

The Battlefield Environment Division Modeling Framework

(BMF) Part II: Serial and Parallel Output Enhancements

by Benjamin MacCall and Yansen Wang

ARL-TN-0646 November 2014

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1138

ARL-TN-0646 November 2014

The Battlefield Environment Division Modeling Framework

(BMF) Part II: Serial and Parallel Output Enhancements

Benjamin MacCall and Yansen Wang
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

November 2014
2. REPORT TYPE

3. DATES COVERED (From - To)

10/2013–06/2014
4. TITLE AND SUBTITLE

The Battlefield Environment Division Modeling Framework (BMF) Part II:
Serial and Parallel Output Enhancements

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Benjamin MacCall and Yansen Wang
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-CIE
2800 Powder Mill Road
Adelphi, MD 20783-1138

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TN-0646

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

The treatment of input/output (IO) is critically important in computational fluid dynamics (CFD) for scalable high-
performance computing (HPC) and overall data longevity. The Battlefield Environment Division Modeling Framework
(BMF) v0.90 was developed for the purpose of reducing source code complexity and development time by reducing repetitive,
error prone or tedious operations in source code through the use of object-oriented program (OOP) design. Here we extend
BMF to include IO functionality for serial and distributed compute configurations. The Atmospheric Boundary Layer
Environment (ABLE) model has been built using BMF, and ABLE now uses the IO enhancements to BMF to enable serial
and parallel output, and an output buffering mechanism using dedicated output processes. Using the parallel, buffered output
features, ABLE performed lid-driven cavity flow simulations and shear instability simulations saving approximately 1 GB of
model state and analysis data every output time step. There was no appreciable delay when comparing these output time steps
to time steps with no output.
15. SUBJECT TERMS

parallel output; high-performance computing; HDF5; NetCDF

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

18

19a. NAME OF RESPONSIBLE PERSON

Benjamin MacCall
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-1463
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Tables iv

Acknowledgments v

1. Introduction 1

2. Methodology 1

2.1 Object Instantiation and Initialization ...2

2.2 Opening and Closing IO Files ...2

2.3 Reading and Writing Data ...3

3. Discussion 5

4. Conclusion 6

5. References 8

List of Symbols, Abbreviations, and Acronyms 9

Distribution List 10

iv

List of Tables

Table Example performance benchmarks on the ARL cluster Pershing using the HDF5
h5perf tool. Configuration used the parallel HDF5 IO interface with the MPI POSIX
driver. The tool wrote and then read an 8 MB file with a single dataset per process. The
use of multiple nodes causes a significant reduction in IO performance; however, the
larger available memory for use by the output buffers may reduce the impact of IO on
overall runtime. ..6

v

Acknowledgments

The High-Performance Computing Modernization Office (HPCMO) and the Defense Shared
Resource Centers (DSRC) at the US Army Research Laboratory (ARL) and Naval Research
Laboratory (NRL) supported this project with computational resources.

vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

The treatment of input/output (IO) is critically important in computational fluid dynamics (CFD)
for high-performance computing (HPC), inter-application communication, and overall data
longevity. In HPC environments, extreme amounts of data can be generated depending on the
phenomena being simulated and analysis needs. Inter-application communication is most easily
accomplished using intermediate data files, and standardized IO file formats reduce the special
effort required to ensure both applications are properly exchanging data. The shift towards self-
describing binary data storage formats (e.g., Hierarchal Data Format v5 [HDF5], Network
Common Data Format [NetCDF]) was an important transition for data longevity, and such output
libraries often include features, such as on-the-fly compression, to ensure efficient use of
hardware and network resources. Incorporating libraries, such as NetCDF or HDF5, into model
source code—especially in HPC environments—requires significant time investment; the
flexibility afforded by the output libraries creates opportunities for trivial errors that may lead to
unusable data or impact performance.

The Battlefield Environment Division Modeling Framework (BMF) v0.90 was developed for the
purpose of reducing source code complexity and development time by reducing repetitive, error
prone, or tedious operations in source code by using object-oriented program (OOP) design.
Here we extend BMF to include IO functionality for serial and distributed compute
configurations. The Atmospheric Boundary Layer Environment (ABLE) model (MacCall et al.,
2014) has been built using BMF; ABLE now uses the IO enhancements to BMF to enable serial
and parallel output, and an output buffering mechanism using dedicated output processes. One
example application is the inclusion of restart functionality, where periodically the model state is
saved in order to restart integration when dividing large jobs into smaller pieces, or in the case of
an interruption or unanticipated need for continued model integration.

Currently, BMF is implemented in Fortran 2008. Using the new output functionality simply
requires a ‘use BMF’ statement at the beginning of the module or procedure. The actual
routines defined in the output libraries (e.g., HDF5 v1.8.12) are accessed via wrapper functions
that employ the Fortran-C language bridge defined in Fortran 2003.

2. Methodology

The IO implementation continues the OOP design began in MacCall et al. (2013), which used
several classes to reduce the complexity of employing distributed parallel computing and
overlapping computation and inter-process communication via the Message Passing Interface
(MPI). These classes and the classes designed for multidimensional variables on structured grids

2

were used in the development of the new family of IO controller classes to enable single process
(serial) or multiprocess (parallel) output, using either the HDF5 or NetCDF output formats. For
parallel IO, all processes can be used for output or a subset of processes can be dedicated to
output via a buffering mechanism implemented via a heterogeneous linked-list container. Having
all processes take part in IO reduces the interprocess communication; however, the actual writing
of data to disk becomes a significant bottleneck as the number of processes increase to
encompass more than a few nodes. Furthermore, all processes must complete before calculations
resume. For simulations requiring more than a few nodes worth of processes, dedicated IO nodes
with their associated data buffers allow compute processes to send their data to the IO node and
then continue with the calculation. As long as output is not frequent enough to fill the buffers,
then the bottleneck is eliminated and IO will not significantly affect model integration time.

The IO controller classes (an abstract unifying class and subclasses for each format) have been
built in a modular manner to ease addition of new file formats. The basic interface for these
separate use cases is contained in the abstract OutputController class; thus, most interactions
with an IO controller will be with a generic pointer of this type. The pointer will point to an
instantiated subclass of one of the file format subclasses (e.g., HDF5Controller,
BufferedOutputController). In Fortran 2008, abstract classes such as the OutputController class
can define a minimal interface for all subclasses. Thus, determining the actual type of a generic
pointer is not necessary for basic usage. For special features built into a specific library, the
actual type needs to be determined (e.g., using a select type block in Fortran 2008).

2.1 Object Instantiation and Initialization

In the following, we demonstrate the use of abstract OutputController interface. Instantiation
requires specifying the type of output controller object during allocation and initializing the
controller for further usage. In Fortran 2008:

class(OutputController), pointer :: outputfile

allocate(HDF5Controller::outputfile)

call outputfile%init(<filepath>, <mpi_controller>)

For the init routine, <filepath> is a character string specifying the relative path of the output
file, and the <mpi_controller> argument is an object of MPICartesianController type. For
non-MPI runs, the MPI object is not used.

2.2 Opening and Closing IO Files

Before performing disk IO, a file needs to be opened, and after performing IO a file must be
closed to avoid data corruption, flush disk caches, etc.

class(OutputController), pointer :: outputfile

call outputfile%openfile([readOnly],[now])

! perform IO operations

call outputfile%closefile()

3

Both arguments are optional and are type logical. The [now] argument is necessary when
performing buffered input operations to ensure files are available for immediate read operations.
The closefile() subroutine flushes all internal IO caches and prevents further file access
operations without a new open operation. For buffered output, closefile() will flush buffered
variables to disk removing them from the IO queue. When using buffered output, the close file
operation will loop through the output buffer elements and write any data buffers specified for
the file associated with that particular OutputController object.

There is an additional issue when using buffered output. Once a closefile() operation is
called, the processes dedicated to output will be performing queued write operations and, thus,
unavailable to receive additional commands. For optimal performance, consequently,
closefile() calls should be done before a significant amount of non-IO work will be done by
the compute processes while the output-dedicated processes are busy. When attempting to close
multiple files, the first closefile() call would proceed normally, but the compute processes
would be idle until they could send the next closefile() message. For this case, an external
subroutine closeMultipleFiles() is provided. For example,

class(OutputController), pointer :: file1, file2

call closeMultipleFiles(file1, file2, ...)

This subroutine accepts any output controller class not just BufferedOutputController objects.

2.3 Reading and Writing Data

Once a file is opened, IO operations can proceed. The type-bound procedure writeVariable
is overloaded to include multiple data types. The routine accepts scalar or arrays of default data
types (e.g., real, integer) and also accepts the BMF data objects, such as objects of type
RealVariable or IntegerVariable, or any of their subclasses.

For parallel output, especially over a Cartesian domain decomposition, the varying location and
uniqueness of data to be output requires special treatment. If the data (scalar or array) is equal in
size and value over all processes—for example, the current time step in the simulation—then
passing in the default data type (e.g., an integer) is preferred. If the data has a process-dependent
structure, such as the temperature field, which may vary over different processes, the preferred
treatment is to create an object of the appropriate type (e.g., an object of class RealVariable),
which has additional features for storing process dependent information.

Another example is a 2-dimensional array of data points that is only relevant along the lower
bound of the domain, so only processes that contain the surface points will have data. Again, the
preferred manner to treat such cases is to use the BMF classes of the appropriate type, shown in
the below pseudo-Fortran code:

4

class(RealVariable), pointer :: myvar

allocate(myvar)

call myvar%init(name=”varname”, &

extent=Coordinate(XX_val=NX, YY_val=NY, ZZ_val=1), &

 mpiController=cartesianController, & ! MPI configuration

processDependent= .True., & ! all directions are true

dataOnProcess= processContainsLowerBound)

 ...calculate variable data...

class(OutputController), pointer :: outputfile

 allocate(outputfile)

 call outputfile%init(“filename”, cartesianController)

call outputfile%openfile()

 call outputfile%writeVariable(path=”aGroup/”, &

 variable=myvar, &

 precision=real8, &

 timeDependent=.True.)

call outputfile%closefile()

This code first creates a real variable object, with name “varname”, that has NX points in the x-
direction, NY points in the y-direction, and 1 point in the z-direction. The MPI configuration is
embedded in the cartesianController object, and the data is specified as being process dependent
in all 3 directions. We finish the initialization by specifying that only processes that contain the
domain lower bound will contain data. On the other processes, the RealVariable object exists,
but contains no data. Saving the variable data to the file, “filename,” requires opening the file,
executing the writeVariable procedure, and closing the file.

Reading data from a file follows a similar procedure. In the case of process dependent data, the
RealVariable object needs to already be initialized as was done in the previous example, because
the process dependent details stored in the RealVariable object are used to determine the subset
of the data in the file that will be read. In this way, data written to a file using 1 MPI
decomposition—say, 2 processes in each direction—can be read when using a different
decomposition (say, 2 processes in the vertical direction and 4 processes in each horizontal
direction). Below is pseudo-Fortran code reading the data saved to file in the previous example:

5

...same RealVariable call to init as above...

class(OutputController), pointer :: outputfile

 allocate(outputfile)

 call outputfile%init(“filename”, cartesianController)

call outputfile%openfile(now=.True.)

 call outputfile%readVariable(path=”aGroup/varname”, &

 variable=myvar, &

 timeRecord=3)

call outputfile%closefile()

The same initialization is performed for myvar as above. The OutputController object
outputfile still needs to be initialized with the file system path. The data file is made
accessible to the program by calling openfile. When calling the read subroutine, the full path,
including the variable name, for the variable in the data file must be specified. If the variable is
time-dependent, a time record can be specified. If the variable is not time-dependent, the
timeRecord argument can be specified, but the value must be set to 1.

3. Discussion

The aforementioned code was implemented in BMF v0.90 and employed by the ABLE model
v0.90 during several simulations of lid-driven cavity flow and shear instability. The nature of the
integration scheme and the simulations required a large number of grid points and many small
time steps when integrating the governing equations. The MPI configuration employed 512
process cores in a 3-D decomposition (8 × 8 × 8). A single node with 16 cores was dedicated to
performing output, and the OutputController object was instantiated with a type of
BufferedOutputController. Because of the small time steps, output was performed every 5000
time steps; approximately 500 GB of data was generated for each simulation, which took about
18 h on the US Army Research Laboratory (ARL) cluster Pershing.

With the buffered output strategy, time steps with output operations had a negligibly longer
duration than time steps with no output. The compute time for data transfer to the output node for
buffering was significantly smaller than the time spent integrating the governing equations.

The HDF5 libraries come with a tool to test performance characteristics on a cluster. Using this
tool on the ARL cluster Pershing is detailed in the Table.

6

Table Example performance benchmarks on the ARL cluster Pershing using the HDF5 h5perf tool.
Configuration used the parallel HDF5 IO interface with the MPI POSIX driver. The tool wrote and then
read an 8 MB file with a single dataset per process. The use of multiple nodes causes a significant
reduction in IO performance; however, the larger available memory for use by the output buffers may
reduce the impact of IO on overall runtime.

 8 MB/file 16 MB/file
of Nodes # of Processes Peak Write

(MB/s)
Peak Read

(MB/s)
Peak Write

(MB/s)
Peak Read

(MB/s)
1 1 4253 9738 3249 6873
1 2 4886 11,790 1800 8869
1 4 5717 12,524 2618 12,856
1 8 5383 12,903 3366 13,368
1 16 5235 16,837 4095 19,051
2 32 3279 3560 3320 5548
4 64 3443 4168 3594 6211

Generally, using additional processes is advantageous to IO performance up to the point of using
multiple nodes. Thus, on hardware with high-performance disks (e.g., RAID arrays or solid state
drives), MPI-based simulations using a small number of processes (especially if only a single
node is available) should generally use all processes when performing output rather than using a
master process that collects the data from the others. As the number of processes used in the
calculation increases, a set of dedicated output processes will allow the simulations to run more
efficiently unless the data buffers on the output processes become full, which requires immediate
writing of the data to disk. In this case, the recommended solution is to use multiple nodes for
output, thereby increasing the total size of the output buffers. When running a simulation, if the
output buffers become full, a message is written to the program log. Peak performance may
require testing a few different configurations.

4. Conclusion

The aforementioned examples condense several thousand lines of source code (not counting the
source code for classes like RealVariable) for various operations that ensure data is properly
collected from multiple processes and written—in an efficient manner with basic error
checking—into a standard-format, binary data file. With BMF and a relatively small number of
commands, powerful, flexible output libraries, such as NetCDF and HDF5, can be implemented
in (currently) Fortran source code using MPI parallelism and optionally dedicated output
processes. Using BMF for output does not require all the features of the framework, especially
for serial output. Additionally, the object-oriented design provides design strategies for adding
new file formats without requiring a significant modification to existing model code.

Managing output and the bottleneck associated with slow disk performance when conducting IO
operations is critical for efficient, scalable computing. Using the parallel, buffered output

7

features, the lid-driven cavity flow simulations and shear instability simulations were able to
save the model state and analysis data with no appreciable delay when compared to time steps
where no output occurred. The compute clusters (at the ARL and NRL DSRC) employed 16-core
nodes with 29 GB of usable memory. For the simulations with 2003 and 3043 data points per 3-D
variable, one node dedicated to output was enough to ensure that the processes responsible for
computation spent minimal time preparing for output. Obviously, with 3-D simulations and
fields being updated rapidly, overwhelming the disk controllers and buffering system is always
possible and will cause model integration to slow. However, if there are intervals with a large
amount of output interspersed with intervals with little to no output, overwhelming the buffers
can be mitigated by increasing the number of nodes dedicated to output, which increases the size
of the output buffers.

The upcoming refinement to the above output routines will entail the implementation of
dimensional scales to the written quantities. For example, time dependent variables will have a
time attached for each output, and spatial arrays will have coordinates associated with each point.
The procedure for including physical dimensions will be implemented for BMF v1.0.

8

5. References

MacCall B, Huynh G, Wang Y. The Battlefield Environment Division Modeling Framework
(BMF) part I: Optimizing the atmospheric boundary layer environment model for cluster
computing. Adelphi (MD): US Army Research Laboratory (US); 2014. Report No.: ARL-
TR-6813.

9

List of Symbols, Abbreviations, and Acronyms

ABLE Atmospheric Boundary Layer Environment

ARL US Army Research Laboratory

BMF The Battlefield Environment Division Modeling Framework

CFD computational fluid dynamics

DSRC Defense Shared Resource Centers

HDF5 Hierarchal Data Format v5

HPC high-performance computing

IO input/output

MPI Message Passing Interface

NetCDF Network Common Data Format

NRL Naval Research Laboratory

OOP object-oriented programming

10

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
 (PDFS) US ARMY RESEARCH LAB
 RDRL CIO LL
 IMAL HRA MAIL & RECORDS MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 2 US ARMY RESEARCH LAB
 (PDF) ATTN RDRL CIE M B MACCALL
 ATTN RDRL CIE M Y WANG

	List of Tables
	Acknowledgments
	1. Introduction
	2. Methodology
	2.1 Object Instantiation and Initialization
	2.2 Opening and Closing IO Files
	2.3 Reading and Writing Data

	3. Discussion
	4. Conclusion
	5. References
	List of Symbols, Abbreviations, and Acronyms

