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1 Abstract

We have developed new foundational capabilities for robot manipulation that assume con-
tact across the entire manipulator is inevitable and desirable. Our approach makes use of
compliant actuation and full-body force-sensing skin. We developed force-sensitive skin,
low-level control algorithms, mid-level control algorithms, and planners that enable robots
to reach to locations in extreme clutter, such as foliage and rubble, while haptically gen-
erating 3D maps of their surroundings. We have performed experiments with software
simulated robots with skin, a hardware-in-the-loop system that simulates skin for a real
robot, and real robots with real force-sensing skin covering their arms. In these tests, our
novel control systems have enabled robots to perform qualitatively new tasks and outper-
formed baseline systems both in terms of success rate and keeping contact forces low. Our
most recent control system also substantially outperforms our original control system in
terms of time to complete (i.e. speed), success rate, and contact forces. Our project has
resulted in a new and broadly applicable approach to robot manipulation that enables
robots to achieve dramatically improved real-world manipulation performance. We have
also produced open source code and open hardware implementations using open standards.
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1 Overview

In the first quarter of 2014 we made the following progress:

e Completed development of integrated system for dynamic reaching in clutter.
— Combines our work on this project
*x Dynamic MPC controller
x Tactile-based sensing
x Online 3D haptic mapping of objects based on categorization of object properties
* Learned initial conditions

x Cost-based planning over sparse maps

e Tested system on the robot DARCI.
— Results:

* 79.19% success rate in a complex, unmodeled, cluttered foliage environment.

*

Performs complex, multi-step reaching behaviours on the robot DARCI.

*

Reaching behavior uses fastest, simplest behaviors first.

*

System haptically maps environment during reaching.

*

Geometric planning over sparse haptic map used when greedy reaching fails.

*

Improved success in more diverse situation compared with individual components.
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2 An Integrated Robotics System for Haptically Reaching in
Clutter with Whole Arm Tactile Sensing.

2.1 Introduction

Humans and other animals readily reach into complex environments without visually observing
the detailed contents. During the day-to-day manipulation tasks, humans frequently come into
‘incidental contact” with objects in their environments as shown in Fig. 1. By incidental contact,
we mean any contact that occurs unintentionally while performing goal-directed manipulation
tasks. Being able to reach into various environments without the need of avoiding contact with

(a) (b)

Figure 1: Humans and animals frequently come into contact with the environment while reaching
into clutter. (a) A raccoon reaches into a bird house to find eggs and young. (b) When
noodling, people find catfish holes from which to pull fish out. (c¢)-(d) A person makes
contact along his forearm while reaching for objects in a cluttered cabinet and refrigerator.
(All images used with permission)

Figure 2: The DARCI Robot reaching through dense foliage using the integrated system described
in this paper.

objects, would be a generally useful capability for robots in a variety of application areas, including
assistive robotics [1]. Within this tech report, we describe an integrated system for robotic control
that enables a robot to reach locations in unmodeled, cluttered environments solely based on joint-
angle, joint-torque, and tactile sensing (See. Fig. 2) from ’incidental contact’. The system builds
on our previous research in a number of ways, including integrating a variety of system components,
both published and unpublished. We designed our system to first use efficient, memory-free greedy



reaching followed, if necessary, by resource-intensive geometric planning using a map. A motivating
intuition for this structure is the common human experience of reaching to a location without paying
much attention, and then realizing that one needs to pay careful attention in order to succeed.

2.2 System QOverview
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Figure 3: Block diagram showing the integrated system architecture. High update rate processes,
such as low-level joint control, appear at the bottom of the diagram, while slower-updating
processes are presented higher up. The teleoperation interface is only used to provide a
single goal end-effector pose, after which the integrated system proceeds autonomously.

2.2.1 System Architecture

Figure 3 illustrates the architecture of our system. At all times, our system uses the newest version
of our model predictive controller from [2] to control the robot at about 25 Hz. It attempts to
reach either an end-effector pose or an arm configuration while keeping contact forces low. This
model predictive controller runs on top of gravity compensation and an impedance controller that
simulates low-stiffness visco-elastic springs at the robot’s joints running at about 1 kHz.

When a desired end effector goal is received, the system first attempts to bring the arm to an
initial configuration which has performed well in similar circumstances. The system then uses the
model predictive controller to greedily reach to the goal location from this initial arm configuration.
As we presented in [3], two greedy reaches from random locations can achieve over an 80% success
rate, and we have found that using learned initial conditions (LIC) can result in a significantly



higher success rate. Greedy reaching has the advantages of not requiring a map, relatively low
computational requirements, and efficient use of redundant degrees of freedom. However, greedy
reaching can become stuck in local minima and does not always succeed in finding a solution. For
example, in [3] around 10% of the situations encountered were not reached after 5 greedy reaches
from random initial arm configurations.

Algorithm 1 Integrated System Procedure.
Require: GoalPose g
HapticMap h < blocked_locations

> Begin Contact Classification and Haptic Mapping
LIC1_Pose lp <~LIC 1(g)
Dynamic MPC(g)
if at g then
return
5: else
return StuckPose s
end if
Dynamic MPC(RetreatPose )
LIC 2(g, lp, s)
Dynamic MPC(g)
10: if at g then
return
end if
repeat
Path p <PLAN(g, h)
Dynamic MPC(p)
until at g

In order to handle rare, but challenging, situations like these, our system makes use of geometric
planning based on a map of locations that our tactile recognition system has estimated to be im-
passable. While computationally intensive, planning has the advantage of being able to eventually
find solutions for situations requiring complex sequences of arm configurations. Our system plans
based on a map it constructs during greedy reaching, and which it continues to update during
planned reaches. If the robot becomes stuck while attempting to follow a planned sequence of arm
configurations, the system replans using the current map. Using this method, the maps over which
trajectories are planned are relatively sparsely populated with known obstacles, but initial work
has shown this to be sufficient to produce useful behaviors from the controller. Besides having
relatively large computational requirements, a disadvantage of the planning system is that, unlike
greedy reaching, it does not reactively take advantage of the robot’s redundant degrees of freedom,
and instead needs to replan in the event of becoming stuck.

The pseudocode in Algorithm 1 provides an overview of the way in which the integrated system
functions.

2.3 System Components

We now provide brief summaries of our system’s components.



2.3.1 Dynamic MPC

Moving a robot arm in cluttered, unknown, and unmodeled workspaces can be difficult as interac-
tion with obstacles can block paths and generate high contact forces. We use a model predictive
control (MPC) controller that explicitly models the robot arm dynamics with tactile sensing to
move the robot arm quickly and control contact forces as the arm moves towards its goal. We im-
plemented an updated version of our dynamic model predictive control (MPC) controller from [2]
that runs on our humanoid robot, DARCI, and that adds additional functionality to work with
the various modules of our integrated system. Our dynamic MPC controller moves towards a des-
ignated goal position while keeping contact forces and worst-case, unexpected-impact forces low.
We added an integral controller term to compensate for errors in the gravity compensation model
of the robot. Gravity is not explicitly modeled in our dynamic model since we assumed that the
low-level joint controllers were canceling it perfectly. To compensate for gravity, we introduced the
following into the previous cost function:

« ”Amdes - Jee(q[to + H, + Hy] - q[to]) - dQTGUHQ <1)

where dg,4, is a function that acts as an integral term in the controller.

dgrav = f(kz Z(mdes - mee[ﬂ); Ldes — wee[t()]) (2)

For the posture controller we use a slightly different version of the integral term to correct for
error due to gravity. It is incorporated into the control system shown in Figure 4.

derr = (K Z(qgoal —q[t]), @ ou — qlto]) (3)

We introduced some straight forward anti-windup measures and saturation limits and made k;
very small. Furthermore, this term only becomes active when the end effector is within 8 cm of the
desired goal location so as to avoid serious overshoot and high forces when we are stuck far from
the goal. See the Q3 2013 Technical Report for additional details on changes to the controller,
including details on the impulse-momentum model. Our MPC controller uses a control horizon
of 3 and prediction horizon of 4 which gives the controller four time steps of control and predicts
the arm output for 4 additional time steps over which it aims to minimize its cost function. We
added the functionality to the controller to receive a joint configuration posture in addition to
the option of a Cartesian end-effector goal location. To allow posture control we altered the cost
function to use the difference from the desired joint configuration rather than end effector location
from [2], as shown in Figure 4. In the posture-control version of our controller we removed the
limit on the rate of change of contact forces to improve computational performance. Posture goals
are the method by which goals are sent from the planner to the controller and the method by
which the arm is extracted from clutter. Due to differences in the optimization between pose- and
posture-control modules, and in order to keep each optimization as small as possible, two separate
control modules are run in parallel throughout the demonstration, one for pose-control and another
for posture-control. When one is active, the other is set to a waiting state, wherein it does not
solve the optimization or send commands to the low-level joint controllers. This avoids conflicting
commands to joint controllers and reduces the computational requirements of the control system.



minimize
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Figure 4: The altered form of the controller used for joint configuration posture control

Nomenclature

a, B, Kk, i Scalar weighting terms for the multi-objective cost function

to Current time where state measurements are valid. Starting point of predictive model
H Number of time steps in the prediction model

JANY J Desired change in joint configuration

de. Error correcting integreal term Desired final joint configuratin

finreshota  User-defined allowable contact force threshold

N, Contact normal direction at contact ¢

K., Cartesian stiffness matrix for contact ¢

J., Geometric Jacobian at contact i

Qin Minimum joint angle limits

s [ Maximum joint angle limits

Tmaz Maximum allowable torque due to impact forces

Alimpact Time duration of an expected impact

q,q State variables of joint angle and velocity

fmeasured  Neasured normal force for contact i

Qjes Commanded joint angles that are sent to the joint impedance controller
Aq ., Change in commanded joint angles, this is the output of our MPC

Ay By Discrete time linear approximations of the system state space matrices
AQ,00.0es Maximum allowable change in commanded joint angle



2.3.2 Learned Initial Conditions

In this section, we describe learning and prediction schemes for identifying good initial configura-
tions during manipulation in clutter. We have shown that reaching a goal in clutter may require
multiple attempts before succeeding [3]. However, if we can identify initial configurations which
result in successful reaching, we can significantly decrease the number of required retries [4].

2.3.2.1 Learning initial conditions without detailed knowledge Prior to observing the environ-
ment in which manipulation is to take place, and without detailed knowledge of the environment,
we define the problem of the selecting the best initial condition as

maximize P(Zs = g|zo)
. (13)
subject to 1z € open space,

where 2, € R is the initial pose of the end effector before beginning a greedy reaching behavior,
Too € N3 is the final stopping position, and g € R? is the goal position. 1z, must satisfy joint
constraints. In addition, we constrain xy to lie in open space outside the cluttered region of
interest.

Given an environment v for which we only know the category ¢, the marginal probability density
function of the selection problem is written as Eqn. 14. If the properties of v are similar to
the environments V., which have been explored, we can approximate the marginal probability
distribution as follows:

P(zo = glzo) = /P(xoo = glzo,v)dv (14)

v

~ / P(2o0 = glwo, v")P(v")dV', (15)

c

where v’ is a map in an experienced environment set V.. Thus, given a goal from past trial expe-
riences in the same or similar environments, we can predict the probability of the best condition.
We will use ‘LIC-1" (learning an initial condition for a first reach into a new cluttered environment)
to denote the framework in Eqn. 15.

2.3.2.2 Learning initial condition with observations After one attempt, we have obtained ob-
servations o about the environment v, and we can adapt the initial condition to improve the
probability of success. This problem can be written as

maximize P(x = g|zo,0)
. (16)
subject to xy € open space,

where xy denotes the restart condition and o denotes observed information from the previous trial.
In this system, we define o as

o={xg, 2.}, (17)



where x;, denote the previous initial condition and 2/ is the final position of the previous trial.
Similar to LIC-1, we compute the marginal probability conditioned on the observation. We denote
this second framework ‘LIC-2.’

For the implementation in this paper, we trained the model using a large number of successful-
and failed-trial samples in a simulation environment, shown as Fig. 5. This clutter includes 60 fixed-
floating spheres, each with a 0.05 m radius, in a 0.5 m x 0.9 m x 0.6 m rectangular parallelepiped
area in front of a simulated DARCI robot. The robot tries to reach to 15 grid-distributed goals of
size 5 x 3 in 20 different clutters from 28 initial conditions. The goals were placed behind of a set of
spheres on a vertical, rectangular plane 0.6 m wide and 0.3 m tall, at 0.15 m intervals. The initial
positions were equally distributed on a vertical, rectangular plane 0.6 m wide and 0.3 m tall, at 0.1
m intervals. We ran 22,684 trials for the sampling of trials. Using simulated or real-world trials
that more closely match the target environment would be likely to improve performance. Here, we
used spheres in 3D as a generic notion of clutter.

Figure 5: Training environment in GAZEBO. Training for LIC is performed in simulation prior to
the real demonstration. We use 60 fixed-floating spheres with 0.05 m radius in a 0.5 m
x 0.9 m x 0.6 m rectangular parallelepiped area in front of DARCI to simulate a densely
cluttered environment.

During the demonstration, each module, trained in the environment, returns an initial configu-
ration of the robot arm based upon the goal pose received (in the case of LIC-1) and also based
on the initial and final (unsuccessful) pose of the first reach (in the case of LIC-2). The robot then
moves to the indicated initial configuration before executing a greedy reaching behavior using the
dynamic MPC controller.

2.3.3 Greedy Reaching

Once an initial configuration, suggested by LIC, has been assumed by the robot, the central in-
teraction manager sends the goal pose to the dynamic MPC controller, which executes a greedy
reaching behavior toward the goal, while maintaining low contact forces with the environment. Be-
cause the controller limits contact forces along the arm, it often moves along even rough obstacles
without becoming stuck against them, enabling it to reach seemingly difficult-to-reach goals.
However, the controller can become stuck against relatively simple obstacles, such as artificial
foliage, if it finds a local minimum such that greedily reducing the control error will not advance



the end effector toward the goal. The controller is deemed to have failed or become stuck if it fails
to reduce the distance from the goal by one tenth over a 4 second period. In these cases, the greedy
nature of the controller prevents it from discovering alternative paths which might allow it to reach
the goal successfully. In such cases, the complete system is able to compensate for this shortcoming
by providing increasingly more-informed plans, both in the form of LIC-2 initial conditions, and
through haptic mapping and geometric planning.

2.3.4 Extracting the Arm

After performing a greedy reach, the robot must extract its arm from the cluttered environment. To
accomplish this, we have explored two methods. The first, more suitable for simpler environments,
records the trajectory of the end effector as the greedy reach is performed, adding an additional
point to the path once the end effector has traveled more than 1 ¢m from the previous point. Upon
completing a greedy reach, the interaction module then uses the greedy dynamic MPC controller
to bring the end effector to each pose in the recorded path, in the reverse order. The next goal is
given once the end effector is within 5 em of the currently-assigned goal. This method does not
constrain the redundant degrees of freedom in the arm, but still preserves some of use of the clear
path which was found by the dynamic MPC controller in reaching.

The second method, used in the demonstration, records the joint configurations of the robot
as it performs a greedy reach, and then uses the posture-controlling dynamic MPC to return to
each configuration in the reverse order. The module records a new configuration each time any
joint in the arm moves more than 3 degrees from its position in the previous history entry. In
order to better take advantage of the ability of the MPC controller to resolve constraints on the
arm, a configuration along the return path is considered reached when the angles of the arm are
all within 3 degrees of the desired configuration. This method is often less successful in simple
environments, where the former method allows the MPC controller to avoid simple obstacles, but
is more successful in complex configurations with complex obstacles, where it can more exactly
trace the clear path that was found during reaching.

2.3.5 Haptic Mapping

During manipulation in cluttered environments, unintentional or ‘incidental’ contact with objects
can be frequent. The information from these incidental contacts could be potentially used to infer
properties of the environment. These inferred properties can in-turn help in intelligent manipula-
tion planning strategies. However, rapid identification of haptic properties of objects in unknown
environments during exploration or navigation is a difficult problem. In this section, we demon-
strate that data-driven methods can be used to rapidly categorize objects encountered through
incidental contact on a robot arm.

We use hidden Markov models (HMMs) to model the time-series contact force data from the
fabric-based tactile sensor and use the models to classify the objects in the environment into the
categories of ‘rigid” and ‘soft.” The elements which constitute an HMM are (1) N, the number of
states in the model; (2) M, the number of distinct observation symbols per state; (3) A = {a;;},
the state transition probability distribution; (4) B = {b; (k)} , the observation symbol probability
distribution; and (5) P = {m;}, the initial state distribution [5-7]. It is represented as given in eq.
(18), where the parameter A describes the HMM model.
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Figure 6: (Left) Trunk-only environment for training the HMM model for Trunk Category; (Middle)
Leaf-only environment for training the HMM model for Leaf Category; (Right) Combined
environment for testing.

A= (A4, B, ) (18)

We trained the two HMM models (Rigid and Soft) using training data collected on the robot
platform ‘Cody’ with an artificial skin on its forearm, on environments composed of small tree
trunks (rigid objects) and artificial leaves (soft objects) [5] as shown in Fig. 6. We used the
quasi-static MPC controller from [3] for manipulation in these cluttered environments. We had
two HMM models which we trained on the leaf and trunk environments. We trained the HMMs
by choosing the A\ which locally maximizes P (O|\) iteratively using expectation-maximization
(EM) techniques [6]. After we train the models Ay for trunk and Ap for leaf, we evaluate a new
observation sequence O = {01, O, ...0,,} according to eq. (19) which gives us the model which
best matches the observation sequence. The third step in eq. (19) leads to the fourth step, if all
the models are equally likely [5].

¢ = argmax P (\]O)

c€[T,F]
P (O|X:) P (A

— argmax (O P ()

c€[T,F] P(O) (19)
= argmax P (\]|O) P (\.)

c€[T,F]
= argmax P (\;O)

ce[T,F]

During this demonstration for testing, we are using the dynamic MPC and the robot DARCI,
with the flexible and stretchable fabric-based tactile sleeve, but still in an environment composed
of trunks and leaves. The robot, DARCI, and the environment are shown in Fig. 2. We run the
HMM models to classify, live and in real-time, the contact force data for every taxel on the tactile
sleeve.

We classify the objects in the test environment into rigid and soft categories using the log-
likelihood values of the two HMM models. We create a haptic map in Rviz visualization software
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Figure 7: Haptic Map of detected rigid contacts.

by mapping all the rigid taxels at every time-instant. For visualizing the haptic map, we use
point cloud/voxels for every taxel that is categorized as rigid. Fach taxel with rigid contact is
mapped using a dark brown sphere as shown in Fig. 7. This information is provided to the planner
described in Sec. 2.3.6 so that it can avoid these areas of rigid contacts and come up with an
intelligent planning strategy.

2.3.6 Planning with Contact

In this section, we describe a global search-based planner with a traverversability map constructed
by the haptic classifier described in Sec. 2.3.5.

2.3.6.1 Traversability Map To use a planner in a cluttered environment, we first construct a
3D traversability map. We represent the workspace of the robot as a 3D voxel grid with 0.01 m
x 0.01 m x 0.01 m voxel size in Cartesian space. Each voxel includes a traversability metric that
shows the manipulation cost in that location. We define the traversability value as a scalar value
between 0 to 100. The higher value a voxel has, the more difficult it is for the arm to pass through
the voxel’s location. In this demonstration, the robot knows what kind of object it is colliding
with based on the haptic classifier of Sec. 2.3.5. This allows for updating the traversability map
online during reaching. For this demonstration, we assign manipulation costs of 0, 50, and 100 into
empty area, movable or soft object area, and fixed-rigid object area, respectively.

The area of map is defined as a rectangular box, 0.6 m x 0.7 m x 0.6 m in front of the robot.
It is initially populated with zeros, assuming that the unknown environment is empty and that
there is little cost associated with manipulating the arm in that area. The map records the contact
information using Point Cloud Library’s (PCL) Voxel Grid [8].

2.3.6.2 Traversability Planner The traversability planner has two main steps: goal posture
selection and trajectory planning. The goal posture is randomly selected from a list of valid
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Figure 8: Planned Robot Configuration with Haptic Map.

arm postures. Valid arm postures are joint configurations such that the end-effector reaches a
Cartesian goal, and the entire arm is placed in low-cost area. In detail, to create the list of the
initial posture, 72 uniformly distributed orientations are sampled using the sampleSO3 function
from OpenRAVE [9]. To check the cost of a path, we construct a traversability checker that
computes the traversability of each vertex location from the arm collision meshes at each joint
state, and rejects the state when the vertices are located inside of fixed-rigid object area of the
map.

For trajectory planning, we use a global search-based planner, RRT-Connect [10] from OMPL
[11]. Tt plans a path over the traversability map in joint space. Any arm posture in a high-
cost configuration is rejected by the traversability checker. In this demonstration, we assume all
other area is traversable except the rigid-fixed contact area. One example of a robot configuration
returned by the planner using haptic map is shown in Fig. 8

2.3.7 Implementation

We now describe our software and hardware implementation of the system.

2.3.7.1 Tactile Sensor For tactile sensing, we use the fabric-based tactile-sensing sleeve we de-
scribed in [12]. The sleeve is made of five layers of stretchable fabric. The inner and outer layers
are electrically insulating, and isolate the inner layers from the robot and external world, and pro-
vide protection from abrasion. The middle of the skin contains two layers of electrically conductive
fabric (a silver-plated Nylon/elastic fiber) separated by an electrically resistive fabric (a conductive-
polymer coated Nylon/elastic fiber). The inner conductive layer consists of 25 individual patches
of conductive fabric, each of which forms a sensing region, or ‘taxel’ for ‘tactile pixel.” Each patch
is supplied with 5V via a pull-up resister and an Arduino board. The outer conductive layer is
a single sheet covering the entire sleeve, and is connected to the ground of the Arduino. As the
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central resistive fabric is compressed, the conductivity across the compressed portion of the fabric
increases, and a drop in voltage can be detected by the Arduino in the circuit of the underlying
taxel. This process is nonlinear, and depends upon both the force applied and the area over which
contact occurs. However, we have found in practice that good performance can be obtained in our
various systems by operating on sensor measurements directly.

2.3.7.2 Robot Platform The robot used in this work is the humanoid robot DARCI, an M1
Mobile Manipulation Platform from Meka Robotics, which includes a mobile base, a torso on
a linear actuator, and two 7-Degree of Freedom arms. For the demonstration described here,
the mobile base was not moved while the robot was performing the reaching task, and the torso
remained fixed at its maximum height. We perform all demonstrations using the tactile sensing
sleeve on the left arm of the robot, which is extended with a 3D-printed cylindrical extension of
ABS plastic. The arms of the robot use a series elastic actuators at the joints, and are controlled to
provide gravity compensation and an impedance controller that simulates low-stiffness visco-elastic
springs at the robot’s joints.

2.3.7.3 Software The software for this demonstration consists primarily of Python code, with
some portions being written in C++. The system is coordinated using the Robot Operating System
(ROS) [13] for communication between the various modules, as well as for communication with the
low-level controllers on the robot arm. The modules described above (Sec. 2.3) are typically each
contained in a single process, or ‘node,” in the ROS framework. Individual modules make heavy
use of various software libraries related to their specific functions, as noted above. In particular,
the Model Predictive Controller uses the CVXGEN [14] library for solving a convex optimization in
determining the control inputs to the low level controller at each time-step. The state of the system
is observed using the ROS Rviz visualization engine to visualize the state of the robot, the location
and sensor readings of contacts on the tactile sensor, the active goal location, and the current state
of the haptic map. Rviz also allows goals to be identified using the ‘interactive marker’ interface.
This interface is used extensively in development and testing of this demonstration. During the
demonstration itself, a goal location is first identified by manually bringing the end effector of the
disengaged robot to a desired goal location, and a Python script stores the location of the end
effector based on the robot’s kinematics. This script later sends this goal position to the system.

2.4 Results

The combined system was evaluated in the trunk-and-foliage environment described in Sec. 2.3.5.
We identified seven goal locations distributed across the environment, attempting to identify lo-
cations of varying difficulty, with both trunks and foliage between the robot’s setup location and
the goal. The goal locations can be seen in Fig. 9. After each reach, the foliage was replaced
to approximately its original position, so that repeated physical interaction by the robot did not
significantly alter the environment. The system attempted to reach each goal location three times,
for a total of 21 attempts. 16/21 (76.19%) of the reaches succeeded. Each location was reached at
least once, and 6/7 locations were reached in less than 20s on at least one occasion. The fastest
successful reach to goal #5 required 70 seconds.

The average time to reach each goal when successful was 39.74 + 46.00s(mean £ std). 9/21
(42.86%) attempts were successful on the first reach using the dynamic MPC controller from a
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Figure 9: Trunk-and-foliage test environment. Seven goal locations identified by red dots.

Learned Initial Condition. These trials succeeded in 10.97 4 3.87s(mean + std). 1/21 (4.76%)
attempts was successful on the second reach, starting from the second Learned Initial Condition.
This trial succeeded in 21.30s. 5/21 (23.81%) attempts were successful on the first reach using a
planned path based on the haptic map. These trials succeeded in 67.59 & 26.77s(mean £ std). 1/21
(4.76%) attempts was successful on the direct reach using the dynamic MPC controller, starting
from the failure point of a third planned trajectory. This trial succeeded in 177.93s. 1/21 (4.76%)
attempts failed when attempting to pull back after the first reach failed. 2/21 (9.52%) attempts
failed when attempting to reach the second Learned Initial Condition setup configuration. 2/21
(9.52%) attempts failed when a plan could not be found either after the second LIC reach, or after
pulling back to the LIC-2 setup configuration.

It is interesting to note that goal #5 required the longest time to reach, and was only successful
twice, and that goal #6 was only reached once successfully. These two goal locations are relatively
near the robot, and largely obstructed by ostensibly movable foliage, rather than the rigid trunks,
but were still the most difficult for the system to reach.

2.5 Discussion

When successful using the Learned Initial Conditions and dynamic MPC controller only, the system
is able to complete a reach in 12.00 £ 4.90s(mean + std). This is significantly faster than when
geometric planning is required. In the cases where the system was successful, but planning was
required, the reach was completed in 85.98 + 46.91(mean + std). See Fig. 10. The success of
the dynamic MPC controller in combination with Learned Initial Conditions in quickly reaching
a variety of goal locations in dense clutter emphasizes the capability of these relatively simple
modules for coping effectively with extreme clutter. This is enabled by the use of whole-arm tactile
sensing. Such tactile sensing provides data of limited size and scope that is immediately relevant
to the control algorithm attempting to reach a goal and maintain low contact forces. Unlike
traditional vision-based geometric planning for manipulation in clutter, where an model of the
environment is produced in advance of manipulation, and significant data which is not immediately
relevant to the manipulation task may be collected and processed, the MPC controller and tactile
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Figure 10: Completion time in cases where planning is or is not required. More difficult cases,
when greedy reaching does not succeed, require significantly longer to solve. However,
the planning component of the system is often able to reach the goal eventually.

sensor use significantly less data with a more direct physical relationship to the task, requiring
less computation, and in turn enabling real-time feedback control. In addition, because the data is
collected during reaching, rather than requiring a map to be developed in advance of manipulation,
the delay of sensing and planning before acting can be removed from the traditional sense-plan-act
model.

However, it is clear from the results that greedy-reaching behaviors are not always sufficient for
reaching through dense clutter. For example, Figure 12 shows an the end-effector stuck against
foliage which has become intertwined between two plants, and which the controller cannot push
through. In such cases, the haptic mapping and geometric planning components are able to improve
the success of the overall system. However, even in these cases, the maps used in planning are
typically quite sparse in comparison with those produced via traditional 3D sensing such as stereo
vision. This enables faster planning as fewer obstacles are present. The trade-off is that additional
re-plans may be required as previously undiscovered obstacles are contacted and mapped when
executing the planned trajectory. In five of the cases presented here, the planning system was able
to arrive at the goal location using the first plan. In these cases, the end effector was typically near
the goal location, but had become stuck against some obstacle, and only small alterations from the
greedy approach were able to extract the arm and reach the goal.

The data used by the planner has the advantage of being less dense than traditional geometric
maps, such as that produced by 3D vision. In addition, the haptic map is of greater relevance
to the manipulation task, as it is able to represent the mechanical properties of the environment,
rather than only the visual properties. In the environment presented, it is unlikely that traditional
planning methods which avoid contact with the environment, using a map of the environment
developed from at visual sensor at the ‘head’ of the robot, would be able to find any feasible path
to any of the goal locations. However, our system was able to reach all of the goal locations,
often quite quickly. The heavy foliage in the environment obscures the environment visually, but
does relatively little to obstruct the physical progress of the end effector. The haptic mapping,
in addition, is able to classify those objects encountered in the environment which do impede the
progress of the end-effector, so that the planning module can appropriately plan around those
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Figure 11: Cumulative success percentage as the system progresses through the process in order.
The initial attempts using Learned Initial Conditions produce an almost 50% success
rate, and the additional planning capabilities increase this to over 75% success after the
process has completed.

obstacles, while allowing for plans that pass through light foliage and other non-rigid objects.

Finally, sequentially trying differing techniques for reaching goal locations enables the combined
system to reach goals quickly when mechanically clear paths are available, while still finding less
direct paths to goals which are harder to reach. Figure 11 shows the cumulative success percentage
as the system progresses through the defined sequence of actions. This attempts to take advantage
of the complementary capabilities of the system components, and derives inspiration from biology,
where our intuition suggests that animals, and humans in particular, may attempt a task quickly
and immediately to try to achieve rapid success and to gain more information about the task at
hand should their initial attempts fail. If initial attempts are met with failure, a more deliberative
approach is then applied, which may require more careful examination of the situation at hand,
and more careful evaluation of potential courses of action. Just so, we present a similar pattern in
our combined system for manipulation in extreme clutter.

However, despite these many benefits, the system is not infallible, as evidenced by the 5/21 failed
trials. In one case, the system became stuck when attempting to extract its arm after making its
first greedy reach. The current extraction behavior attempts to pull the end effector out along
the same path which was taken to enter the environment, while maintaining low forces along the
arm. In these cases, it is possible for the joints of the arm to assume different configurations than
when entering the foliage and become stuck. However, this was deemed favorable to the case of
extracting the arm by reversing the entire arm configuration, as this is more likely to become stuck,
and does not leave the redundant degrees of freedom to maintaining low contact forces. Alternating
between these two behaviors can provide some benefits of each, but is not infallible. Further work
remains in the area of identifying sound strategies for extracting robotic arms from dense clutter.

Twice the system failed when it was unable to reach the setup position of the second Learned
Initial Condition. These failures were somewhat unexpected, and resulted from two different causes.
One failure (when attempting to reach goal #6) resulted from the setup configuration bringing the
arm of the robot against the robots torso, at which point the desired configuration could not be
reached. The second case was caused by the robot making contact with one of the obstacles while
attempting to reach the setup position and becoming stuck. Only a simple arm-configuration path
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Figure 12: End-effector stuck against foliage and trunk during greedy reach toward goal #5. The
leaves of two fake plants have intertwined and created a barrier which the controller will
not push through due to force constraints.

is used in the setup, and failure is declared if the arm cannot continue advancing along this path
at any point, making it possible to fail with only limited contact restricting the arm’s motion, such
as contact at the tip of the end-effector. The system currently does not advance to using planning
in the case of a failed extraction or setup during the first greedy reaching phase, though this is
certainly a reasonable possibility. This was not implemented in order to maintain a consistent
order of operations for comparison across trials. It may also be advantageous to use the mobility of
the robot’s base to back away from the cluttered environment when repositioning before reaching
attempts, and to move closer to the environment to enable the robot to reach further into the
environment. This additional capability was not included in the current system to isolate the
capabilities of the various components for controlling the motion of the arm. Another two failures
were the result of the planner being unable to identify a clear path within the three minute timeout.
In these cases, the maps were relatively dense, and the planning algorithm was able to identify a
clear path neither from within the environment (after having performed a greedy reach), nor from
outside the environment after pulling back to the LIC-2 setup position. In both cases it appeared
from the live visualization that a clear path did exist, at least from outside of the environment.
However, the planner, which is RRT-based, was unable to identify a clear path quickly enough.
The planning algorithm has not been optimized for speed, and it is possible that other methods,
such as trajectory-optimization based planning, may be able to provide valid paths more quickly
and consistently.

2.6 Conclusion

We have presented an integrated robotic system capable of haptically reaching locations in cluttered
environments. The system does not require detailed information about the environment in advance.
When provided with a goal location, it moves to an arm configuration that it has learned from offline
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simulation works well in similar circumstances and then greedily attempts to reach the goal. If this
fails, after extracting its arm from the environment it moves to another arm configuration that it
has learned works well based on the nature of failure in the first reach. It then greedily reaches
to the goal again. While the system is operating, it uses tactile recognition to detect impassable
locations based on incidental contact and continually updates a map of the environment with this
information. If the system does not reach the goal via these two greedy reaches, it plans and re-plans
paths to the goal based on this constantly updating map, withdrawing the arm from the clutter
if the planner is unable to find a path in a reasonable amount of time. In our demonstration,
the robot successfully reached goals using greedy reaching and planning. Further testing and
debugging of system components and integration challenges is ongoing, and careful evaluation of
our final systems performance using the robot DARCI will be performed, with detailed results
being provided in a subsequent report.
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1 Overview

In the third quarter of 2013 we made the following progress:
e Improvements in Learning and Prediction Schemes for Identifying the Best Initial Config-
urations during Manipulation in Clutter
— Extended to reselection problems from multiple observations.

— Success rate up to 48.1% better than conventional selection methods; random and
cost-metric methods.

— Demonstrated the scheme for a reaching-in-clutter experiment in a foliage-aperture-
clutter field using a real robot, PR2.

e Performed Various Global Tasks of Reaching in Clutter Using the Dynamic Model Predic-
tive Controller with a Real Robot, DARCI.

— Adapted the new controller for DARCI using only the manufacturer’s specified dy-
namic parameters.

— Showed the running controller in Python at only about 25 Hz still allows us to have
reasonable force control and success rates.

— Showed the possibility of reaching at faster rates into cluttered environments while
controlling velocities, forces, and mitigating effects of unexpected impact than quasi-
static model predictive controllers.



2 Improvements in Learning and Prediction Schemes
for Identifying Best Initial Configuration during
Manipulation in Clutter

2.1 Learning initial condition with multiple observations

We have evaluated our statistical estimation and learning and prediction schemes to rationally
decide initial position condition and reduce retrials using one observation. Now, we refine our
approach and extend into a reselection problem from multiple observations.

After a trial, we have obtained observations o about the environment v, and we can adapt the
initial condition to improve the probability of success. This problem can be written as

maximize P(xy = g|xo,0)
z0

subject to i min < IK(20) < Gimaz, © € [1,m] (1

Xy € open space,

where xo € R” is the restart pose of an end effector as the initial condition, x., is the final
stop position, and g is the goal position. z satisfies joint constraints, where ¢,,;, and ¢, are
minimum and maximum joint limits, and /K is the inverse kinematics of the end effector. In
addition, we constrain x to the open space outside the clutter. o denotes observed information
from the previous interrupted trial. Here, we define o as

0:{x67f]/_7"'7f7{],}7 (2)

where z{, denote the previous initial condition and f is a category-dependant feature vector that
can include the final position z/_ or last moving direction :%go averaged from the directions of
last 200 steps.

Similar to our previous development, we compute the marginal probability condition on the
observation,

Pl = glt0.0) = [ Plaw = glav,o.0)de
; 3)
x/ P(xo = g|xg,0,0")P(v")dv'.

c

We train the model using a number of successful- and failed-trial samples. The estimation can
be extended to a reselection problem from multiple observations, if the observations are condi-
tionally independent given a goal and start,

n

P(zo = g|z0,01, ..., 0n) = HP(SCOO = gl|xo, 0;) 4)

i=1



where n is the number of past trials. We will use LIC-1 to denote the first selection framework.
We will use LIC-2 and LIC-N to denote the framework in (3) and (4), respectively.

2.2 Evaluation of the selection methods with investigation of the
effectiveness of different machine learning techniques

2.2.1 Prediction techniques and evaluation strategies

We investigate the effectiveness of several different machine learning (ML) techniques for the
density estimation of (3):

e SE-SVR: We use a statistical estimation (SE) method with radial basis kernel interpolation
for LIC-1. Then, if it fails, we use support vector regression (SVR) for LIC-2. To reduce
LIC-2’s training and tuning time, we sample a fixed amount of relevant data from the
training set by k-nearest neighbor (K-NN) algorithm.

e GP: We use gaussian process (GP) for both trials. To reduce LIC-2’s training and tuning
time, we also use the same technique as above.

o K-NN: We use k-nearest neighbor (K-NN) with weighted average algorithm for both mod-
ules.

To find the maximum probability of conditions, we use a bound constrained minimization algo-
rithm, L-BFGS-B [1].

We test our LIC framework on several categories of clutters in the 2D and 3D testbeds. We
also compared the performance of the each modules with random and cost-metric methods. The
following subsection describes the evaluation strategies. To evaluate the modules, we test five
strategies:

e RND-RND: This strategy randomly selects the first initial condition. When the first trial
fails to reach a goal, this strategy randomly selects the second condition. We use a uniform
random function to sample the conditions.

e RND-LIC2: This strategy reuses the first initial condition of RND-RND. When the first
trial fails to reach a goal, this strategy selects the second condition from the LIC-2 module.

e COST-COST: This strategy selects the first initial condition from a cost-metric function
that estimates an initial condition positioned closer to and orientated more directly toward a
goal than other conditions. When the first trial fails to reach a goal, this strategy selects the
second best condition from the cost-metric function excluding the first condition’s position
and neighborhood.

e COST-LIC2: This strategy reuses the first initial condition of COST-COST. When the first
trail fails to reach a goal, this strategy selects the second condition from the LIC-2 module.



e LICI-LIC2: This strategy selects the first initial condition from the LIC-1 module. When
the first trial fails to reach a goal, this strategy selects the second condition from the LIC-2
module.

2.2.2 Evaluation setup description in 2D
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(c) 2D cylinder-aperture-clutter with a mobile robot

Figure 1: An example of three different clutters with a three-link planar arm (grey). The arm starts from a
condition on an initial hand range (green) to a goal (cyan) in a goal area (red). The green and
red arrows represent the contact force and its normal assigned on the arm surface.

We use randomly generated three different categories of clutters in the 2D testbed. Each clutter
included objects that are all planar and rigid with fixed sizes, masses, and friction coefficients.

e Cylinder-clutter: From a uniform distribution, we randomly placed 40 movable and 40
fixed circular objects, each with a 0.01 m radius, in a 0.65 m x 2.4 m rectangular area, as
shown in Fig. 1(a). A three-link planar arm attempted to reach from 21 initial conditions
to 45 grid-distributed goals of size 5 x 9 in 20 different clutters. The goals were placed on
a horizontal, rectangular plane of 0.4 m long, 0.8 m wide, and 0.1 m intervals in a clutter.
The initial positions were on a segment, 0.8 m long, between the robot and the clutter,
equally distributed at 0.1 m intervals. The initial orientations were equally distributed at
30° intervals. For sampling, we ran 18,900 trials with 20 different clutter settings, 45 goal
locations, and 21 initial conditions. For LIC-2, we used o = {xzy, 2._}.



e Passage-clutter: We placed a fixed narrow passage consisting of a 0.1 m gap between two
walls 0.4 m long and 0.02 m width, as shown in Fig. 1(c). The center position of the
passages were randomly selected on a horizontal segment 0.4 m long. We placed 12 fixed
apertures, each with 0.1 m width, that are randomly blocked in evaluation test. The other
objects were the same as the cylinder-clutter. The arm attempted to reach from 14 initial
conditions to a middle point of a passage. We distributed the arm’s initial positions as
above. The initial orientations were equally distributed at 45° intervals. For sampling, we
ran 1,680 trials of different clutter settings. For LIC-2, we used o = {x}, 2_}.

o Cylinder-aperture-clutter: First, a clutter field was generated in the same way as the
cylinder-clutter category. Then, fixed-width openings (apertures) were randomly placed
in front of the clutter field (see Fig. 1(c)). The robot was given exactly one initial position
for each aperture and initial orientations equally distributed at 45deg intervals. We ran
7,200 trials with 480 different clutter settings. For LIC-2, we used o = {z}.

2.2.3 Evaluation setup description in 3D

Movable Object

Fixed Object

Figure 2: Visualization of a PR2 with two different 3D clutters. Left: a 3D cylinder-clutter Right: a 3D
sphere-clutter. Red and yellow colors represent fixed and movable properties, respectively.

In the 3D testbed, we also used randomly generated clutters in three different categories.

e Cylinder-clutter: The objects were all rigid and upright cylinders with fixed sizes, masses,
and friction coefficients. From a uniform distribution, we randomly placed eight movable
and eight fixed objects into a 0.45 m x 1.0 m rectangular area on a desk. Each object had a
0.03 m radius, a 0.4 m length, and a 0.1 kg weight. To prevent the objects from falling over,
we used sufficiently biased inertia. A PR2 robot tried to reach from 81 initial conditions to
55 grid-distributed goals of size 5 x 11 in 20 different clutters. The goals were placed on
a horizontal, rectangular plane of 0.45 m long, 1.0 m wide, and 0.1 m intervals on a desk.



The initial positions were equally distributed on a vertical, rectangular plane of 0.5 m long,
0.3 m tall, and 0.1 m intervals. We used a subset of 72 equally distributed orientations that
satisfied kinematic constraints and lay within the 78.5° of the PR2 torso x-axis. With these
settings, we ran 89,100 trials for the sampling. For LIC-2, we used o = {x, z._}.

e Sphere-clutter: This clutter included 40 fixed and 40 movable floating spheres in a 0.29 m
x 0.4 m x 0.7 m rectangular parallelepiped area in front of the PR2. Each object had a 0.05
m radius and same properties as above. A PR2 robot tried to reach to 12 grid-distributed
goals of size 4 x 3 in 40 different clutters from 20 initial conditions. The goals were placed
on a vertical, rectangular plane of 0.6 m wide, 0.4 m tall, and 0.2 m intervals behind of
a set of spheres. The initial positions were equally distributed on a vertical, rectangular
plane of 0.8 m wide, 0.6 m tall, and 0.2 m intervals. To reduce the number of the initial
orientations, we selected one from available configurations by a cost function C,

C= 1/(ere - xwrist” + ere - xelbowH); (5)

where Zee, Tyrist, and Tepo are positions of end-effector, wrist, and elbow, respectively.
With these settings, we ran 9,025 trials for the sampling. For LIC-2, we used 0 = {xg, xl ).

o Sphere-aperture-clutter: For the real experiment, we constructed a sphere-aperture-clutter
that consists of 40 movable spheres and 20 square apertures with 0.2 m width, as shown in
Fig. 6 (Left). The spheres tended to be the foliage where the apertures were not blocked
and fixed on the ground, as shown in Fig. 5. Any other settings were the same as the
3D sphere-clutter. The PR2 did not change its torso and base positions while training; it
recorded all training data with respect to a torso frame. It is sufficient for the experiment,
since any goal-robot pose pair can be translated into the torso frame with a torso offset,

{xgoal/worlda xee/world} (6)

= {xgoal/torsoa Lee/torsos xtorso/world}-

Likewise, the observation feature vector o can be translated into the torso frame. Thus,
by varying the base, torso, and arm conditions, LIC can estimate the best initial condition.
For LIC-2, we used 0 = {x}.

2.2.4 Evaluation result

We compared the performance of each LIC modules to random and standard pre-computation
techniques. Our results show that LIC exhibits better performance than existing methods over
thousands of scenarios in various categories of cluttered environments.

Tables 1 and 2 show that LIC successfully solved the reaching-in-clutter problems more effec-
tively than the random and cost-metric selection methods in 2D spaces. To train our framework,
we use GP with K-NN for achieving stable prediction with relevant data classification. Each



column shows the success rate by strategies and each row shows the success rate of consecu-
tive trials. The fraction in parenthesis presents the number of successful trials of the number
of total trials. As shown in the cylinder-clutter category, LIC1-LIC2 statistically increased the
total success rate to 89.40% while the RND-RND and COST-COST strategies show 69.20% and
69.20%. In the passage-clutter category, although its shape is comparably complex than the
cylinder-clutter category, LIC1-LIC2 increased the success rate by 28.8%. From the success rate
of the first trials in both categories, we can confirm that the LIC-1 module selected reasonable
initial conditions even without specific knowledge in random environments. The reason is that
our training data included the kinematic factors that link to collision probabilities upon the ini-
tial conditions in a specific category of clutters. From the second trial, the LIC-2 shows largely
increased success rate by 43.55% from the first random or cost-metric trials. Since LIC-2 uses
observation features from the first trials as well as the kinematic factors like LIC-1, this module
can retrieve another best initial conditions from similar past situations. Sometimes, the success
rates of the second trials were lower than in other strategies, because the trials included some
unreachable goals and the LIC-1 module had already solved many of the reachable goals.

Table 1: Success rate of two consecutive trials in 2D cylinder-clutter fields. We use 200 random
environments with 10 different random goal locations.

RND-RND \ RND-LIC2 COST-COST \ COST-LIC2 LIC1-LIC2
Random Cost metric LIC1
1st trial 61.0% 68.65% 77.8%
(1220/2000) (1373/2000) (1556/2000)
Random LIC2 Cost metric LIC2 LIC2
2nd trial 33.71% 52.44% 30.30% 41.95% 29.96%
(263/780) (409/780) (190/627) (263/627) (133/444)
Total 74.15% 81.45% 78.15% 81.80% 84.45%
(1483/2000) (1629/2000) (1563/2000) (1636/2000) (1689/2000)

Table 2: Success rate of two consecutive trials in 2D passage-clutter fields. We use 1000 random

environments with a goal in its passage.

RND-RND \ RND-LIC2 | COST-COST \ COST-LIC2 LIC1-LIC2
Random Cost metric LIC1
1st trial 38.7% 34.1% 66.9%
(387/1000) (341/1000) (669/1000)
Random LIC2 Cost metric LIC2 LIC2
2nd trial 26.43% 69.98% 40.67% 71.47% 50.76%
(162/613) (429/613) (268/659) (471/659) (168/331)
Total 54.9% 81.6% 60.9% 81.2% 83.7%
(549/1000) (816/1000) (609/1000) (812/1000) (837/1000)




We performed multiple-reselection problems to evaluate cumulative performance in the same
settings as above. Here, the random and cost-metric methods selected its next conditions from
remained initial conditions excluding the past conditions’ positions and neighborhood. Our LIC
method selected Nth trial’s condition using LIC-N when N is over than three. Fig. 3 shows the
cumulated success rate as a percentage with five additional reach attempts through random, cost-
metric, and LIC methods. With a single reach attempt, the success rate of LIC was a maximum
of 32.8% higher than other methods. Then, it converged to a success rate, 89% and 86.3%,
with only two or three attempts in both categories. On the other hand, cost-metric selections
shows comparably better performance than the random method. However, both require at least
five attempts to reach the success rate shown by LIC. Since the cost-metric method utilizes goal
and robot configurations only, its performance can be worse than other methods if obstacles are
placed in the middle of the path or the shape is not easily avoidable without a high-level path
planner, like the first attempt of passage-clutter.
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