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ABSTRACT 

In many applications such as beam shaping, mode conversion, and phase encoding it is 

necessary to alter the spatial phase profile of a beam via a phase mask.  Conventional techniques 

to accomplish this either involve surface relief profiling in thin films such as PMMA or 

refractive index modulation in bulk photorefractive crystals such as lithium niobate.  These 

materials have been used extensively for the past several decades and perform admirably in low 

power conditions.  However, in high power systems these materials will be destroyed, requiring 

a new means of producing phase masks.  In this dissertation a method for producing robust phase 

masks in the bulk of photo-thermo-refractive glass is developed and successfully demonstrated.  

Three main applications of phase masks were studied in detail.  The first is mode 

conversion, where binary phase masks convert a Gaussian beam to higher order modes.  The 

second is beam shaping, where phase masks are used as focusing elements and for optical vortex 

generation.  Near-theoretical conversion efficiency was achieved for all elements in these cases.  

The third application is aberration analysis and correction.  Here the degradation of volume 

Bragg gratings recorded in an aberrated holographic system was modeled, with the simulations 

indicating that correcting elements are generally necessary for high-quality production of 

gratings.  Corrective phase masks are designed which can selectively correct one or multiple 

aberrations of varying magnitudes are shown.   

A new type of optical element is also developed in which a phase mask is encoded into a 

transmitting Bragg grating.  This technique combines the local phase modulation of a phase 

mask with the multiplexing ability of transmitting Bragg gratings, allowing for multiple phase 

masks to be recorded in a single element.  These masks may be used at any wavelength 
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satisfying the Bragg condition, increasing the useful wavelength regime of a single element by 

orders of magnitude.       
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CHAPTER 1: INTRODUCTION 

In this thesis a method for recording phase masks in the bulk of a photosensitive glass is 

demonstrated.  The term “phase mask” is used to define any optical element excluding traditional 

lenses in which a spatially dependent phase profile is induced.  Phase masks have been used for 

decades for a variety of applications, including improving the depth of field [1-3], manufacture 

of electronics [4], encryption [5-8], and coronagraphy [9-11].  While a phase mask may have an 

arbitrary phase profile in order to meet the needs of the system, there are several general 

categories of phase masks, including gratings [12-18], beam shapers [19-23], and mode 

converters [24,25].  Also, while traditional lenses are not considered phase masks, focusing 

elements such as Fresnel lenses may be considered phase masks as their total phase variation 

does not exceed 2π and they typically contain multiple zones with a rapid phase variation at the 

boundary regions.   

In this chapter the properties and limitations of conventional phase mask substrates are 

discussed and photo-thermo-refractive (PTR) glass, the substrate used in this thesis to surmount 

the conventional limitations, is described.  Chapter 2 focuses on the properties that an ideal 

volume phase mask (VPM) recorded into the bulk of PTR glass has, describing the similarities 

and differences of VPMs to traditional phase masks.  Chapter 3 discusses the means by which 

VPMs containing arbitrary profiles can be recorded into a sample and the limitations of current 

recording techniques.  Chapter 4 discusses aberrations in a holographic system and demonstrates 

VPMs which can correct them, and Chapter 5 discusses holographic phase masks, where 

multiple phase masks can be encoded into a single element. 
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1.1 Conventional Phase Masks 

Conventional phase masks are generally produced by either sculpting the surface of a 

material or by recording it in the bulk via direct exposure (including holographic exposure).  

While several substrates are used in the literature, for the sake of brevity only three common 

substrates will be discussed here: photoresists, dichromated gelatin, and photorefractive crystals.  

All of these substrates are used to produce a permanent (or in the case of the photorefractive 

crystals, semi-permanent) phase profile.  While elements such as spatial light modulators can be 

used to create arbitrary phase distributions these elements are not generally considered phase 

masks and so are not included here. 

Photoresists are photosensitive polymer structures such as poly(methyl methacrylate) 

(PMMA).  When exposed to UV radiation, the solubility of photoresist to a chemical developer 

will change, either becoming soluble in the exposed regions (positive resist) or becoming 

insoluble in the exposed regions (negative resist).  As the local phase is equal to 2 /nt   , to 

produce the desired local phase change either the initial thickness is controlled or the exposing 

dosage is modified so that only a portion of the resist changes solubility in the exposed region 

[26].  Despite its photosensitivity however, photoresist does not undergo refractive index change, 

which inherently limits its use to surface profiles where local phase accumulation is based on the 

optical path length of the resist.  In addition, the absorption coefficient of PMMA in the visible 

and near-IR region is between 0.06 and 0.08 cm
-1

 (defined here as the base 10 absorption 

coefficient: 010 dI I  ) [27].  With this level of absorption, even a 1 µm thick sample can be 

heated to above the melting point of PMMA in a multi-kilowatt system, depending on the beam 

power and diameter [28-32].  While air cooling may be applied to the sample, the high air 
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pressure necessary to reduce the temperature below the point where the surface profile is not 

degraded by heat is likely to ablate the surface to the point where the profile is destroyed.  Thus 

PMMA and similar photoresists cannot be used in high power systems. 

Another thin-film-type substrate is dichromated gelatin (DCG) (natural gelatin doped 

with (NH4)2Cr2O7 or K2Cr2O7), which, like photoresist, becomes insoluble in water after 

exposure to UV or blue light.  However, unlike photoresist DCG undergoes refractive index 

modulation as well.  It is a popular material for the production of holographic optical elements 

because of its capacity for high refractive index modulation (up to 80,000 ppm), a resolution 

capacity greater than 5000 lines/mm and its ability to be redeveloped to produce the desired 

amount of refractive index modulation [33].  In addition the thickness of the DCG layer can be 

controlled and with the addition of appropriate dyes DCG can be made photosensitive at red 

wavelengths.  However, this potentially wide region of photosensitivity results in a higher 

absorption coefficient at many wavelengths, and as the melting point of gelatin is ~30
o
C 

depending on the grade [34], it cannot be used in kilowatt-level systems.    

If it is desirable to have a phase profile recorded in the bulk of a material, without any 

changes to the surface profile, a commonly used substrate in a photorefractive crystal.  

Photorefractive crystals utilize the electro-optic effect to create a refractive index change.  While 

several photorefractive crystals are described in the literature, only lithium niobate (LiNbO3), 

which is the most commonly used crystal, will be covered here.  During the irradiation of 

LiNbO3:Fe crystals (as with other dopants in LiNbO3), electrons are excited into the conduction 

band from Fe
2+

 ions trapped within the valence band.  At low intensities the number of electrons 

excited is directly proportional to the light intensity and concentration of Fe
2+

 ions [35].  From 

the conduction band electrons rapidly recombine with defects present in the crystal at an 
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intermediate level between the valence and conduction bands.  For typical LiNbO3 crystals the 

number of defects is significantly greater than the number of deep Fe
3+

 recombination centers.  

As a result, electrons will diffuse between defect sites until recombining with deep centers [36]. 

LiNbO3 masks have lesser utility than DCG masks in that refractive index modulation 

can only occur when there is a net diffusion of electrons into Fe
3+

 traps.  Therefore it is 

impossible to modify the refractive index over an area significantly larger than the diffusion 

length, as many of the electrons will merely refill the newly ionized Fe
2+

 centers.  Also, unlike 

DCG masks, the space charge distribution is not permanent, as any incident light that can re-

excite electrons can erase or modify the initial distribution [37].  This prevents lithium niobate 

from being used in high power systems since the refractive index profile will be rapidly erased.   

1.2 Photo-Thermo-Refractive Glass 

As seen with photoresist and DCG absorption in the substrate may result in the phase 

profile being destroyed and so for phase masks to be used in high power systems it is necessary 

to have low absorption in the substrate to avoid overheating.  Also, since surface masks may 

have problems with dust and handling errors, recording into the bulk of a medium is desirable.  

When recording in the bulk of a material the ideal substrate will have a high laser damage 

threshold, a high melting point, and will allow a phase profile of arbitrary shape and size to be 

recorded within it.  The substrate used in this thesis, which has the necessary properties, is photo-

thermo-refractive (PTR) glass. 

PTR glass is a sodium-potassium-zinc-aluminum-fluorine-bromine-silicate glass doped 

with cerium, antimony, tin, and silver [38], with a region of transparency from 350 nm to 2700 

nm [39] and a damage threshold of 40 J/cm
2
.  Due to this wide transparency window, PTR glass 
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is used to produce volume Bragg gratings for the visible and infrared regions, which have found 

applications in pulse stretching and compression and beam steering, and their high laser damage 

threshold is ideal for high power spectral beam combining [17].  In the near IR region PTR glass 

has an absorption coefficient of ~10
-4

 cm
-1

, and air cooling can be applied to the sample without 

degrading the recorded profile or seriously affecting the beam [40]. 

Refractive index modulation is achieved via a multi-step process: it is first exposed to UV 

radiation from a He-Cd laser, ionizing Ce
3+

 to Ce
4+

.  The ionized electrons are trapped in 

intrinsic defects of the glass matrix or are bound to dopants and impurities, including Ag
+
 ions, 

which are reduced to atomic silver.  Thermal development of the glass at a temperature of 

approximately 485
o
C causes the atomic silver to conglomerate into clusters which serve as 

nucleation centers for sodium fluoride (NaF) nanocrystals.  After the nucleation centers are 

formed the glass is cooled to below 200
o
C and then heated to temperatures between 500

o
C and 

520
o
C, during which the NaF nanocrystals will form.  After development the nanocrystals are 

typically about 20 nm in diameter with an average spacing of approximately 110 nm [38].   

After NaF crystallization is complete the exposed portion of the glass can be broken into 

three nanoscopic regions: the NaF crystals, the surrounding region which has been depleted of 

sodium and fluorine, and the chemically unaltered PTR glass.  The size of the three regions is 

dependent on the total refractive index change, with the depleted region being anywhere from a 

few tens of nanometers to the full distance between the NaF crystals.  In considering stresses 

between the three regions, note that immediately after development but before cooling the glass 

is above the glass transition temperature Tg ~ 460
o
C so the glass acts as a viscous liquid.  

Therefore any stresses between the three regions will relax quickly.  However, the coefficient of 

thermal expansion (CTE) for NaF is ~ 
5106.3  K

-1
 while the CTE for virgin PTR glass is ~ 
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5101 K
-1

, nearly a factor of four smaller.  Therefore, as the glass is cooled radial and tangential 

stresses, which are constant over the volume of the NaF crystals and decay as r
-3

 for the depleted 

and unaltered PTR glass, will build between the regions.  Due to the large difference in the CTE 

for the NaF and the virgin glass, the largest contribution to the stress is at the NaF/depleted glass 

interface, with stresses of 750-950 MPa being measured by XRD spectroscopy, which is close to 

the point at which microstresses will fracture the glass [38].  These stresses induce an absolute 

refractive index modulation of up to 1000 ppm.  These stresses are only present when the glass is 

cooled to room temperature and will relax if the glass is reheated above Tg; as described in [38] if 

a PTR sample is heated to 500
o
C after development then no refractive index change is measured.  

However, after the sample has cooled then the stresses reappear and refractive index modulation 

is present once more.  It should be noted that these stresses slightly decrease the density of the 

material so the induced refractive index change is negative. 

The total refractive index change that will be induced in the glass is a function of the 

dosage irradiating the sample, the temperature at which it is developed, the time for which it is 

developed, and how it is cooled [38,41,42].  For a given fixed temperature if the glass is allowed 

to cool slowly (~0.1 K/min) after the final thermal treatment (where the NaF crystals are 

developed) then the refractive index change can be modeled empirically [41] using a hyperbolic 

formula: 

 
D

Dn
n s





. ( 1.1 ) 
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Here Δn is the refractive index change, ns is the maximum refractive index change induced by 

saturating the sample with infinite dosage, D is the dosage, and ε is the rate of change 

corresponding to a dosage necessary to achieve ns/2, which depends on the glass properties and 

the temperature of development when forming the nanocrystals.  Fig. 1.1 shows the refractive 

index change curves for some common glass melts when exposed to a beam at 325 nm, the 

emission wavelength of a He-Cd laser.  Nonlinear effects become significant for peak dosages 

larger than approximately 0.75 J/cm
2
 and must therefore be taken into account when recording 

elements with a large dosage.  Note that using a smaller dosage and a longer bake time at a given 

temperature can improve the linearity of the refractive index profile but not eliminate it entirely.  

1.3 General Recording Procedure 

Having chosen the recording medium for this work it is necessary to determine the 

methods by which one may record volume phase masks (VPMs) in PTR glass.  In general there 

are three techniques which may be employed: direct writing, indirect illumination through an 

amplitude mask and imaging system, and direct illumination through an amplitude mask using 

Figure 1.1: Refractive index change vs. exposure dosage at 325 nm for values of ε corresponding to common glass melts and 

baking temperatures.  Here ns is assumed to be 1000 ppm. 
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the contact copy technique.  While each technique has its strengths and weaknesses, the method 

of choice in this thesis is direct illumination of the sample using the contact copy method.  In this 

system an amplitude mask is placed directly on top of the sample, with some index matching 

fluid between them to eliminate any reflections.  The mask and sample are then illuminated by 

the recording beam, which may either completely illuminate the mask or illuminate it piecemeal 

via a raster scan.  This method can have difficulties when illuminated by a monochromatic, 

coherent source, as it is still possible to have an interference pattern between the transmitted and 

diffracted portions of the beam after passing through the amplitude mask (unless the aperture 

dimensions in the amplitude mask are subwavelength).  However, if the source is broadband any 

interference profile will be partially or completely washed out, depending on the bandwidth and 

degree of coherence of the source.  The main limitation of this technique is diffraction from 

sharp edges in the amplitude mask.  This generally prevents very sharp phase transitions, which, 

as will be seen in later chapters, can reduce performance in certain applications. 

1.4 Summary 

Conventional substrates for recording phase masks cannot be used in high power 

systems.  Furthermore, thin-film-type substrates, which are used to create surface phase masks, 

can be easily damaged via handling and can have their phase profiles significantly affected by 

dust.  To avoid these problems, phase masks in this thesis are recorded in the bulk of PTR glass, 

which due to its low absorption and high damage threshold makes it a suitable substrate for high 

power applications.  To record the phase profiles into the glass, the contact copy method with an 

amplitude mask and broadband illumination is used where the desired phase profile is converted 

into an amplitude profile for recording.  
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CHAPTER 2: PROPERTIES OF VOLUME PHASE MASKS 

Note: This chapter contains material which was or will be published in the following works:  

M. SeGall, V. Rotar, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Binary volume 

phase masks in photo-thermo-refractive glass,” Optics Letters 37, 1190-1192 (2012). 

 

M. SeGall, I. Divliansky, D. Ott, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Beam 

shaping by volume phase structures in photo-thermo-refractive glass,” Optics+Photonics 8843-

6 (2013) (conference proceedings to be published) 

 

M. SeGall, I. Divliansky, and L. B. Glebov, “Gradual phase accumulation in thick media,” (to be 

published) 

 

As described in the previous chapter, phase masks constitute a class of elements which have a 

variety of different applications, depending on their composition and phase profile.  While in 

general phase masks may be transmissive or reflective, in this thesis only phase masks which are 

transmissive will be considered, as this is generally the case for all masks except for gratings 

which are placed in a closed system.  In industrial applications such masks are typically intended 

to be permanent, and are therefore recorded in photoresist or DCG, which is no more than a few 

tens of microns thick.  Volume phase masks however will generally be recorded in a sample 

which can be several millimeters thick.  As this is two orders of magnitude thicker than 

traditional masks it is possible for a thick mask containing the same phase profile as a thin mask 

to demonstrate different effects both in the near field and in the far field.  In this chapter the 

properties of volume phase masks will be discussed and the applications in which they may be 

used will be described.  
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2.1 Periodic Phase Masks 

Periodic phase masks (i.e., gratings) are a well-known example where phase 

accumulation in the bulk of a large medium may have different effects than the same phase 

accumulation over a few microns at the surface.  This problem has been well-studied in the 

literature, and there are two broad regions for which several analytical theories have been 

developed [43-47].  The first region is the Raman-Nath diffraction regime, which is typically 

associated with “thin” gratings.  Raman-Nath diffraction is characterized by an incident beam 

being diffracted into multiple diffraction orders, with each of the orders diffracting 

symmetrically about the 0
th

 order (where the 0
th

 order is the order where the beam is transmitted 

at the same angle as the incident angle, and therefore is not diffracted).  This regime is 

effectively polarization insensitive and can be described using scalar diffraction theory, where 

the vectorial nature of the electric field is ignored.  To be in the Raman-Nath regime the incident 

beam must generally satisfy the paraxial approximation, as at large angles polarization effects 

become prevalent, precluding the use of scalar diffraction theory, and the symmetry of the 

system is broken by some diffraction orders becoming evanescent [47].   

Gratings which exhibit Raman-Nath behavior, which will henceforth be referred to as 

thin gratings, are typically produced by creating a surface profile in a dielectric material with 

refractive index n and immersing it in a medium with refractive index n0.  The diffracted orders 

are diffracted from the grating in a ray fan with each order propagating at an angle given by the 

grating equation [43]: 

  0 sin sini mn m     . ( 2.1 ) 
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Here Λ is the grating period, θi and θm are the angles of the incident and mth diffracted order, and 

λ is the free-space wavelength.  As can be seen from Eq. 2.1 the diffracted ray fan is symmetric, 

and for a constant period and incident angle, the only effect of changing the wavelength is to 

alter the angles of the diffracted rays.   

The diffraction efficiency of a thin grating depends upon its phase profile; for a 

sinusoidal grating each of the orders will have a diffraction efficiency (in the Raman-Nath 

regime) of 

 
2

2

p

m mJ



 

  
 

,  ( 2.2 ) 

where Jm is the mth order Bessel function of the first kind and φp is the peak-to-peak (maximum 

of the sinusoidal pattern to the minimum of the sinusoidal pattern) phase variation of the grating 

[43].  Note that as the efficiencies are determined by the Bessel functions it is impossible to 

achieve higher efficiencies than the global maximum of the Bessel functions.  For diffraction 

into the first order this limits the maximum efficiency to 33.8%.  This limit, however, is based on 

the assumption that the grating is used at small incident angles.  It is possible to achieve higher 

efficiencies if the incident angles are very large (close to 90
o
), with up to 100% efficiency 

theoretical possible due to all other orders becoming evanescent [47].  However, as stated 

previously in this configuration the grating is not exhibiting true Raman-Nath diffraction due to 

polarization effects becoming prevalent, preventing the use of scalar diffraction theory to model 

the system.  While Harvey et al. have developed a nonparaxial scalar diffraction theory for TE 

polarization which can model the grating system [47], they have not been able to do so for TM 

polarization and so in general the grating must be modeled using some form of vectorial theory 

to calculate the fields. 
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  Volume gratings by contrast are typically created by holographic exposure of an 

interference pattern into the bulk of a photosensitive medium.  A transmitting grating is formed 

when two flat-top beams which are both incident on the same face of the sample interfere in the 

medium, creating a sinusoidal fringe pattern with a period controlled by the angle of interference 

between the beams, as shown in Fig. 2.1.  Due to the large interaction length between an incident 

beam and the recorded fringe pattern the dephasing between diffraction orders becomes larger, 

reducing the amount of power transferred between the orders.  If the dephasing is large enough 

only a single diffraction order aside from the 0
th

 order will be present.  This is the second overall 

regime in which a grating may operate, referred to as Bragg diffraction.  Diffraction into an order 

other than the 0
th

 order only occurs when a probe beam is incident at or near a specific angle 

known as the Bragg angle, which may or may not be an angle small enough to apply the small 

angle approximation, requiring a vectorial diffraction theory to model the system [44-46].  The 

Bragg angle is given by [44]: 

 02 sin Bn m   . ( 2.3 ) 

At the Bragg angle the diffracted beam diffracts at angle which is equal in magnitude and 

opposite in sign from the incident angle (in the grating medium; Snell’s law must be applied at 

the boundaries).   

θ 

Figure 2.1: Two flat-top beams interfering with a half angle of interference θ to produce a sinusoidal grating in the bulk of a 

photosensitive medium. 
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Here it is assumed that the grating has fringes which are not tilted, which occurs when the angle 

between the first writing beam (the left beam in Fig. 2.1) and the normal to the grating surface is 

identical to the angle between the second writing beam (the right beam in Fig. 2.1) and the 

normal to the grating surface, though a more complete description is given in Chapter 4.   

In addition to the different number of diffracted orders present as compared to thin 

gratings, volume gratings have a significantly different criterion for diffraction efficiency.  The 

peak diffraction efficiency of a grating is achieved when the Bragg condition is fulfilled (i.e. 

when the incident beam is at the Bragg angle), and for a grating without tilted fringes this 

diffraction efficiency is given by [44]: 

 
2sin

cos B

nd


 

 
  

 
. ( 2.4 ) 

Here Δn is the refractive index modulation and d is the grating thickness.  Note that by proper 

choice of Δn and d it is possible to achieve 100% diffraction efficiency, when the argument of 

the sine function is π/2.  Also, as the efficiency is a sinusoidal function of Δn and d there are 

multiple thicknesses which will have the same diffraction efficiency for a given Δn.  However, 

increasing the thickness such that the argument is larger than π/2 results in a decrease of angular 

selectivity [44], which is generally undesirable in practice. 

The boundary between the Bragg regime and the Raman-Nath regime is a question of 

interest because it does not depend solely on the physical thickness of a grating.  As described in 

Refs. [45,48-52], two parameters are necessary to quantify the position of the boundaries.  The 

parameters are 'Q and γ, defined as 

 
2

0

2
'

cos B

d
Q

n







 ( 2.5 ) 
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cos B

nd 


 


 . ( 2.6 ) 

Here ρ is a polarization term, which is equal to 1 for TE polarization and cos2θB for TM 

polarization.   

If '/ 1Q   (usually a value larger than 20 is sufficient) then the grating will be in the 

Bragg regime.  Note that this ratio has no dependence on the thickness of the grating, but 

depends only on the modulation of refractive index, the grating period, and the wavelength of the 

incident beam.  If ' 1Q  the grating will be in the Raman-Nath regime, and Moharam and 

Young have shown that a looser criterion of ' 1Q    satisfies the Raman-Nath criterion to within 

one percent based on the power in the diffracted orders as compared to the power predicted by 

Eq. 2.2 [48].  Note that this product is essentially a ratio of the thickness to the grating period, so 

even a grating with small physical thickness may not satisfy the criterion depending on the 

period.  In this case there is poor coupling to any order which does not satisfy the Bragg 

condition and thus the order will be suppressed.  If ' 1Q    and '/ 1Q  then the grating does not 

satisfy the conditions for either the Bragg regime or the Raman-Nath regime.  In this case the 

number of diffraction orders, their angles of diffraction, and relative diffraction efficiencies 

cannot be determined unless a rigorous coupled-wave theory is applied.   

2.2 Non-Periodic Phase Masks 

Non-periodic phase masks, including non-periodic binary masks [9-11,24,53-55], 

polynomial masks [2], etc., are used for applications such as mode conversion and beam shaping. 

In this case there is little to no energy diffracted into higher orders and the goal of the phase 

mask is to provide a specific amount of local phase accumulation in order to shape the wavefront 
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to a desired profile in a given plane, usually the focal plane of a lens.  When manufacturing such 

a phase mask the traditional assumption is that the mask effectively provides all of the necessary 

local phase accumulation in a single plane, what is henceforth referred to as the ideal phase mask 

assumption (IPMA).  While this assumption is reasonable in the case where the phase mask is 

very thin (on the order of a few tens of microns), the gradual accumulation of phase over 

relatively large distances where the beam has the opportunity to propagate suggests that the 

IPMA may not apply, as diffraction effects may become significant in a similar manner to 

volume gratings.  To determine the actual beam profile the beam propagation method (BPM) 

[56] will be used here. 

In the BPM the following outline is used for determining the field at a given distance: 

1. Take the Fourier transform of the initial electric field. 

2. Multiply it by 2 2

0exp[ ( ) / 2 ]x yi f f z k   , where fx and fy are the spatial frequencies, Δz is the 

propagation distance, and ko is the wavenumber.  This term provides the linear propagation in 

the Fourier domain. 

3. Take the inverse Fourier transform of the new field. 

4. Multiply it by ]),(exp[ 0 zyxnik  .  This provides the local phase accumulation over the distance 

Δz.  When propagating in a homogenous medium the refractive index is just a constant and so 

this step may be neglected if the final step is in a homogenous medium (such as propagating 

in air after passing through an inhomogeneous medium).  Note that the refractive index is 

assumed to be constant in z over the range of the step size.  If the refractive index changes 

with z it will be necessary to choose step sizes small enough that it can be assumed to be 

constant during each step. 
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5. Set the resulting field as the initial field and repeat steps 1 – 4 until reaching the desired 

propagation distance. 

2.2.1 Effects on Beam Profile 

As a beam propagates through a VPM it is likely that any significant departure from the 

IPMA will be due to diffraction effects from sharp boundaries in the local refractive index.  To 

examine this, consider a phase mask which has a step function in its refractive index profile.  In 

particular, consider two samples which are illuminated by a 3 mm (where the beam diameter is 

defined as the full width at 1/e
2
 of the intensity profile) collimated Gaussian beam at 632.8 nm, 

as illustrated in Fig. 2.2.  The first sample is 2 mm thick and has a refractive index profile of n = 

1.5 for x < 0 and 1.4998418 for x ≥ 0.  The second sample is 50 µm thick, and has a refractive 

index profile of n = 1.5 for x < 0 and 1.493672 for x ≥ 0.  This decrease in refractive index 

provides a phase shift of π after propagating through the thickness of the respective samples.  

Using the BPM with a step size of 1 µm, a lateral resolution of 100 nm in the spatial domain, and 

a lateral resolution of 0.01 mm
-1

 in the Fourier domain, the phase element is simulated in Matlab 

and the resulting intensity distribution is then compared to the intensity distribution of a beam 

which acquires a π phase shift assuming the IPMA.  

Figure 2.2: Illustration of collimated beam passing through a phase mask and being focused by a lens to achieve the far field 

beam profile.  This illustration represents the coordinate system used throughout Chapters 2 and 3 for observing the intensity 

profile of a beam after passing through a phase mask. 

Phase Mask Lens Far field 
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As shown in Fig. 2.3a, the beam which acquires its phase change under the IPMA has no 

change in its intensity profile (as expected) immediately after the sample because the beam has 

not yet undergone any propagation.  The beams which gradually acquire their phase change 

however have a different profile, with a fluctuation in the profile that is expected due to 

interference between the diffracted wavefront and transmitted wavefront at the boundary 

between regions with different refractive indices.  These different profiles indicate that because 

the beam has the opportunity to propagate during its phase accumulation the IPMA cannot be 

applied, at least in the near field.  The sample that is 50 µm thick however shows a profile which 

is considerably closer to the profile predicted by the IPMA; this is obviously because the sample 

is closer to fulfilling the assumptions of the IPMA.  Though the fluctuation in the intensity 

profile is still present in the 50 µm sample it occurs over a much narrower region, with the lateral 

distance between the point of highest intensity and lowest intensity being equal to about one 

wavelength; this indicates that for traditional thin film masks in which the thickness necessary to 

achieve a π phase shift is on the order of a few microns there will be no observable deviation 

Figure 2.3: Simulated beam profile of a Gaussian beam acquiring a binary step index phase profile in (a) the near field 

immediately after the sample and (b) in the far field. 

(a) (b) 
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from the input beam profile.  If the beams are propagated to the far field, corresponding 

mathematically to a Fourier transform of the field, then as shown in Fig. 2.3b there is a negligible 

difference between the intensity profiles under the different assumptions.  Thus the IPMA can be 

applied if the beam is being considered in the far field.  Since the difference between a beam 

undergoing gradual phase change and a beam acting under the IPMA will begin to converge to 

zero as both beams propagate towards the far field the largest difference between the two cases is 

therefore in the very near field, immediately after the sample.   

To determine the effects of varying sample thickness and beam size on the intensity 

distribution, the average absolute difference (AAD) between a beam undergoing gradual phase 

change (GPC) and a beam acting under the IPMA is taken here for beams of diameter in the 

range of 0.5–3 mm and samples of thickness between 2 µm and 5 mm.  Here the average 

absolute difference is defined as 

  


n

i yxyx ii
II

n
II

1

1
 ( 2.7 ) 

for n points within an e
-2

 diameter.  

Figure 2.4: Average absolute difference immediately after the sample between a binary VPM and an ideal binary phase mask for 

beams of diameters between 0.5 and 3 mm. 
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Ix and Iy represent the normalized intensity profiles of the different beams.  (In this formulation, 

the peak intensity of the normalized beam subject to the IPMA is unity, and each beam contains 

an equal amount of energy).  In all cases the refractive index difference between regions is 

chosen so that after propagating the full thickness the beam has acquired a π phase change at 

632.8 nm.  As shown in Fig. 2.4, in all cases in the near field as the sample thickness increases so 

does the average absolute difference, and masks which are only a few microns thick are 

practically indistinguishable from masks subject to the IPMA.  However, there is an order of 

magnitude difference in the value of the AAD for a 100 µm sample compared to a 2 µm sample 

for all beam diameters; in order to reasonably apply the IPMA in the near field sample 

thicknesses should be no more than a few tens of microns.  Note also that larger beams have 

more power located far from the phase discontinuity so their average absolute difference is 

consequently smaller.  In the far field the AAD is zero to within the rounding errors of the 

software for all diameters and sample thicknesses.  

A further difference between beams undergoing GPC and beams acting under the IPMA 

can be seen if the relative phase difference is increased to 2π or greater.   

Figure 2.5: (a) Fresnel pattern immediately after the sample for large phase changes and (b) how they form and progress as the 

total phase accumulation increases. 

(a) (b) 
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Returning to the 2 mm sample illuminated by a 3 mm beam, consider now a refractive index 

profile such that a 4π shift is induced.  As highlighted in Fig. 2.5a the relatively low intensity 

side fringes seen in Fig. 2.3a become larger, predominately on the left-hand side where the phase 

change occurs, though the central null is still present.  These side fringes continue to increase in 

visibility as the total phase change increases, and new fringes will form, as shown in Fig. 2.5b.  

These fringes shift position linearly as new fringes form with the width and spacing of the 

fringes differing depending on whether or not they form on the side where the refractive index is 

changed.  However, as seen in Fig. 2.6, in the far field the beam maintains the Gaussian profile 

that is expected whenever the phase change is a multiple of 2π.  While difficult to see in Fig. 2.6, 

there is a slight decrease in intensity of the beams that pass through a VPM as compared to the 

beam passing through the thin film mask because a small fraction of the energy is diffracted from 

the boundary between different refractive indices to high spatial frequencies.  

To experimentally verify these simulations a VPM containing a π phase shift was 

recorded by using an amplitude master mask which was opaque over half of the surface.  The 

illumination source was a collimated 1.1 mm He-Cd beam (Kimmon) at 325 nm and the overall 

Figure 2.6: Simulated far field intensity profile of beams after passing through a thin film mask with a 4π phase shift and VPMs 

containing a 4π and 8π phase shift.  In all cases the far field profile is a Gaussian distribution. 
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profile was recorded by using a raster scan with each pass partially overlapping the previous pass 

to create a uniform dosage of 0.9 J/cm
2
.  In order to ensure that reflections from the back surface 

of the glass would not create an interference pattern within the sample, the back surface and 

sides were coated in an absorbing solution.  This solution was a mixture of First Contact™ 

polymer solution (Photonic Cleaning Technologies) and standard black ink used in inkjet 

printers.  The ink was added to the polymer solution until the mixture became opaque when 

dried.  The mixture was then painted onto the back surface and sides of the sample, with multiple 

layers added if there was any light leakage visible by eye.  Because the polymer solution has a 

refractive index close the refractive index of the glass the mixture acted as an absorbing index-

matching film.  In the same sample, but separate from the mask, a single stripe was recorded 

with the same dosage as the maximum dosage in the mask.   

The sample was then developed following the procedure described in Chapter 1 and a 

refractive index change of 208 ppm measured in a custom liquid-cell shearing interferometer 

[57] based on the refractive index change of the stripe.  Note that this stripe is necessary, as the 

shearing interferometer (as well as most interferometers) has difficulty in determining the phase 

shift at a sharp transition boundary.  This is because diffraction from the boundary typically 

makes it difficult to determine how many fringes the pattern has shifted by in the exposed region, 

and it is not uncommon for the analysis software to overestimate or underestimate the number of 

fringes.  Therefore the stripe is necessary, as it has a Gaussian intensity distribution with no 

sharp edges. 

To achieve a π phase shift at 632.8 nm the sample was then polished to a thickness of 

1.52 mm with a surface flatness of λ/4, measured by a commercial Zygo interferometer.  The 

sample was then bleached [58] to reduce the total absorption in the glass.   
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This bleaching removes color centers formed in the glass after exposure and development, shown 

in Fig. 2.7, and while not generally necessary for phase masks used in low power applications, it 

is critical for high power applications.   

To experimentally determine whether there is any difference between the near field 

profile of the VPM as compared to a traditional mask a near-field scan was performed by 

illuminating the sample with a collimated 3 mm He-Ne laser at 632.8 nm and placing a 62.5 µm 

graded-index fiber (Corning Infinicor 300) directly behind the sample.   

Figure 2.8: Absorption in PTR glass after exposure and thermal development.  Bleaching the sample after development is critical 

for achieving low-absorption samples. 

Figure 2.7: Near-field scan of a beam passing through a sample containing a π phase discontinuity using a fiber.  The beam 

profile in the presence of the phase discontinuity shows a fluctuation in the intensity which is not expected if the mask acts as a 

traditional thin film mask. 
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The fiber tip was then scanned over the illuminated region at a speed of 5 µm/s.  The distance 

between the fiber tip and the sample was approximately 50 µm, and the output from the fiber 

directly illuminated a Laserstar detector (Ophir) which sampled at a rate of 3 Hz.  As shown in 

Fig. 2.8, the sample was first illuminated in a region where there was no phase discontinuity in 

order to determine the beam profile; the VPM acted as a window in this case.  A scan was then 

taken to establish the intensity profile of the incident beam, providing the baseline against which 

the second scan was compared.  Because the beam quality at the center of the beam was poor, 

when the beam was placed to illuminate the phase discontinuity, the boundary between regions 

was deliberately offset from the center of the beam, making it easier to establish whether the was 

any change in the intensity profile.  After scanning the beam with the phase discontinuity in 

place, a clear fluctuation in intensity is observed that is not expected to be seen with the 

resolution of the fiber if the VPM behaved in the same manner as a thin phase mask.  Note that 

there are some small variations in intensity in the baseline profile which more or less match the 

positions of the variations seen with the VPM.  These fluctuations are consistent with the 

fluctuations of the illuminating laser intensity and therefore their alignment with the flucutations 

seen with the VPM is coincidental. 

Though the VPM produces a different intensity profile in the near field, in the far field 

the intensity distribution shows the same two-lobed structure expected when a traditional phase 

mask is used, as seen by the cross-section shown in Fig. 2.9 where the beam is focused by a 500 

mm lens.  Note that in this figure the position of the beam has been shifted so that the phase 

discontinuity is no longer offset from the beam center.   
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The null region in the center of the profile does not reach zero intensity because of the small spot 

size and finite resolution of the camera; for smaller incident beam sizes where the far field spot 

size is larger the null space between lobes can be seen reaching the noise floor. 

2.2.2 Effects on Mode Conversion 

While a simple one-dimensional step function in the refractive index profile indicates that 

in the far field a VPM has the same intensity distribution as a thin phase mask, in practical 

applications the phase mask will have some two-dimensional profile which may contain several 

sharp boundaries.  In this case one must consider the possibility that diffraction from the multiple 

boundaries may result in an interference pattern which degrades the intensity distribution in the 

desired image plane.  Such an interference pattern may not result in a significantly altered 

intensity profile by eye, but in applications such as mode conversion the conversion efficiency 

may suffer if, for instance, a desired null point is not perfectly achieved.  

To investigate the effects on conversion efficiency, consider a set of two-dimensional 

binary masks which will be used to convert a Gaussian beam into higher order Hermite-Gaussian 

Figure 2.9: Far field intensity distribution of a beam with a π phase shift located at the beam center.  This profile is measured at 

the focal plane of a 500 mm lens along the fx axis shown in Fig. 2.2. Here the x scale on the horizontal axis refers to the lateral 

distance from the optical axis. 
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and Laguerre-Gaussian modes.  The first mask will consist of four sectors and the second one 

will consist of eight, with the phase between adjacent sectors shifted by π, as shown in Fig. 2.10.  

The four-sector mask will partially convert a Gaussian beam to a TEM11 mode and the eight-

sector mask will partially convert the beam to the LG04 mode [59].  To determine the degree of 

conversion, note that the Hermite-Gaussian modes (and Laguerre-Gaussian modes) are mutually 

orthogonal; two normalized modes
11mnE and 

22mnE are related by 

 
21212211
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Here a is area, (*) denotes complex conjugation and δ is the Kronecker delta.  The fields for each 

mode are given by [60]: 
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Here w is the radius of the beam (defined as the half width at 1/e
2
 of the beam intensity), Hn is 

the Hermite polynomial of the physicist’s form of order n, k is the wavenumber, zo is the 

Rayleigh length, and R is the radius of curvature of the wavefront. 

φ = π φ = 0 

(a) (b) 

Figure 2.10: Binary phase distribution for (a) a four-sector and (b) eight-sector mode converting phase mask. 
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m

nL is the associated Laguerre polynomial of order n.  The first few Hermite and Laguerre 

polynomials are listed in Table 2.1.  Note that the lowest order polynomial in both cases is one, 

so the lowest order mode is a standard Gaussian beam.  

Since a Gaussian beam transmitted through a multi-sector VPM acquires local phase 

change it will thus not have the same field distribution as the lowest order mode for either the 

Hermite-Gaussian modes or the Laguerre-Gaussian modes and conservation of energy will 

therefore dictate that some energy will be coupled into higher order modes.  Mathematically this 

is equivalent to stating that the transmitted beam is a linear combination of each mode in the 

basis set (where the Hermite polynomials represent a basis set in Cartesian coordinates and the 

Laguerre polynomials represent a basis in polar coordinates). The fraction of energy coupled into 

a given higher order mode is given by 
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where T is the transmittance function of the sector masks and the denominator serves as a 

normalization factor.  Eq. 2.11 determines the overlap of the field distribution with a given 

mode, with 100% overlap corresponding to 100% of the energy being coupled into that mode.  If 

Table 2.1: The Hermite and Laguerre polynomials [61,62]. 
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the coupling into a desired mode is less than 100% then the remaining energy can be considered 

as losses in mode purity.   

When comparing beams however it should be noted that higher order modes have, 

obviously, a different distribution of energy compared to a Gaussian beam.  Therefore for a 

higher order mode with the same radius as a Gaussian beam, the size of the bucket which 

contains the same amount of energy will generally be different.  Thus the coupling of a Gaussian 

beam of radius w into a higher order mode will depend on the size of the higher order mode, 

which will be denoted here with a “radius” of u.  This radius corresponds to the radius of the 

Gaussian kernel which is being multiplied by the Hermite or Laguerre polynomials in Eqs. 2.9 

and 2.10.  Therefore the fraction of energy coupled into a mode becomes 
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To determine whether a given mode radius is the correct one to use in Eq. 2.12, consider 

a Gaussian beam with a radius w of 2 mm and a transmittance function T = 1.  Because the 

Gaussian beam is a pure mode if it were modeled as a superposition of the various Laguerre-

Gaussian modes Eq. 2.12 would give a “coupling efficiency” of 100% if it were matched to the 

lowest order Laguerre-Gaussian mode with a radius u of 2 mm with 0% of the energy coupled 

into the other modes.  However, it is possible to model this Gaussian beam as a superposition of 

Laguerre-Gaussian modes for which the radius u is 1 mm.  In this case the Eq. 2.12 states that 

64% of the energy is coupled into the lowest order Laguerre-Gaussian mode and the remaining 

energy is distributed among the higher order modes.  The lowered coupling efficiency is caused 

by the mismatch between the energy distribution of the original Gaussian beam and the lowest 

order mode that is being fit to that Gaussian beam, even though both of these modes are 
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Gaussian distributions.  By adjusting the radius u of the modes that are used to fit a given field 

distribution the overlap integral (Eq. 2.12) will change, and typically for some radius one mode 

in the basis set will have a much larger overlap with the field distribution than the other modes.  

When the overlap integral with this mode is maximized by proper choice of u then the correct 

radius has been determined which should be used to model the field distribution.  Thus in the 

previous example with the Gaussian beam, by adjusting u to maximize Eq. 2.12 for the lowest 

order Laguerre-Gaussian mode, one would find that u should equal w, exactly as expected since 

the Gaussian beam is a pure mode.  If however the dominant mode were unknown and the radius 

u was chosen to maximize for instance the LG20 mode instead of the LG00 mode, the coupling 

efficiency into the LG20 mode would be 13.4% at this value for u.  If however the field 

distribution was modeled using the full superposition of the Laguerre-Gaussian modes with this 

value for u one would find that the coupling efficiency into the LG00 mode would be 79.1%, 

which is larger than the LG20 mode, indicating that the wrong mode was chosen to optimize u. 

This variation in conversion efficiency achieved by improperly choosing the mode radius 

can be used as a tool to determine the quality of a given phase mask.   

 

(a) (b) 

Figure 2.11: Simulated far field intensity profile of a beam passing through (a) a four-sector and (b) an eight-sector mode 

converting phase mask. 
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This is done by first simulating the conversion efficiency for a perfect phase mask with a given 

transmittance function.  For the four-sector mask and eight-sector mask the transmittance 

function is 

 )exp()()(),(4 avgiysignxsignyxT   ( 2.13 ) 

 )exp()()()()(),(8 avgiyxsignyxsignysignxsignyxT  , ( 2.14 ) 

where the average phase incursion φavg may be set to zero without loss of generality.  In the far 

field the ideal intensity profile of a Gaussian beam passing through these masks is shown in Fig. 

2.11.  The overlap of the field distribution after passing through the masks with the higher order 

modes is shown in Fig. 2.12.  The four-sector mask has a maximum overlap of 68.4% with the 

TEM11 mode when u/w = 0.577 and the eight-sector mask has a maximum overlap of 29% with 

the LG04 mode when u/w = 0.445.  These radii are the correct radii to use when modeling the 

field distribution with the full superposition of Hermite-Gaussian or Laguerre-Gaussian modes.  

However, the quality of an actual phase mask can be determined by fitting the Hermite-Gaussian 

modes and Laguerre-Gaussian modes of different radii to the experimental field distribution and 

Figure 2.12: Simulated coupling efficiency of a beam after passing through a four-sector and eight-sector mask into the TEM11 

mode and LG04 mode for different mode radii.  The correct mode radius for determining the overlap of the field distribution with 

the TEM11 and LG04 mode is 0.577 and 0.445 times the radius of the initial Gaussian beam, respectively. 
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comparing the overlap integral curve to the curve for the ideal phase mask.  If there is a deviation 

in the experimental curve from the ideal curve, whether the overlap is larger or smaller, then the 

actual phase mask is coupling more energy into undesired modes than expected, indicating that 

the actual phase mask does not produce the desired phase profile. 

To verify this model VPMs were produced with the appropriate phase profiles, which 

were tested and polished to the proper thickness using the techniques described previously.  Note 

that though there is a finite transition region between the sectors during the recording, the width 

of this zone has a negligible effect.  After achieving a π phase shift between adjacent sectors the 

masks were then illuminated with a collimated He-Ne laser at 632.8 nm with a diameter of 6.6 

mm and the far field intensity distribution was examined by focusing the transmitted beam 

through a lens.  As shown in Fig. 2.13, excellent visual agreement with the theoretical intensity 

distribution in observed.  In order to quantitatively relate the theoretical field distribution and 

experimental intensity distribution it is necessary to convert the theoretical field distribution to 

an intensity distribution.   

 

 

 

(a) (b) 

Figure 2.13: Experimental far field intensity distribution of a beam  passing through a four-sector (a) and eight-sector (b) mode-

converting VPM. 
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Modifying Eq. 2.12 to account for this gives an overlap integral of the form 
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where the modulus of the field is the square root of the intensity.  Fig. 2.14 shows the theoretical 

and experimental overlap integrals for the relevant modes with different radii, with good overall 

agreement between theory and experiment.  Note that the overlap integral with the TEM11 mode 

is larger than the ideal case, especially as the radius u is increased; this indicates that there is 

more energy being coupled into this mode than would be expected for an ideal four-sector binary 

phase mask.  Thus the experimental mask is not quite ideal, with the deviation being caused 

primarily by the finite transition region between adjacent sectors.  The eight-sector mask shows a 

similar behavior when coupling into the LG04 mode.  However, the location of the correct radius 

(the peak overlap) matches the theoretical predictions, and at the correct radius there is very good 

agreement between the experimental and theoretical coupling efficiency.  Therefore VPMs can 

Figure 2.14: Overlap integral of a Gaussian beam after passing through a VPM with higher order modes of different radii.  Solid 

lines represent the ideal overlap integral and dotted lines represent the integral with the experimental data shown in Fig. 2.13. 
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successfully convert between different Hermite-Gaussian and Laguerre-Gaussian modes with the 

same efficiency as an ideal phase mask under the IPMA.  

2.3 Summary 

Volume phase masks recorded in thick media will exhibit different properties than thin 

phase masks if the phase mask contains high spatial frequencies or if the intended use of the 

mask is in the near field.  However, for low spatial frequency elements, particularly in the far 

field, there is no difference in the beam profile created by a VPM as opposed to a traditional 

phase mask.  This applies not only to intensity profiles but directly to field, as the mode 

conversion exhibited by a VPM is the same as that of an ideal phase mask.  Therefore VPMs 

may be used in the same applications as traditional phase masks, and with their higher robustness 

they may be used in systems requiring higher powers or temperatures than can safely be handled 

by traditional masks.  
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CHAPTER 3: PROBABILISTIC PHASE MASKS 

Note: This chapter contains material which was published in the following works:  

S. Mokhov, M. SeGall, D. Ott, V. Rotar, J. Lumeau, B. Zeldovich, and L. Glebov, “Direct 

recording of phase plates in holographic material with using of probabilistic amplitude masks,” 

Digital Holography and Three-Dimensional Imaging JMA11 (2010). 

 

M. SeGall, I. Divliansky, D. Ott, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Beam 

shaping by volume phase structures in photo-thermo-refractive glass,” Optics+Photonics 8843-

6 (2013) (conference proceedings to be published) 

 

As seen in the previous chapter it is possible to make fairly simple masks which, despite having 

any possible geometric shape, still induce a constant phase shift between the exposed and 

unexposed regions.  However, in order to be a useful technology a phase mask with an arbitrary 

phase profile should be able to be produced, including phase gradients, sharp transitions, and any 

other desired features.  To create such an arbitrary spatial dependence in the phase for a mask 

recorded in PTR glass it is necessary to alter the local intensity of the UV light that is incident 

during the recording of the phase element.  As described in Chapter 1 there are a number of 

techniques which may accomplish this goal; here the contact copy technique with a broadband 

incoherent source and an appropriate amplitude mask will be used.  Conventional amplitude 

masks however are inherently binary, being either opaque or transparent.  Furthermore, 

diffraction from sharp transition regions in the mask during recording will result in a partially 

washed out illumination profile.  This partially washed out profile however is the key to 

producing a grayscale phase mask.  Here a new type of amplitude mask, which will henceforth 

be referred to as a probabilistic amplitude mask, which is specifically designed to utilize the 

diffraction effects during recording, will be used.   
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3.1 Recording with Amplitude Masks  

Before considering the profile of an amplitude mask used to create a phase mask it is 

necessary to determine what phase profile will be recorded into the PTR substrate when an 

arbitrary amplitude mask is used.  The PTR sample was illuminated by a UV mercury lamp 

(Dymax Bluewave 200) in the recording system shown in Fig. 3.1.  The lamp delivered 

incoherent broadband UV radiation from 300 nm to 400 nm, which covers the photosensitive 

region of the PTR glass [39,63], and emitted it via a 5 mm diameter wide-aperture fiber.  The 

broadband, incoherent source was deliberately chosen to eliminate interference effects from any 

diffracting pixels in the mask.  The emitted beam was then collimated and illuminated the 

amplitude mask and PTR sample.  To avoid reflections in the system index-matching fluid was 

placed between the amplitude mask and the PTR sample, and the metal surface of the mask is the 

surface which was in contact with the sample. 

 As no element in this system is polarization sensitive it may be modeled using scalar 

diffraction theory [43].  The illumination from the fiber can therefore be considered as coming 

Mask 

PTR 

Sample 

(x,y) (x2,y2) 

(x1,y1) 

(x0,y0) 

f z 

Figure 3.1: Recording system for producing grayscale phase masks from an amplitude mask. 

Fiber delivery 

from UV lamp 
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from a collection of point sources over the fiber area, which will be taken to be in the (x0,y0) 

plane.  The emitted wave from a single point source in this plane will take the form of [43] 
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in the plane of the lens.  Here f is the focal length of the lens, λ is the free-space wavelength, and 

k0 is the free-space wavenumber.  After passing through the lens the scalar field is multiplied by 

the amplitude transmittance function of the lens, given by  
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where circ is the circle function defined in [43] and D is the lens diameter.  After propagating a 

distance z after the lens the field is given by  
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In general Eq. 3.3 must be solved numerically.  However, if the diameter of the lens is larger 

than the emitted light cone so that all of the energy is collected then the lens may be treated as 

infinite, in which case Eq. 3.3 has the analytical solution of  
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Note that this is just a tilted plane wave, which is expected when a point source is located at the 

focal plane of a lens.  Experimental observations indicate that a finite lens which collimates the 

majority of the light cone will create a nearly uniform intensity distribution at the center of the 

beam and a more complicated profile towards the edges.  However, only the center of the beam 
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was used during the recording of a phase mask so the beam may effectively be treated as a plane 

wave after being collimated by the lens. 

The angle at which the plane wave propagates can be determined from the spatial 

frequencies: 

  yxyx k ,,sin  . ( 3.5 ) 

Here kx,y is the spatial frequency along the relevant axis.  The angle of propagation along the x-

axis is therefore  fxx /arcsin 0 , and the angle of propagation along the y-axis has the same 

form.  Note that the criterion 
2 2

0 0x y f  must be satisfied for the assumption of a plane wave 

to be valid.  If this criterion is not satisfied the lens will image the point to a plane according to 

the lens equation, resulting in a non-uniform intensity distribution depending on the propagation 

distance z. 

Having propagated the recording beam to the amplitude mask via Eq. 3.4, the actual 

design of the mask must be taken into account.  The amplitude mask is not an infinitely thin set 

of apertures but rather a layer of metal bonded to a glass or fused silica substrate.  As the metal 

surface is the surface in contact with the PTR sample the recording beam must first pass through 

the glass substrate before encountering the amplitude mask.  Using Snell’s law and Eq. 3.5, the 

refraction at the air/substrate interface reduces the spatial frequencies by a factor of n: 

 , , , ,sin sinx y air air m x y mf n nf      . ( 3.6 ) 

Here n, fx,y,m and θm are the refractive index, spatial frequency, and propagation angle in the 

substrate, respectively.  Rewriting Eq. 3.4 to account for refraction gives the field as 
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Since U is a plane wave, when propagating the beam through the thickness of the substrate the 

only effect on the field is to accumulate a phase factor: 
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Here the propagation distance is  
1

, ,cos coss x m y md d  


 , where ds is the physical thickness of 

the substrate.  After passing through the amplitude mask the field is multiplied by the amplitude 

transmittance function of the mask tmask and then propagates into the PTR sample.  At a depth 

zPTR into the sample the field is therefore 
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which can be written as a Fourier transform: 
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The complex amplitude term in Eqs. 3.9 and 3.10 is  
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The intensity profile produced by this source point at a given plane in the PTR sample is 

the squared modulus of Eq. 3.10.  Because the lamp is an incoherent source the total intensity 

distribution at a given plane in the PTR sample is the integral of the intensity distributions 

produced by each source point in the (x0,y0) plane, multiplied by their relative intensities and 

absorption in the PTR sample: 
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In order to determine the change in refractive index induced in the glass, a final step is needed.  

As shown in Chapter 1 the refractive index change in the glass is nonlinear with respect to 

illuminating dosage.  Combining Eqs. 3.12 and 1.1 give the spatially dependent refractive index 

profile: 
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Here texp is the exposure time.  This refractive index profile is dependent on the material 

properties of the glass and the baking parameters used so for modeling purposes it is necessary to 

empirically determine ns and ε.  The phase profile that is induced in the glass is then 
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where dPTR is the physical thickness of the PTR sample. 

3.1.1 Ideal Amplitude Masks 

To produce a smoothly varying phase profile in PTR glass using the contact copy method 

a grayscale amplitude mask is required.  As amplitude masks have a transmittance function 

between zero (opaque) and one (transparent), the phase profile which is to be recorded in the 

glass must be normalized in order to be contained within this range: 

 min

max min

norm

 


 





. ( 3.15 ) 

Eq. 3.15 will always normalize the desired phase profile such that the maximum phase to be 

recorded is set to one and the minimum phase is set to zero; strictly speaking this is not necessary 

if the total phase range is less than 1 radian, in which case the normalized phase should merely 
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be nonnegative.  However, as will be discussed later, this formulation is necessary for 

probabilistic phase masks, so Eq. 3.15 will be used in all cases. 

Consider now an ideal grayscale amplitude mask which can have an arbitrary trans-

mittance profile with perfect resolution.  If the refractive profile induced in the glass is a linear 

function of the exposing dosage, which is nearly the case for samples considered here, the 

amplitude mask should have an intensity transmittance profile of Imask = 1 – φnorm, since PTR 

glass decreases its refractive index upon exposure and development.  Using the system shown in 

Fig. 3.1, if the PTR sample were a very thin sample (only a few microns thick) then this ideal 

amplitude mask would perfectly create the desired phase profile in the glass.  However, because 

the samples are typically several millimeters thick, diffraction effects from the amplitude mask 

must be taken into account.  To investigate the effects of diffraction, consider two phase profiles: 

a parabolic profile which contains no sharp edges, and a sawtooth profile, which contains sharp 

edges and a large phase jump at these edges.  Using Eqs. 3.10-3.15, where Imask maskt  , the 

phase profiles were calculated in Matlab for a 1.5 mm sample over the wavelength range of 300-

330 nm, assuming a linear response of the glass to dosage and taking into account the spectral 

response  of the lamp and the wavelength-dependent absorption. 

As shown in Fig. 3.2, the parabolic profile can be almost perfectly replicated.  However, 

the sawtooth profile suffers from poor representation at the transition regions; the transition 

regions are over 10 µm wide, the phase profile contains oscillations near the boundaries, and the 

minimum and maximum phase changes are larger than their ideal values.  Thus for a volume 

phase mask to provide an accurate phase profile it is necessary to minimize the number of sharp 

phase transitions. 



40 

 

If this is done then an ideal grayscale amplitude mask can generate the desired phase distribution 

in PTR glass with very good accuracy, allowing the volume phase mask to possess the same 

beam-shaping properties as a traditional phase mask.   

3.1.2 Probabilistic Amplitude Mask 

Since simulations of grayscale amplitude masks indicate that they can produce good 

quality representations of the desired phase distribution the question becomes how to produce 

such masks practically.  Grayscale amplitude masks are produced commercially using photo-

lithography in specialized materials such as high-energy-beam-sensitive (HEBS) glass [64-71].  

During production, depending on the process and the substrate used to create the amplitude mask 

either a set of discrete gray levels will be produced [67,68] or a continuous gray-level profile will 

be implemented [69-71].  In either case a high level of precision is needed, in addition to a 

specialized substrate.  This makes grayscale amplitude masks very expensive, with a 25 x 25 mm 

mask costing at least 15 times as much as a traditional chrome-on-quartz mask of the same size.  

As this costliness makes grayscale amplitude masks impractical for most research applications a 

(a) (b) 

Figure 3.2: Simulated phase profile recorded into a 1.5 mm PTR sample for (a) a parabolic and (b) a sawtooth amplitude mask 

profile using the contact copy method. 
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cheaper method is desirable, even if the phase profile is somewhat degraded.  If resolution is not 

critical then the amplitude mask can be printed onto a UV-transparent film using a high-end laser 

printer, with the gray levels being limited to the gray levels of the printer.  However, most 

printers cannot achieve a resolution of more than 1200 dpi, limiting the feature size to 

approximately 20 µm at best.  In order to achieve higher resolution (and therefore more closely 

match the desired phase profile), the new type of amplitude mask, the probabilistic mask, using 

chrome-on-quartz substrates was used here. 

Probabilistic masks were designed by considering the local phase change compared to the 

maximum phase change.  A quasi-random distribution of opaque and transparent pixels were 

then generated in that region so that the number of transmitting pixels equals the local phase, 

e.g., if the local phase shift should be π and the maximum phase shift across the entire mask is 2π 

then half of the pixels in the local region are transparent.  In order to produce a quasi-grayscale 

mask each pixel should be small enough for diffraction effects to become significant so that the 

area immediately surrounding a transparent pixel will receive approximately the same dosage as 

the transmitting pixel area.  Since the number of transmitting pixels is based on the desired local 

phase change this results in the entire region being exposed with approximately the same dosage, 

which is higher or lower depending on the desired local phase.   

Fabrication of a probabilistic mask was performed in a similar manner to a grayscale 

amplitude mask; the desired phase profile was first normalized via Eq. 3.15, the square root of 

this normalized phase profile was taken, and the profile was then pixelated.  An array of random 

numbers between 0 and 1 was then generated with each random number corresponding to one 

pixel.   
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If the normalized phase at a given pixel in the phase distribution was greater than its matching 

random number then the corresponding pixel in the amplitude mask was chosen so that the PTR 

sample will have a higher refractive index in this region.  Since PTR decreases its refractive 

index upon exposure and development the pixel in the amplitude mask was made opaque.   

As an example of this procedure, suppose that the desired normalized phase at pixel 

number 34 in the normalized phase array is 0.75 and the desired phase at pixel number 35 is 

0.78.  Further, suppose that the matching random numbers in the random number array are 0.1 

and 0.79, respectively.  Because 0.75 > 0.1 and 0.78 < 0.79, the value of the amplitude mask at 

pixel 34 in the amplitude mask array would be set to 0 (opaque) and at pixel 35 it would be set to 

1 (transparent).  The entire amplitude mask array then consists of quasi-randomly distributed 

opaque and transparent pixels, as shown in Fig. 3.3, which alter the local exposing beam 

intensity to create a quasi-continuous phase distribution in the PTR glass.  Since the transparency 

of a given pixel in the amplitude mask array equals the probability that a random number is 

greater than the desired normalized phase at its corresponding pixel, these masks are denoted 

Figure 3.3: A probabilistic mask creates a quasi-grayscale intensity distribution via diffraction from micro-apertures.  The 

transparency of a given aperture is based on the probability that the local desired phase at a given point is greater than a random 

number. 
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probabilistic masks.  Note that these values in the amplitude mask correspond to the values of the 

mask once it is produced, and care must be taken when designing the amplitude mask to ensure 

this outcome.  If for instance the mask-writing system (whether an e-beam system or some other 

system) writes on a value of 0 (i.e. makes that pixel transparent) then the designed mask array 

should have each value reversed so that the final mask is as desired.  Since each system is 

different it is necessary to determine how the amplitude mask will be written and adjust the 

amplitude mask array accordingly.   

A notable difference between the probabilistic mask and the grayscale amplitude mask is 

that for the probabilistic mask it is necessary to take the square root of the normalized phase 

profile, whereas for a grayscale amplitude mask this is not done.  This difference is caused by the 

difference in representation of the phase profile; if the photosensitivity of the recording material 

is linear with respect to intensity then the grayscale amplitude mask should match the desired 

phase pattern.  Probabilistic masks however are always either opaque or transparent; it is 

impossible for them to match the phase profile.   

 

Figure 3.4: Simulated phase distributions produced by probabilistic masks which replicate the amplitude transmittance function 

and the intensity transmittance function of a grayscale amplitude mask.  
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In order to produce the pseudo-grayscale levels in the sample it is necessary to utilize diffraction 

to illuminate the regions surrounding the transparent pixels, which is governed by the electric 

field rather than the intensity.  Therefore the probabilistic mask should replicate the amplitude 

transmittance function of a grayscale amplitude mask rather than the intensity transmittance 

function.  As shown in Fig. 3.4, if this is not done then the recorded phase profile will not match 

the desired phase profile. 

3.1.3 Profile Optimization 

When fabricating probabilistic masks it is important to create a mask which will provide 

a profile that is as close to the desired phase profile as possible.  For simple binary masks one 

need only design the appropriate grid shape with the size of the pixels being relatively 

unimportant.  For more general profiles however, this will not suffice.  All amplitude masks used 

in this thesis were manufactured using a Leica EBPG5000+ e-beam, which can create features 

less than 100 nm across via direct writing.  However, the amplitude mask itself is a fused silica 

substrate with a layer of chrome and photoresist bonded to it.  After the e-beam illuminated the 

photoresist it was then chemically developed, during which the exposed photoresist and chrome 

were removed.  The combination of minimum dosage needed for full resist development and 

parasitic undercutting at the edge of the exposed regions added a minimum of 200 nm to the 

width of an exposed pixel, which effectively limited the size of the pixels to one micron or larger 

in order to have opaque and transparent pixels with approximately the same size.  

To determine the effects of pixel size consider again the parabolic and sawtooth profiles 

that were previously simulated assuming a linear response of the PTR glass with pixel sizes 

ranging from 1 µm to 10 µm.   
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As shown in Fig. 3.5, in all cases there are fluctuations from the desired phase profile caused by 

non-uniform illumination, as the light passing through the apertures does not uniformly 

redistribute energy when diffracting.  Pixel sizes of 10 µm or larger give a poor overall 

representation of the phase profile for both the parabola and the sawtooth pattern, while pixel 

sizes on the order of 2-5 µm work reasonably well in that the general profile is followed.  

However, for both profiles the best representation is achieved with 1 µm pixels, though the 

sawtooth profile suffer from the same problems as the grayscale amplitude mask.  This is 

unsurprising, as smaller pixels diffract more, improving the uniformity of the gray levels and 

thus more closely matching the profile of a grayscale amplitude mask.  Also, with smaller pixels 

more are necessary to cover the entire phase profile, and as the transparency of the pixels is 

based on probability, more pixels increases the likelihood of the ratio of transparent to opaque 

pixels matching the desired local phase.   

As pixel sizes of 1µm provide the best representation of the desired phase distribution 

this is the pixel size that was used for all elements demonstrated henceforth.  However, the small 

fluctuations in the phase profile caused by the quasi-uniform illumination suggest that though 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 3.5: Phase profiles recorded by probabilistic masks with pixel sizes of {(a), (e)} 1 µm, {(b), (f)} 2 µm, {(c), (g)} 5 µm, 

and {(d), (h)} 10 µm. 
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probabilistic masks provide a cheap alternative to grayscale amplitude masks they may also 

reduce the quality of the phase masks, especially wherever there is a phase discontinuity.  To 

investigate this, consider a spiral phase mask, which contains only a single phase discontinuity as 

the phase changes from 0 to a multiple of 2π and a Fresnel lens, which never has a phase change 

exceeding 2π and contains a large number of discontinuities.  

3.2 Spiral Phase Mask 

Spiral phase masks are used to produce optical vortices, which are used in applications 

including optical tweezers [72], quantum cryptography [73], and beam converters [25].  A vortex 

exists in a beam if there is a phase singularity in the center of the beam and the beam carries 

orbital angular momentum.  In such a case the beam intensity will be zero at the location of the 

singularity, and its equiphase surface is not planar but rather spirals about the optical axis.  This 

results in an annular beam distribution which in the far field can be approximated using the 

Laguerre-Gaussian modes (Eq. 2.10).  Of importance is the topological charge m; a photon with 

topological charge m will have an orbital angular momentum of mħ.  Note that the topological 

charge does not have to be an integer, but non-integer topological charges are unstable [74,75].  

If the vortex beam interferes with a reference beam the fringe pattern will have a fork 

discontinuity at the location of the phase discontinuity, with the number of tines in the fork 

equaling the topological charge of the vortex plus one [76]. 

In order to produce an optical vortex of topological charge |m|, a spiral phase mask 

induces an azimuthal phase variation from 0 to 2mπ, with the sign of m determined by the 

helicity of the phase variation.  Conventional transmitting spiral phase masks can in principle 

convert a Gaussian beam into the appropriate vortex beam with 100% efficiency, but they are 
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either produced with a liquid crystal spatial light modulator [72], limiting their use to low 

powers, or create the phase variation through local changes in the geometrical thickness of the 

phase mask [77,78].  Creating a smooth annular profile is difficult using thin films, as the 

standard methods of producing a thin film mask will result in a staircase profile, whereas 

creating a smooth profile in the surface of a glass substrate requires high precision etching.   

To create a spiral phase mask in PTR glass, it was assumed that the glass has a nearly 

linear response to the exposure dosage, so the phase profile which will be encoded into the 

amplitude master has a phase profile of ( , )r m   .  For simplicity only the m = 1 case will be 

considered here.  From Eq. 3.15 the intensity distribution of the mask is then 

I ( , ) / (2 )mask r    .  Note that the profile I ( , ) 1 / (2 )mask r     produces the same spiral 

pattern but with opposite helicity.  As the phase mask recorded in the PTR sample is a 

transmitting phase mask it can be used with a beam incident from either side, with the helicity 

observed by the beam on one side being the reverse of the helicity observed by a beam incident 

from the other side.   

(a) (b) 

Figure 3.6: (a) Ideal phase distribution for an m = 1 spiral phase mask and (b) the resulting far field distribution of a collimated 3 

mm beam after acquiring the phase distribution and being focused by a 100 mm lens. 



48 

 

Therefore both helicities are encoded using either of the intensity profiles, and a separate phase 

mask with opposite helicity is not required.  In either case, the ideal phase profile encoded will 

linearly vary with azimuthal angle, shown in Fig. 3.6a, and will produce an annular beam in the 

far field with 94% of the total energy contained in the annulus, as shown in Fig. 3.6b.  As the 

edge of the annulus is arbitrary, here it is defined such that if the energy along a given 

circumference is at least 3% of the maximum energy along any circumference (to provide a good 

signal to noise ratio during experiments) then it is a measurable part of the ring.  After finding 

the outermost points along each axis which satisfies this condition the total energy in the ring is 

calculated via a square which contains these outermost points to approximate a traditional 

detector.   

During exposure the peak intensity was 134 mW/cm
2
 with an exposure time of 25 

seconds; the PTR samples were baked at 510
o
C for 60 min.  Based on the measured values of 

refractive index change for samples of different glass melts, the average empirical constants from 

Eq. 3.13 are ns = 880 ppm and ε = 3.76.  While each glass sample will in practice have slightly 

different values for ε and potentially large differences in ns, it was assumed for the purposes of 

modeling that these differences are negligible and the above constants were used throughout 

when calculating the refractive index distribution throughout a PTR sample.  It should be noted 

that these empirical constants clearly show that the refractive index change is not linear over the 

range of zero intensity to peak intensity.  Therefore to properly match the phase profile the 

constants for each sample should be taken into account and the profile of the amplitude mask 

back-calculated so that the desired phase profile is produced.   
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However, because each glass melt is different, requiring a new amplitude mask to be produced 

each time, and because the deviation from linearity is expected to have only a small effect, it will 

be assumed throughout this thesis that the linear intensity profile is sufficiently accurate. 

A simulation of the spiral phase mask generated by a grayscale amplitude mask, taking 

into account the nonlinearity of the refractive index change, is shown in Fig. 3.7.  The azimuthal 

profile is maintained, though it is no longer a linear phase change due to the nonlinearity of the 

refractive index change.  This nonlinearity will distort the beam profile, but as there is still a 

phase discontinuity at the center of the phase mask an optical vortex is still formed.  The larger 

effect is caused by the transition region between 0 and 2π phase shift; rather than an abrupt 

transition there is a finite width of a few tens of microns, resulting in a diffraction tail seen in 

Fig. 3.7b.   

(a) (b) 

Figure 3.7: (a) Simulated spiral phase mask formed in PTR glass by the contact method and (b) the vortex profile 6 m after the 

phase mask.  Due to computational limitations the profile in the far field could not be obtained with high resolution, but 

experimental evidence indicates that the profile does not significantly alter if focused by a lens. 
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This diffraction tail degrades the profile of the beam but contains relatively little energy; 

simulations of beams of different radii incident upon this phase mask indicate that approximately 

92.5% of the energy is still contained within the annulus.  Therefore though the overall profile is 

distorted an optical vortex containing nearly the amount of energy in the annulus as a perfect 

phase mask is still in principle possible.   

Since a good quality vortex can ideally be produced with a grayscale amplitude mask, the 

probabilistic spiral phase mask was then simulated using the same recording procedure as the 

before, with collimated beams of different radii passing through the mask in order to determine 

the fraction of energy in the central ring.  As shown in Fig. 3.8a, the probabilistic mask produces 

a phase pattern similar to the grayscale amplitude mask though it is not as smooth, with the 

splotches in the profile being caused by quasi-grayscale illumination.  The transition region at 

the boundary between 0 and 2π phase change is however almost identical to the grayscale 

amplitude mask; this is because at the boundary there is almost no difference between the two 

(a) (b) 

Figure 3.8: (a) Simulated phase profile induced by a probabilistic amplitude mask in the contact copy configuration and (b) the 

resulting beam profile 6 m after the mask. 
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amplitude mask profiles.  As shown in Fig. 3.8b this phase mask produces a vortex profile 

similar to the profile in Fig. 3.7b, with a distorted annulus and a diffraction tail.   

The fraction of energy in the ring is 91 ± 2%, with the uncertainty being caused by 

numerical uncertainties and the probabilistic nature of the mask; a different probabilistic mask 

will produce a slightly different profile.  Note that this ratio depends on the beam diameter; if the 

beam is sufficiently small a large fraction of energy will be diffracted by the transition region.   

Only beams with a diameter on the order of 1 mm or larger will have over 90% of the energy in 

the ring since only a small fraction of the beam is incident on the transition region.  

To experimentally verify these simulations a probabilistic amplitude mask was placed in 

contact with a PTR sample in the recording configuration shown in Fig. 3.1 and a 100 mm plano-

convex lens with a diameter of 50.4 mm was used as the collimating lens for the lamp.  The 

mask and sample were placed approximately 300 mm behind the lens.  After exposure and 

thermal development the sample had a refractive index change of 364 ppm and it was 

subsequently polished to 1.75 mm in order to achieve a 2π phase shift at 633 nm.   

(a) (b) 

Figure 3.9: (a) Annular far field beam profile of a 1 mm beam passing through a probabilistic spiral phase mask, and (b) the fork 

dislocation produced by the mask in an interferometer.  Because the interferometer is a double-pass interferometer the topological 

charge is doubled, producing three tines in the fork.   
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As shown in Fig. 3.9a, after a 1 mm beam passed through the mask it achieved a nearly 

annular beam profile in the far field, along with a low energy diffraction tail.  The fraction of the 

energy in the annulus is 82 ± 1%, which was determined by comparing the power in the entire 

beam immediately after the sample to the far field power in the annulus.  To measure the power 

in the annulus in the far field an iris diaphragm was used to block the diffraction tail.  The 

measured fraction of energy in the annulus is fairly consistent with the simulations after 

accounting for fabrication errors in the probabilistic mask, indicating that annular profile can be 

produced with reasonable fidelity.  To verify that the beam was truly a vortex beam the phase 

mask was placed in a double-pass interferometer (Zygo), and as shown in Fig. 3.9b the phase 

mask produces a fork dislocation in the interferogram.  Because the interferometer is a double-

pass interferometer the topological charge of the mask is doubled, and so the three tines shown in 

Fig. 3.9b are expected rather than the two-tine pattern that would be observed in a single-pass 

interferometer.  Therefore, probabilistic masks can produce optical vortices with approximately 

the same fidelity as a grayscale amplitude mask while being considerably cheaper and easier to 

fabricate. 

3.3 Fresnel Lens 

While VPMs can be used to create spiral phase masks with a reasonable conversion 

efficiency these masks only contain a single sharp phase transition and are otherwise smooth.  In 

general however a phase mask may contain multiple phase discontinuities as well as a large 

phase gradient over small regions, with the Fresnel lens being a prime example.   
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As seen with the spiral phase mask even a single phase discontinuity cannot be perfectly 

represented, so due to the large number of phase discontinuities if Fresnel lenses it is unlikely 

that a VPM can be used to create a Fresnel lens of arbitrary size and focal length and still focus 

the majority of the energy to the focal point.  To investigate the limitations of VPMS when trying 

to produce such elements, several plano-convex lenses are considered here.  

To simulate a Fresnel lens first consider a collimated beam incident on a  standard plano-

convex lens of diameter d, with the first surface being flat and the second surface having a radius 

of curvature R as shown in Fig. 3.10 (this orientation was chosen as it is a common orientation 

for commercially available Fresnel lenses).  Using geometrical optics the total optical path length 

that a ray a distance r from the center of the lens will incur from the incident plane zi to the exit 

plane ze is 
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Here  arcsin /m r R   is the angle the normal of the back surface at a distance r makes relative 

to the optical axis and   arcsin sin /e n r R   is the angle of the ray refracted from the back 
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Figure 3.10: Diagram of a plano-convex lens in the configuration used to calculate the phase profile of a Fresnel lens. 
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surface at a distance r, based on Snell’s law.  This optical path length is converted to phase by 

 /2 OPL (modulo 2π); 632.8 nm is the wavelength of choice in all simulations shown here.   

Using Eq. 3.16 lenses with focal lengths from 50 mm to 500 mm were simulated 

assuming that the original lens had a 25 mm diameter.  However, this resulted in a large Fresnel 

lens, which was computationally intensive to model, and zones at larger radii, which were very 

small, were difficult to adequately sample.  Since it is expected that there will be limitations on 

the focusing efficiency of a Fresnel lens regardless of numerical precision at large radii, only the 

central 2 mm diameter was considered, which is then illuminated with a collimated 1 mm beam.  

Due to computational limitations these calculations were restricted to a one-dimensional Fresnel 

lens and beam, but due to cylindrical symmetry these results apply for a two-dimensional lens as 

well.  

As shown in Fig. 3.11a it is difficult for a grayscale amplitude mask to properly represent 

the multiple zones and sharp borders.   

 

(a) (b) 

Figure 3.11: (a) Simulated phase profile of an ideal, f = 100 mm Fresnel lens and a lens recorded with a grayscale amplitude 

mask and (b) the energy distribution in the focal plane of the lens. 
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In all cases the borders have a finite width rather than a sharp transition, and the smaller the 

Fresnel zone the worse the recorded profile is compared to the ideal profile.  In addition, the 

nonlinearity of the refractive index change makes it impossible to match the ideal phase even in 

the central zone, though the more linear the refractive index change the better the matching will 

become.   

Because the phase profile only partially matches the ideal profile the energy distribution 

in the focal plane changes as well, as shown in Fig. 3.11b.  There is a reduction in the energy in 

the central lobe, which is also broadened.  Also, there are several low energy rings surrounding 

the central lobe caused by diffraction from the transition regions.  While the shape and energy 

distribution of these rings are dependent on the focal length of the lens they are nonetheless 

present for all lenses, including the 500 mm lens which contains only two zones. 

The focusing efficiencies of the simulated lenses are listed in Table 3.1, where the 

focusing efficiency is defined as the fraction of energy in the central lobe (which is 1 by 

definition for an ideal Fresnel lens).  Note that for the 300 mm lens and the 500 mm lens over 

98% of the energy is contained within the central region before the first diffraction ring.  

However, in both cases the central spot has large wings.  To eliminate the effect of the wings a 

Gaussian profile was fitted to the central region and the energy contained within the lobe 

bounded by the Gaussian fit was used to calculate the focusing efficiency.   

 f, mm  ηfocus  

 50  66.0  

 100  83.0  

 200  93.3  

 300  96.3  

 500  98.8  

Table 3.1: Focusing efficiency vs. focal length for simulated Fresnel lenses produced by the contact copy method using grayscale 

amplitude masks. 
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As can be seen from the table, in order to have a focusing efficiency larger than 90% the Fresnel 

lens must have a focal length of at least 200 mm for 1 mm incident beams, and for larger beams 

the focal length must be even larger to minimize the number of zones.   

Even though it is clear that VPMs cannot produce Fresnel lenses with high fidelity, it is 

not clear how much the phase profile will be affected when a probabilistic phase mask is used.  

Therefore, as a probabilistic Fresnel mask was simulated in the contact copy configuration for a 

variety of focal lengths using the same recording parameters as the probabilistic spiral phase 

mask.  As shown in Fig. 3.12a, the probabilistic Fresnel lens, while producing a similar overall 

phase profile as the grayscale mask, has several differences.  The most notable of these 

differences is the asymmetry in the profile; this is caused by the probabilistic nature of the mask, 

and the finite number of pixels used to represent each region.  Since the set of random numbers 

used to represent the left side of the Fresnel lens for instance is likely to be different than the set 

used to represent the right side, symmetry cannot be perfectly maintained.  Also, in addition to 

the increased roughness of the profile the probabilistic mask cannot represent the smaller zones 

(a) (b) 

Figure 3.12: (a) Simulated phase profile of an ideal, f = 100 mm Fresnel lens and the profile produced by a probabilistic 

amplitude mask and (b) the resulting energy distribution in the focal plane of the lens. 
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very well.  This is to be expected as the pixilation of the phase profile inherently limits the 

sampling of the smaller zones, making them more difficult to represent.  In order to properly 

sample smaller zones the pixel size would have to be reduced to subwavelength dimensions, 

effectively making the mask a grayscale amplitude mask. 

The energy distribution in the focal plane of the lens is also noticeably different than in 

the ideal case, as seen in Fig. 3.12b.  The central lobe is shifted away from the optical axis and 

the side lobes are also asymmetrical; this is due to the asymmetry in the phase profile.  The 

central lobe is wider than the lobe produced by a grayscale mask and also contains less energy.   

Part of the energy that was originally in the central lobe is distributed among the side lobes, as 

the transition regions between the zones are larger.  Part of the incident energy however is 

simply not focused at all because of the poor representation of the smaller zones.  As a result the 

focusing efficiency of the probabilistic Fresnel lenses is lower than the efficiency of a grayscale 

lens.  How much the focusing efficiency will decrease will depend on the probabilistic mask in 

question, since different probabilistic masks will have different profiles.  To design an optimal 

Fresnel lens probabilistic mask, multiple masks should be simulated until the focusing efficiency 

is within an acceptable tolerance from the grayscale mask focusing efficiency.  Note however 

that for short focal length Fresnel lenses no probabilistic mask can have a focusing efficiency 

within at least 1% of a grayscale mask.  This is because for short focal length lenses the incident 

beam will be transmitted through several Fresnel zones, and as shown in Fig. 3.12a only the first 

two or three zones can be reasonably produced.  Therefore when selecting a focusing efficiency 

tolerance this should be taken into account.    

 To verify these simulations 100, 200, and 500 mm focal length probabilistic Fresnel 

lenses were produced using the same techniques as for the probabilistic spiral phase mask.  
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Using a 1 mm beam centered on the lenses a central spot surrounded by low energy rings was 

observed, as shown in Fig. 3.13.  The central spot is close to Gaussian, with some energy 

contained in low energy wings.  This energy is fairly small however so the Fresnel lenses do not 

significantly distort the central spot.  The focusing efficiency of each lens was determined by 

blocking the side rings with a diaphragm and then reducing the incident power so that any rings 

that were not blocked would have an intensity low enough to put them in the noise floor.  The 

power in the main spot was then measured and compared to the power in the beam immediately 

after passing through the sample.   

The focusing efficiencies, listed in Table 3.2, are in excellent agreement with the 

simulations.  As with the grayscale amplitude mask, in order to achieve greater than 90% 

focusing efficiency it is necessary to have a focal length of at least 200 mm for a 1 mm incident 

beam and longer focal lengths for larger beams in order to minimize the number of zones in the 

lens.   

 

(a) (b) 

Figure 3.13: (a) Energy distribution in the focal plane of a 200 mm focal length probabilistic Fresnel lens, showing a nearly 

Gaussian central spot.  (b) When the intensity is increased the low energy diffraction rings become visible. 



59 

 

f, mm ηtheoretical (%) ηexperimental ± 1% 

50 57.2 - 

100 77.9 76.2 

200 91.3 92.5 

300 96.3 - 

500 98.0 94.7 

 

The difference between the focusing efficiency of a VPM recorded by a probabilistic mask and 

the efficiency recorded by a grayscale mask is quite large for the 50 mm and 100 mm lens, but 

within a couple of percent for the lenses with focal lengths of 200 mm or larger.  As the focusing 

efficiency is only 90% or more for these longer focal lengths it can be concluded that for any 

Fresnel lens that would be useful there is no appreciable difference between the VPMs produced 

by probabilistic masks and VPMs produced by grayscale masks.  Therefore, even though a 

Fresnel lens-type phase profile may not be generated with high fidelity in a VPM, it may still be 

produced using a probabilistic amplitude mask with a quality comparable to the ideal grayscale 

amplitude mask.  

3.4 Summary 

Probabilistic amplitude masks may be used to produce volume phase masks with similar 

phase profiles as ideal amplitude masks.  Due to diffraction during the recording of a volume 

phase mask these masks cannot generate phase profiles with sharp edges but if there is only a 

single transition region, as is the case for a spiral phase mask, then only about 3% of the energy 

will be lost due to a poor representation of the boundary.  If the number of transition regions 

increase however then more energy will be lost, as seen in the case of a Fresnel lens in which 

over 40% of the energy can be lost for lenses containing a large number of zones.  Therefore 

Table 3.2: Focusing efficiency of probabilistic Fresnel lenses for various focal lengths. 
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probabilistic VPMs should be used to produce phase structures having very few sharp transitions.  

If this is done then the probabilistic mask will produce a good representation of the desired phase 

profile and it can then be used with comparable efficiency as a traditional phase mask.  
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CHAPTER 4: ABERRATIONS AND CORRECTING METHODS 

Note: This chapter contains material which will be published in the following works:  

M. SeGall, D. Ott, I. Divliansky, and L. B. Glebov, “The effect of aberrations in a holographic 

system on reflecting volume Bragg gratings,” (submitted to Applied Optics Aug. 2013)  

 

M. SeGall, I. Divliansky, D. Ott, J. Lumeau, S. Mokhov, B. Zeldovich, and L. B. Glebov, “Beam 

shaping by volume phase structures in photo-thermo-refractive glass,” Optics+Photonics 8843-

6 (2013) (conference proceedings to be published) 

 

Aberrations in optical systems result in poor imaging [79,80], distorted interference patterns [81-

83], and an increase in the divergence of Gaussian beams [84,85].  Monochromatic aberrations 

are caused by the deviation of the wavefront from the ideal case, which is generally either a 

plane wave or an ideal Gaussian profile.  As the distortions are present in the wavefront rather 

than in the amplitude of a beam they may be treated as local phase variations, or in other words, 

as a phase mask containing the aberration information which is added to the ideal profile.  The 

key to eliminating theses aberrations from the system is therefore to add a phase mask which 

contains the opposite amount of aberration so that the total phase variation from a given 

reference wavefront is zero.  Here the monochromatic aberrations of an arbitrary optical system 

are described and how their presence in a two-beam holographic system results in locally altered 

fringe patterns.  These distorted fringe patterns prevent a probe beam from fully satisfying the 

Bragg condition everywhere, resulting in a degraded spectral response of reflecting Bragg 

gratings.  Finally, volume phase masks which can selectively adjust these aberrations are shown. 
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4.1 Bragg Gratings Recorded in a Two-Beam Interference System 

Volume Bragg gratings are generally recorded in one of two ways: the first way, shown 

in Fig. 4.1a, is to place a periodic phase mask (usually produced lithographically) in the path of 

the illuminating beam and let the diffracted orders interfere to produce a refractive index pattern.  

This technique is commonly used to produce fiber Bragg gratings and is very robust, as the 

interference pattern produced by the diffracted orders is easily recreated regardless of the number 

of gratings that need to be recorded.  Furthermore, by proper design of the phase mask it is 

possible to have highly complex interference patterns, allowing for complex grating structures to 

be written.  However, once a phase mask is produced it can only create a single grating profile; 

in short it is not very versatile because for every new grating profile that is desired a new phase 

mask must be produced to create that profile.  

Holographic recording by two beam interference, however, is much more versatile.  As 

shown in Fig. 4.1b, the period and tilt of the gratings can be controlled by rotating the mirrors 

Figure 4.1: Interference profile created by (a) the diffracted orders of a phase mask and (b) the interference of two beams in a 

holographic system. 
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and the recording sample, allowing almost any grating period and tilt to be recorded in the 

sample provided there is enough room to allow the beams to propagate to the plane of 

interference.  More complex grating structures may also be created by placing elements in one or 

both of the recording arms to alter the wavefront of the recording beam.  For now however only 

the case where an ideal uniform grating is desired will be considered.  The interference of two 

ideal flat-top beams with wavevectors 1k and 2k is described by the well-known equation [86] 

   1 2 1 2 1 2( , , ) ( , , ) ( , , ) 2 cos ( , , ) ( , , )I x y z I x y z I x y z I I k x y z k x y z r     , ( 4.1 ) 

where I is the intensity and k is the wavenumber in the medium.  In a lossless, dielectric, 

photorefractive medium this will induce a refractive index profile of  

  0( , , ) cosn x y z n n K r     , ( 4.2 ) 

Where n0 is the background index, δn is the refractive index modulation, 1 2K k k   is the 

grating wavevector, and φ is a phase term which in the ideal case is a constant which shifts the 

positions of the fringes. 

As mentioned in Chapter 2, energy and momentum conservation requires that Bragg 

gratings have little to no diffraction except at the Bragg condition, which for a general one-

dimensional grating is [44]  

  cos
2

p

K

k
   . ( 4.3 ) 

Here ϕ is the grating tilt, given by tan /x zK K  and θp is the incident angle of the probe beam 

in the grating medium, as shown in Fig. 4.2.   

 



64 

 

At or near the Bragg angle there only two waves present in the grating as the probe beam 

propagates (the transmitted or 0
th

 order wave, and the diffracted wave), with the total electric 

field satisfying the scalar Helmholtz equation  

 2 2 2

0 0E k n E   . ( 4.4 ) 

The general solution to this equation is [44] 

 ( , , ) ( , , )pik r i rE A x y z e B x y z e      , ( 4.5 ) 

where A is the amplitude of the transmitted wave, B is the amplitude of the diffracted wave, kp is 

the wavenumber of the probe beam and pk K   .  In the ideal case the amplitudes of each 

wave are only a function z as energy is coupled from the transmitted wave into the diffracted 

wave.  Inserting Eqs. 4.5 and 4.2 into Eq. 4.4 gives the coupled-wave equations which describe 

the transfer of energy from the transmitted wave to the diffracted wave: 

 

 

2

,2

2
2 2

2

2 2

2 2

i

p z p
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z p p
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ik k e B

z z
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z z







  

 
  

 

 
    

 

. ( 4.6 ) 

Here 0/n   is the coupling coefficient for TE polarization.   

x 

z 
ϕ 

θp 

Probe beam 

 

Figure 4.2: Schematic of a one-dimensional volume Bragg grating.  Note that all angles shown are angles in the medium. 
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Kogelnik and others [44,87] have solved these equations for both transmitting and 

reflecting Bragg gratings (TBGs and RBGs), and have found that TBGs have wide spectral 

selectivity but narrow angular selectivity while RBGs have wide angular selectivity and narrow 

spectral selectivity.  The diffraction efficiencies of these gratings are given by (for TE 

polarization): 
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 
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,  ( 4.7 ) 

where 

 

 
0

cos cos cos /B p p p

nt
S

K k



   



  ( 4.8 ) 

is the strength of the grating and  
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
    

 
 ( 4.9 ) 

is the detuning from the Bragg condition.   

As shown in Fig. 4.3a, if a TBG’s strength increases past π/2 then the diffraction 

efficiency at the Bragg condition is reduced, while the side lobes increase.  If the strength is an 

odd multiple of π/2 then the peak efficiency is 100% but the peaks of the side lobes will increase 

for multiples larger than 1.  RBGs by contrast never decrease their diffraction efficiency as their 

strength increases; rather, their spectral width increases, as shown in Fig. 4.3b.   
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For both TBGs and RBGs however, there are clear distinctions between the main peak and the 

side lobes, with the diffraction efficiency equaling zero at some point between them.  This is 

indicative of the ideal case, when there are no variations to the grating strength or period.  As 

will be seen however, if aberrations are present the boundary between the main lobe and the side 

lobes begins to disappear.  

4.2 Description of Aberrations 

Monochromatic aberrations are described by considering the profile of the wavefront 

over a given aperture, which is usually circular.  Originally these aberrations were characterized 

based on the deviation of rays from the exit pupil to the image plane compared to that of an ideal, 

symmetrical optical system.  Because the magnitude of a given aberration cannot depend on a 

rotation of the coordinate axes in a symmetric optical system any wavefront description must be 

dependent on variables which are invariant under rotation, which limits the total wavefront 

description to a function of three variables: x, y, and xi, where x and y are the coordinates in the 

Figure 4.3: (a) Angular spectra of transmitting volume Bragg gratings of various strengths and (b) wavelength spectra of 

reflecting Bragg gratings. 

(a) (b) 
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object plane and xi is a lateral coordinate in the image plane.  Typically the x and y coordinates 

are converted to a radius ρ and angle ψ, with x = ρcosψ, and y = ρcosψ.  Generally ρ and xi are 

normalized to one at the edge of the exit pupil and maximum image position.  The wavefront is 

then expanded in a power series [79,88]: 

 

2 2
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    

   



. ( 4.10 ) 

Here Wjmn is the coefficient of the corresponding aberration.  This wavefront expansion gives a 

complete description of the wavefront at the image plane and Table 4.1 lists the aberrations and 

corresponding wavefront expansion terms.   

It should be noted that the first three terms, while technically aberrations, are not usually 

considered so; piston alters the position of the wavefront along the propagation axis but does not 

alter the shape in any way, tilt merely changes the direction of propagation, and defocus, while 

altering the wavefront in one plane, can be corrected by moving the image plane along the 

propagation axis to the point where the wavefront is restored to its ideal shape. 

Table 4.1: List of aberrations described by the power series terms of the wavefront and the relationship between the power series 

coefficients and Seidel coefficients [88]. 

Aberration Wavefront Coefficient Seidel Coefficient Wavefront Form 

Piston W200  
2

ix  

Tilt W111  cosix    

Defocus W020  2  

Spherical W040 SI = 8W040 
4  

Coma W131 SII = 2W131 
3 cosix    

Astigmatism W222 SIII = 2W222 
2 2 2cosix    

Field Curvature W220 SIII + SIV = 4W220 
2 2

ix   

Distortion W311 SV = 2W311 
3 cosix    
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Expansion terms other than the first three are the first true aberrations in that the 

wavefront profile is distorted and cannot be corrected by altering the image plane location or 

orientation.  The first five of these higher order terms are known as the Seidel aberrations, which 

are the most common aberrations described [79,88].  The Seidel aberrations are used in a 

geometrical optics approach to wavefront propagation and as such they are principally concerned 

with finding the deviation of a light ray from the ideal optical path in a given system.  These 

aberrations are primarily used in describing lenses and other refracting dielectric elements, and it 

is assumed that any higher order terms in the wavefront expansion are negligible.  To calculate 

the Seidel aberrations in a ray-tracing scheme, first propagate a ray through the system and keep 

track of the deviation in angle and ray height (lateral distance from the optical axis) at each 

refracting surface, noting that the ray height should be normalized to the aperture of interest.  

The summation over all refracting surfaces, taking into account curvatures of refracting surfaces 

and distances of propagation for all rays in the system and comparing it to each term in the 

power series expansion gives the Seidel sum for each term.  The Seidel sum can be written as a 

constant factor times the deviation of each ray from a ray propagating from an ideal reference 

sphere.  This constant factor is the Seidel coefficient for the system. 

The wavefront may also be described in a given plane by Zernike polynomials for a 

circular aperture or Legendre polynomials for a square aperture.  For brevity, only Zernike 

polynomials will be covered here though identical principles are applied for Legendre poly-

nomials.  Zernike polynomials are a set of polynomials over the unit disk of the form [89,90] 
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where the first equation describes even functions and the second describes odd functions.  The 

radial function R is given by  
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. ( 4.12 ) 

The first few Zernike polynomials are listed in Table 4.2 using Noll notation [89].  The 

usefulness of the Zernike polynomials comes for their orthogonality on the unit disk; the integral 

over the unit disk of the product of two different polynomials is always zero.  Because of this 

orthogonality it is possible to fit a wavefront to the set of polynomials and acquire a unique set of 

coefficients which correspond to each aberration.  Furthermore, each aberration term can be 

investigated and modified without altering the other terms. This formulation is useful in systems 

which may not be rotationally symmetric, and is also useful in providing the aberrations relative 

to a fixed axis. 

 

 

 

 

 

 

Table 4.2: List of Zernike polynomials using Noll notation.  It should be noted that these polynomials give the peak-to-valley 

wavefront aberration (maximum deviation to minimum deviation); for RMS aberrations each polynomial will be multiplied by a 

unique constant [89]. 

Zernike Polynomial Aberration Cartesian Form of Zj 

1 Piston 1 

2 Tilt x x 

3 Tilt y y 

4 Defocus  2 22 1x y   

5 0
o
 Astigmatism  2 2x y  

6 45
o
 Astigmatism 2xy 

7 Coma x 3 23 3 2x xy x   

8 Coma y 2 33 3 2x y y y   

9 0
o
 Trefoil 3 23x xy  

10 30
o
 Trefoil 2 33x y y  

11 Spherical  4 4 2 2 2 26 12 1x y x y x y      
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Therefore rotating the system will change the values of, for instance, coma x and coma y but will 

not the total amount of coma, which is the square root of the product of coma x and coma y.  This 

is the formulation used to determine the effects of aberrations on the diffraction of volume Bragg 

gratings. 

If necessary it is possible to extract the Seidel aberrations from the Zernike terms, though 

this is valid if and only if the wavefront can be reasonably well described using just the Seidel 

aberrations; for more complicated aberration profiles it is better to remain with the Zernike 

terms.  The peak-to-valley coefficients (the coefficients corresponding to the polynomials used in 

Table 4.2), shown in Table 4.3, can be easily calculated, though as discussed in [88] the peak-to-

valley coefficients alone do not provide information as to the area over which an aberrated 

wavefront is measured.  In this respect the root-mean-square (RMS) aberration description is 

preferable as it gives the variance of the wavefront over the entire aperture of interest.  If 

converting to Seidel aberrations it is generally better to calculate the RMS wavefront error. 

   

Wavefront 

Coefficient 
Aberration Conversion Formula 

W111 Tilt    
2 2

2 7 3 82 2C C C C    

 

W020 Defocus 

2 2

4 11 5 62 6 2C C C C    

Sign is chosen to minimize the absolute value of the magnitude 
 

W222 Astigmatism 
2 2

5 62 C C  

 

W131 Coma 
2 2

7 83 C C  

 

W040 Spherical 6C11 

Table 4.3: Conversion from Zernike description of aberrations to Seidel description [88].  Here Cj is the coefficient in waves of 

the jth Zernike polynomial in Noll notation. 
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4.3 The Effect of Aberrations on Thick Reflecting Gratings 

Reflecting Bragg gratings (RBGs) are used as elements in a variety of applications 

including spectral beam combining [17,91,92], mode selection in lasers [93,94], and spectral 

filtering [94-97].  For applications requiring narrow spectral selectivity [98], or large apertures 

[99], these gratings must have a uniform period throughout the length of the recording medium, 

which may be on the order of several millimeters.  However, when recording gratings using two-

beam interference it is possible during the beam resizing and shaping for aberrations to be 

introduced into the beam.  Previous works in the literature have considered the effects of 

aberrations in a single recording plane where the beams perfectly overlap [81].  Such an 

approach is valid for thin media (on the order of tens of microns), but for thick recording media 

(on the order of several millimeters) there will be a significant shift in the positions of the beams 

relative to each other as they traverse the recording medium, as seen in Fig. 4.4.   

 
 

  

 

Thin sample Thick sample 

Figure 4.4: Aberrated fringe pattern recorded in (a) a thin sample (b) a thick sample.  As the beams propagate in thick media 

different parts of the beams interfere, resulting in different fringe patterns at different depths. 
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Therefore, the fringe pattern produced will not be constant throughout the grating if one or both 

beams have a non-uniform wavefront, but rather will have some spatial dependence.       

To determine the spatial dependence of the fringe pattern, consider two interfering beams 

which contain aberrations, as shown in Fig. 4.5.  Note that all angles shown are the angles inside 

the grating medium.  As conventional mirrors and beamsplitters have very good surface quality it 

can be assumed that such an aberrated beam is produced only by the process of enlarging and 

shaping a beam for use in a holographic setup, which occurs prior to the beamsplitter in Fig. 

4.1b.  This aberrated beam then passes through the beamsplitter and is reflected towards the 

sample, with the interference of the beams given by Eq. 4.1.  However, since there are 

aberrations in the beams the local wavevector k is not constant throughout the grating as in the 

ideal case and must therefore be determined from the local wavefront (where it is assumed that 

the wavefront contains no phase discontinuities).    

To calculate the wavefront at a given position within the grating, consider first a single 

beam in the coordinate system ( , , )x y z , where the beam propagates along the -axis.z   It shall be 

Figure 4.5: Geometry of an RBG.  Two recording beams with a half angle of interference θ inside the medium create a fringe 

pattern in the medium which acts a reflecting grating for a probe beam incident along the orthogonal plane.  In the presence of 

aberrations θ is not a constant but has local variations based on the wavefronts of the beams. When propagating the writing 

beams a rotated coordinate system is used to simplify the propagation equations. 
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assumed that for each beam the wavefront is known at the 0z  plane and can be described 

using Zernike polynomials, which as discussed previously guarantees that the wavefront is 

characterized by a unique, orthogonal expansion.  Since the Zernike polynomials are normalized 

to the beam radius r, the normalized dimensions will be written as ( ', ', ') ( , , ) /x y z x y z r .  The 

electric field at the 0z  plane is then  

 0( , ,0) ( , ,0)exp ( ', ')j

j

E x y E x y ik Z x y
 

  
 
 , ( 4.13 ) 

where Zj is the jth Zernike polynomial.  The beam must then be propagated throughout the depth 

of the sample, which will be calculated here using the beam propagation method described in 

Chapter 2: 
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. ( 4.14 ) 

The local phase incursion φ in a given -planez  is related to the wavefront by ( )k z W   , so the 

local wavefront of a beam is given by  
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. ( 4.15 ) 

The local wavevector is then given by the gradient of the wavefront: 
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. ( 4.16 ) 
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In order to calculate the wavevector in the (x, y, z) coordinate system shown in Fig. 4.5, 

where the normal of the grating as seen by the recording beams is along the z-axis, the 

wavevector must be rotated by the half angle of interference θ.  The rotated wavevector is given 

by the standard rotation matrix: 

 

cos 0 sin

( , , ) 0 1 0 ( , , )

sin 0 cos

gk x y z k x y z

 

 

 
 

  
  

. ( 4.17 ) 

Finally, the position of the local wavevector along the wavefront in the (x,y,z) coordinate system 

is given by converting the ( , , )x y z  coordinates to (x,y,z) coordinates, giving the local 

wavevector as ( cos sin , , sin cos ) ( , , )g gk x z y x z k x y z       .  Note that a wavefront in the 

( , , )x y z  coordinate system will not cross a given z-plane all at once.  For perfect plane waves 

this is unimportant as the beam will maintain its profile as it propagates, so the wavevectors will 

be unchanged.  For beams in the presence of strong aberrations (e.g. if a lens were placed in one 

of the recording arms and the defocus induced treated as an aberration) it is possible for the 

wavefront and the intensity distribution to change significantly as it propagates.  In order to 

determine the wavevectors everywhere at a given z-plane the beams must be propagated 

forwards (and possibly backwards depending on the origin of the system) until every wavevector 

is calculated at every point in that plane.  This is a computationally heavy task which is subject 

to accumulating numerical errors, as the beams must be propagated a given distance, the 

intersection of the wavefront with a z-plane determined, and then propagated again, etc.   

If the beams however are close to ideal plane waves, which is the case for any reasonable 

amount of aberrations in a well-aligned system, then the wavefront will not change significantly 

as it propagates over a short distance.  Calculations indicate, for instance, that a wavefront with 
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two waves of defocus aberration will not deviate from its original profile by more than 1 nm 

across a 25 mm beam after propagating 20 mm, which is thicker than any PTR sample 

considered here.  If the wavefront does not alter its profile beyond a given tolerance throughout 

the depth of the sample then the wavefront at 0,z   which is by definition described by Zernike 

polynomials, can be used everywhere, after propagating all parts of the wavefront onto the z = 0 

plane and then taking into account the lateral shift incurred as the beam propagates.   

In order to propagate all parts of the wavefront to the z = 0 plane note that the writing 

beam is effectively being treated as a plane wave with a half angle of interference θeff,x and an 

inclination angle θeff,y.  Note that the inclination angle is the standard inclination angle for 

spherical coordinates, so an inclination angle of π/2 corresponds to a wavevector in the x-z plane.  

The effective angles can be determined by calculating the wavevector at the center of the beam 

where the only deviation from the ideal angles is caused by a tilted wavefront (which can be 

introduced by terms other than Z2 and Z3, e.g. coma x).  The effective angles are therefore 
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Here it is assumed that the wavefront center is located at (x,y,z) = (0,0,0) and ( , , )x y z  = (0,0,0). 

The wavevector of the writing beam at the z = 0 plane is then 

 , ,( , ,0) ( / cos , / sin ,0)g g eff x eff yk x y k x y   ( 4.19 ) 

and the wavevector at an arbitrary z-plane is  

 , ,( , , ) ( tan , cot ,0)g g eff x eff yk x y z k x z y z    .   ( 4.20 ) 
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The local grating vector is ,1 ,2( , , ) ( , , ) ( , , )TBG g gK x y z k x y z k x y z   for a probe beam 

incident on the same face as the recording beams (i.e. a transmitting grating).  However, to use 

the grating as a reflecting grating the probe beam must be incident from a perpendicular plane as 

shown in Fig. 4.5, which requires an additional 90
o
 rotation: 
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 ( 4.21 ) 

for a probe beam incident along the x-axis. 

The reflection spectrum of uniform Bragg gratings may be calculated using Kogelnik’s 

coupled-wave equations [44].  In coupled-wave theory the fields of the forward (transmitted) and 

backward (reflected) waves are written in matrix form as 
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where E+ is the forward propagating wave and E– is the backward propagating wave.  T is a 

transfer matrix with elements [100] 
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. ( 4.23 ) 

Here p Braggk k k    is the difference between the propagation constant of the probe beam and 

the propagation constant for a wave satisfying the Bragg condition,  is the grating phase factor, 

t is the grating thickness, /n   is the coupling coefficient between the forward and 
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backward-propagating waves (assuming TE polarization), 2 2 2( )k    , and δn is the 

refractive index modulation [100]. 

To find kBragg, note that to satisfy the conservation of energy and momentum in the Bragg 

regime where only a single diffracted order can exist, the diffracted wavevector must be related 

to the incident wavevector by
d ik k K  .  In the general two-dimensional case the incident 

wavevector and grating wavevector have the form 
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 ( 4.24 ) 

where θz and ϕz are the angles of the incident beam and grating vectors, respectively, relative to 

the z-axis (where the z-axis is the axis of propagation of the probe beam, as in Fig. 4.2), and θy 

and ϕy are the angles of the incident beam and grating vectors, respectively, relative to the y-axis.  

To satisfy the Bragg condition, d ik k , which gives the Bragg condition as 

   2 sin sin cos cos cosBragg y y z z y yK k         . ( 4.25 ) 

This simplifies to Kogelnik’s Bragg condition in the one-dimensional case.  In the coordinate 

system shown in Fig. 4.5, θz = θp,x,  , ,arctan /z RBG x RBG zK K  is the tilt angle along the same 

axis, θy = θp,y, and  ,arccos /y RBG y RBGK K  .   

As stated previously, Eqs. 4.22-4.25 assume a uniform grating.  In the case of a distorted 

grating, the reflectance from each point can be treated as an infinitesimal grating which is 

uniform across the grating face (but not necessarily throughout the thickness), and the overall 

reflectance is the integration of the reflectance at every point: 
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Here R is the reflectance and Ip is the intensity of the probe beam.  The reflectance at every point 

in turn can be calculated (assuming the slowly varying envelope approximation) by dividing the 

transfer matrix into N segments which are thin enough to be considered uniform throughout the 

thickness: 

 
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N

i

i

1

TT . ( 4.27 ) 

Here Ti is a function of a local (constant) κi, Δki, ti, and i  .  In order to match the phases 

between the segments, i must satisfy the relationship 1 1 12 /i i i it       [100].  The local 

grating vector which should be used to calculate Ti is ( , , )K x y y z z  , where ,cot p yy x    

and ,tan p xz x   .  Also, the effective thickness of the grating will be  , ,/ cos sineff p x p yt t   .  

The reflectance of each point is then given by [100] 
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Inserting Eq. 4.28 into Eq. 4.26 provides to overall reflectance spectrum for a probe beam 

incident on the grating. 

For a given set of aberrations the reflection spectrum that is measured will in general 

depend on the parameters of the probe beam (position, size, incident angles, etc.) as well as the 

thickness and strength of the grating.  The combination of grating and probe beam parameters 

yields a plurality of spectral profiles showing some degree of deterioration.  To demonstrate this, 

two gratings representing different types of applications for lasers emitting in the vicinity of 
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1064 nm are simulated here.  The first one is a high-efficiency, relatively thin grating (Grating 

A), useful in applications such as spectral beam combining, and the second one is a thick grating 

with moderate diffraction efficiency (Grating B), which may be used in applications requiring 

narrow spectral widths.  Grating A is designed such that it ideally has a 1064 nm resonant 

wavelength with δn = 200 ppm, and t = 5.5 mm.  From Eqs. 4.20-4.26 this should give a 

diffraction efficiency of 99.4% and a spectral width of 178 pm for a probe beam at normal 

incidence.  Grating B is designed for the same resonant wavelength, with δn = 20 ppm, and t = 

20 mm, corresponding to a diffraction efficiency of 68.5% and a spectral width of 24 pm at 

normal incidence.  In order to minimize the effects of possible grating chirp (a best-case 

scenario), Grating A was analyzed over the region -2.75 ≤ x ≤ 2.75 mm and Grating B was 

analyzed over the region -10 ≤ x ≤ 10 mm.  Both gratings are 25 mm wide and 6 mm deep (along 

the z-axis in Fig. 4.4) with a recording wavelength of 325 nm.  This recording wavelength is the 

emission wavelength of a He-Cd laser which is typically used to record gratings in PTR glass.  

These gratings are then illuminated with a collimated 3 mm beam at normal incidence at two 

positions: the center of the grating and halfway between the center and the right side (y = 6.25 

mm in Fig. 4.4).  Note that the center of the grating is the most likely place for any symmetry in 

the system to minimize the effects of aberrations since this is where the writing beams will 

perfectly overlap, whereas in all other positions there is no perfect overlap.  Therefore it is 

expected that any deviations in the reflection spectra caused by aberrations will be minimized at 

this point. 

Figs. 4.6a and 4.6b show the effects of one wave of a given aberration on the reflection 

spectrum for Grating A and Figs. 4.6c and 4.6d show the effects for Grating B.   
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In both cases the side lobes are washed out and there is a shift in the central wavelength of up to 

100 pm for some aberrations depending on the beam position.  Grating A shows a small amount 

of broadening in the main peak but the peak diffraction efficiency is largely unchanged.  This 

can be explained by the large spectral bandwidth of the initial grating.  At each point along the 

face the reflection spectrum has a slightly different central wavelength, but since the initial 

bandwidth is wide these small shifts do not shift the peak outside of the main lobe or even shift 

them within the main lobe very much.  This also applies for coma x and 45
o
 astigmatism; even 

(a) (b) 

(c) (d) 

Figure 4.6: Reflection spectra in the presence of one wave of a given aberration for Grating A {(a), (b)}, and Grating B {(c), (d)}.  

The reflection spectra for a beam incident on the center of the grating {(a), (c)} is different than when the beam is incident at a 

point halfway between the center and the edge of the grating {(b), (d)}. 
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though the central wavelengths have noticeably shifted for these aberrations this large shift is 

more or less consistent at each point along the face.  Other effects however are not reduced by 

the large spectral acceptance; coma x for instance creates an asymmetry in the side lobes which 

is consistent with the asymmetrical profiles induced in chirped gratings [45].  Unlike typical 

chirped gratings however, where the chirp is so large that the spectral acceptance is broadened 

significantly, the amount of chirp induced by the single wave of coma x is insufficient to have 

any noticeable effect on the spectral width of the central lobe. 

Grating B by contrast shows a much more dramatic change in the reflection spectra, 

especially for coma x.  This is not surprising, as the grating is much thicker than Grating A, and 

it was also designed to be a weaker grating so there are no benefits that may be associated with 

possible overmodulation widening the spectrum as in the case of Grating A.  In addition to the 

washed out side lobes there is a noticeable decrease in peak efficiency as well as spectral 

broadening.  Coma x shows the most significant change, with a reduction in peak efficiency of 

over 40% and a spectral broadening to ~300 pm.   

 

Figure 4.7: Reflection spectrum for a 3 mm beam centered on Grating B in the presence of one wave of coma x if the local tilt of 

the grating is ignored and only the local change in period is considered. 
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This is caused partially by the change in local grating tilt and partially by the change in local 

period, as seen in Fig. 4.7 where the tilt of the grating is ignored.  A comparison of Fig. 4.7 to 

Fig. 4.6c shows that both effects have a significant contribution to the final spectrum neither can 

be ignored in favor of the other.  

The degradation of the reflection spectra in the presence of even one wave of aberrations 

and their associated problems when used in wider applications requires that aberrations be dealt 

with during the recording of the grating.  Unlike fibers or thin film gratings it will not be 

sufficient to find a plane where the aberrations are minimized as the large thickness of the 

recording medium will ensure that the beams produce a spatially dependent fringe profile in the 

recording medium.  If these aberrations cannot be corrected by proper alignment of the 

holographic recording system then an aberration correcting element will be necessary to 

eliminate them. 

4.4 Aberration Correcting Elements 

Aberration correcting elements (ACEs) may be used to eliminate specific aberrations 

from an optical system.  If the aberrations in the system are fixed and known, it is possible to 

manufacture a passive phase mask which corrects them [101,102].  If the aberrations fluctuate 

however, it will be necessary to have active monitoring of the aberrations as well as a real-time 

corrector, such as a spatial light modulator or deformable mirror [103-108].  ACEs, both passive 

and active, generally rely on characterizing the aberrations using Zernike polynomials as 

described previously, and then create an element which has the same magnitude of aberration but 

opposite sign.   
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In industrial applications the ACE is generally produced with liquid crystal devices or 

thin films which are no more than a few tens of microns thick, so placing the ACE in the system 

will not have a significant effect on the aberrations in the system aside from the corrections 

introduced.  However, as mentioned previously these elements cannot be used in high power 

systems and so a thicker phase element must be used.  As discussed in Chapter 2 a thick phase 

mask allows the beam to propagate while accumulating the local phase.  This can be problematic 

in that aberrations can change if they pass through a thick plate.  To observe this phenomenon 

consider just the Seidel aberrations.  If a beam is not collimated but rather converges, with a 

given ray converging at an angle θc, then the Seidel coefficients become [79] 

 

2 3
2

4

3

1
0c c c

I c II I III I IV V I

c c c

n
S t S S S S S S S

n

  


  

   
        

   
, ( 4.29 ) 

where c is the convergence angle of the principal ray.  Thus the thicker the mask used to correct 

aberrations, the more likely that the aberrations that need to be corrected will change once the 

mask has been placed in the system.  Unfortunately even if the Seidel aberrations are all that 

need to be corrected Eq. 4.29 cannot be used to convert the changed profiles into their respective 

Zernike polynomials due to the lack of uniqueness in the power series description of the 

wavefront.  Furthermore, in high power systems any heating of the phase mask may induce 

thermal lensing, further altering the phase profile that needs to be corrected.  Generally, to 

measure the aberrations appropriately a PTR blank must be inserted into the system and the 

system run until a steady state is reached.  The aberrations can then be measured and the 

correcting phase profile determined.  Once this is done the phase mask will properly correct the 

aberrations in the system regardless of the thickness of the sample used. 
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To demonstrate selectively aberration-correcting elements, two VPMs were recorded: a 

mask to correct only spherical aberration and a mask which corrects multiple aberrations having 

different magnitudes.  To produce a spherical-correcting mask a 200 mm plano-convex lens was 

placed in a double-pass interferometer (Zygo) and deliberately misaligned to produce aberrations 

other than spherical.  The aberrations were then measured using commercially available 

interferogram analysis software (Metropro).  A mask was then manufactured to produce the 

opposite amount of spherical aberration while not altering any of the other aberrations.  To 

monitor the correction of the phase mask the thermal development was broken into several steps. 

The first step was the standard nucleation described in Chapter 1 but the crystallization phase 

was only allowed to proceed for approximately 10 minutes.  The partially developed sample was 

placed in the interferometer and the aberrations measured.  This was repeated several times until 

the desired correction was achieved.  As shown in Fig. 4.8, over the course of four developments 

the spherical aberration was reduced in a nearly linear fashion until it was completely eliminated 

while coma and astigmatism were unchanged (the values shown are the Seidel values for 

simplicity).  The last step shows a slight change in the values for coma and astigmatism; this is 

Figure 4.8: The spherical aberration in a system is corrected using a PTR aberration-correcting element without altering the other 

aberrations in the system. 
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due to increased scattering in the sample caused by repeated thermal developments which makes 

it difficult for the analysis software to accurately determine the fringe positions in the 

interferometer.  Also note that the refractive index change here is the estimated change rather 

than the measured value.  This is because the phase profile covered the entire sample area with 

no additional room to record a stripe that could be measured in the shearing interferometer 

discussed in Chapter 2.  The refractive index change was therefore estimated by comparing the 

thermal development times and temperatures to other samples for which the refractive index 

change had been measured. 

The second aberration-correcting mask was designed to correct different quantities of 

spherical, coma x, and coma y aberrations while not altering astigmatism.  Because multiple 

aberrations must be simultaneously corrected a very specific phase profile must be created in the 

phase mask.  This makes the system very sensitive to alignment, with deviations of even a 

millimeter being sufficient to produce a completely different characterization of the aberrations.  

As with the spherical-only ACE the change in the aberration coefficients were measured over 

several steps, requiring several days to redevelop and re-measure the sample.  This increases the 

odds of misalignment occurring so to minimize this problem the ACE was placed in the Zygo 

interferometer without any additional beam-distorting elements for characterization.  In this 

configuration the ACE acts as the aberration-inducing element, with the amount of aberration 

induced being equal to the amount of aberration that would be corrected if this element were 

placed in the appropriate system. 

As seen in Fig. 4.9, the ACE induces (corrects) different amounts of spherical, coma x, 

and coma y while not altering either 0
o
 astigmatism or 45

o
 astigmatism.   
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As with the previous ACE, the corrections increase nearly linearly, and the astigmatism increases 

slightly during the last steps due to the increased scattering caused by the repeated 

redevelopments of the sample.  Note that the third point on the spherical curve and the third and 

fourth points on the coma y curve have larger error bars than the other points.  This is because 

the sample was misaligned along the y axis (where the y axis is defined as in Fig. 2.2) by 

approximately 1 mm during the third step, which was not noticed until later.  Therefore the data 

for spherical and coma y during this step is based not on direct measurements but on a 

comparison of the times that the sample was developed for the third step as compared to the 

other step.  While 45
o
 astigmatism may also have been affected during this step the absolute 

value of the aberration was so small that any deviation from the expected value due to 

misalignment is within the uncertainty of measurements.  During the fourth step this vertical 

misalignment was partially corrected, which was sufficient to measure the spherical aberration 

directly.  However, coma y was observed to be more sensitive to misalignment, so the partial 

Figure 4.9: Aberration correction for varying amounts of spherical, coma x, and coma y along with linear fits.  Astigmatism is not 

altered by the ACE.  Here the aberration correction is given as the Zernike coefficient in waves rather than the Seidel values 

because the Seidel aberrations, which lack uniqueness, cannot distinguish the components of a given aberration along each axis. 
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correction was insufficient to provide reasonable data for this point.  Therefore the coma y data 

was also inferred from the development time at this point. 

4.5 Summary 

Aberrations in a holographic system can have a significant impact on the performance of 

a grating, washing out side lobes, decreasing peak efficiency, shifting the resonant wavelength, 

inducing spectral broadening, etc.  While in systems where the recording medium is very thin 

this problem can be minimized by proper placement of the sample, for thick samples this cannot 

be achieved because the beams will propagate over several millimeters while recording the 

grating pattern.  To avoid this problem it may be necessary to place an aberration-correcting 

element into the system.  Such masks can be fabricated in PTR glass using the techniques 

described previously, which allow the selective correction of any aberration that can be properly 

characterized.  
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CHAPTER 5: HOLOGRAPHIC PHASE MASKS 

Note: This chapter contains material which will be published in the following work:  

M. SeGall, I. Divliansky, and L. B. Glebov, “Simultaneous laser mode conversion and beam 

combining using multiplexed volume phase elements,” Advanced Solid-State Lasers Congress 

AW2A.9 (2013) (conference proceedings to be published). 

 

In the previous chapters the applications of volume phase masks have been described where a 

specific mask is placed in a system to produce the desired beam profile.  For closed systems 

which are not intended to be significantly modified this is all that is required.  However, if the 

system is intended to have multiple configurations and/or outputs, it is necessary to have 

multiple masks with each mask designed to the needs of the current system requirements.  While 

multiple masks can be designed and then swapped in as needed, this is an inefficient method, 

requiring realignment and potentially requiring the same material properties such as physical 

thickness and losses.  A more efficient method is to multiplex the phase masks in a single 

substrate.  This can be achieved by creating a transmission hologram which contains the same 

phase information as the phase mask and utilizing the established techniques of multiplexing 

volume Bragg gratings [109-112] to multiplex each holographic phase mask. 

5.1 Recording Complex Phase Structures in Photosensitive Media 

 Recording complex holograms is a fairly simple modification of the system described in 

Chapter 4 to produce regular VBGs.  As shown in Fig. 5.1, all that is required is to place an 

element in one of the arms of the two-beam recording system used to create gratings.   
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Any object can be placed in the arm, including phase-only elements and amplitude-only 

elements, though in the case of amplitude-only elements it is necessary to modify the system 

slightly to allow the reflected light from the object to interfere with the reference beam at the 

position of the sample.  Here only transmitting phase elements will be considered, as it is this 

phase profile that is to be encoded in a hologram.   

Because the phase profile is known, and its distance from the sample also known, it is 

possible to use the same techniques described in Chapter 4 when considering aberrated recording 

beams to determine the hologram profile as the phase element can be considered to have induced 

aberrations in the sample.  If the phase mask is located a distance zmask from the front surface of 

the recording sample then the electric field at the surface of the sample (before propagating into 

the sample) is simply the Fresnel diffraction pattern of the phase mask at that distance [43]:  

        
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Figure 5.1: A phase element in one arm of the two-beam interference system creates an object beam which, when interfered with 

the reference beam, produces a complex hologram. 
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At the air/sample boundary Snell’s law and Fresnel reflections must be taken into account, which 

must be applied locally for each wavevector.  Note that if the phase mask used induces a high 

amount of divergence there may be a significant variation in the amplitude of the field that is 

transmitted into the sample due to the large variation in Fresnel reflection coefficients.  Once the 

beam has passed the air/sample boundary the interference pattern produced can be calculated 

using Eqs. 4.14-4.17 to find the local wavevectors in the medium.   

 Once the hologram has been recorded the phase profile can be extracted by illuminating 

the beam with the reference wave; the diffracted beam will have the same phase profile as the 

recording beam.  If the wavelength of the reconstructed beam is changed however, it is not 

possible in general to perfectly reconstruct the desired phase profile without altering the 

properties of the reconstruction beam in some way [113].  For thick holograms this can be 

treated as a deviation from the Bragg condition; even for a traditional Bragg grating if the 

reconstruction wavelength is changed the angle of incidence must also be changed in order to 

satisfy the Bragg condition.  For complex holograms however the constantly changing fringe 

pattern results in a constantly changing Bragg condition which generally cannot be 

simultaneously matched by any wavelength other than the recording wavelength, resulting in a 

degradation of the phase profile in the diffracted beam.   

There are exceptions to this however: if for instance the phase profile of the phase mask 

consists of very low spatial frequencies except at regions of any sharp phase transition (e.g. a 

binary phase mask) then the fringes of the hologram will have effectively the same grating vector 

as a grating recorded without the mask present, but contain local phase jumps.  This can be seen 

by considering a plane wave which obtains a phase distribution ( , )x y  after passing through the 



91 

 

phase mask (following the notation used in Chapter 4, where the bars indicate the coordinate 

system where the beam travels along the z axis).  From Eqs. 4.14-4.16 the wavevector will be  
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. ( 5.2 ) 

If the partial derivatives of φ are small (except at any phase jumps) then the normalization factor 

is approxiamtely one and the wavefront reduces to the wavefront for a plane wave, similar to a 

standard plane wave in the absence of any phase mask.  Because the grating vector is not altered 

the hologram will act similar to a Bragg grating, where by proper adjustment of the incident 

angle one may use any wavelength for the probe beam without degrading the phase information 

or diffraction efficiency.  However, because the phase of the grating is not constant, and as 

shown in Eq. 4.6 the phase of the diffracted beam depends on the phase difference between the 

object and reference beam it is therefore possible to encode the phase mask information into the 

grating.  It is this case, where the phase mask profile in the object beam is a binary profile, that 

will be considered here. 

5.2 Coupled Wave Equations for Phase Shifted Transmitting Bragg Gratings 

To determine the diffraction characteristics of a grating when a binary phase mask has 

been introduced into a recording arm, consider again the two beam interference equation (Eq. 

4.1).  With the phase mask in one arm it becomes 

     1 2 1 2 1 2( , , ) 2 cos cos sin , , cos sinI x y z I I I I k k r x z y z x            , ( 5.3 ) 
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where ( , )x y  has been rotated into the grating centered coordinates.  As a further simplifying 

assumption it shall be assumed that θ and z are both small so that ( , ) ( , )x y x y  .  The 

refractive index profile is then  0( , , ) cos ( , )n x y z n n K r x y     .  Note that in Chapter 4 it 

was assumed that there were no phase discontinuities and so the piston term in the wavefront 

expansion was a constant which could without loss of generality be set to zero (after calculating 

the local grating wavevector).  Here however phase discontinuities must be considered.  The 

coupled wave equations for a probe beam incident on this phase-shifted grating are again 

calculated using the scalar Helmholtz wave equation (Eq. 4.4) with the general solution of Eq. 

4.5.  However, because φ is not constant it cannot be assumed that the amplitudes A and B of the 

transmitted and diffracted waves are only functions of z.  The coupled wave equations therefore 

become 
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, ( 5.4 ) 

where again kp is the wavenumber of the probe beam and pk K   .   

These coupled-wave equations cannot be solved analytically in the general case.  This 

can be seen by considering Fig. 5.2, where there is a phase discontinuity parallel to the fringes.  

As the probe beam propagates through the grating, part of the beam may propagate the entire 

length of the grating without ever encountering the discontinuity in the grating phase.  In this 

case the beam will diffract in the same manner as a regular Bragg grating.  The only difference 

will be the local phase incurred by the diffracted beam.   
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For instance, the leftmost and rightmost transmitted rays in Fig. 5.2 do not encounter the phase 

discontinuity so both will diffract normally.  However, because the grating phase is different for 

each ray when they diffract, the diffracted rays will have different phases.  In contrast, the 

centermost ray of the probe beam passes through the phase discontinuity and then diffracts, with 

the diffracted ray also passing through the discontinuity.  For sufficiently thick gratings it is also 

possible for part of the probe beam to pass through the discontinuity and then diffract but the 

diffracted ray does not pass through the discontinuity.  Because different parts of the transmitted 

and diffracted beams are subject to different conditions the resulting diffraction profile must be 

calculated numerically. 

To numerically calculate the profiles of the transmitted and diffracted waves it will be 

assumed that the second derivatives are negligible as before (though the following method can be 

easily modified to include them if necessary).  For simplicity consider the case where the probe 

beam satisfies the Bragg condition, as this is the condition that is of most interest.  Eq. 5.4 then 

becomes 

Figure 5.2: Diffraction in the presence of a discontinuity in the grating phase.  Different parts of the transmitted and diffracted 

beams may see the phase discontinuity as the beams propagate throughout the grating. 

Grating phase discontinuity 

Transmitted beam 
Diffracted beam 

x 

z 
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. ( 5.5 ) 

To solve these equations they will first be converted to Fourier space along the transverse 

dimensions and then converted back to coordinate space.  Defining the Fourier transform as 
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, ( 5.6 ) 

the coupled wave equations become 
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where ( , , )x yA f f z is the Fourier transform of A and B is the Fourier transform of B.  Note that 

the partial derivatives with respect to x and y have been eliminated by this conversion; this is 

because  '( ) 2f r if [114].  Also note that these equations represent a physical system; 

therefore negative spatial frequencies must also be considered.   

Eq. 5.7 can be solved numerically by splitting the left- and right-hand sides of the 

equations.  For now, assume that the right-hand side of the equations are equal to zero.  The first 

equation then simplifies to 

  , , ,2 0x p x y p y p z

A
iA f k f k k

z



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
, ( 5.8 ) 
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which is a differential equation with a solution of the form  1 2( ) exp .h z C iC z   Note that the 

second equation will have the same form.  Of course, this solution is only valid for the case 

where the right-hand side of the coupled wave equations actually equals zero, but for small 

propagation steps this is almost valid and therefore the fields in Fourier space can be written as 
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. ( 5.9 ) 

These equations represent propagation in the Fourier domain, similar to the propagation 

equations described in Chapter 2 for the beam propagation method.  If the beams were 

propagating in a homogeneous media the fields in coordinate space would simply be the inverse 

Fourier transform of Eq. 5.9.  However, it is necessary to include the right-hand side of the 

coupled wave equations at this point in order to conserve energy.  Therefore the fields at the next 

propagation step are  
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. ( 5.10 ) 

Note that these equations do not strictly conserve energy.  This is because this method splits the 

propagation and the energy conservation into two discrete steps which is generally unphysical.  

However, by choosing small propagation steps this approximation is reasonable.  A propagation 

step of 100 nm for instance conserves energy to within 0.01%.  Thus this method can 

approximate the field distributions of the transmitted and diffracted waves.   
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5.3 Diffraction with Binary Phase Encoding 

From Eq. 5.10 it is possible to calculate the intensity and phase distribution of the 

diffracted beam when a binary phase profile has been encoded into the grating by the appropriate 

phase mask.  Remember that the phase mask provides the local phase change at the recording 

wavelength which for all results presented here is 325 nm, the emission wavelength of a He-Cd 

laser.  If the reconstruction wavelength is the same as the recording wavelength then as 

previously discussed the diffracted beam will have the same phase profile.  However, the case of 

interest is when the reconstruction wavelength is far from the recording wavelength.   

To examine this, two cases will be simulated here: the case where there is a binary step in 

the x-direction (the grating phase discontinuity is parallel to the fringes, with the grating oriented 

as in Fig. 5.3) and the y-direction (the discontinuity is perpendicular to the fringes).  In both 

cases the probe beam wavelength is 1064 nm and the grating period is 8 µm.  This grating period 

is rather large compared to most gratings, but by choosing this period the half angle of 

interference is minimized, in keeping with the assumption that the phase distribution recorded in 

the grating is approximately the same as the phase mask.  Further, the simulated sample is 2 mm 

thick to help ensure that there is almost no z-dependence of the phase discontinuity.  The 

propagation step size is 100 nm and the resolution in coordinate space is 3 µm with a grating 

aperture of 200 mm.   

x 

y 

z 

Figure 5.3: Orientation of the holographic phase masks used throughout this chapter.  The incident, transmitted, and diffracted 

beams all lie within the x-z plane. 
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This is a very large aperture but in these simulations the incident beam is assumed to be a plane 

wave in order to more easily illustrate the features in the intensity profiles.  As the discrete 

Fourier transform assumes that a given function is periodic over a certain interval [115], this 

large grating aperture ensures that any interference effects at the boundary of the sample window 

do not have any effect at the center of the grating where the phase discontinuity is located.  The 

refractive index modulation in these simulations is 250 ppm, which for a homogenous grating 

gives a diffraction efficiency of 99.13% at the Bragg angle for a 1064 nm beam.  

Fig. 5.4 shows the intensity and phase profiles of the diffracted beam after propagating 

through the grating when the grating phase discontinuity is along the x-axis.  As seen in Fig. 5.4a 

the phase profile of the diffracted beam is exactly the binary phase distribution that was encoded 

by the phase mask at the recording wavelength (the center of the profile is shifted to the left due 

to the diffracted beam, which is the –1 order, propagating in that direction).  Thus a holographic 

phase mask can be used for any incident beam which can satisfy the Bragg condition to provide 

the phase profile encoded in the original phase mask to the diffracted beam.  Fig. 5.4b shows that 

(a) (b) 

Figure 5.4: (a) Phase distribution of the diffracted beam in the presence of a binary shift in the grating phase along the x-axis and 

(b) the intensity distributions of the transmitted and diffracted beams. 
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the diffracted profile (which is taken immediately after propagating through the grating) has a 

similar intensity distribution as the binary phase mask discussed in Chapter 2.  This may be 

partially due to the propagation through a thick media as with the volume phase mask, but notice 

also that in that region there is some energy which is transmitted.  This is of course caused by the 

grating phase discontinuity, where the incident beam will be slightly deviated from the Bragg 

condition.  This deviation however only results in a small degradation in diffraction efficiency; 

for the large uniform wave considered here the overall diffraction efficiency is 99.10%, nearly 

identical to the diffraction efficiency of a homogenous grating.  For smaller beams the overall 

diffraction efficiency decreases by up to a few percent.  However, this decrease is on the whole 

very small and so it can be concluded that a binary phase shift along the x-axis does not 

noticeably affect the diffraction efficiency while providing the same phase distribution at the 

reconstruction wavelength as the phase mask does at the recording wavelength. 

If the phase shift of the grating is along the y-axis then a somewhat different diffraction 

profile is observed, as seen in Fig. 5.5.  As seen in Fig. 5.5a the phase profile is again the binary 

phase profile that was encoded by the phase mask at the recording wavelength.   

(a) (b) 

Figure 5.5: (a) Phase distribution of the diffracted beam in the presence of a binary shift in the grating phase along the y-axis and 

(b) the intensity distributions of the transmitted and diffracted beams. 
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Since the probe beam does not have a y-component to its wavevector the discontinuity is located 

precisely along the y-axis.  However, as seen in Fig. 5.5b, the intensity profiles of the transmitted 

and diffracted beams are identical to the profiles expected of a homogenous grating, where the 

local ratio of the diffracted power to the incident power equals the overall diffraction efficiency 

of 99.12%.  Given the 0.01% uncertainty due to lack of complete conservation of energy in this 

numerical approach it can be concluded that the diffraction efficiency in this case is identical to 

that of a homogenous grating.  Also, unlike the case where there is a grating phase discontinuity 

along the x-axis, this diffraction efficiency is the same regardless of the beam size.  This 

difference between cases comes about because the incident beam does not have a y-component to 

its wavevector.  Therefore only a single infinitesimal line encounters the phase discontinuity and 

at no point in the grating will a given ray in the probe beam actually cross the discontinuity; 

either the ray is always on one side of the discontinuity or the other, and so it will always diffract 

in the same manner as a homogenous grating, acquiring the local grating phase.  Therefore if the 

incident beam does not have a wavevector component along the direction of the phase 

discontinuity the grating will have the same diffraction efficiency as a homogenous grating while 

acquiring the local phase distribution of the phase mask placed in the holographic system. 

To experimentally verify these simulations, holograms of a four-sector mode converting 

mask (chosen to give a binary phase shift along the x- and y-axes in a single element) were 

recorded in 1.97 mm PTR samples using the configuration shown in Fig. 5.6, where a four-sector 

mode converting mask designed for the recording wavelength of 325 nm was placed in one arm 

of the setup.  This configuration, where the recording setup is converted to a Mach-Zehnder-type 

interferometer was chosen to best match the assumption that the phase profile of the holographic 

mask is the same as the phase mask placed into one arm.   
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As stated before, for this assumption to be valid the half angle of interference should be 

minimized.  The Mach-Zehnder interferometer can achieve arbitrarily large periods while only 

rotating a mirror by a small amount since the interferometer is inherently designed to provide a 

nearly zero-fringe (infinite period) interference pattern.  If large periods are desired in a setup 

similar to the setup shown in Fig. 5.1 the recording arms will need to be very long, which is 

impractical in terms of space requirements and further increases the chances of air fluctuations 

distorting the recording profile.   

A further consideration is the phase mask itself.  It is very likely that any given phase 

mask will not only introduce a local phase change but also diffract some of the transmitted light 

and for binary masks this is guaranteed.  The diffracted beam, while not really changing its phase 

profile, will have a noticeable difference in its intensity profile.  As seen in Fig. 5.7 diffraction 

from the four-sector phase mask results in regions of low intensity near the phase transition 

regions.   

Figure 5.6: Mach-Zenhder configuration for recording large-period gratings with binary phase encoding. 

BS 

BS 
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Because there is very low intensity the grating strength near that region will be very low, 

creating a dead space where a significant fraction of the energy of a probe beam will merely be 

transmitted.  As a dead space is undesirable it is best to place the phase mask as close to the 

sample as possible so that the dead space is minimized.  The Mach-Zehnder setup is the 

preferred setup since the sample can be placed immediately before the second beam splitter, 

whereas in the other setup the sample must be placed far enough away that the reference beam 

does not partially pass through the phase mask.  In both cases however the diffraction problem 

can be avoided through the use of one-to-one imaging of the phase mask onto the sample 

provided space allows for an imaging system.  

To record a holographic phase mask the PTR sample the object and reference beam were 

first aligned to produce a zero fringe on a screen.  This guaranteed that the beams were 

propagating collinearly after the second beam-splitter and that there was a large region of overlap 

to record a grating.  The mirror in the object beam (the right mirror in Fig. 5.6) was then rotated 

by 0.931
o
 using an RV120HAT computer-controlled rotation stage (Newport) to create a fringe 

pattern with an 8 µm period, chosen to match the period used in the simulations.  As this 

Figure 5.7: Image of overlapped recording beams on luminescent paper with a four-sector mode converting mask in one arm of 

the system.  Note the cross pattern in the middle of the beams; this is due to diffraction from the transition regions of the phase 

mask in the object beam.  Because the intensities of the recording beams are reduced along the cross only a very weak grating can 

form. 
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generally resulted in a reduced region of overlap the second beam-splitter was translated without 

rotation until full overlap was achieved in the plane of interference.  Using a reduced beam 

intensity to prevent premature exposure the sample was placed in the plane of interference and 

rotated until the normal of the sample bisected the interference angle of the object and reference 

beams to produce a grating without any tilt.  To check that the normal to the sample bisected the 

object and reference beams note that part of the reference beam reflected from the first surface of 

the sample into the object arm and vice versa.  This created a Sagnac interferometer with an 

output visible in the unused port of the first beam-splitter.  If the sample was properly aligned a 

zero-fringe pattern was observed there.  The four-sector phase mask was then placed in the 

object beam, positioned such that the center of the cross seen in Fig. 5.7 was located at the center 

of the beam, and rotated until the reflection from the first surface aligned with the position of the 

interference pattern in the output port of the first beam-splitter.  After increasing the beam 

intensity to full power a hologram of the phase mask was then recorded for 700 s, providing the 

standard dosage for a grating.  The sample was then baked following the standard development 

procedure using a 510
o
 bake temperature for the sodium fluoride nucleation. 

After recording the holographic phase mask the diffracted beam was first examined at 

632.8 nm in the near field (within the first 20 cm after the holographic mask) in order to 

determine whether there is any difference in the diffracted profile between the discontinuity 

oriented parallel to the fringes and the discontinuity oriented perpendicular to the fringes.   As 

shown in Fig. 5.8, when observing the diffracted beam on a screen close to the grating the 

diffracted beam contains a smaller transition region when the phase discontinuity is along the y-

axis than when the phase discontinuity is along the x-axis.   
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In fact, as the screen is moved to immediately after the sample the horizontal transition region 

disappears while the vertical transition region remains approximately the same size, which is 

consistent with the simulation results.   

The diffraction efficiency of the diffracted beam when centered on the cross was initially 

30-40% weaker than the beam when centered on just a single quadrant where the grating is 

homogenous.  This is due primarily to the combination of the dead space created when recording 

the phase mask and the small beam size (3 mm), resulting in a significant fraction of power not 

being diffracted at all.  When the original phase mask in the holographic setup was adjusted to 

minimize the distance between the phase mask and the recording sample this discrepancy 

dropped to a 7% difference.  Part of this difference is due to the residual dead space during 

recording, but most of it is due to the expected decrease in efficiency when there is a phase 

discontinuity along the x-axis.  This was verified by shifting the beam so that there was only a 

phase discontinuity along the y-axis; in this configuration the diffraction efficiency was nearly 

identical to the diffraction efficiency of a single quadrant.  Thus the experimental observations 

are in excellent agreement with the simulations. 

Figure 5.8: Diffracted beam after passing through a holographic phase mask encoded with a four-sector mode converter.  This 

image was taken when the diffracted beam had propagated 7 cm after the mask, and the horizontal line is clearly narrower than 

the vertical line.  Though it was not possible to take an image of the beam closer to the mask, a visual inspection of the beam on a 

screen brought to within 0.5 cm of the mask showed that the horizontal line is invisible at this distance while the vertical line was 

the same size as that shown in the above image. 
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The diffracted beam was then examined in the far field (achieved by focusing the beam 

with a 500 mm lens) at multiple wavelengths in the visible and the infrared regions using a 3 mm 

probe beam to determine the wavelength dependence of mode conversion.  As shown in Fig. 5.9, 

in all cases the diffracted profile exhibited the same four-lobed pattern.  The profiles in Fig. 5.9 

are very similar to the far field profiles of the four-sector mask shown in Fig. 2.13, indicating 

that there is a mode converting element encoded into the volume grating.   

 

(a) (b) (c) 

Figure 5.9: Far field profile of the diffracted beam from a four-sector holographic phase mask at (a) 632.8 nm, (b) 975 nm, and 

(c) 1064 nm.  The sizes shown here are not to scale. 

Figure 5.10: Overlap integral of the diffracted beam with the TEM11 mode at 975 nm and 1064 nm.  There is not a perfect overlap 

with the ideal binary phase mask, indicating that the holographic phase profile is not a perfect binary profile.  However, the 

conversion efficiency profiles at 975 nm and 1064 nm are nearly identical, indicating that the phase profile recorded can be 

extracted at any wavelength which can satisfy the Bragg condition.   
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In order to quantify the conversion efficiency into the TEM11 mode the overlap integral 

(Eq. 2.15) was calculated for the diffracted beam at 975 nm and 1064 nm in the same manner as 

the transmitted beam was calculated for the phase masks in Chapter 2.  As shown in Fig. 5.10 the 

overlap integral at both wavelengths shows fairly good agreement with the curve predicted for a 

perfect binary phase mask.  Because there is some noticeable discrepancy between the 

experimental curves and the ideal curve it can be concluded that the phase profile encoded into 

the volume grating was not a perfect binary profile.  However, of greater importance is the fact 

that the curve at 975 nm is nearly identical to the curve at 1064 nm.  Therefore the phase profile 

which is encoded into the holographic phase mask can be extracted by any probe beam which 

can satisfy the Bragg condition of the grating, in contrast to the monochromatic nature of the 

original phase mask used to record the hologram.  It should be noted that while the phase profiles 

are identical, the diffraction efficiencies are not since the diffraction efficiency of a volume 

grating is wavelength-dependent, as is shown in Eq. 4.8. 

 The mode converting ability of the phase masks is of course not limited to converting a 

Gaussian beam to a higher order mode; it is also possible to convert from a higher order mode to 

a Gaussian profile.  To demonstrate this, two 4-sector mode converting holographic phase masks 

were aligned so that a 3 mm Gaussian beam at 1064 nm was incident on the first mask and the 

diffracted (converted) beam from this mask was incident on the second converter.  This doubly 

converted beam was then focused by a 500 mm lens to achieve the far field profile.  As shown in 

Fig. 5.11a, the far field profile is a Gaussian spot with some low-energy wings.  Cross sections of 

the beam, shown in Fig. 5.11b and 5.11c, were fitted with Gaussian functions to determine the 

size of the main spot relative to a diffraction-limited spot.   
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The fits indicate that the spot size along the x-axis is 228 µm, nearly identical to the diffraction-

limited spot size of 226 µm, while the spot size along the y-axis is 240 µm, which is close to 

diffraction-limited.  The wings are caused by the finite transition regions at the boundary 

between the different grating phases and can be reduced by reducing the size of the transition 

regions in the original phase mask used for recording as well as placing the phase mask closer to 

the sample during recording. 

5.4 Multiplexed Mode-Converting Masks 

Having demonstrated that the holographic phase masks will reproduce the desired phase 

distribution in the diffracted beam with comparable diffraction efficiency as a homogenous 

grating, consider now the case where multiple gratings are multiplexed in a single element.  

Ideally these can be used in a system whereby changing the angle of incidence the multiplexed 

mask will switch from one mode converting element to another without cross-talk.  Multiplexing 

of homogenous volume Bragg gratings has been demonstrated in the literature for use in beam 

combining [109-112], and multiplexing of complex holograms in spatial light modulators or in 

thin films for use at the same wavelength as the recording wavelength has been demonstrated for 

(a) (b) (c) 

Figure 5.11: (a) Far field profile of a beam converted from a higher order mode to a Gaussian profile.  (b) Horizontal and (c) 

vertical cross-sections of the beam indicate that the main spot has a near-diffraction-limited Gaussian profile. 
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use as a multiplexer/demultiplexer [116-119], and so by combining these techniques it is 

expected that a multiplexed holographic phase mask will exhibit both the mode conversion 

properties of  complex holograms while achieving nearly 100% diffraction efficiency, similar to 

a Bragg grating. 

To create a multiplexed holographic phase mask each grating profile was recorded 

sequentially using the same alignment techniques described previously to produce a single 

grating.  During the first iteration the PTR sample was aligned in the same configuration as 

before and a hologram of the four-sector mask was recorded using an exposure time of 320 s, 

providing a dosage of approximately half the standard dosage for a grating.  This reduction in 

exposure time is to ensure that after recording the second grating there will be no points close to 

saturation in the refractive index profile.  The phase mask was then removed from the system 

and the sample rotated by 5
o
.  The second exposure recorded a traditional Bragg grating with an 

exposure time of 350 s, again approximately half of the standard dosage of a regular grating.  

The extra 30 seconds is necessary to account for the change in absorption in the sample caused 

by the photoionization after the first exposure.  The second hologram was chosen to be a 

traditional Bragg grating in order to verify that there is no cross-talk between the gratings, which 

can be easily determined by the profile of the diffracted beam when a probe beam satisfies the 

Bragg condition for the homogenous grating.   

After developing the element the far field profiles of the diffracted beam were observed 

by rotating to the relevant Bragg angle for a 975 nm beam wavelength and focusing the 

diffracted beam by a 500 mm lens.  In the first case the probe beam was shifted off-center so that 

there was only a phase discontinuity along the y-axis, and in the second case the incident beam 

was centered on the crossed discontinuity.   



108 

 

As seen in Fig. 5.12 the far field profiles are exactly the profiles expected if there were only a 

single grating structure recorded in the sample.  Cross-sections of the diffracted beam when 

satisfying the Bragg condition for the homogenous grating show that the diffracted spot size is 

identical to the spot size of a diffraction-limited beam, and no wings or other artifacts are 

observed.  Therefore there is no cross-talk between the multiplexed grating structures.  The 

diffraction efficiencies are also consistent with the assumption of no cross-talk: the diffraction 

efficiency of the homogenous grating when the probe beam is centered on the cross is 81.6% and 

the diffraction efficiency of the mode-converting grating is 76.2%.  Likewise the diffraction 

efficiencies when the probe beam is shifted off-center are 88.7% and 89.3% respectively.  Note 

that this grating is over-modulated so the higher diffraction efficiency when the probe beam is 

shifted off-axis actually represents a decrease in refractive index modulation, which may be due 

to reduced beam intensity during recording. 

5.5 Summary 

Holographic phase masks offer a means to multiplex several phase masks into a single 

element without cross-talk between the elements.  Unlike most complex holograms, binary 

(a) (b) (c) 

Figure 5.12: Far field profile of the beam diffracted from a multiplexed holographic phase mask when satisfying the Bragg 

condition for (a) a homogenous grating, (b) a two-sector mode converter, and (c) a four-sector mode converter. 
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holographic phase masks provide an exact replication of the phase profile of the phase mask used 

during the holographic recording regardless of incident wavelength, provided that the incident 

angle of the probe beam is properly adjusted.  These phase masks can be used to perform the 

same beam-shaping and mode converting tasks as a binary phase mask, such as converting from 

a Gaussian beam to a higher order mode and vice versa.  In addition, because the holographic 

mask is in effect a volume Bragg grating, the diffraction efficiency can be adjusted to provide 

100% of the energy in the diffracted order.     
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CHAPTER 6: SUMMARY AND CONCLUSIONS 

In this thesis volume phase elements recorded into PTR glass which provide the same 

phase profile as traditional phase masks has been demonstrated for the first time.  Because these 

samples are thick however, a beam will propagate while gradually accumulating phase, resulting 

in a different field distribution upon transmission from the phase mask than the field distribution 

seen with traditional thin film masks.  In the very near field these differences may be significant, 

but in the far field these differences are negligible, resulting in beam profiles and mode 

conversion efficiencies identical to those produced by traditional masks.  Therefore volume 

phase elements may be used in similar setups as conventional phase masks, but may also be used 

in high power systems due to the phase structure being a bulk recording inside glass as opposed 

to a surface recording. 

To create arbitrary phase profiles in thick photosensitive glass plates a new type of 

amplitude mask, the probabilistic amplitude mask, was created.  This mask, by utilizing the 

diffraction that occurs in the contact copy method, can produce phase elements such as a spiral 

phase mask with good fidelity.  Probabilistic masks are most effective when the pixel size is 

small, as this increases the diffracted spot size and thus more accurately represents a grayscale 

profile.  However, there are some limitations; probabilistic masks cannot accurately recreate 

elements which contain high spatial frequencies, such as Fresnel lenses, which results in a 

decrease in efficiency.  This is however a result of using the contact copy method to create phase 

masks; the phase profile created by a probabilistic mask is very similar to the phase profile 

recorded by an ideal grayscale amplitude mask.  Thus, the probabilistic amplitude mask can be 

used to create the same phase elements as a grayscale amplitude mask at a fraction of the cost.   
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Volume phase mask technology is useful in systems where aberrations are present, as 

aberrations do not generally have high spatial frequency content and therefore there is very little 

degradation of the phase profile when probabilistic masks are used.  When recording holographic 

elements such as volume Bragg gratings, aberrations in the recording beams can severely 

degrade the recorded pattern.  In the case of a reflecting Bragg grating, aberrations on the order 

of a wave are sufficient to alter the resonant wavelength, wash out side lobes and lower 

diffraction efficiency.  Removing such aberrations requires either very high quality optics or 

some form of aberration correction such as aberration-correcting volume phase masks that can be 

tailored to selectively alter one or more aberrations in a system.   

The utility of the phase masks can be further extended by multiplexing multiple phase 

masks into a single element by creating holograms of the phase masks.  By proper alignment 

during recording it is possible to create multiplexed holographic phase masks which have no 

cross-talk between them.  Binary holographic phase masks offer a wider range of applications 

than binary phase masks because regular volume phase masks are inherently monochromatic.  

However, holographic phase masks can provide the same phase profile to any beam that can 

satisfy the Bragg condition, extending the range of accepted wavelengths into the hundreds of 

nanometers.  Holographic phase masks can be used in the same systems as regular phase masks 

and mode conversion from a Gaussian beam to higher order modes and vice versa has been 

demonstrated here. 

Future work includes expanding the applications of volume phase masks, such as creating 

Gaussian to top-hat beam shapers.  Furthermore, the applications of volume phase masks in 

resonators will be considered, especially as pertaining to developing lasers providing a single 

higher order output.  Holographic phase masks may also be used in more advanced systems such 
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as performing simultaneous beam combining and mode conversion in a single element and in 

systems requiring a demultiplexer for modal analysis.   
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APPENDIX: MATLAB CODE FOR COMPUTER SIMULATIONS 
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A.1 Code for Propagating a Beam Through a Thick Medium 

This code simulates a beam passing through a thick phase mask with a step function in 

the refractive index profile by using the beam propagation method.  It will iteratively calculate 

the beam profile throughout the depth of the sample and after propagating a given distance after 

the sample and provide the average absolute difference (see Eq. 2.7) between the beam after 

accumulating phase with the thick mask and a beam which has accumulated phase with an 

infinitely thin mask.   

lambda=632.8E-6; %wavelength in mm 

k0=2*pi/lambda; 

xstep=0.0001; %grid size in mm, this determines the lateral resolution of the simulation 

z1=transpose(0.01:0.01:2); %thickness of sample in mm 

z2=transpose(0:0.1:1000); %propagation distance after the sample 

w=transpose(0.25:0.25:2);%radius of gaussian beam illuminating the sample 

 

x=transpose(-50:xstep:50); 

xp1=transpose((1/xstep)/2*linspace(0,1,floor(size(x,1)/2))); 

xp2=transpose((1/xstep)/2*linspace(-1,0,ceil(size(x,1)/2))); 

xp=[xp1;xp2]; 

Abs_Diff=zeros(size(z2,1),size(w,1)); %absolute mean difference, sum(|x-y|)/n 

for countw=1:size(w,1)  

error=1E+15; 

error2=error; 

for count=1:size(x,1) 

              if abs(x(count,1)-w(countw,1))<error 

                 right_index=count; 

                 error=abs(x(count,1)-w(countw,1)); 

         end 

                if abs(x(count,1)+w(countw,1))<error2 

                  left_index=count; 

                 error2=abs(x(count,1)+w(countw,1)); 

              end 

end 

     

for countt=1:size(z1,1) 

     steps=z1(countt,1)/.001; 

     dz=z1(countt,1)/steps; 

     deltan=-lambda/(2*z1(countt,1))*1; %this determines the refractive index step 
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     E=ones(size(x)); 

    for count=1:size(x,1) 

      E(count,1)=exp(-x(count,1)^2/w(countw,1)^2); 

             end 

 

             n_prof=zeros(size(x)); %refractive index profile of the sample 

             for count=1:size(n_prof,1) 

                  if x(count,1)<0 

                      n_prof(count,1)=1.5; 

                  else 

                      n_prof(count,1)=1.5+deltan; 

                  end 

             end 

 

    % For comparison a distance z2 after the sample 

    for count=1:steps 

                 E2=fft(E)/size(x,1); 

                      for count2=1:size(xp,1) 

                       E2(count2,1)=E2(count2,1)*exp(-1i*xp(count2,1)^2*dz/(2*k0)); 

                  end 

             E=ifft(E2)*size(x,1); 

             for count2=1:size(x,1) 

                      E(count2,1)=E(count2,1)*exp(-1i*k0*n_prof(count2,1)*dz); 

             end 

             end 

             E_aftersample=E; 

             E_pma=ones(size(n_prof)); %ideal phase mask approximation field 

             for count=1:size(n_prof,1) 

             E_pma(count,1)=exp(-1i*k0*n_prof(count,1)*z1(countt,1))*… 

exp(-x(count,1)^2/w(countw,1)^2); 

             end 

 

             for countz2=1:size(z2,1) 

             E2=fft(E_aftersample)/size(x,1); 

             E_pma2=fft(E_pma)/size(x,1); 

              for count2=1:size(xp,1) 

                      E2(count2,1)=E2(count2,1)*exp(-1i*xp(count2,1)*z2(countz2,1)/(2*k0)); 

                      E_pma2(count2,1)=E_pma2(count2,1)*… 

     exp(-1i*xp(count2,1)*z2(countz2,1)/(2*k0)); 

             end 

             E=ifft(E2)*size(x,1); 

             E_pma2=ifft(E_pma2)*size(x,1); 

             I=abs(E).^2; 

             I_pma=abs(E_pma2).^2; 
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%figure,plot(x,I,x,I_pma) %enable this command to plot the beams at a given  

           %propagation distance after the sample 

             

             difference=0; 

             counter=0; 

             for count=left_index:right_index 

                      difference=difference+abs(I(count,1)-I_pma(count,1)); 

                     counter=counter+1; 

             end 

             Abs_Diff(countz2,countw)=difference/counter; 

              end 

end 

end 

data=[z2 Abs_Diff]; 

save('filename.txt','data','-ascii'); 

figure,plot(z2,Abs_Diff) 
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A.2 Code to Calculate the Phase Profile of a Vortex Recorded with a Probabilistic Mask 

This code will calculate the phase profile produced by a probabilistic mask designed to 

create an optical vortex.  Here the code is broken into three steps: the first step calculates the 

probabilistic amplitude mask used to create the spiral phase profile.  The second step calculates 

the intensity profile at a single wavelength using Eq. 3.10-3.12.  The final step integrates these 

profiles into a single element taking into account the relative absorption of the glass and spectral 

brightness of the recording lamp.  A similar code can be used to calculate the profile for a 

Fresnel lens. 

A.2.1 Step 1 

step=0.001; %size of pixels in mm 

maxr=3; %radius of SPP in mm 

x=transpose(-maxr:step:maxr); 

y=x; 

 

phase=zeros(size(x,1),size(y,1)); %phase at each point in the SPP 

for count=1:size(x,1) 

    for count2=1:size(y,1) 

        phase(count,count2)=atan2(y(count2,1),x(count,1))+pi; %vortex phase 

    end 

end 

% contour(phase,'fill','on') 

phase=phase/max(max(phase)); 

phase=phase.^(1/2); 

 

mask=zeros(size(phase)); 

for count=1:size(x,1) 

    for count2=1:size(y,1) 

        num=unifrnd(0,1); 

        if num<=phase(count,count2) 

            mask(count,count2)=1; 

        end 

    end 

end 

save('Probabilistic Mask Filename.txt','mask','-ascii') 
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A.2.2 Step 2 

n=1.53; %refractive index of glass at lambda; 

r_fiber=2.5; %radius of output fiber from the lamp 

f_collimator=100; %focal length of collimating lens in mm 

z=1; %distance into the PTR sample in mm 

 

step=0.001; %size of mask pixels in mm 

maxr=0.5; %radius of SPP in mm 

interp=2; %number of points that represent a single pixel 

 

x=transpose(-maxr:step:maxr); 

y=x; 

 

x2=transpose(linspace(-maxr,maxr,size(x,1)*interp)); %stretched x axis 

y2=x2; 

 

for Index=1:31 

wav=300+Index-1; 

lambda=wav*1E-6; %wavelength in air in mm 

 

Mask=importdata('Probabilistic Mask Filename.txt'); 

 

Mask_Fill=zeros(size(y2,1),size(x2,1)); 

for count=1:size(x2,1) 

    for count2=1:size(y2,1) 

        if (floor(count/interp)<size(x,1)) && (floor(count2/interp)<size(y,1)) 

            Mask_Fill(count2,count)=Mask(floor(count2/interp)+1,floor(count/interp+1)); 

        elseif (floor(count/interp)==size(x,1)) && (floor(count2/interp)<size(y,1)) 

            Mask_Fill(count2,count)=Mask(floor(count2/interp+1),floor(count/interp)); 

        elseif (floor(count/interp)<size(x,1)) && (floor(count2/interp)==size(y,1)) 

            Mask_Fill(count2,count)=Mask(floor(count2/interp),floor(count/interp+1)); 

        elseif (floor(count/interp)==size(x,1)) && (floor(count2/interp)==size(y,1)) 

            Mask_Fill(count2,count)=Mask(floor(count2/interp),floor(count/interp)); 

        end 

    end 

end 

clear Mask 

 

for count=1:size(x2,1) 

    Mask_Fill(:,count)=Mask_Fill(:,count)*exp(1i*pi/(lambda*n*z)*x2(count,1)^2); 

end 

for count2=1:size(y2,1) 

    Mask_Fill(count2,:)=Mask_Fill(count2,:)*exp(1i*pi/(lambda*n*z)*y2(count2,1)^2); 

end 
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profile=fftshift(fft2(Mask_Fill)); 

clear Mask_Fill 

profile=abs(profile).^2; 

profile=profile/max(max(profile)); 

 

x3=transpose(lambda*z*n*1/(2*(x2(size(x2,1),1)-x2(size(x2,1)-1,1)))*linspace(-1,1,size(x2,1))); 

y3=x3; 

 

x0=transpose(0:0.05:r_fiber); 

y0=x0; 

 

profile2=zeros(size(profile)); 

for count=1:size(x0,1) 

    for count2=1:size(y0,1) 

        if x0(count,1)^2+y0(count2,1)^2<=r_fiber^2 

            error_x=1E+15; 

            error_y=error_x; 

            error_x2=error_x; 

            error_y2=error_x; 

            for count3=1:size(x3,1) 

                if abs(x3(count3,1)-x0(count,1)*z/f_collimator)<error_x 

                    temp_x=count3; 

                    error_x=abs(x3(count3,1)-x0(count,1)*z/f_collimator); 

                end 

                if abs(x3(count3,1)+x0(count,1)*z/f_collimator)<error_x2 

                    temp_x2=count3; 

                    error_x2=abs(x3(count3,1)+x0(count,1)*z/f_collimator); 

                end 

                if abs(y3(count3,1)-y0(count2,1)*z/f_collimator)<error_y 

                    temp_y=count3; 

                    error_y=abs(y3(count3,1)-y0(count2,1)*z/f_collimator); 

                end 

                if abs(y3(count3,1)+y0(count2,1)*z/f_collimator)<error_y2 

                    temp_y2=count3; 

                    error_y2=abs(y3(count3,1)+y0(count2,1)*z/f_collimator); 

                end 

            end 

             

            if rem(size(x3,1),2)==1 

                temp_x=temp_x-((size(x3,1)-1)/2+1); 

                temp_y=temp_y-((size(y3,1)-1)/2+1); 

                temp_x2=temp_x2-((size(x3,1)-1)/2+1); 

                temp_y2=temp_y2-((size(y3,1)-1)/2+1); 

            else 

                temp_x=temp_x-size(x3,1)/2; 
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                temp_y=temp_y-size(y3,1)/2; 

                temp_x2=temp_x2-size(x3,1)/2; 

                temp_y2=temp_y2-size(y3,1)/2; 

            end 

             

            if temp_x>=0 && temp_y>=0 

                

profile2(temp_y+1:size(profile,1),temp_x+1:size(profile,2))=profile2(temp_y+1:size(profile,1),t

emp_x+1:size(profile,2))+profile(1:(size(profile,1)-temp_y),1:(size(profile,2)-temp_x)); 

            elseif temp_x<0 && temp_y>=0 

                

profile2(temp_y+1:size(profile,1),1:size(profile,2)+temp_x)=profile2(temp_y+1:size(profile,1),1

:size(profile,2)+temp_x)+profile(1:(size(profile,1)-temp_y),(-1*temp_x+1):size(profile,2)); 

            elseif temp_x>=0 && temp_y<0 

                

profile2(1:size(profile,1)+temp_y,temp_x+1:size(profile,2))=profile2(1:size(profile,1)+temp_y,t

emp_x+1:size(profile,2))+profile((-1*temp_y+1):size(profile,1),1:size(profile,2)-temp_x); 

            elseif temp_x<0 && temp_y<0 

                

profile2(1:size(profile,1)+temp_y,1:size(profile,2)+temp_x)=profile2(1:size(profile,1)+temp_y,1

:size(profile,2)+temp_x)+profile((-1*temp_y+1):size(profile,1),(-1*temp_x+1):size(profile,2)); 

            end 

                 

            if temp_x2==temp_x && temp_y2==temp_y 

                     

            else 

                if temp_x2>=0 && temp_y2>=0 

                    

profile2(temp_y2+1:size(profile,1),temp_x2+1:size(profile,2))=profile2(temp_y2+1:size(profile,

1),temp_x2+1:size(profile,2))+profile(1:(size(profile,1)-temp_y2),1:(size(profile,2)-temp_x2)); 

                elseif temp_x2<0 && temp_y2>=0 

                    

profile2(temp_y2+1:size(profile,1),1:size(profile,2)+temp_x2)=profile2(temp_y2+1:size(profile,

1),1:size(profile,2)+temp_x2)+profile(1:(size(profile,1)-temp_y2),(-

1*temp_x2+1):size(profile,2)); 

                elseif temp_x2>=0 && temp_y2<0 

                    

profile2(1:size(profile,1)+temp_y2,temp_x2+1:size(profile,2))=profile2(1:size(profile,1)+temp_

y2,temp_x2+1:size(profile,2))+profile((-1*temp_y2+1):size(profile,1),1:size(profile,2)-

temp_x2); 

                elseif temp_x2<0 && temp_y2<0 

                    

profile2(1:size(profile,1)+temp_y2,1:size(profile,2)+temp_x2)=profile2(1:size(profile,1)+temp_

y2,1:size(profile,2)+temp_x2)+profile((-1*temp_y2+1):size(profile,1),(-

1*temp_x2+1):size(profile,2)); 
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                end 

            end 

        end 

    end 

end 

clear profile temp_x temp_y x0 y0 

temp=max(max(profile2)); 

profile2=profile2/temp; 

 

error=1E+15; 

error2=error; 

for count=1:size(x3,1) 

    if abs(x3(count,1)+maxr)<error 

        index_left=count; 

        error=abs(x3(count,1)+maxr); 

    end 

    if abs(x3(count,1)-maxr)<error2 

        index_right=count; 

        error2=abs(x3(count,1)-maxr); 

    end 

end 

x3=x3(index_left:index_right,1); 

profile2=profile2(index_left:index_right,index_left:index_right); 

 

save('Intensity profile at wavelength x.txt','profile2','-ascii'); 

save('Axis coordinates.txt','x3','-ascii'); 

end 

 

A.2.3 Step 3 

%Relative spectral absorption.  Wavelengths go from 300 to 330 nm 

wav_eff=zeros(31,1); 

wav_eff(1,1)=1.5888; 

wav_eff(2,1)=1.62; 

wav_eff(3,1)=1.645; 

wav_eff(4,1)=1.6627; 

wav_eff(5,1)=1.6736; 

wav_eff(6,1)=1.6772; 

wav_eff(7,1)=1.6717; 

wav_eff(8,1)=1.6592; 

wav_eff(9,1)=1.6384; 

wav_eff(10,1)=1.6067; 

wav_eff(11,1)=1.5683; 

wav_eff(12,1)=1.5224; 
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wav_eff(13,1)=1.4704; 

wav_eff(14,1)=1.4134; 

wav_eff(15,1)=1.3517; 

wav_eff(16,1)=1.2861; 

wav_eff(17,1)=1.2177; 

wav_eff(18,1)=1.1476; 

wav_eff(19,1)=1.0785; 

wav_eff(20,1)=1.0119; 

wav_eff(21,1)=0.9426; 

wav_eff(22,1)=0.8738; 

wav_eff(23,1)=0.807; 

wav_eff(24,1)=0.7428; 

wav_eff(25,1)=0.6815; 

wav_eff(26,1)=0.6224; 

wav_eff(27,1)=0.5672; 

wav_eff(28,1)=0.5156; 

wav_eff(29,1)=0.4676; 

wav_eff(30,1)=0.4237; 

wav_eff(31,1)=0.3826; 

 

%Relative intensities and spectral brightness from the lamp (here 300 nm has a relative intensity 

of 1, not including the lamp).  In this formulation the final scaling factor is absorption*relative 

%intensity*spectral brightness from lamp 

wav_eff(1,1)=wav_eff(1,1)*.92; 

wav_eff(2,1)=wav_eff(2,1)*.986777*.98; 

wav_eff(3,1)=wav_eff(3,1)*.973772*1.44; 

wav_eff(4,1)=wav_eff(4,1)*.96098*1.57; 

wav_eff(5,1)=wav_eff(5,1)*.948398*1.28; 

wav_eff(6,1)=wav_eff(6,1)*.936021*1.28; 

wav_eff(7,1)=wav_eff(7,1)*.923845*1.28; 

wav_eff(8,1)=wav_eff(8,1)*.911867*1.28; 

wav_eff(9,1)=wav_eff(9,1)*.900082*1.28; 

wav_eff(10,1)=wav_eff(10,1)*.888487*1.57; 

wav_eff(11,1)=wav_eff(11,1)*.877078*2.22; 

wav_eff(12,1)=wav_eff(12,1)*.865852*3.59; 

wav_eff(13,1)=wav_eff(13,1)*.854804*5.62; 

wav_eff(14,1)=wav_eff(14,1)*.843932*4.84; 

wav_eff(15,1)=wav_eff(15,1)*.833233*8.37; 

wav_eff(16,1)=wav_eff(16,1)*.822702*8.63; 

wav_eff(17,1)=wav_eff(17,1)*.812338*7.32; 

wav_eff(18,1)=wav_eff(18,1)*.802136*5.88; 

wav_eff(19,1)=wav_eff(19,1)*.792094*5.23; 

wav_eff(20,1)=wav_eff(20,1)*.782208*4.71; 

wav_eff(21,1)=wav_eff(21,1)*.772476*4.31; 

wav_eff(22,1)=wav_eff(22,1)*.762895*4.25; 



123 

 

wav_eff(23,1)=wav_eff(23,1)*.753462*4.05; 

wav_eff(24,1)=wav_eff(24,1)*.744175*3.9; 

wav_eff(25,1)=wav_eff(25,1)*.73503*3.79; 

wav_eff(26,1)=wav_eff(26,1)*.726025*3.92; 

wav_eff(27,1)=wav_eff(27,1)*.717158*3.92; 

wav_eff(28,1)=wav_eff(28,1)*.708425*3.92; 

wav_eff(29,1)=wav_eff(29,1)*.699825*3.92; 

wav_eff(30,1)=wav_eff(30,1)*.691356*3.92; 

wav_eff(31,1)=wav_eff(31,1)*.683013*4.44; 

 

for count=1:31 

    wav=300+count-1; 

    temp_profile=importdata('Intensity profile at wavelength x.txt'); 

    temp_coord=importdata('Axis coordinates.txt');  

 

    temp_profile=wav_eff(count,1)*temp_profile; 

        

    if count==1 

        profile=temp_profile; 

        x=temp_coord; 

    elseif size(profile,1)==size(temp_profile,1) 

        profile=profile+temp_profile; 

    elseif size(profile,1)>size(temp_profile,1) 

        temp2=100*ones(size(profile)); 

        for count2=1:size(temp_profile,1) 

            for count3=1:size(temp_profile,2) 

                

temp2(round(count2*size(profile,1)/size(temp_profile,1)),round(count3*size(profile,2)/size(tem

p_profile,2)))=temp_profile(count2,count3); 

            end 

        end 

        for count2=1:size(temp2,1) 

            for count3=1:size(temp2,2) 

                if temp2(count2,count3)==100 && temp2(count2,1)<100 

                    temp2(count2,count3)=1/2*(temp2(count2,count3-1)+temp2(count2,count3+1)); 

                end 

            end 

        end 

        for count2=1:size(temp2,1) 

            for count3=1:size(temp2,2) 

                if temp2(count2,count3)==100 

                    temp2(count2,count3)=1/2*(temp2(count2-1,count3)+temp2(count2+1,count3)); 

                end 

            end 

        end 
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        profile=profile+temp2; 

    else 

        temp2=100*ones(size(temp_profile)); 

        for count2=1:size(profile,1) 

            for count3=1:size(profile,2) 

                

temp2(round(count2*size(temp_profile,1)/size(profile,1)),round(count3*size(temp_profile,2)/siz

e(profile,2)))=profile(count2,count3); 

            end 

        end 

        for count2=1:size(temp2,1) 

            for count3=1:size(temp2,2) 

                if temp2(count2,count3)==100 && temp2(count2,1)<100 

                    temp2(count2,count3)=1/2*(temp2(count2,count3-1)+temp2(count2,count3+1)); 

                end 

            end 

        end 

        for count2=1:size(temp2,1) 

            for count3=1:size(temp2,2) 

                if temp2(count2,count3)==100 

                    temp2(count2,count3)=1/2*(temp2(count2-1,count3)+temp2(count2+1,count3)); 

                end 

            end 

        end 

        profile=temp2+temp_profile; 

        x=temp_coord; 

    end 

end 

clear temp_profile temp_coord 

temp=max(max(profile)); 

profile=profile/temp; 

profile=profile(130:1873,130:1873); 

profile=profile-min((min(profile))); 

profile=profile/max(max(profile)); 

x=x(130:1873,1); 

y=x; 

 

%taking into account the nonlinearity of the refractive index change 

for count=1:size(profile,1) 

    for count2=1:size(profile,2) 

        

profile(count,count2)=880*profile(count,count2)*3.3375/(3.76+profile(count,count2)*3.3375); 

    end 

end 

temp=max(max(profile)); 
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profile=profile/temp; 

 

figure,contour(x,y,profile,512,'fill','on') 

xlabel('x, mm') 

ylabel('y, mm') 
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A.3 Code for Calculating the Spectral Response of a Grating in the Presence of Aberrations 

This code calculates the spectral response of a grating at every single point across the 

grating aperture for every single wavelength near the Bragg condition in the presence of a set 

amount of aberrations.  In order to find the overall spectral response it is necessary to integrate 

these spectra together using Eq. 4.24. 

% The following calculations assume everything is given in waves % 

 

theta=17.1857*pi/180; %ideal half angle of interference of two beams in rad 

n=1.53; %refractive index of the recording medium at the recording wavelength 

n_b=1.48; %refractive index of the recording medium at the bragg wavelength 

R_rec=12.5*1E+6; %radius of the recording beam aperture in nm 

k=2*pi*n/325; %wavenumber of the recording beams in the material (in nm^-1) 

z=transpose(-3:0.025:3)*1E+6; %propagation distance in nm 

z(121,1)=0; 

 

t=5.5*1E+6; %thickness of the grating in nm (as seen by the probe beam) 

N_sec=100; %number of sections the grating will be divided into for the transfer matrix 

theta_test=0; %angle of the test beam inside the grating in rad (theta_x_probe_beam) 

theta_test_y=pi/2; %y angle of probe beam (equals pi/2 for a horizontal beam) 

dn=200*1E-6; %RIM 

pol=1; %polarization factor; equals 1 for TE and 2cos(theta_test) for TM 

% for 99.4 % reflectance, use dn = 200*1E-6, t = 5.5*1E+6, N_sec=100 

% for 68.5 % reflectance, use dn = 20*1E-6, t=20*1E+6, N_sec=500 

 

%Peak-to-valley Zernike Terms Using Noll notation  

z_ptv_1=zeros(16,1); %Zernike polynomial coefficients in waves for beam 1 

z_ptv_1(1,1)=0; %piston 

z_ptv_1(2,1)=0; %tilt x 

z_ptv_1(3,1)=0; %tilt y 

z_ptv_1(4,1)=1; %defocus 

z_ptv_1(5,1)=0; %0 deg primary astigmatism 

z_ptv_1(6,1)=0; %45 deg primary astigmatism 

z_ptv_1(7,1)=0; %primary coma x 

z_ptv_1(8,1)=0; %primary coma y 

z_ptv_1(9,1)=0; %30 deg trefoil 

z_ptv_1(10,1)=0; %0 deg trefoil 

z_ptv_1(11,1)=0; %primary spherical 

 

z_ptv_2=zeros(16,1); %Zernike polynomial coefficients in waves for beam 2 
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z_ptv_2(1,1)=0; %piston 

z_ptv_2(2,1)=0; %tilt x 

z_ptv_2(3,1)=0; %tilt y 

z_ptv_2(4,1)=1; %defocus 

z_ptv_2(5,1)=0; %0 deg primary astigmatism 

z_ptv_2(6,1)=0; %45 deg primary astigmatism 

z_ptv_2(7,1)=0; %primary coma x 

z_ptv_2(8,1)=0; %primary coma y 

z_ptv_2(9,1)=0; %30 deg trefoil 

z_ptv_2(10,1)=0; %0 deg trefoil 

z_ptv_2(11,1)=0; %primary spherical 

 

% Construction of Wavefront 

r_aperture=1; %radius of the aperture which is always <=1  

x=transpose(-r_aperture:0.002:r_aperture); %normalized dimension for the Zernike polynomials 

y=x; 

W_1=zeros(size(y,1),size(x,1)); %Wavefront of beam 1. Note that in this Cartesian system, the 

wavefront will be slightly off for values of x and y larger than sqrt(x^2+y^2)=1 

W_2=W_1; 

 

%This calculates the wavefront at z=0 

for count=1:size(y,1) 

    for count2=1:size(x,1) 

        W_1(count,count2)=z_ptv_1(1,1)+z_ptv_1(2,1)*x(count2,1)+z_ptv_1(3,1)*y(count,1)+... 

            z_ptv_1(4,1)*(2*(x(count2,1)^2+y(count,1)^2)-1)+z_ptv_1(5,1)*(x(count2,1)^2-

y(count,1)^2)+... 

            

z_ptv_1(6,1)*2*x(count2,1)*y(count,1)+z_ptv_1(7,1)*(3*x(count2,1)^3+3*x(count2,1)*y(count

,1)^2-2*x(count2,1))+... 

            z_ptv_1(8,1)*(3*x(count2,1)^2*y(count,1)+3*y(count,1)^3-

2*y(count,1))+z_ptv_1(9,1)*(x(count2,1)^3-3*x(count2,1)*y(count,1)^2)+... 

            z_ptv_1(10,1)*(3*x(count2,1)^2*y(count,1)-

y(count,1)^3)+z_ptv_1(11,1)*(6*(x(count2,1)^4+y(count,1)^4-x(count2,1)^2-

y(count,1)^2)+12*x(count2,1)^2*y(count,1)^2-1); 

        W_2(count,count2)=z_ptv_2(1,1)+z_ptv_2(2,1)*-

1*x(count2,1)+z_ptv_2(3,1)*y(count,1)+... 

            z_ptv_2(4,1)*(2*(x(count2,1)^2+y(count,1)^2)-1)+z_ptv_2(5,1)*(x(count2,1)^2-

y(count,1)^2)+... 

            z_ptv_2(6,1)*2*-1*x(count2,1)*y(count,1)+z_ptv_2(7,1)*(3*-1*x(count2,1)^3+3*-

1*x(count2,1)*y(count,1)^2-2*-1*x(count2,1))+... 

            z_ptv_2(8,1)*(3*x(count2,1)^2*y(count,1)+3*y(count,1)^3-

2*y(count,1))+z_ptv_2(9,1)*(-1*x(count2,1)^3-3*-1*x(count2,1)*y(count,1)^2)+... 

            z_ptv_2(10,1)*(3*x(count2,1)^2*y(count,1)-

y(count,1)^3)+z_ptv_2(11,1)*(6*(x(count2,1)^4+y(count,1)^4-x(count2,1)^2-

y(count,1)^2)+12*x(count2,1)^2*y(count,1)^2-1); 
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    end 

end 

 

W_1=2*pi/k*W_1; %converts to distance scale 

W_2=2*pi/k*W_2; 

x=x*R_rec; %conversion of nondimensionalized axis into actual axis 

y=x; 

for count=1:size(z,1) 

    %this calculates the wavevectors for the two beams in the 

    %grating-centered coordinate system 

    W_1b=W_1; 

     

    [del_x1,del_y1]=gradient(W_1b,x(2,1)-x(1,1),y(2,1)-y(1,1)); 

    kx1=-1*del_x1*cos(theta)+sin(theta)*ones(size(del_x1)); 

    ky1=-1*del_y1; 

    kz1=cos(theta)*ones(size(del_x1))-sin(theta)*del_x1; 

    clear del_x1 del_y1 W_1b W_1 

     

    W_2b=W_2; 

     

    [del_x2,del_y2]=gradient(W_2b,x(2,1)-x(1,1),y(2,1)-y(1,1)); 

    kx2=-1*del_x2*cos(-1*theta)+sin(-1*theta)*ones(size(del_x2)); 

    ky2=-1*del_y2; 

    kz2=cos(-1*theta)*ones(size(del_x2))-sin(-1*theta)*del_x2; 

    clear del_x2 del_y2 W_2b W_2 

   

    for count2=1:size(kx1,1) 

        for count3=1:size(kx1,2) 

            temp=k/sqrt(kx1(count2,count3)^2+ky1(count2,count3)^2+kz1(count2,count3)^2); 

            kx1(count2,count3)=kx1(count2,count3)*temp; 

            ky1(count2,count3)=ky1(count2,count3)*temp; 

            kz1(count2,count3)=kz1(count2,count3)*temp; 

             

            temp=k/sqrt(kx2(count2,count3)^2+ky2(count2,count3)^2+kz2(count2,count3)^2); 

            kx2(count2,count3)=kx2(count2,count3)*temp; 

            ky2(count2,count3)=ky2(count2,count3)*temp; 

            kz2(count2,count3)=kz2(count2,count3)*temp; 

            

        end 

    end  

     

    theta_eff_x=atan(kx1((size(x,1)-1)/2+1,(size(x,1)-1)/2+1)/kz1((size(x,1)-1)/2+1,(size(x,1)-

1)/2+1)); 

    x=x/cos(theta_eff_x); 

    %theta_eff_y=acos(ky1((size(x,1)-1)/2+1,(size(x,1)-1)/2+1)/k); 
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    %y=y/sin(theta_eff_y) 

    error1=1E+10; 

    error2=1E+10; 

    for count2=1:size(x,1) 

        if abs(x(count2,1)-(-1*t/2))<error1 

            pos1=count2; 

            error1=abs(x(count2,1)-(-1*t/2)); 

        end 

        if abs(x(count2,1)-t/2)<error2 

            pos2=count2; 

            error2=abs(x(count2,1)-t/2); 

        end 

    end 

    x_shift=z(count,1)*tan(theta_eff_x); 

    %y_shift=z(count,1)*cot(theta_eff_y); 

     

    error1=1E+10; 

    error2=1E+10; 

    for count2=1:size(x,1) 

        %for beam 1 which propagates left to right (+theta) 

        if abs(x(count2,1)-x_shift)<error1 

            shift1=count2-(size(kx1,2)-1)/2+1; 

            error1=abs(x(count2,1)-x_shift); 

        end 

        %for beam 2 which propagates right to left (-theta) 

        if abs(x(count2,1)+x_shift)<error2 

            shift2=count2-(size(kx2,2)-1)/2+1; 

            error2=abs(x(count2,1)+x_shift); 

        end 

    end 

     

    x=x(pos1:pos2,1); 

    kx1=kx1(:,pos1-shift1:pos2-shift1); 

    ky1=ky1(:,pos1-shift1:pos2-shift1); 

    kz1=kz1(:,pos1-shift1:pos2-shift1); 

     

    kx2=kx2(:,pos1-shift2:pos2-shift2); 

    ky2=ky2(:,pos1-shift2:pos2-shift2); 

    kz2=kz2(:,pos1-shift2:pos2-shift2); 

        

    Period=zeros(size(kz1)); 

    tilt_x=Period; 

    tilt_y=tilt_x; 

     

    for count2=1:size(y,1) 
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        for count3=1:size(x,1) 

            Period(count2,count3)=2*pi/sqrt((kx1(count2,count3)-

kx2(count2,count3))^2+(ky1(count2,count3)-ky2(count2,count3))^2+(kz1(count2,count3)-

kz2(count2,count3))^2); 

            tilt_x(count2,count3)=atan((kx1(count2,count3)-

kx2(count2,count3))/(kz1(count2,count3)-kz2(count2,count3)))-pi/2; %the -pi/2 is for the probe 

beam propagating along the x-axis 

            tilt_y(count2,count3)=acos((ky1(count2,count3)-

ky2(count2,count3))/sqrt((kx1(count2,count3)-kx2(count2,count3))^2+(ky1(count2,count3)-

ky2(count2,count3))^2+(kz1(count2,count3)-kz2(count2,count3))^2)); 

        end 

    end 

     

    clear kx1 kx2 ky1 ky2 kz1 kz2 

     

    res_wave_ideal=2*n_b*2*pi/(2*k*sin(theta)); 

    lambda=transpose((res_wave_ideal-

0.0005*res_wave_ideal):(0.0000025*res_wave_ideal):(res_wave_ideal+0.0005*res_wave_ideal)

); 

    refl_point=zeros(size(y,1),size(lambda,1)); %reflectance at each y point at a specific z plane 

for a given lambda 

    t_i=t/N_sec; %thickness of each subpiece 

     

    for count2=1:size(y,1) 

        temp=floor((pos2-pos1)/N_sec); 

        Period2=zeros(N_sec,1); 

        tilt_x2=Period2; 

        tilt_y2=Period2; 

        for count3=1:size(Period2,1) 

            Period2(count3,1)=Period(count2,(count3-1)*temp+round(temp/2)); 

            tilt_x2(count3,1)=tilt_x(count2,(count3-1)*temp+round(temp/2)); 

            if tilt_x2(count3,1)<-pi/2 

                tilt_x2(count3,1)=tilt_x2(count3,1)+2*pi; 

            end 

            if tilt_x2(count3,1)>pi/2 && tilt_x2(count3,1)<3*pi/2 

                tilt_x2(count3,1)=pi-tilt_x2(count3,1); 

            end 

            tilt_y2(count3,1)=tilt_y(count2,(count3-1)*temp+round(temp/2)); 

        end 

                  

        for count4=1:size(lambda,1) 

            for count5=1:N_sec 

                kappa=2*pi*dn/(2*pol*lambda(count4,1)*cos(theta_test)); 
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                beta_Bragg=(2*pi/Period2(count5,1)-

cos(theta_test_y)*cos(tilt_y2(count5,1)))/(2*sin(theta_test_y)*sin(tilt_y2(count5,1))*cos(tilt_x2(

count5,1)-theta_test)); 

                dB=2*pi*n_b/lambda(count4,1)-beta_Bragg; 

                gamma=sqrt(kappa^2-dB^2); 

                if count5==1 

                    phase=0; 

                else 

                    phase=phase+2*(2*pi/Period2(count5-1,1)-cos(theta_test_y)*cos(tilt_y2(count5-

1,1)))/(2*sin(theta_test_y)*sin(tilt_y2(count5-1,1))*cos(tilt_x2(count5-1,1)-theta_test))*t_i; 

                end 

                T11=(cosh(gamma*t_i)+1i*dB*sinh(gamma*t_i)/gamma)*exp(1i*t_i*beta_Bragg); 

                T12=-kappa*t_i*sinh(gamma*t_i)*exp(-1i*(beta_Bragg*t_i+phase))/(gamma*t_i); 

                T21=-kappa*t_i*sinh(gamma*t_i)*exp(1i*(beta_Bragg*t_i+phase))/(gamma*t_i); 

                T22=(cosh(gamma*t_i)-1i*dB*sinh(gamma*t_i)/gamma)*exp(-1i*beta_Bragg*t_i); 

                if count5==1 

                    T=[T11 T12;T21 T22]; 

                else 

                    T=T*[T11 T12;T21 T22]; 

                end 

            end 

            refl_point(count2,count4)=T(2,1)/T(1,1)*conj(T(2,1)/T(1,1)); 

        end 

    end 

    save('Reflectance spectrum at every point in z-plane x.mat','refl_point'); 

end 
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A.4 Code to Calculate the Transmitted and Diffracted Profiles of a Holographic Phase Mask 

This code calculates the transmitted and diffracted intensity distributions of a holographic 

phase mask immediately after propagating through the grating for the case where the binary 

phase discontinuity is along the x-axis.  The total diffraction efficiency and energy conservation 

checks are also provided.  This code can be easily extended to include phase discontinuities 

along the y-axis. 

%This simulation only applies at Bragg condition  

 

n=1.48; %background refractive index 

k=2*pi*n/1064E-6; %wavenumber in mm^-1 

RIM=250E-6; %refractive index modulation 

z=2; %grating thickness in mm 

Period=8.03627E-3; %grating period in mm 

kappa=pi*RIM*k/(2*pi*n); 

tilt=pi/2; %tilt of the grating, equals pi/2 for an untilted TBG 

theta=tilt-acos((2*pi/Period)/(2*k)); %angle of incidence, rad 

 

kpx=sin(theta); 

kpz=cos(theta); 

kdx=kpx-(2*pi/Period)/k*sin(tilt); 

kdz=kpz-(2*pi/Period)/k*cos(tilt); 

dz=0.0001; %step size in mm 

 

x=transpose(linspace(-200,200,2^18)); 

q1=transpose(2*pi/(2*(x(2,1)-x(1,1)))*linspace(0,1,floor(size(x,1)/2))); 

q2=transpose(2*pi/(2*(x(2,1)-x(1,1)))*linspace(-1,0,ceil(size(x,1)/2))); 

q=[q1;q2]; 

 

phi=pi*heaviside(x); 

 

A_old=ones(size(x)); 

B_old=zeros(size(phi)); 

   

energy_in_A=sum(abs(A_old).^2); 

 

t=0; 

while t<=z 

    A_bar=fft(A_old)/size(A_old,1).*exp(-1i*q*kpx/kpz*dz); 
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    A_new=ifft(A_bar)*size(A_old,1)-1i*kappa*dz*B_old.*exp(-1i*phi); 

 

    B_bar=fft(B_old)/size(B_old,1).*exp(-1i*q*kdx/kdz*dz); 

    B_new=ifft(B_bar)*size(B_old,1)-1i*kappa*dz*A_old.*exp(1i*phi); 

    A_old=A_new; 

    B_old=B_new; 

 

    t=t+dz; 

end 

clear A_old B_old A_bar B_bar 

test=max(abs(A_new).^2+abs(B_new).^2); 

test2=min(abs(A_new).^2+abs(B_new).^2); 

figure,plot(x,abs(A_new).^2,x,abs(B_new).^2,x,abs(A_new).^2+abs(B_new).^2) 

legend('Transmitted','Diffracted','Sum') 

figure,plot(x,angle(B_new)./pi) 

energy_out=sum(abs(A_new).^2+abs(B_new).^2); 

energy_out_A=sum(abs(A_new).^2); 

energy_out_B=sum(abs(B_new).^2); 

diff_eff=energy_out_B/energy_in_A 

energy=energy_out/energy_in_A 
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