iPr2NEt–DMF (1:2:3, 2 mL, 2 h) and
the resin was washed with DMF, MeOH, and CH2Cl2 (3 × 2 mL). The
side chains were deprotected using 2% hydrazine in DMF (2 × 2 mL,
45 min). The crude product was cleaved from the support with 50%
TFA–CH2Cl2 (2 mL, 2 × 1 h). The TFA was co-evaporated with toluene
(3 × 30 mL), toluene–CH2Cl2 (3 × 30 mL), and CH2Cl2 (3 × 3 mL). The
residue was purified by preparative RP-HPLC (gradient C) and fractions
were lyophilized to give KβNspe as white fluffy material [12.3 mg, 15%
(90% per step)]. HPLC gradient D, tR = 10.47 (N95%). HRMS: m/z
[M + 3H]3+ calcd for C104H158N19O13

3+: 627.07567, found: 627.07553
(ΔM: 0.22 ppm) [50].
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2.5.4. Ac-(hArg-βNspe)6-NH2 (RβNspe)
The terminal amino group of (9) (75 mg, 0.024 mmol) was capped

with a mixture of Ac2O–iPr2NEt–DMF (1:2:3, 2 mL, 2 h) and the resin
was washed with DMF, MeOH, and CH2Cl2 (3 × 2 mL). The side chains
were deprotected using 2% hydrazine in DMF (2 × 2 mL, 2 × 45 min),
andwashed as above. Boc-protected guanidino groupswere introduced
by addition of a mixture of N,N′-bis(tert-butoxycarbonyl)-1H-pyrazole-
1-carboxamidine (11) (285 mg, 0.92 mmol) and iPr2NEt (0.32 mL,
1.84 mmol) in DMF for 18 h, followed by the above washing procedure.
The crude guanidinium-containing product was simultaneously
deprotected and cleaved from the support with TFA–CH2Cl2 (1:1, 2
mL, 2 × 1 h). The TFA was co-evaporated with toluene (3 × 30 mL),
toluene–CH2Cl2 (3 × 30 mL) and CH2Cl2 (3 × 30 mL). The residue was
purified by preparative RP-HPLC (gradient C) and fractions were lyoph-
ilized to give RβNspe as white fluffy material [12.9 mg, 20% (90% per
step)]. HPLC gradient D, tR = 10.39 (N95%). HRMS: m/z [M + 3H]3+

calcd for C110H170N31O13
3+: 711.1193, found: 711.1190 (ΔM: 0.35 ppm)

[50].

2.5.5. NBD-(Lys-βNspe)6-NH2 (NBD-KβNspe)
A Rink amide resin-bound oligomer with Boc protected lysine side

chains (150 mg, 0.039 mmol) was prepared as described for 9 using
the Fmoc-Lys(Boc)-βNspe-OH [83] building block. The N-terminal was
then functionalized with a mixture of N-NBD-6-aminohexanoic acid
(73 mg, 0.25 mmol), iPr2NEt (87 μL, 0.5 mmol), and PyBOP (156 mg,
0.3 mmol) in DMF (2mL). After shaking for 18 h, the resin was washed
with DMF, MeOH, and CH2Cl2 (3 × 2 mL), and the compound was
cleaved from the support using TFA–CH2Cl2 (1:1, 2 mL, 2 × 1 h).
Trifluoroacetic acid was co-evaporated with toluene (3 × 30 mL),
toluene–CH2Cl2 (3 × 30 mL), and CH2Cl2 (3 × 3 mL), and the residue
was purified by preparative RP-HPLC (gradient C). Lyophilization of
the fractions containing the title compound furnished a yellow fluffy
material [12.5 mg, 15% (88% per step)]. HPLC gradient D, tR = 10.29
(N95%). HRMS: m/z [M + 3H]3+ calcd. for C114H168N23O16

3+: 705.4352,
found: 705.4361 (ΔM: 1.3 ppm), and m/z [M + 4H]4+ calcd. for
C114H169N23O16

4+: 529.3252, found: 529.3261 (ΔM: 1.7 ppm).

2.5.6. NBD-(hArg-βNspe)6-NH2 (NBD-RβNspe)
Crude NBD-(Lys-βNspe)6-NH2 (NBD-KβNspe) (30 mg, 0.014 mmol)

and iPr2NEt (29 μL, 0.16 mmol) were dissolved in DMF (2 mL),
followed by addition of N,N′-bis(tert-butoxycarbonyl)-1H-pyrazole-1-
carboxamidine (40 mg, 0.13 mmol). After stirring for 3 h, the solvent
was evaporated in vacuo, and excess reagent removed by vacuum silica
gel chromatography [2 × 6 cm, CH2Cl2–MeOH 0.5% gradient 0 → 10%
(containing 1% concentrated aqueous NH3)]. The product was then
deprotectedwith TFA–CH2Cl2 (1:1, 2mL, 2 × 1 h) and TFAwas removed
by co-evaporation with toluene (3 × 30 mL), toluene–CH2Cl2 (3 ×
30 mL), and CH2Cl2 (3 × 3 mL). The compound was purified by pre-
parative RP-HPLC (gradient C) to give NBD-RβNspe as a yellow fluffy
material (5 mg, 15%). HPLC gradient D, tR = 11.05 (N95%). HRMS: m/z
[M + 4H]4+ calcd. for C120H181N35O16

4+: 592.5609, found: 592.5603
(ΔM: 1 ppm).

Details of synthetic procedures, characterization data, as well as 1H
and 13C NMR spectra for all new compounds are presented in
Supporting Information.

2.6. Bacterial strains and culture conditions

Activity experiments (Minimum Inhibitory Concentration and
Minimum Bactericidal Concentration) were carried out with eight bac-
terial species representing common laboratory strains and clinical
strains derived from both food-borne and nosocomial infections. The
strains also represented Gram-positive and Gram-negative species.
Stock cultures were stored at −80 °C in 4% (w/v) glycerol, 0.5% (w/v)
glucose, 2% (w/v) skimmed milk powder, and 3% (w/v) tryptone soy
powder. All experiments were carried out with bacteria incubated for

one night (approximately 18 h) at 37 °C. Experiments were performed
in cation-adjusted Mueller Hinton II broth [MHB (Becton Dickinson
212322)] adjusted to pH 7.4. MHB was supplemented with 1.25%
defibrinated horseblood (Statens Seruminstitut REF23699) to ensure
growth of Bacillus cereus and Streptococcus pyogenes. Brain Heart
Infusion (CM1135) with 1.5% agar (VWR 20768.292) as gelling agent
was used throughout for colony plating.

2.7. Antimicrobial activity assay

MIC andMBCwere determined using themicro-dilutionmethod ac-
cording to guidelines of the Clinical and Laboratory Standards Institute
(CLSI). Two-fold serial dilutions of the peptidomimetic hybrids were
prepared from 1024 μg/mL stock solutions in Milli-Q water to give a
final range of 512–0.5 μg/mL in the wells. Colonies grown on BHI agar
for approximately 18 hwere suspended in 0.9% saline to give a turbidity
of 0.13 at OD546 (approximately 1 × 108 CFU/mL), and then diluted in
MHB pH 7.4 to a final concentration of approx. 5 × 105 CFU/mL in
each well. Polypropylene plates (Nunc 442587) were used to minimize
peptide binding, and the incubation time was 18–20 h at 37 °C. MIC
values, i.e., the lowest concentration of the peptide analogue at which
no visible growth was observed, were determined in duplicate. Platings
were done from all wells where no visible growthwas observed and the
lowest concentration of peptide analogue at which no growth occurred
on BHI plates was denoted the MBC, the Minimal Bactericidal Concen-
tration Activity expressed in μg/mL.

3. Results

3.1. Synthesis

The syntheses of chimeras were achieved by preparation of dimeric
building blocks followed by oligomerization on solid support using
variations of previously described methods [50,83,84]. In order to
enable an on-resin functionalization of the lysine ε-amino groups we
installed an orthogonal 1-(4,4-dimethyl-2,6-dioxacyclohexylidene)
ethyl (Dde) group [85,86] on the lysine side chain functionality to give
building block 8 (Scheme 1).

For the standard Fmoc solid-phase peptide synthesis (SPPS) oligo-
merization, a Chem-Matrix® resinwas chosen due to its excellent swell-
ing properties in a variety of solvents. After six rounds of coupling/
deprotection (9), the N-terminal was acetylated and the Dde group
was removed to give 10, which upon cleavage afforded KβNspe

(Scheme2). Functionalization of the free amines in10byguanidinylation
[87], followed by simultaneous deprotection and cleavage furnished
RβNspe. Unfortunately, introduction of the fluorophore proved in-
compatible with our new protecting group strategy, most likely due to
sensitivity towards hydrazine during the Dde deprotection step. For
the syntheses of labeled analogues NBD-KβNspe and NBD-KβNspe, a
different strategy involving guanidinylation in solution was therefore
adopted as shown in Supplementary Scheme S1 and Scheme S2.

3.2. Antimicrobial activities

MIC andMBC assays clearly demonstrated greater bacteriostatic and
bactericidal properties of RβNspe against all eight examined strains. The
favorable effect of guanidinium cation was highly pronounced for
Gram-positive bacteria (fourfold difference in MICs and MBCs) and
moderate for Gram-negative ones. The toxicity of KβNspe and RβNspe

against human erythrocyteswas previously determined using hemolyt-
ic assay and considered to be negligible [33].

In our recent studies, fluorescein-labeled versions of α-peptide–β-
peptoid chimeras have been prepared to investigate their potential as
cell-penetrating peptides [54,55], and subsequent antimicrobial testing
of these showed a severe decrease in potency when introducing the
fluorescein label [33]. Herein, we therefore tested the NBD-labeled
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chimeras for their antimicrobial activity against a selection of pathogens
to determine if the novel fluorescent-labeled antimicrobial could inhibit
bacterial growth. Interestingly, MIC and MBC values of NBD-tagged
amino-containing chimera were found to be lower against all Gram-
positive and Gram-negative strains tested (except Vibrio vulnificus).
However for guanidino-containing antimicrobials the trend is opposite.
Since the effect of NBD-fluorophore can be either attenuating or
enhancing but within acceptable range of the parent compounds, we
decided to include fluorescently tagged chimeras in the model study
along with KβNspe and RβNspe.

3.3. Epifluorescence microscopy

EFM images of theDPPGmonolayer at 30mN×m−1 display an array
of branched dark domains of condensed phase ~25–50 μm in diameter
separated from each other by brightly colored “fluid” (disordered)
areas. Fig. 2 shows the dynamics of surface morphology changes in
lipid film after injection of KβNspe and RβNspe into the subphase. Both
compounds caused a decrease in the size of condensed-phase domains
starting from the 4th min and followed by their complete elimination
with transition of the majority of the film to a liquid-disordered phase
after 15–20 min. Structurally ordered regions in this case might be
either fully destroyed or reduced in size to become smaller than themi-
croscope resolution (b1 μm). This points out to a crystallinity-disruptive
behavior of the studied α-peptide–β-peptoid chimeras against DPPG
monolayers regardless of the identity of the cations they contain, at
least on micrometer scale.

3.4. Specular X-ray reflectivity

Fig. 3 shows electron density profiles along the surface normal ex-
tracted from reflectivity data by model-independent stochastic fitting.
The graphs are combined in such a way as to allow visual comparison
of amino- and guanidino-containing chimeras. For the lipid monomo-
lecular films, the electron density is zero at the air–water interface,
then rises sharply through the hydrocarbon tail region, and comes to a
plateau reaching its maximum values for the head groups (at a distance
of∼20–25 Å from the air side of the film) before slightly decaying to the
subphase electron density. In addition,model-dependent analyseswere
performed on XR data. Pure DPPG monolayers were modeled as two
slabs, with the first slab corresponding to the phospholipid acyl chains,
and the second reperesenting the lipid head groups. XR analysis yielded
the thickness of the slab related to acyl chains to be 16.5 Å with an
electron density of 0.312 e−/Å3. The thickness of the slab used to
model the head groups was found to be 8.3 Å with an electron density
of 0.477 e−/Å3. Two-slab model-dependent fitting of Kdo-2 Lipid A
data yielded 12.0 Å long upper hydrocarbon chain region with electron
density of 0.31 e−/Å3. The second slab corresponding to the complex
of head moieties and the outer layer of carbohydrate 3-deoxy-D-
mannooctulosonic acid known as Kdo has the thickness of 12.8 Å and
an electron density of 0.485 e−/Å3. Insertion of antimicrobials into the
membrane mimic results in extra electrons per lipid molecule in each
slab and is calculated using formula (1).

Nextrae
−

slab ¼ lslab � ρslab � Alipid þ ΔAlipid

� �
–Ninitiale

−
slab ð1Þ

Scheme 1. Synthesis of dimeric building block 8. Reagents and conditions: (a) Fmoc-Lys(Boc)-OH (1.7 equiv), HBTU (1.7 equiv), iPr2NEt (4 equiv), DMF, 18 h. (b) TFA–CH2Cl2 (4:6), 2 h.
(c) Acetyl dimedone (1.7 equiv), iPr2NEt (2.7 equiv), DMF, 18 h.

Scheme 2. Solid supported oligomerization of building block 8. Reagents and conditions: (a) 8 (4.5 equiv), HBTU (4.5 equiv), iPr2NEt (9 equiv), DMF, 18 h. (b) Piperidine–DMF (1:4), 2 ×
10 min. (c) DBU–piperidine–DMF (2:2:96), 20 min. (d) Ac2O–iPr2NEt–DMF (1:2:3), 2 h. (e) Hydrazine–DMF (2:98), 2 × 45 min. (f) 50% TFA–CH2Cl2, 2 × 1 h. (g) N,N′-
Bis(tertbutoxycarbonyl)-1H-pyrazole-1-carboxamidine (11, 36 equiv), iPr2NEt (72 equiv), DMF, 18 h. HBTU = O-(Benzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium
hexafluorophosphate.
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Here, lslab and ρslab are thickness and electron density of the slab, re-
spectively; Alipid + ΔAlipid is the area per lipid molecule upon insertion
and Ninitial e−slab minus the number of electrons in the slab in the origi-
nal untreated monolayer.

Preliminary information about themode of antimicrobial interaction
with membrane mimics can be obtained directly from the electron
density profiles (Fig. 3A). KβNspe and RβNspe displayed a drastic
difference in their mode of action against DPPG monolayers. Following
injection of KβNspe the first minimum of reflectivity curve shifted from
qz ≈ 0.24 Å−1 to a higher qz value with the peak of electron density
moved towards the air–water interface. This indicates a decrease in
thickness of the film as a result of its insertion. However, RβNspe instead
of thinning DPPG monolayer, led to appearance of two minima on the
reflectivity profile at qz ≈ 0.21 Å−1 and 0.35 Å−1 and a notable bump
of the electron density curve within the range of 20–40 Å away from
the air–water interface. This might be due to an additional layer of
distinct electron density higher than the electron density of subphase
present underneath the head group region. These data are corroborated
by themodel-dependent analysis and are summarized in Supplementa-
ry Table S1. Injection of KβNspe into DPPG resulted in an experimental
XR curve, which was again best fit with two layers. However, an
additional box was required to fit XR data upon introduction of RβNspe.
The lower increase in area per lipidmolecule observed upon insertion of
RβNspe as compared with KβNspe could possibly be explained by partial
dimerization or aggregation of guanidino-containing chimera on the
outer surface of lipid monolayer. According to the number of extra
electrons contributed by incorporated antimicrobials, both KβNspe and
RβNspe readily insert into the polar moieties of DPPG and Kdo-2 Lipid
A resulting in reduced electron density of bottom slab, but they are
both unable to penetrate deeply into overlying hydrophobic core of
lipid monolayers. The more substantial decrease in electron density of
the DPPG head group region, along with three times more additional
electrons present upon introduction of RβNspe points to a higher
Gram-positive membrane disruptive potential of guanidino-containing
compound versus its amino-containing counterpart. The same trend
was observed for the NBD-tagged chimeras. Here compound NBD-
RβNspe permeated the entire depth of DPPG film including hydrophobic
acyl chains, whereas NBD-KβNspe was found only in the hydrophilic
outer shell of the lipid monolayer. Furthermore, the introduction of
NBD-RβNspe led to a greater contribution of additional electrons in
toto, aswell as to a four-fold larger increase in area per single DPPGmol-
ecule (ΔAlipid) indicating a favorable effect of arginine residues on the
antimicrobial insertion.

In contrast to DPPG, the reflectivity curves of Kdo-2 Lipid Amonolay-
er after introduction of KβNspe and RβNspe look nearly identical (Fig. 3B).

For model-dependent analysis two boxes were sufficient to fit experi-
mental XR data and revealed very similar mechanism of action utilized
by guanidino- and amino-containing chimeras against Gram-negative
bacteria LPS. This consistency in mode of action between KβNspe and
RβNspe, aswell as betweenNBD-KβNspe andNBD-RβNspewas confirmed
by similar changes in thickness of respective slabs within Kdo-2 Lipid A
monolayer and by similar number of contributed extra electrons. The
area increase per lipid molecule in both pairs of compounds was also
about the same.

Additionally, the effect of NBD-fluorophore was investigated
by comparing KβNspe and RβNspe to their NBD-tagged fluorescent
analogues NBD-KβNspe and NBD-RβNspe respectively. According to the
results of XR analysis, functionalization of α-peptide–β-peptoid chi-
meras by NBD does not reduce their capability to interact with model
bacterial membranes. Moreover, fluorophore-carrying chimeras have
provided even greater contribution of additional electrons to the lipid
head-groups. This implies a higher number of chimeras to be inserted
into the lipid films.

3.5. Grazing-incidence X-ray diffraction

GIXD data for DPPG monolayer before and after injection of antimi-
crobials are presented in Fig. 4. The corresponding values of unit cell di-
mensions, d-spacings and sizes of crystallized domains are presented in
Table 2. At the surface pressure of 30 mN×m−1 pure DPPG yields two
distinct Bragg peaks at Qxy= 1.39 Å−1 andQxy=1.47 Å−1 correspond-
ing to d-spacings of 4.51 and 4.26 Å, respectively. This indicates the
presence of ordered structure with the centered rectangular packing
(a ≠ b, γ = 90°) having unit cell dimensions a = 5.32 Å and b = 8.54
Å and an area of 45.5 Å2 per single DPPG molecule. For Kdo2-Lipid A,
on the other hand, no Bragg peak was observed. This means that there
were no diffractable 2D crystalline regions within the monolayer,
which does not allow a detailed analysis of the surface morphology. Ac-
cording to GIXD data, RβNspe and NBD-RβNspe fully destroy the lateral
crystallinity of DPPGmonolayers evidenced by complete disappearance
of Bragg peaks. Conversely, both KβNspe and NBD-KβNspe, instead of
disordering, caused structural rearrangement of the crystal lattice
from a centered rectangular crystal packing to a hexagonal (a = b,
γ=120°) resulting in appearance of a single Bragg peak. The coherence
length was also reduced, which might explain the disappearance of or-
dered regions upon introduction of KβNspe observed by EFM. Further-
more, NBD-KβNspe was shown to decrease the size of crystallized
domains as well as the order of their crystallinity to a greater extent
than its non-labeled counterpart, even though the main parameters of
crystal lattice didn't change much. This supports the hypothesis that

before insertion 4-5 min 8-9 min 15-20 min

Fig. 2. Epifluorescence images of DPPG monolayers after injection of NspeK (A) and NspeR (B) at concentrations corresponding to 20% of their MIC values observed against Staphylococcus
aureus respectively. Lipid-linked Texas Red-DHPE fluorescence probe (1 mol%) was added to the phospholipid solutions for EFM experiments. Because of steric hindrance, the dye is
located in the liquid-disordered phase, rendering it bright whereas the liquid-ordered phase remains dark.
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labeling of antimicrobials with NBD may enhance their disruptive po-
tential against phosphatidylglycerol-containing membranes without
drastically changing the primary mechanism of action. (See Table 1.)

4. Discussion

Overall, our data provide solidmechanistic evidence of highermem-
brane activity against Gram-positive strains displayed by guanidino-
containing α-peptide–β-peptoid chimeras as compared to their
amino-substituted counterparts. Guanidino groups were shown to con-
siderably improve the capability of antimicrobial peptidomimetics to
compromise the integrity of DPPG monolayers mimicking the external
leaflet of Gram-positive bacteria cell membranes. These XR data are in
excellent agreement with the previously published results [33,56].
Same trend however was not observed for lipopolysaccharide (Kdo-2
Lipid A) monolayers, which model the outer membrane surface of
Gram-negative species. The higher antimicrobial activity of guanidino-
containing chimeras in vitro in this case might be due to that fact that
Gram-negative bacteria have both outer and cytoplasmic membranes.
When passing through the outer (LPS-rich) shell both amino- and
guanidino-containing chimeras follow similar self-promoted uptakeFig. 4. Bragg peaks plot of scattering vector Qxy as a function of intensity.
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mechanism, by which bivalent cations are displaced causing a destabi-
lization of the LPS core and the entry into the periplasmic space. How-
ever, in order to kill bacteria, it might be not enough just to permeate/
damage its outer membrane; the cytoplasmic membrane needs to be
affected as well. Because of the high content of phosphatidylglycerol
lipid species within the inner membrane guanidino-containing chi-
meras have better capability to disrupt it that leads to their stronger
bactericidal properties. A full explanation of this finding, however,
would require extensive experiments beyond the scope of this work.
A schematic cartoon illustrating the proposedmechanismofmembrane
interaction utilized by tested antimicrobials is represented in Fig. 5.

As both types of cations are fully protonated at physiological pH we
hypothesize that the ability of the guanidino group to form a more sta-
ble bidentate electrostatic interaction with negatively charged phos-
phodiester moieties affects the DPPG lipids to a greater extent than
the more structurally rigid Kdo-2 Lipid A. These findings thus provide

fundamental insights that should be useful in the future design of
optimized synthetic peptidomimetics with selective antibiotic effects.

Finally, addition of the NBD fluorophore did not significantly reduce
the insertion activity of the tested chimeras intomodelmembranes that
also correlate with their retained antimicrobial potency in vitro, espe-
cially for NBD-KβNspe. Moreover, the NBD-labeled chimeras demon-
strated even greater ability to destroy both DPPG and Kdo-2 Lipid A
monolayers, than their non-tagged analogues. It is assumed that this is
a result of increased lipophilicity of modified molecules due to incorpo-
ration of the hydrophobic benzofurazan ring of NBD. The resulting am-
phiphilic properties may reduce the energy penalties associated with
penetration of antimicrobials into hydrophobic core and, thus, favor
the disruption of membrane structure. The use of fluorescently tagged
AMP mimics might facilitate future cellular localization studies aimed
at the elucidation of the mechanism of action of oligomeric AMPs in
general.

Table 1
Antimicrobial and hemolytic activities of α-peptide–β-peptoid chimeras.

Activity Target strain MIC, MBC and HC10 measurements for selected pathogens (μg×mL−1)a

KβNspe NBD-KβNspe RβNspe NBD-RβNspe

MIC
Gram-negative E. colib 64 64 8 64

E. colic 128 32 16 64
K. pneumoniaed 256 128 32 128
V. vulnificuse 16 16–32 8 64

Gram-positive S. aureusf 256 64 32 128
S. epidermidisg 16–64 8–16 4 16
S. pyogenesh 16–32 8–16 4–8 16–32
B. cereusi 64–128 16–32 4–8 16

MBC
Gram-negative E. colib 64 64 8 64

E. colic 128 64 16 64
K. pneumoniaed 256 128 64 128
V. vulnificuse 32 64 8 64

Gram-positive S. aureusf N256 128 32 128
S. epidermidisg 32–64 8–16 4–8 16–32
S. pyogenesh 16–32 8–16 4–8 16–32
B. cereusi 128 16–32 4–8 16

HC10
hRBCs [33]

N500 ND N500 ND

a MIC = Minimum Inhibitory Concentration: lowest concentration without visible growth; MBC = Minimum Bactericidal Concentration: lowest concentration where cell growth
could not be detected by plating. The values are based on two individual experiments conducted in duplicate. HC10 = concentration that causes 10% hemolysis, hRBCs = human red
blood cells, ND = not determined.

b Escherichia coli ATCC 25922.
c Escherichia coli AAS-EC-009 [Extended Spectrum Beta-Lactamase (ESBL)-producing clinical sample isolated from a Danish patient in 2007].
d K. pneumoniae = Klebsiella pneumoniae ATCC 13883.
e V. vulnificus = Vibrio vulnificus cmcP6 (clinical isolate provided by Joon Haeng Rhee) [88].
f S. aureus = Staphylococcus aureus 8325-4.
g S. epidermidis = Staphylocuccus epidermidis RP62A.
h S. pyogenes = Streptococcus pyogenes GAS-1 [clinical isolate kindly provided by the Statens Serum Institute, Copenhagen, Denmark].
i B. cereus = Bacillus cereus ATCC 11778.

Table 2
Structural parameters of crystal monolayer lattice.

Sample Peak position (Å−1) d-Spacing (Å) Unit cell parameters Lxy a (Å) Area unit cell (Å2)

DPPG Qxy1 = 1.39, Qxy2 = 1.47 dn = 4.51
do2 = 4.26b

a = 5.32 Å
b = 8.54 Å
y = 90°
θ = 27°

L11 = 93
L02 = 196

44.51

DPPG/KβNspe 1.48 4.25 a = 6.93 Å
y = 120°
θ = 0°

156 41.62

DPPG/NBD-KβNspe 1.48 4.25 a = 6.94 Å
y = 120°
θ = 0°

85 41.69

DPPG/RβNspe and DPPG/NBD-RβNspe displayed no visible GIXD peaks

a Table Coherence length (Lxy) = the average distance in the direction of the reciprocal lattice vector Qxy over which the domain is ordered.
b “11” and “02” are used to denote (hk) vectors in reciprocal space.
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Fig. 5. Cartoon schematic of possible interactions of KβNspeK and RβNspeR with (A) DPPG and (B) Kdo-2 Lipid A monolayers at 30 mN×m−1. Chimeras carrying amino groups are solely
located in the polar head-moieties of DPPG accompanied with considerable thinning of the entire monolayer, whereas their guanidino-substituted analogues form an extra layer on the
surface of lipid film resulting in more compact distribution of inserted molecules within the model membrane. Unlike DPPG, the insertion mechanisms of KβNspe and RβNspe into Kdo-2
Lipid A model look nearly identical.
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