
Engineering High Assurance Distributed Cyber
Physical Systems

Scott A. Hissam, David S. Kyle, Sagar Chaki, Dionisio de Niz, Jeffery P. Hansen, Gabriel Moreno, and Mark Klein

Carnegie Mellon University, Pittsburgh, PA, USA
{shissam,dskyle,chaki,dionisio,jhansen,gmoreno,mk}@sei.cmu.edu

Abstract— Distributed Adaptive Real-Time (DART) systems are
interconnected and collaborating systems that continuously must
satisfy guaranteed and highly critical requirements (e.g., collision
avoidance), while at the same time adapting, smartly, to achieve
best-effort and low-critical application requirements (e.g.,
protection coverage) when operating in dynamic and uncertain
environments. This paper introduces our approach to
engineering a DART system so that we achieve high assurance in
its runtime behavior against a set of formally specified
requirements. It describes our technique to: (i) ensure
asymmetric timing protection between high- and low-critical
threads (HCTs and LCTs) on each node in the DART system,
and (ii) verify that the self-adaptation within, and coordination
between, the nodes and their interaction with the physical
environment do not violate high and low requirements. We
present our ongoing research to integrate advances in model-
based engineering with compositional analysis techniques to
formally verify safety-critical properties demanded in safety-
conscience domains such as aviation and automotive, and
introduce our DART model problem that serves as an end-to-end
demonstration of our integrated engineering approach.1

I. INTRODUCTION
Development, testing, and operation of any software system in
a correct, cost-effective, and timely manner is the essence of
software engineering [1]. To simply appreciate the
complexities and challenges in addressing the cost and
timeliness of the engineering processes, one need only look to
the community of research and practice embodied by
conferences dedicated to such topics, including, but not only,
International Conference on Software Engineering,
Fundamental Approaches to Software Engineering, and
Foundations of Software Engineering. However, ensuring that
the software is correct, or verifiably correct, is arguably more
challenging and complex. Such a statement is anecdotally
supported by the notion that software development and
delivery is often delayed (at an additional cost) to ensure that
the software is correct—be it at requirements elicitation,
architecture and design development, implementation and
review steps, or test, integration and verification activities.
Furthermore, the sheer number of conferences (both large and
small) that are dedicated to the subfields of software

Copyright 2015 Carnegie Mellon University and IEEE.
This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon
University for the operation of the Software Engineering Institute, a federally
funded research and development center. This material has been approved for
public release and unlimited distribution. DM-0002095

engineering that focus on the correctness and verification of
correctness is well beyond proper elaboration here [2].

Disastrous failures in embedded systems which interact
with the physical world have demonstrated the consequences of
not adequately verifying the correctness of the software (such
as Therac-25, Swedish JAS 39 Gripen, Boeing V-22 Osprey,
and Airbus A320-200). Embedded systems with critical
runtime properties are becoming increasingly distributed,
consisting of interconnected nodes (i.e., multi-agent) that
collaboratively provide more capability. They use self-
adaptation to achieve their goals when operating in uncertain
environments. However, coordination, adaptation, and
uncertainty pose key challenges for assuring the safety and
application critical behavior of such distributed adaptive real-
time (DART) systems. These challenges are exemplified by:

• Timeliness: performing the right function, and doing so
at the right time.

• Resource Constraints: limits with respect to power,
weight, bandwidth, connectivity, storage, and
calculations per second.

• Sensor rich: sensing the physical world with sensors
that have varying fidelity and can fail.

• Intimate cyber-physical interactions: the physical
world is continuous and the digital interface cannot
account for everything.

• Autonomous behavior: adapting smartly to events
within an agent (e.g., failure), between agents (e.g.,
loss of a peer) and external (e.g., unforeseeable).

• Computationally complex decisions: number of
interacting agents and co-dependent decisions made in
real-time without causing interference.

To engineer a high assurance DART system for safety-
conscience systems, we present our ongoing research to
integrate compositional analysis techniques with model-based
engineering to address these challenges and introduce our
DART model problem that serves as an end-to-end
demonstration of our integrated engineering approach.

II. RELATED WORK
Testing and verification, be it statistical or formal, is a
founding tenet of all engineering disciplines, including
software. Regardless, NIST reported in 2002 that software
errors cost the US economy nearly US$60 billion [3]. That
isn’t because of failures in testing or verification alone, but is
because of a systemic error or disconnect (then as it is now) in

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
15 JAN 2015

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Engineering High Assurance Distributed Cyber Physical Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Klein /Scott Hissam David S. Kyle Sagar Chaki Dionisio de Niz Jeffery P.
Hansen Gabriel Moreno Mark

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

4

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

how software-intensive systems are engineered (“from
beginning to ‘failure’”). The failure is in the integration of all
the sub-disciplines that need to be integrated at the time a
system is conceived from inception to transition (in Rational
Unified Process parlance) and into the system’s execution in
the real world. It is here, in the real world, where resiliency in
the face of uncertainty needs to be handled adequately and
safely—something that cannot be exhaustively tested a priori.

Since the 1980’s, research and development in the fields of
Computer-aided Software Engineering (CASE), Model-based
engineering (MBE), Model-driven engineering (MDE), Model-
centric software engineering (MCSE), and others have
attempted to leverage and integrate techniques for
requirements, environment specification, architecture
definition, domain-specific languages, design patterns, code-
generation, analysis, test-generation, and simulation and
emulation to support system development [4]. Further, in [4],
Schmidt recognized the challenges to MBE (generalized to all
such approaches) to include synchronization between the
models and source code, debugging at the model level,
expression of the design intent, and quality of service
properties and the certification of safety properties.

Wallnau’s work on predictability by construction [5] made
two notable contributions with respect to these challenges. The
first was treating quality attributes (non-functional
requirements) as first class design elements suitable for design
time and runtime analysis (timing analysis and safety
properties). The second contribution was a component
language demonstrating the capacity to (a) produce and
evaluate an analytic model of a system based on quality
attributes; and (b) generate executable code for the system if its
analytic model did not violate its quality attribute requirements
[6][7]. The intent for this work was to narrow the gap between
architecture design specifications, quality attribute-specific
analytic models and the enforcement of those specifications,
through automation, to the generated code.

Feiler and Gluch’s work on the SAE Architecture Analysis
& Design Language (AADL) is used to model both software
and hardware for embedded, software-reliant systems [8]. It is
intended to support MBE analysis practice to encompass
software system design, integration, and assurance.
Furthermore, the standard is extensible to additional analysis
and specification techniques necessary for domain-specific
application.

Rainbow [10], based on an external, feedback control
approach called the Monitor-Analyze-Plan-Execute (MAPE)
model [9], is an architecture-based self-adaptation framework
that maintains a model of the architecture of the running system
at runtime and uses that model to reason about the adaptations
that should be made to the system to achieve desired quality
attributes. Rainbow’s contribution provides an MBE approach
to monitor a target system and its environment, reflect
observations into a system’s architecture model, detect
opportunities for improvement, select a course of action, and
effect changes during runtime in a closed loop.

III. DART SOFTWARE ENGINEERING APPROACH
The approach to engineering a DART system is consistent
with that generally exhibited in MBE, one that sufficiently
combines the process of engineering with the tools for

engineering. Sufficiently here is intended to denote that the
rigor needed for engineering (w.r.t. the processes and tooling)
will differ based on the needs of that which is to be delivered.
For a DART system, those needs call for high assurance
safety-critical properties that can be formally verified as well
as application-critical properties that can be objectively
quantified.

The DART software engineering approach is process
agnostic, as it does not matter if the process is waterfall or
iterative, team-based or Scrum-based, heavy-weight or light-
weight when working through requirements, design, analysis,
and test to deliver the system [11]. What matters is that the
safety-critical properties of the system are not violated, and are
assured by objective evidence. Thus, the DART approach
subscribes to a double V model (build the system, the first V,
and build the assurance case2, the latter V) that focuses on the
artifacts that are produced during the build process and the type
of analyses conducted on those artifacts Error! Reference
source not found..

Figure 1: Double V Model for Validation & Verification

From a tooling perspective, DART seeks an Integrated
Development Environment (IDE) that supports the
specification of requirements, architecture and code design
elements, tests (both unit and integration), along with code
generation, compilation, deployment and debugging. Further, it
is necessary to be able to trace such specifications backwards
and forward through all the transformations supported by the
IDE. For example, the Android Software Development Kit
(SDK), an Eclipse-based IDE, is very strong at the tail end of
the MBE tool-chain (i.e., from (GUI) design and code
specification, unit and integration test specification, code
compilation, debug, and deployment) but lacks support for the
specification of requirements and higher-level architectural
specifications. On the other hand, the Open Source AADL Tool
Environment (OSATE), also an Eclipse-based IDE, is rooted in
safety-conscience engineering supporting the double V model.
As such, OSATE’s plug-in architecture and extensions (e.g.,
the SAE AADL Error Model Annex) is structured for inclusion
of domain-specific and quality attribute specific analysis tools.
For example, ALISA, a plug-in for OSATE currently under
development, supports the specification of goals, requirements,
and claims, concepts of obstacles, hazards, vulnerabilities,

2 An assurance case is a method to systematically manage objective evidence
and arguments (e.g., reviews, analysis, and testing) that take into consideration
the context and assumptions of the system being delivered [11].

challenges, and defeaters, and concepts of static analysis,
verification activity, evidence, and counter evidence.

In the context of the double V model, AADL, OSATE and
Rainbow, the DART software engineering approach is
integrating:

• mixed-criticality analysis to verify the assymetric
timing protection and schedulability of threads with
different criticality that share resources (e.g., cpu(s)) in
a single node [13];

• domain-specific language and safety specification
notation for distributed applications comprising
multiple nodes [14];

• model-driven verifying compilation system which
generates C++ code if the safety properties specified
for the application are verified successfully by a
software model checker [14];

• latency-aware self-adaptation mechanism as a means
for assuring resiliency when dealing with planned
mode changes and unexpected events from the physical
environment during runtime [15]; and

• statistical model checker for computing the bounded
probability that best-effort properties of the system are
within the application’s requirements despite the
stochastic behavior of the environment [16].

A complete demonstration of an integrated approach to
engineering a DART system is staged in two phases. The first
phase is to use the analysis techniques listed above and
incrementally improve upon them to address their respective
limitations when applied to a DART system. The second phase
will use the lessons from those improvements to drive
requirements and improvements (or extension) to AADL (e.g.,
ALISA) so that the safety-critical properties verified during the
first phase can be properly encoded and traced through OSATE
to engineer a complete end-to-end DART system.

IV. DART MODEL PROBLEM
The model problem, which serves as the basis for both phases,
involves collaborating swarms of autonomous agents (i.e.,
UAVs) that require both guaranteed, and best-effort
requirements. Figure 2 depicts two fleets of agent-based
swarms, each having independent objectives but sharing the
same goal (e.g., search and rescue). The focus for the phase 1
model problem considers only one swarm and its objectives.
The swarm is made up of a number of agents. Agents within
the swarm must collaborate to maintain separation so as not to
collide with one another (a safety-property) while maintaining
a formation so as to best protect a “leader” (a best-effort
property) during the time it takes to reach objectives along the
swarm’s route. We consider the distributed algorithm to
maintain separation the highly critical property to be
guaranteed and the protection property to be the low(er)
critical property we also want to satisfy. In all cases, the real-
time high-critical deadlines cannot be missed.

Figure 3 shows the initial tool chain for phase 1. The tools
and techniques are founded on those discussed in the previous
section, that is [13] through [16]. System level specifications

are encoded in our domain-specific language (DSL) from [14].
Specification of application level requirements, and the
environment come from subject matter experts. Initially, that to
is manually crafted into our DSL so that the necessary
verification steps can be performed. In Phase 2, the idea is to
encode and formalize that knowledge in AADL.

Figure 2: Context for DART Model Problem

Continuing in Figure 3, each verification tool takes its
respective inputs from the specifications to perform the
analysis (i.e., timing, functional, and probabilistic). If
verification fails, a trace back to the specification(s) that
formed the basis for a failed check is identified. Here,
verification takes these three forms:

1. mixed-criticality temporal protection mechanisms
between runtime threads hold; passing these checks
means that real-time deadlines for high-critical tasks
are guaranteed to be met,

2. guaranteed property: physical separation among
multiple agents; passing these checks mean that the
invariants for the distributed collision avoidance
algorithm used by the swarm hold given the
environment, and

3. best-effort property: agents provide adequate physical
protection to the leader in a particular environment;
passing these checks mean that over a given mission
time, the probability that the protection is maintained is
above a specified threshold.

Figure 3: Abstract Engineering Tool Chain for DART (Phase 1)

Code is generated for the target hardware platform after
passing the verification checks (see Figure 4). It includes all the
functional code (allocated to one or more threads as identified

from the specification) and interfaces to the underlying
operating system scheduler and networking services.
Additionally, monitoring code supporting each of the
requirements is generated:

• guaranteed requirement: when the ASSERT() based
on the require() property could not be verified
(due to scalability of the model checker). However, if
the property is model checked successfully, then no
monitoring code is generated.

• best-effort requirement: when the variables used to
evaluate the expect() property specification that are
also used by the self-adaptation mechanism are passed
to the adaptation manager’s monitoring interface.

For properties that require analysis across variables
spanning more than one node (e.g., the require
(FORALL_NODE_PAIRS) node specification in Figure 4), it
may be impractical to share those variables across those nodes
at runtime—for now no monitoring code for the target platform
is generated in those cases. In the case that a property is
deemed intractable and node-spanning, this generates a
warning that would need to be addressed by a human, requiring
changes in requirements or design.

Figure 4: Code Generation based on Specifications and Analysis

The initial self-adaptation mechanism for the model
problem deals mainly with the decision to change the formation
of the swarm. Different formations provide tradeoffs between
different qualities (e.g., protection vs. speed), which are desired
for different phases of the mission. The adaptation mechanism
must deal not only with planned mission events, but also with
uncertain environment conditions (e.g., an unplanned forest fire
that is on the current route must be avoided).

V. DART RESEARCH AGENDA OR FUTURE WORK
Both phases are intended to build upon the properties that can
be verified for the individual agent as well the composed
swarm of agents. In Phase 2 our work will be extended to
properties that can be verified among the fleet of swarms.
Further, we expect to:

• encode our DSL (i.e., expect, require) as AADL
requirement specifications which are then mapped to
generated specifications for both analytic models and
code and to support debugging and back tracing.

• account for IO and Interrupts in timing analysis.

• introduce machine leaning for the adaption manager.

• support asynchronous mutli-agent coordination in
guaranteed behavior as it applies to unbounded checks.

• reduce the total number of samples needed for a given
level of precision for statistical model checking.

Finally, more research will be necessary to extrapolate from
the lessons learned and discoveries made from the research
presented here and from others in the community to scale
software engineering to more numerous, interconnected critical
systems.

REFERENCES
[1] Mills, H. D. “The Management of Software Engineering Part I:

Principles of Software Engineering.” IBM Syst. J. 38, 2-3, pp.289-295,
June 1999.

[2] Xie, T, “Software Engineering Conferences”, web page
http://web.engr.illinois.edu/~taoxie/seconferences.htm, January, 2015.

[3] Tassey, G., “The Economic Impacts of Inadequate Infrastructure for
Software Testing ”, Technical Report NIST 2002-10, National Institute
of Standards and Technology, May 2002.
http://www.nist.gov/director/planning/upload/report02-3.pdf

[4] Schmidt, D.C. "Guest Editor's Introduction: Model-Driven Engineering,"
IEEE Computer 39 (2), pp. 25-31, February, 2006.

[5] Wallnau, Kurt C. "Predictability by Construction: Working the
Architecture/Program Seam," Mälardalen University Press Dissertations,
No. 85, September, 2010.

[6] Moreno, G. A., and Hansen, J., “Overview of the Lambda-star
Performance Reasoning Frameworks.” CMU/SEI-2008-TR-020,
Software Engineering Institute, Carnegie Mellon University, Feb. 2008.

[7] Chaki, S., Ivers, J., Sharygina, N., and Wallnau, K. “The Comfort
Reasoning Framework”. 17th International Conference on Computer
Aided Verification, Springer, LNCS, vol. 3576, July 2005.

[8] Feiler, P. H. and Gluch, D. P., “Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language,”
Addison-Wesley Professional, 2013, ISBN: 9780321888945 2012.

[9] Kephart, Jeffrey O., and David M. Chess. "The Vision of Autonomic
Computing." Computer 36.1 (2003): pp. 41-50, January 2003.

[10] Garlan, D.; Schmerl, B.; & Cheng, S-W. "Software Architecture-based
Self-adaptation." In Autonomic computing and networking, pp. 31-55.
Springer, 2009.

[11] P. Bourque and R.E. Fairley, eds., “Guide to the Software Engineering
Body of Knowledge”, Version 3.0, IEEE Computer Society, 2014;
http://www.swebok.org

[12] Feiler, P., Goodenough, J., Gurfinkel, A., Weinstock, C., Wrage, L.,
“Reliability Validation and Improvement Framework”, CMU/SEI-2012-
SR-013, Software Engineering Institute, Carnegie Mellon University,
December 2010.

[13] de Niz, D.; Lakshmanan, K.; Rajkumar, R., "On the Scheduling of
Mixed-Criticality Real-Time Task Sets," Real-Time Systems
Symposium, 2009, RTSS 2009. 30th IEEE, vol., no., pp.291-300,
December. 2009.

[14] Chaki, S., Edmondson, J., “Model-Driven Verifying Compilation of
Synchronous Distributed Applications,” Model-Driven Engineering
Languages and Systems (MODELS), Springer, LNCS, vol. 8767, pp.
201-217, October 2014.

[15] Cámara, J., Moreno, G. A., and Garlan, D., “Stochastic Game Analysis
and Latency Awareness for Proactive Self-adaptation,” 9th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS 2014). ACM, New York, NY, USA, pp. 155-164.
May 2014.

[16] Hansen, J.P., Wrage, L., Chaki, S., de Niz, D., and Klein, M., “Semantic
Importance Sampling for Statistical Model Checking,” to appear in
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), Springer, LNCS, April 2015.

@HERTZ(8)
@CRITICALITY(HIGH)
@WCET_NOMINAL(2.5)
@WCET_OVERLOAD(5.0)
@BARRIER_SYNC
...
void collision_avoid() {
// Operates on X & Y

}
...
require(FORALL_NODE_PAIR
(id1, id2,
x@id1 != x@id2 ||
y@id1 != y@id2));

Require(InBounds(X,Y);
...
@AT_LEAST(0.8)
expect(COVER() >= 0.9)
else {

// Adapt
};
...

Node Specification in a DSL Analysis & Verification

ZS
R

M
 ti

m
in

g
C

B
M

C
 m

od
el

VR
EP

 m
od

el
*

Target Code Gen.

read shared context
ASSUME (local constraints)
Do collision_avoid()
ASSERT (local changes)
Write shared context

log (COVER() variables)
Do collision_avoid()

Perform offline
statistical analysis
of logged data

*multiple repetitions

attr.period_nsec = 8;
attr.Cmon_nsec = 2.5;
attr.Cover_nsec = 5.0;
attr.criticality = HIGH;
attr.zs_instant_nsec =

zsinst[“coll_avoid”];
zs_reserve(&attr);

int loc_X = ShrRead(X);
int loc_Y = ShrRead(Y);

// Do coll_avoid logic

if(!(InBounds(loc_X,
loc_Y))

// Handle Fault

AdaptManager(COVER());

ShrWrite(X).set(loc_X);
ShrWrite(Y).set(loc_Y);

T: <other>
Period: 4
C_nom: 2.0
C_over: 2.0
Crit: Low
Pri: High

T: coll_av
Period: 8
C_nom: 2.5
C_over: 5.0
Crit: High
Pri: Low

2.0 1.0

2.0 0.5

1.0

2.5

t=0 t=4 t=8

Schedule for C_nom
Schedule for C_over

C

C

Zero slack

	I. Introduction
	II. Related Work
	III. DART Software Engineering Approach
	IV. DART Model Problem
	V. DART Research Agenda or Future Work
	References

