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Abstract
How do we formally verify security properties in to-
day’s malleable and evolving Commodity System Soft-
ware (COSS) ecosystem? Recent advances in applying
formal methods to systems software, e.g., IronClad [16]
and seL4 [19], promise that this vision is not a fool’s er-
rand after all. In this position paper we explore the chal-
lenges involved in this problem, what research questions
the state of the art leaves still open, and our proposal for
the next step towards realizing this vision.

1 Problem Statement
Today’s commodity system software (COSS) stack com-
prises chiefly the BIOS, hypervisor (e.g., cloud), and the
OS. These components are complex since they deal with
low-level hardware features, especially at early stages
of initialization. The complexity increases considerably
with extensions required to enable additional platform
functionality. For example, BIOS extensions such as op-
tion ROMs allow device-specific initialization, and EFI
BIOS extensions enable filesystem and network access.
Similarly, although hypervisors and VMMs started off
as monolithic software aimed at managing virtual ma-
chines, they evolved to a convenient point of observation
and mediation of useful (security) services that are real-
ized via hypervisor extensions [11, 14, 15, 21, 23, 25, 29–
31,33,35,36,38,39,42,43]. Finally, OS kernels have long
been extensible via device drivers and custom modules.

Adding an extra dimension of complexity, there is ver-
tical interaction in this stack: the OS relies on the hyper-
visor through paravirtualization interfaces, which in turn
depends on the BIOS for some system services.

These low-level components and their extensions
are developed by different entities and change rapidly;
UEFI [6], OpenBIOS [5], Xen [10], KVM [4], Linux [3]
are prime examples of this diversity and flux. Such
changes not only modify existing extensions, but also
add new ones to incorporate additional functionality. Yet,
these low-level components form the basis of security in
the systems we use today, since they set up and enforce
fundamental system services that applications rely on to
provide protection, trusted execution, reference monitor-
ing, privacy, and a host of other critical security proper-
ties. How do we formally verify security properties in
this malleable and evolving COSS ecosystem?

∗GEEC (pronounced /gik/ [geek]) stands for Granular Extensible
interfacE Confinement

2 A Motivating Example
Imagine a COSS stack consisting of a BIOS, a hypervi-
sor and a guest OS. Now imagine a BIOS option ROM
extension for a network card that handles initialization
and provides a runtime interface to the network card
firmware. Assume a hypervisor on top of the BIOS man-
aging virtualization of guest above, but also supporting
additional security extensions. For example, consider an
extension approvexec enabling only explicitly approved
code to run in the guest OS kernel mode. This extension
is used to run a guest OS network card driver that has
exclusive control of the network card – together these
extensions provide (P1) trusted network logging.

Suppose that every component of the stack, the BIOS
(with extensions), hypervisor (with extensions) and the
guest OS driver are verified for P1. This implies proving
memory integrity and confidentiality of the core BIOS
and the hypervisor, network card option ROM correct-
ness to initialize and keep the card in the required op-
erating state, proving the approved code execution prop-
erty of approvexec and proving network card I/O channel
isolation for the protected guest OS driver. Further, we
prove P1 on the composition of all the components.

Consider now adding new BIOS option ROM exten-
sions for a USB keyboard and display that handle initial-
ization and provide runtime interface to the keyboard and
a graphics card. Another hypervisor extension hyperdep
which prevents guest OS code from marking memory
pages as both writeable and executable, and a OS driver
that takes on-demand exclusive control of the keyboard
and display hardware for (P2) trusted path [43]. Now,
we must ensure that these new extensions guarantee P2,
but also that they don’t violate P1.

This scenario described is not science fiction (except
for the formal verification bit). It is a typical example of
how features are added at various layers, at various times,
and with varying configurations, to provide a plethora of
(intended but unverified) security properties; in practice,
the number of options at every level is larger.

3 Building Verified Systems
Getting from an extensible, evolvable system to verified
properties typically requires leveraging one or more of a
small number of formal-verification techniques:

Software Model Checkers execute the software sym-
bolically and exhaustively, deriving formulas that repre-
sent possible states (variable values) at every execution
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point, and checks via a solver that certain boolean pred-
icates over variables (e.g., “all executable pages have
been approved” in the case of approvexec) hold at spe-
cific execution points. To use a software model checker,
the program must be annotated with assertions specify-
ing properties to be verified. Software model checking
is automated, and has been shown to handle large pro-
grams in specific domains [9]. However, complex loops
and data structures require special handling.

Interactive theorem-provers can be used to verify com-
plex properties of programs. However, proving end-to-
end properties of low-level software requires consider-
able manual effort to define properties to be verified and
construct proofs that the design and implementation of
the software satisfy those properties. Often, properties
are first verified on an abstract model of the software. Re-
finement between the implementation and model is sep-
arately proved. Refinement proofs are labor intensive.

Type-safe languages can be used to build high-
assurance software systems.The type-safety properties
guaranteed by existing languages ensure that objects are
used with the correct types and, in the case of Java and
functional languages, memory safety. However, type-
safety is not enough to prove many important security
properties (e.g., those violated by logical errors).

4 Challenges, Goals and Non-goals
Verification Challenges. Although verification tech-
niques have matured considerably, scalability, compos-
ability, and evolvability are still key challenges for
COSS.

Program Size. With increasing functionality, COSS
stack grows in size and extensions. Verification complex-
ity increases as the size of the target software becomes
larger. For example, the complexity of model-checking
grows exponentially with the number of state variables.

Configuration. COSS has a large number of con-
figurations; each layer of COSS can be configured to
in(ex)clude features and extensions, and properties must
be verified on all possible configurations. Thus, verifi-
cation complexity grows with the configuration space.
Verifying each configuration independently leads to ex-
ponential blowup in the number of extensions.

Evolvability. COSS stack consists of rapidly evolving
pieces largely written in low-level languages such C and
assembly. The verification process must accommodate
incremental development in these low-level languages.

Untrusted Extensions. COSS stack often contain ex-
tensions that target special use cases and originate from
third-party vendors (e.g., profilers, sensor applications,
remote management services etc.). Verifying such exten-
sions might be too expensive. Although the core com-
ponents of the software are verified, they have to exe-
cute with these untrusted extensions. A buggy untrusted

and unverified extension [9] may overwrite critical data
structures, jump to core component routines in the wrong
order, or otherwise invalidate the verified properties of
other system components.

Interference. Multiple extensions often access the
same system resource. For example, both hyperdep and
approvexec manipulate the memory protections of guest
OS and operate on the same micro-hypervisor data struc-
tures (the guest’s Extended Page Tables). Reasoning
about the security of the two extensions is challenging
when both access their shared memory arbitrarily.

Concurrency. Extensions can be multi-threaded. The
large number of interleavings of threads leads to a huge
statespace, and very complex invariants, making it very
challenging for model checking and theorem proving.
Goals. Our overarching goal is to develop design princi-
ples and verification methodologies that can verify secu-
rity properties in today’s COSS ecosystem while being
performant. More specifically our goals are: (i) Com-
positional verification: addition of new components or
changes to existing component does not require rever-
ifying the entire software stack; (ii) Extensibility: one
should be able to compose verification results both hor-
izontally (within a layer of the stack) and vertically
(across layers); (iii) Customizable configurations: the
verification process needs to be able to handle any com-
bination of components; (iv) Evolvable and automated
verification: verification needs to support low-level lan-
guages and re-verification of fast changing components
needs to be efficient; and (v) Legacy compatibility: un-
trusted, unverified (legacy) components can run with ver-
ified components without violating verified properties.
Non-goals. We only aim for specific security properties
(e.g., hypervisor code is not modified by guest OS) and
not full functional correctness (i.e., the implementation
behaves exactly as specified in a high-level design). This
lowers verification complexity while still enabling us to
prove a large class of security properties. For instance, if
a hypervisor implementation always ignores page faults
caused by the guest OS, it may not functionally correct,
but does not violate the security property that the hyper-
visor’s code region is not modified by the guest OS.

5 State-of-the-Art
Based on the design principles and verification granular-
ity, we classify state-of-the-art approaches as follows.

Monolithic Extension. Monolithic approaches add
features to an existing (privileged) code base to enforce
desired security properties. The extensions run at the
same privilege level as the core. SELinux [26], AppAr-
mor [1] and FBAC [27] are some examples of OS kernel
modifications that support various access control poli-
cies. Such an approach suffers from the lack of sepa-
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ration: a bug in an extension or the core can affect other
parts of the system and violate their properties.

Unverified Disaggregation. A modular approach iso-
lates system components into privileged (trusted) and
deprivileged (untrusted) components. For instance,
Xen/Xoar [13] partitions the Xen hypervisor and runs
the partitions in deprivileged mode. Unfortunately, the
core hypervisor is still monolithic and runs in privileged
mode. NOVA [32] deprivileged everything, including the
virtualization modules or VMM, except for a small priv-
ileged micro-kernel. With such an approach, untrusted
components cannot affect the privileged code. Buggy
privileged code (even if it is smaller) can still botch other
privileged components and all untrusted components.
Further, the above mentioned systems are not verified
and therefore, the modular design provides merely code
disaggregation, but no formal guarantees on its own.

Verified Sandboxing. Taking advantage of modular
designs, privileged components are getting smaller and
amenable to formal verification. Verified sandboxing ap-
proaches attempt to only verify the privileged portion
that provides required system properties while running
all other (untrusted) code as deprivileged entities.

For instance, the C implementation of the micro-
kernel seL4 [19] is fully verified for functional correct-
ness and it runs with other deprivileged services. How-
ever, the verification process used interactive theorem
proving and took around 22 person-years [18]. Fur-
ther the verification focuses on single-threaded execu-
tion with concurrency still remaining a challenge. Sin-
gularity used software mechanisms to isolate untrusted
processes [17]. The privileged portion (the nucleus) sup-
ports a small subset of hardware and is verified for cor-
rectness using an automated theorem prover. The nu-
cleus is manually annotated for verification. The veri-
fication was for single-threaded execution. The Hyper-
V/VCC project [12, 20] verifies the Hyper-V hypervisor
with drivers and untrusted guest OSes running within vir-
tual machines. The C implementation was manually an-
notated with invariants and assertions to be verified, and
an automated theorem prover was used to discharge the
proof obligations. The verification is modular and as-
sumes multi-threaded execution. The latest report sug-
gests only 20% of the hypervisor code-base was verified
with developer inserted annotations, indicating that full
verification remains a challenge [20]. XMHF [34] adopts
a micro-hypervisor design. The verification is largely au-
tomated with minimal annotations but only focuses on
the memory integrity of the micro-hypervisor. The veri-
fication is for a single-threaded execution and extensions
to XMHF are assumed to be confined to a set of narrow
interfaces for accessing key system state. Software Fault
Isolation (SFI) [22, 24, 28, 37, 41] is a software primitive

aimed at application isolation. The focus is on verified
address space separation of the (deprivileged) domains.

The above mentioned verified sandboxes cannot be
easily extended to provide additional security guarantees.
If the extension is added as an deprivileged component,
the verification process does not provide ways to ver-
ify deprivileged components and integrate the verifica-
tion results with those of the verified components, since
verified sandboxing treats the deprivileged code as code
without properties. Direct addition of code to the privi-
leged portion requires full reverification of the privileged
portion, which is non-trivial for theorem proving-based
approaches. In our COSS example, adding the trusted
network logging extensions to seL4 will require new
specifications of the extensions which are compatible
with existing specifications, and new refinement proofs–
all of which is complex and time-consuming.

Evolvabilty is an issue where annotations are needed.
For example, adding COSS trusted path extensions to
Hyper-V (or Singularity) requires code contracts and an-
notations which can mesh with already existing annota-
tions and verification conditions. This requires several it-
erations of trial-and-error before correct annotations can
be found. This process becomes very complicated and
expensive when changes are made to a large portion of
the hypervisor or kernel with several extensions.

Scalability is an issue with direct additions in cases of
model checking. For example, adding the COSS trusted
network logging extensions to XMHF will likely double
the code size which can cause the model checker to blow
up. Composition is an issue with approaches based on
unverified rewriting, e.g., SFI. For example, even though
we can isolate the COSS trusted path and trusted network
logging extensions from each other, we cannot prove that
their security guarantees still hold since their behavior is
not guaranteed to be preserved by the rewriting.

Full Verification Full software verification verifies the
entire platform (hardware and/or software). Verve [40] is
a simplified OS design where the OS and applications are
verified for type and memory safety. A Hoare-style ver-
ification condition generator along with automated theo-
rem prover is used to verify the correctness of the priv-
ileged portion of the OS (the nucleus) while a typed as-
sembly language checker verifies safety of the kernel and
applications. The verification is for a single-threaded
execution and automated with support for low-level as-
sembly language instructions. Ironclad [16] extends
Verve with support for higher-level application proper-
ties. High-level specifications are translated to corre-
sponding code with verification conditions that are then
discharged via an automated theorem prover. The verifi-
cation took 3 person-years. Verisoft [7] tightly integrates
hardware and software, building on top of a custom pro-
cessor. The verification was >20 years effort on a simple
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OS with demand paging and disk driver.
Full software verification approaches provide verifica-

tion of properties down to the instruction-level. How-
ever, they sacrifice current COSS ecosystem compatibil-
ity. For example, if we consider the COSS trusted path
extensions, one needs to implement them entirely in a
type-safe language (in Verve) or in high-level specifica-
tions (in Ironclad) or on a specific simplified processor
architecture. Further, these approaches lack support for
co-existence with unsafe (untrusted) programs, a typical
case on commodity platforms.

6 Composable Verification for
Commodity System Software

To achieve the verification goals listed in Section 4, we
borrow ideas from state-of-the-art approaches [19,32,34]
and augment the modular system design with hardware-
based interface confinement primitive. The main idea
is that in addition to partitioning the system into sev-
eral modules, the majority of which runs in deprivileged
mode, accesses to privileged system resources are re-
stricted to a set of privileged interfaces, leveraging hard-
ware support. That is, a buggy or malicious module is
limited only to interfaces it is allowed to invoke to ac-
cess resources or to invoke other modules. Unauthorized
accesses will be stopped by hardware. Such interface
confinement facilitates compositional verification. For
instance, interface confinement enables local-only verifi-
cation of a module, since the behavior of the module can
be (conservatively) overapproximated by invariants on
the interfaces that the module calls. We refer to modules
to denote both components of the system software stack’s
core components, and extensions, since piecemeal veri-
fication is important for either type of component.

Unlike prior state of the art that used language-based
interface confinement leveraging the hardware allows us
to tackle the challenge of evolvability and untrusted ex-
tensions while achieving our goals of extensibility and
legacy compatibility with reasonable performant.

6.1 Granular Extensible interfacE Con-
finement (GEEC)

The basic idea of GEEC is that resources are placed be-
hind a set of narrowly-defined interfaces so that the effect
of accessing the resources can be over-approximated by
examining these interfaces. GEEC leverages both hard-
ware support1 and trusted and verified software compo-
nents to provide interface confinement to resources at
various levels of granularity such as a function, object
or module. A slab is a logical unit of execution within

1As with all the prior approaches, we assume the hardware to be
functionally correct. Given the simplicity in hardware design and rig-
orous development practices, we believe this assumption is justified.

slab/
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μAPI
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HW SW

Figure 1: GEEC resource access control.

a GEEC-based system (Figure 1) and enforces desired
access control policies for code executing on the CPU.
In our COSS example the core BIOS, option ROMs,
micro-hypervisor core and extensions can be individual
slabs. In contrast, device-processes are code and associ-
ated data which execute on a system device (e.g, GPU)
which can generate interrupts on the CPU and directly
access system resources (e.g., via DMA).

GEEC Resource access control. With GEEC all ac-
cesses to low-level machine resources such as as physical
memory, control registers, privileged instructions, and
devices are restricted to a set of interfaces (Figure 1).
Access is allowed by the hardware according to access-
control polices stored in the machine state. For example,
the Memory Management Unit (MMU) authorizes mem-
ory accesses according to the active page table; when an
access is rejected, a page-fault occurs and a handler is
executed. During system runtime, we can extend the
low-level resource confinement provided by GEEC to
realize higher-level properties. For instance, within the
micro-hypervisor layer in our example, we may wish to
allow the hyperdep and approvexec extensions to mod-
ify the memory resource access-control state to provide
finer-grained protections to guest OS applications. How-
ever, modifying access-control state is a sensitive oper-
ation. Therefore, we ensure all access-control modifica-
tions take effect via narrowly and precisely defined in-
terfaces, denoted µAPI that are implemented in software
and verified. We leverage hardware to enforce that all
µAPI accesses must first pass through a µAPI sandbox,
which consults a µAPI access policy before allowing ac-
cess. An example policy could be where a restricted
set of slabs are allowed access to the memory-protection
µAPI; untrusted and unverified slabs are not allowed ac-
cess to any µAPI. Another policy could give the unveri-
fied slab implicit trust to invoke a particular µAPI as long
as we are able to preserve required µAPI invariants. This
offers a layer of flexibility compared to prior approaches
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that requires same level of rigor, same (type-safe) lan-
guage everywhere.

GEEC Access control state switch. To achieve mu-
tual separation, each slab is assigned a resource access
control policy stored in a dedicated access control state
(ACS). GEEC employs a trusted entity (either imple-
mented in software and verified or implemented in the
hardware), called the trampoline. The trampoline is
invoked via a hardware-enforced entry point and is in
charge of switching the runtime ACS as control flow
transfers between slabs (Figure 2). A slab’s resource
ACS is also setup in such a way that any access to data
or executes to memory location not within its own mem-
ory region causes the hardware to transfer control to the
trampoline for error handling. Thus, the trampoline im-
plements a “call–return–signal” semantics. This allows
us to model control-flow transfer between slabs as a func-
tion call during verification greatly simplifying analysis.
Since the trampoline is trusted, in addition to switch-
ing the resource access control context at slab call/return
points, it can also be tasked to enforce more expressive
slab call policies (i.e., which slab can call whom).

6.2 Verification
If implemented correctly, GEEC provides separation:
each slab can only modify its own state and can only
modify ACS via µAPIs. Such properties enable com-
positional verification of slabs. We obtain the follow-
ing two sound composition principles: (1) if the property
provided by slab A relies only on A itself (i.e., does not
use any µAPIs), then A can be composed with any other
slab to achieve the same property and A will not inter-
fere with the other slabs’ properties; and (2) if the prop-
erty provided by a slab A relies on only a set of µAPIs:
µAPIi, then A can be composed with any set of slab that
are not allowed to access µAPIi, and any slabs that ac-
cesses µAPIi but operates on a disjoint resource state.
These principles generalize naturally to a set of slabs.

The high-level proof of GEEC, which we call proof-
of-composability is a non-trivial inductive proof that is
derived from the model of GEEC and reasoning about its
properties. From the high-level proofs, we extract con-

crete local properties to be verified on the GEEC imple-
mentation. A key observation is that GEEC is a foun-
dational primitive and therefore once implemented cor-
rectly is unlikely to change further for a given architec-
ture. Thus, the proof-of-composability once completed
remains valid as long as the GEEC design is unchanged.
The local properties required of the GEEC implementa-
tion also remain the same.

With the proof-of-composability in place, each slab
can be verified for individual properties based on the
µAPI invariants. Based on the slab properties and the
µAPI used, a given set of slabs can be verified separately
and composed if they are mutually non-conflicting. Un-
trusted, unverified slabs are denied access such µAPIs
over which invariants are defined.

add a blurb on concurrency

6.3 Practicality and Performance
Commodity hardware-virtualized x86 [2] and recent
ARM platforms [8] can support GEEC, making this
primitive practical today. For example, on the x86 the
I/O MMU (e.g, VT-d) can be employed to efficiently
restrict device process memory accesses. GEEC tram-
poline can be implemented leveraging a host of mecha-
nisms such as hardware virtual machines, segmentation
and page-tables. Recent improvements in hardware per-
formance (e.g., tagged page-tables [2, 8]) is already lay-
ing the foundation to making GEEC performant at the
granularity of task/modules. However, smaller granular-
ity such as functions or object level slabs will require
changes and/or addition of new hardware mechanisms.
GEECµAPI can be implemented via fast hardware sys-
tem calls such as SYSENTER or SYSCALL which once
again have a very low overhead and compare favorably
to existing OS kernel calls [3, 18].

7 Conclusion and Open Problems
Application of GEEC enables infusing verified secu-
rity properties that is both compositional and perfor-
mant without sacrificing the rapidly evolving nature and
legacy compatibility of today’s commodity system soft-
ware stack – more compelling than is the case at present.
The GEEC philosophy advocates the use of platform
hardware in an attempt to get at the sweet-spot between
verification complexity and performance. In this context,
development of new (commodity) hardware extensions
that can ease verification burden presents a new and ex-
citing research area to explore. A few immediate and
important open problems in this space include hardware
support for verification at very early stages of the boot
phase such as the BIOS where system devices are unini-
tialized and CPU support is minimal and hardware sup-
port for high-performance fine-grained (e.g., byte, func-
tion or object) interface confinement.
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