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Abstract— Distributed Adaptive Real-Time (DART) systems are 
interconnected and collaborating systems that continuously must 
satisfy guaranteed and highly critical requirements (e.g., collision 
avoidance), while at the same time adapting, smartly, to achieve 
best-effort and low-critical application requirements (e.g., 
protection coverage) when operating in dynamic and uncertain 
environments. This paper introduces our approach to 
engineering a DART system so that we achieve high assurance in 
its runtime behavior against a set of formally specified 
requirements. It describes our technique to: (i) ensure 
asymmetric timing protection between high- and low-critical 
threads (HCTs and LCTs) on each node in the DART system, 
and (ii) verify that the self-adaptation within, and coordination 
between, the nodes and their interaction with the physical 
environment do not violate high and low requirements. We 
present our ongoing research to integrate advances in model-
based engineering with compositional analysis techniques to 
formally verify safety-critical properties demanded in safety-
conscience domains such as aviation and automotive, and 
introduce our DART model problem that serves as an end-to-end 
demonstration of our integrated engineering approach.1 

I.  INTRODUCTION 
Development, testing, and operation of any software system in 
a correct, cost-effective, and timely manner is the essence of 
software engineering [1]. To simply appreciate the 
complexities and challenges in addressing the cost and 
timeliness of the engineering processes, one need only look to 
the community of research and practice embodied by 
conferences dedicated to such topics, including, but not only, 
International Conference on Software Engineering, 
Fundamental Approaches to Software Engineering, and 
Foundations of Software Engineering. However, ensuring that 
the software is correct, or verifiably correct, is arguably more 
challenging and complex. Such a statement is anecdotally 
supported by the notion that software development and 
delivery is often delayed (at an additional cost) to ensure that 
the software is correct—be it at requirements elicitation, 
architecture and design development, implementation and 
review steps, or test, integration and verification activities. 
Furthermore, the sheer number of conferences (both large and 
small) that are dedicated to the subfields of software 
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engineering that focus on the correctness and verification of 
correctness is well beyond proper elaboration here [2]. 

Disastrous failures in embedded systems which interact 
with the physical world have demonstrated the consequences of 
not adequately verifying the correctness of the software (such 
as Therac-25, Swedish JAS 39 Gripen, Boeing V-22 Osprey, 
and Airbus A320-200). Embedded systems with critical 
runtime properties are becoming increasingly distributed, 
consisting of interconnected nodes (i.e., multi-agent) that 
collaboratively provide more capability. They use self-
adaptation to achieve their goals when operating in uncertain 
environments. However, coordination, adaptation, and 
uncertainty pose key challenges for assuring the safety and 
application critical behavior of such distributed adaptive real-
time (DART) systems. These challenges are exemplified by: 

• Timeliness: performing the right function, and doing so 
at the right time. 

• Resource Constraints: limits with respect to power, 
weight, bandwidth, connectivity, storage, and 
calculations per second. 

• Sensor rich: sensing the physical world with sensors 
that have varying fidelity and can fail. 

• Intimate cyber-physical interactions: the physical 
world is continuous and the digital interface cannot 
account for everything. 

• Autonomous behavior: adapting smartly to events 
within an agent (e.g., failure), between agents (e.g., 
loss of a peer) and external (e.g., unforeseeable). 

• Computationally complex decisions: number of 
interacting agents and co-dependent decisions made in 
real-time without causing interference. 

To engineer a high assurance DART system for safety-
conscience systems, we present our ongoing research to 
integrate compositional analysis techniques with model-based 
engineering to address these challenges and introduce our 
DART model problem that serves as an end-to-end 
demonstration of our integrated engineering approach. 

II. RELATED WORK 
Testing and verification, be it statistical or formal, is a 
founding tenet of all engineering disciplines, including 
software. Regardless, NIST reported in 2002 that software 
errors cost the US economy nearly US$60 billion [3]. That 
isn’t because of failures in testing or verification alone, but is 
because of a systemic error or disconnect (then as it is now) in 
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how software-intensive systems are engineered (“from 
beginning to ‘failure’”). The failure is in the integration of all 
the sub-disciplines that need to be integrated at the time a 
system is conceived from inception to transition (in Rational 
Unified Process parlance) and into the system’s execution in 
the real world. It is here, in the real world, where resiliency in 
the face of uncertainty needs to be handled adequately and 
safely—something that cannot be exhaustively tested a priori. 

Since the 1980’s, research and development in the fields of 
Computer-aided Software Engineering (CASE), Model-based 
engineering (MBE), Model-driven engineering (MDE), Model-
centric software engineering (MCSE), and others have 
attempted to leverage and integrate techniques for 
requirements, environment specification, architecture 
definition, domain-specific languages, design patterns, code-
generation, analysis, test-generation, and simulation and 
emulation to support system development [4]. Further, in [4], 
Schmidt recognized the challenges to MBE (generalized to all 
such approaches) to include synchronization between the 
models and source code, debugging at the model level, 
expression of the design intent, and quality of service 
properties and the certification of safety properties. 

Wallnau’s work on predictability by construction [5] made 
two notable contributions with respect to these challenges. The 
first was treating quality attributes (non-functional 
requirements) as first class design elements suitable for design 
time and runtime analysis (timing analysis and safety 
properties). The second contribution was a component 
language demonstrating the capacity to (a) produce and 
evaluate an analytic model of a system based on quality 
attributes; and (b) generate executable code for the system if its 
analytic model did not violate its quality attribute requirements 
[6][7]. The intent for this work was to narrow the gap between 
architecture design specifications, quality attribute-specific 
analytic models and the enforcement of those specifications, 
through automation, to the generated code. 

Feiler and Gluch’s work on the SAE Architecture Analysis 
& Design Language (AADL) is used to model both software 
and hardware for embedded, software-reliant systems [8]. It is 
intended to support MBE analysis practice to encompass 
software system design, integration, and assurance. 
Furthermore, the standard is extensible to additional analysis 
and specification techniques necessary for domain-specific 
application. 

Rainbow [10], based on an external, feedback control 
approach called the Monitor-Analyze-Plan-Execute (MAPE) 
model [9], is an architecture-based self-adaptation framework 
that maintains a model of the architecture of the running system 
at runtime and uses that model to reason about the adaptations 
that should be made to the system to achieve desired quality 
attributes. Rainbow’s contribution provides an MBE approach 
to monitor a target system and its environment, reflect 
observations into a system’s architecture model, detect 
opportunities for improvement, select a course of action, and 
effect changes during runtime in a closed loop. 

III. DART SOFTWARE ENGINEERING APPROACH 
The approach to engineering a DART system is consistent 
with that generally exhibited in MBE, one that sufficiently 
combines the process of engineering with the tools for 

engineering. Sufficiently here is intended to denote that the 
rigor needed for engineering (w.r.t. the processes and tooling) 
will differ based on the needs of that which is to be delivered. 
For a DART system, those needs call for high assurance 
safety-critical properties that can be formally verified as well 
as application-critical properties that can be objectively 
quantified. 

The DART software engineering approach is process 
agnostic, as it does not matter if the process is waterfall or 
iterative, team-based or Scrum-based, heavy-weight or light-
weight when working through requirements, design, analysis, 
and test to deliver the system [11]. What matters is that the 
safety-critical properties of the system are not violated, and are 
assured by objective evidence. Thus, the DART approach 
subscribes to a double V model (build the system, the first V, 
and build the assurance case2, the latter V) that focuses on the 
artifacts that are produced during the build process and the type 
of analyses conducted on those artifacts Error! Reference 
source not found.. 

 
Figure 1: Double V Model for Validation & Verification 

From a tooling perspective, DART seeks an Integrated 
Development Environment (IDE) that supports the 
specification of requirements, architecture and code design 
elements, tests (both unit and integration), along with code 
generation, compilation, deployment and debugging. Further, it 
is necessary to be able to trace such specifications backwards 
and forward through all the transformations supported by the 
IDE. For example, the Android Software Development Kit 
(SDK), an Eclipse-based IDE, is very strong at the tail end of 
the MBE tool-chain (i.e., from (GUI) design and code 
specification, unit and integration test specification, code 
compilation, debug, and deployment) but lacks support for the 
specification of requirements and higher-level architectural 
specifications. On the other hand, the Open Source AADL Tool 
Environment (OSATE), also an Eclipse-based IDE, is rooted in 
safety-conscience engineering supporting the double V model. 
As such, OSATE’s plug-in architecture and extensions (e.g., 
the SAE AADL Error Model Annex) is structured for inclusion 
of domain-specific and quality attribute specific analysis tools. 
For example, ALISA, a plug-in for OSATE currently under 
development, supports the specification of goals, requirements, 
and claims, concepts of obstacles, hazards, vulnerabilities, 

2 An assurance case is a method to systematically manage objective evidence 
and arguments (e.g., reviews, analysis, and testing) that take into consideration 
the context and assumptions of the system being delivered [11]. 

                                                           



challenges, and defeaters, and concepts of static analysis, 
verification activity, evidence, and counter evidence. 

In the context of the double V model, AADL, OSATE and 
Rainbow, the DART software engineering approach is 
integrating: 

• mixed-criticality analysis to verify the assymetric 
timing protection and schedulability of threads with 
different criticality that share resources (e.g., cpu(s)) in 
a single node [13]; 

• domain-specific language and safety specification 
notation for distributed applications comprising 
multiple nodes [14]; 

• model-driven verifying compilation system which 
generates C++ code if the safety properties specified 
for the application are verified successfully by a 
software model checker [14]; 

• latency-aware self-adaptation mechanism as a means 
for assuring resiliency when dealing with planned 
mode changes and unexpected events from the physical 
environment during runtime [15]; and 

• statistical model checker for computing the bounded 
probability that best-effort properties of the system are 
within the application’s requirements despite the 
stochastic behavior of the environment [16]. 

A complete demonstration of an integrated approach to 
engineering a DART system is staged in two phases. The first 
phase is to use the analysis techniques listed above and 
incrementally improve upon them to address their respective 
limitations when applied to a DART system. The second phase 
will use the lessons from those improvements to drive 
requirements and improvements (or extension) to AADL (e.g., 
ALISA) so that the safety-critical properties verified during the 
first phase can be properly encoded and traced through OSATE 
to engineer a complete end-to-end DART system. 

IV. DART MODEL PROBLEM 
The model problem, which serves as the basis for both phases, 
involves collaborating swarms of autonomous agents (i.e., 
UAVs) that require both guaranteed, and best-effort 
requirements. Figure 2 depicts two fleets of agent-based 
swarms, each having independent objectives but sharing the 
same goal (e.g., search and rescue). The focus for the phase 1 
model problem considers only one swarm and its objectives. 
The swarm is made up of a number of agents. Agents within 
the swarm must collaborate to maintain separation so as not to 
collide with one another (a safety-property) while maintaining 
a formation so as to best protect a “leader” (a best-effort 
property) during the time it takes to reach objectives along the 
swarm’s route. We consider the distributed algorithm to 
maintain separation the highly critical property to be 
guaranteed and the protection property to be the low(er) 
critical property we also want to satisfy. In all cases, the real-
time high-critical deadlines cannot be missed. 

Figure 3 shows the initial tool chain for phase 1. The tools 
and techniques are founded on those discussed in the previous 
section, that is [13] through [16]. System level specifications 

are encoded in our domain-specific language (DSL) from [14]. 
Specification of application level requirements, and the 
environment come from subject matter experts. Initially, that to 
is manually crafted into our DSL so that the necessary 
verification steps can be performed. In Phase 2, the idea is to 
encode and formalize that knowledge in AADL. 

 
Figure 2: Context for DART Model Problem 

Continuing in Figure 3, each verification tool takes its 
respective inputs from the specifications to perform the 
analysis (i.e., timing, functional, and probabilistic). If 
verification fails, a trace back to the specification(s) that 
formed the basis for a failed check is identified. Here, 
verification takes these three forms:  

1. mixed-criticality temporal protection mechanisms 
between runtime threads hold; passing these checks 
means that real-time deadlines for high-critical tasks 
are guaranteed to be met, 

2. guaranteed property: physical separation among 
multiple agents; passing these checks mean that the 
invariants for the distributed collision avoidance 
algorithm used by the swarm hold given the 
environment, and 

3. best-effort property: agents provide adequate physical 
protection to the leader in a particular environment; 
passing these checks mean that over a given mission 
time, the probability that the protection is maintained is 
above a specified threshold. 

 
Figure 3: Abstract Engineering Tool Chain for DART (Phase 1) 

Code is generated for the target hardware platform after 
passing the verification checks (see Figure 4). It includes all the 
functional code (allocated to one or more threads as identified 



from the specification) and interfaces to the underlying 
operating system scheduler and networking services. 
Additionally, monitoring code supporting each of the 
requirements is generated: 

• guaranteed requirement: when the ASSERT() based 
on the require() property could not be verified 
(due to scalability of the model checker). However, if 
the property is model checked successfully, then no 
monitoring code is generated. 

• best-effort requirement: when the variables used to 
evaluate the expect() property specification that are 
also used by the self-adaptation mechanism are passed 
to the adaptation manager’s monitoring interface. 

For properties that require analysis across variables 
spanning more than one node (e.g., the require 
(FORALL_NODE_PAIRS) node specification in Figure 4), it 
may be impractical to share those variables across those nodes 
at runtime—for now no monitoring code for the target platform 
is generated in those cases. In the case that a property is 
deemed intractable and node-spanning, this generates a 
warning that would need to be addressed by a human, requiring 
changes in requirements or design. 

 

 
Figure 4: Code Generation based on Specifications and Analysis 

The initial self-adaptation mechanism for the model 
problem deals mainly with the decision to change the formation 
of the swarm. Different formations provide tradeoffs between 
different qualities (e.g., protection vs. speed), which are desired 
for different phases of the mission. The adaptation mechanism 
must deal not only with planned mission events, but also with 
uncertain environment conditions (e.g., an unplanned forest fire 
that is on the current route must be avoided).  

V. DART RESEARCH AGENDA OR FUTURE WORK 
Both phases are intended to build upon the properties that can 
be verified for the individual agent as well the composed 
swarm of agents. In Phase 2 our work will be extended to 
properties that can be verified among the fleet of swarms. 
Further, we expect to: 

• encode our DSL (i.e., expect, require) as AADL 
requirement specifications which are then mapped to 
generated specifications for both analytic models and 
code and to support debugging and back tracing.  

• account for IO and Interrupts in timing analysis.  

• introduce machine leaning for the adaption manager.  

• support asynchronous mutli-agent coordination in 
guaranteed behavior as it applies to unbounded checks.  

• reduce the total number of samples needed for a given 
level of precision for statistical model checking. 

Finally, more research will be necessary to extrapolate from 
the lessons learned and discoveries made from the research 
presented here and from others in the community to scale 
software engineering to more numerous, interconnected critical 
systems. 
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@HERTZ(8)
@CRITICALITY(HIGH)
@WCET_NOMINAL(2.5)
@WCET_OVERLOAD(5.0)
@BARRIER_SYNC
...
void collision_avoid() {
// Operates on X & Y

}
...
require(FORALL_NODE_PAIR
(id1, id2,
x@id1 != x@id2 ||
y@id1 != y@id2));

Require(InBounds(X,Y);
...
@AT_LEAST(0.8)
expect(COVER() >= 0.9)
else {

// Adapt
};
...
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attr.period_nsec = 8;
attr.Cmon_nsec = 2.5;
attr.Cover_nsec = 5.0;
attr.criticality = HIGH;
attr.zs_instant_nsec = 

zsinst[“coll_avoid”];
zs_reserve(&attr);

int loc_X = ShrRead(X);
int loc_Y = ShrRead(Y);

// Do coll_avoid logic

if(!(InBounds(loc_X,
loc_Y))

// Handle Fault

AdaptManager(COVER());

ShrWrite(X).set(loc_X);
ShrWrite(Y).set(loc_Y);
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