
REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
JANUARY 2014 

2. REPORT TYPE
Journal Article  (preprint) 

3. DATES COVERED (From - To)
OCT 2012 – SEP 2013 

4. TITLE AND SUBTITLE

PROCESSOR-BASED STRONG PHYSICAL UNCLONABLE 
FUNCTIONS WITH AGING-BASED RESPONSE TUNING 

5a. CONTRACT NUMBER 
FA8750-12-2-0062 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 
62788F 

6. AUTHOR(S)

Joonho Kong and Farinaz Koushanfar 

5d. PROJECT NUMBER 
T2HW 

5e. TASK NUMBER 
RI 

5f. WORK UNIT NUMBER 
CE 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
William Marsh Rice University 
6100 Main St. 
Houston, TX 77005-1827 

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A 
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/Information Directorate 
Rome Research Site/RITA 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSOR/MONITOR'S ACRONYM(S)
       AFRL/RI 

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TP-2014-001

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBIC RELEASE; DISTRIBUTION UNLIMITED. This report is the result of contracted fundamental 
research deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 
10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. 
13. SUPPLEMENTARY NOTES
© 2013 IEEE. This paper was published in Emerging Topics in Computing, IEEE Transactions, Volume PP, Issue 99.  
This work, resulting in whole or in part from Department of the Air Force contract number FA8750-12-2-0062, has been 
submitted to IEEE for publication in Emerging Topics in Computing. If this work is published, IEEE may assert copyright. 
The United States has for itself and others acting on its behalf an unlimited, paid-up, nonexclusive, irrevocable worldwide 
license to use, modify, reproduce, release, perform, display, or disclose the work by or on behalf of the Government. All 
other rights are reserved by the copyright owner. 

14. ABSTRACT
A Strong physically unclonable function (PUF) is a circuit structure that extracts an exponential number of unique chip 
signatures from a bounded number of circuit components. The strong PUF unique signatures can enable a variety of 
low-overhead security and intellectual property protection protocols applicable to several computing platforms. This 
paper proposes a novel lightweight (low overhead) strong PUF based on the timings of a classic processor architecture. 
A small amount of circuitry is added to the processor for on the-fly extraction of the unique timing signatures. To achieve 
desirable strong PUF properties, we develop an algorithm which leverages intentional post-silicon aging to tune the 
interchip and intra-chip signature variation. Our evaluation results show that the new PUF meets the desirable inter- and 
intrachip strong PUF characteristics, while its overhead is much lower than the existing strong PUFs. For the processors 
implemented in 45nm technology, the average inter-chip Hamming distance for 32-bit responses is increased by 16.1% 
after applying our post-silicon tuning method; the aging algorithm also decreases the average intra-chip Hamming 
distance by 98.1% (for 32-bit responses.) 
15. SUBJECT TERMS
Hardware Trojan, Reverse Engineering, Logic Reconfiguration, Logic Obfuscation, Logic Encryption 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

UU 

18. NUMBER
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
GARRET S. ROSE 

a. REPORT
U 

b. ABSTRACT
U 

c. THIS PAGE
U 

19b. TELEPHONE NUMBER (Include area code) 
N/A 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

13



1

Processor-Based Strong Physical Unclonable
Functions with Aging-Based Response Tuning

Joonho Kong, Member, IEEE, and Farinaz Koushanfar, Member, IEEE

Abstract—A strong physically unclonable function (PUF)
is a circuit structure that extracts an exponential number of
unique chip signatures from a bounded number of circuit
components. The strong PUF unique signatures can enable a
variety of low-overhead security and intellectual property pro-
tection protocols applicable to several computing platforms.
This paper proposes a novel lightweight (low overhead) strong
PUF based on the timings of a classic processor architecture.
A small amount of circuitry is added to the processor for on-
the-fly extraction of the unique timing signatures. To achieve
desirable strong PUF properties, we develop an algorithm
which leverages intentional post-silicon aging to tune the inter-
chip and intra-chip signature variation. Our evaluation results
show that the new PUF meets the desirable inter- and intra-
chip strong PUF characteristics, while its overhead is much
lower than the existing strong PUFs. For the processors imple-
mented in 45nm technology, the average inter-chip Hamming
distance for 32-bit responses is increased by 16.1% after
applying our post-silicon tuning method; the aging algorithm
also decreases the average intra-chip Hamming distance by
98.1% (for 32-bit responses).

Index Terms—Physically unclonable function, multi-core
processor, secure computing platform, post-silicon tuning,
circuit aging, negative bias temperature instability

I. INTRODUCTION

Achieving secure and trustworthy computing and
communication is a grand challenge. Several known
data/program security and trust methods leverage a root
of trust in the processing units to achieve their goals.
Microprocessors and other heterogeneous processing cores
– which form the kernels of most modern computing
and communication – have become increasingly mobile,
limiting the amount of available energy and resources.
Traditional security and trust methods based on classic
cryptography are often computationally intensive and thus
undesirable for low power portable platforms. Mobility and
low power also favor smaller and simpler form factors that
are unfortunately known to be more susceptible to attacks
such as side-channels or invasive exploits. There is a search
for low overhead and attack-resilient security methods that
operate on low power computing platforms.

Physically unclonable function (PUF) is a promising
circuit structure to address the pending security needs
of several portable and resource-constrained computing
platforms. Thanks to the unique and unclonable process
variations (PVs) on each chip, PUFs can generate specific
signatures for each manufactured IC. Technically, PVs
mainly affect threshold voltage (Vth) or effective gate
length (Leff ) of the devices in a chip [1][2]. These unique
device characteristics can be measured by the structural
side-channel tests such as timing or current of specific
test vectors. To ease integration into higher-level digital

J. Kong and F. Koushanfar are with the Department of Electrical and
Computer Engineering, Rice University, Houston, TX 77005.
E-mail: {joonho.kong, farinaz}@rice.edu

security primitives, it is desirable to transform the measured
structural test results to digital values. The unclonability
and inherent uniqueness properties of signatures makes
PUF an attractive security primitive choice [3].

PUF signatures are typically extracted by a challenge-
response protocol. In response to a challenge (or input),
the PUF generates a unique response (or output) that is
dependent on the specific PV of the underlying chip. PUFs
have been classified into two broad categories: Weak and
Strong. Weak PUFs have a limited number of challenge-
response pairs (CRPs), which restricts their application
scenarios to those requiring a few secret bits such as key
generation. Strong PUFs generate an exponential number of
CRPs from a limited number of circuit components. Strong
PUFs enable a wider range of security and trust protocols
by leveraging their huge space of CRPs.

Although the already proposed strong PUFs have shown
promising results [4], their application is still limited due to
their non-negligible overhead and instability. For example,
AEGIS secure processor design [5] which realizes a trust-
worthy hardware platform, has a non-negligible hardware
overhead of the added logic including the arbiter PUF for
supporting secure execution. Apart from the PUF logic
itself, a large portion of hardware overhead often comes
from error correction logic. Since PUFs should be able
to produce stable outputs under various environmental
conditions (e.g., voltage and temperature fluctuations), error
correction logic overhead is inevitable, yet desired to be
reduced. Moreover, natural PUFs may have undesirable
statistical distributions in terms of inter-chip variations,
which significantly restricts their practical applicability.
The statistical distribution becomes even worse when spa-
tial correlations between the device characteristics due to
process variation (in particular, systematic variations) are
prevalent across the chips.

In this paper, we introduce an alternative strong PUF
architecture, based on a conventional multi-core processor.
Our PUF design is a realization of a low-overhead and sta-
ble strong PUF. By leveraging the built-in structures (adders
in ALUs) in typical multi-core microprocessors instead of
building additional delay logic (e.g., a series of switches
and a series of inverter chains in arbiter PUFs and ring
oscillator (RO) PUFs [6], respectively), our design realizes
a low-overhead and secure strong PUF which can be em-
ployed to many security applications. A proof-of-concept
implementation is demonstrated on a two-core architecture.
To further improve security, reliability, and stability of the
PUFs as well as make up for possible drawbacks of the
two-core PUF design, we also propose a systematic post-
silicon tuning method for our PUF. Our new algorithm
leverages an intentional aging method based on one of
the most significant circuit aging mechanisms: negative
bias temperature instability (NBTI) [7]. Our proposed post-
silicon aging algorithm does not incur any performance
overhead in most of the chips by careful consideration of

1



2

selecting the gates that will be intentionally aged. Also, our
algorithm greatly improves statistical properties of our PUF
design in terms of both inter-chip and intra-chip variations.

Our main contributions include:
• We propose a low overhead strong PUF design, two-

core PUF, which leverages built-in components in
general processor architectures;

• Our new PUF design shows good statistical results,
comparable to the previously proposed strong PUF
designs. The hardware overhead of the new PUF is
lower than the previously proposed ones;

• We propose a systematic method to further enhance
statistical properties of our multi-core PUF in terms of
both inter-chip and intra-chip variations by leveraging
intentional aging, which complements the possible
drawbacks of our PUF design;

• Our simulation results on a two-core architecture prove
that our intentional aging algorithms successfully im-
prove the statistical property of the two-core PUF with
negligible performance overhead in most cases.

The rest of this paper is organized as follows. Section
II outlines background information for process variation,
delay model, and circuit aging mechanism/model. Section
III explains our two-core PUF design while Section IV
introduces our systematic tuning method by leveraging in-
tentional aging to tune the statistical properties of the intro-
duced PUF. Evaluation results for the two-core realization
and intentional aging algorithms are discussed in Section V.
Section VI provides a brief review of the recent literatures
regarding PUFs and intentional post-silicon aging methods.
Lastly, we conclude in Section VII.

II. BACKGROUND AND PRELIMINARIES

In this section, we provide general background infor-
mation and preliminaries for process variation, delay, and
aging mechanism. The background and preliminaries are to
make the paper self-contained and accessible to a broader
audience who may not be familiar with process variation,
delay model, and aging.

A. Process variation

Process variation (PV) generates inherent randomness in
silicon structures. PV mainly affects threshold voltage (Vth)
and effective gate length (Leff ) of devices, resulting in
various side-effects (e.g., delay and power consumption)
across chip instances.

PV can be classified into two broad categories: random
and systematic variation. Random variation is caused by
random dopant fluctuations or random defects in devices.
Random variation does not have any spatial correlation
between the devices. Unlike random variation, systematic
variation incurs spatially correlated device fluctuations. It
means that the devices which are close together have a
higher probability to have similar device characteristics
than those located far away. In contemporary process tech-
nologies, both random and systematic variation coexist in
manufactured chips.

Figure 1 shows sample Vth distribution maps generated
by a quad-tree PV model [1]. Vth distribution is shown to
be fairly random in a single chip as well as across the chips,
while similar colors tend to agglomerate together (i.e., Vth
distributions are spatially correlated).

Fig. 1. Four process variation map examples generated by quad-tree
process variation model [1]. The number in the right side of the figures
means Z value of Gaussian distribution.

B. Delay model
To figure out the Vth-dependent gate delay, we use the

delay model described in [8]. The gate-level delay model
can be represented as follows:

Delay ∝ (
Leff
φt

)2 × Vdd

(ln(e
(1+σ)Vdd−Vth

2nφt + 1))2
(1)

where φt and σ are thermal voltage and subthreshold slope,
respectively. There are several other key factors that affect
gate-level delay: supply voltage (Vdd), threshold voltage
(Vth), and effective gate length (Leff ). Due to process
variations, these factors fluctuate, which in turn results in
delay differences across the gates in chips. Furthermore,
circuit aging (it will be covered in detail in Section II-C)
also affects gate delay since circuit aging increases Vth of
the gate.

C. Aging model
Circuit aging is a phenomenon in which performance

of the circuits is degraded by the circuit usage. This may
eventually result in a malfunction of the circuit under
intensive utilizations or extreme environmental conditions
(e.g., extremely high temperature). Compared to fresh chips
(i.e., not aged), aged chips have relatively lower perfor-
mance due to Vth shift by hot carrier injection (HCI) and
negative bias temperature instability (NBTI). Vth of devices
is continuously increased as those devices are switched or
have a high duty cycle, resulting in higher delay and lower
power consumption.

In deep submicron process technologies, NBTI is known
to be the most threatening aging mechanism [7]. Thus, in
this paper, we consider NBTI as our main aging mecha-
nism. The Vth shift (∆ Vth) by NBTI is commonly modeled
as follows:

∆ Vth = A × e(BVg) × e
−Eα
kT × t0.25 (2)

where Vg and Eα are gate voltage and activation energy
respectively. A and B are technology dependent constants.
As shown in Equation 2, the Vth shift heavily depends on
temperature (T ) and stress time (t). By applying this aging

2



3

model, one can derive an appropriate stress time (t) under
a certain temperature (T ) to intentionally increase a certain
amount of Vth.

Stress time t is strongly dependent on the signal prob-
ability (SP) [9] that represents a fraction of time when a
gate output stays logic high (1) during the circuit operation.
Depending on SP of a gate, Vth of the gate will be increased
(stress period) or decreased (recovery period). Hence, to
make the gate intentionally aged, one should carefully
determine SP of the gate so that it stays in the stress period
much more than in the recovery period.

III. TWO-CORE PUF
A. Design philosophy and design decisions

1) Base platform - multi-core microprocessor: Since our
design is fundamentally based on the delay comparison
mechanism of arbiter PUFs, we need symmetric (homoge-
neous) structures to generate diverse path delays affected
by process variations. The symmetric multi-core micropro-
cessor is one of the best design candidates since most com-
modity microprocessors (or microcontrollers) have multiple
homogeneous cores.

Typical strong PUF designs have separate delay circuits
to generate PUF responses, which incur additional area and
power overhead. In contrast, our PUF design utilizes built-
in components in typical multi-core microprocessors, which
minimizes additional hardware and communication over-
head. Compared to the AEGIS design [5] which employs
separate switches to implement an arbiter PUF, our design
is implementable with a much smaller logic overhead.

2) Path delay source - ALUs: Our design chooses ALUs
as path delay sources. The main reason is that ALUs can
accept an exponential number of operands, which can also
be used as challenge inputs. Moreover, they can generate
challenge-dependent responses when using add instructions
by stimulating the complex carry-chains in adder structures.
Add instructions can have an exponential number of differ-
ent operands (264 with 32-bit operands) and our PUF can
also generate an exponential number of diverse responses
depending on the challenge inputs as well as disorders in
silicon structures. It means our ALU-based PUF design can
be classified as a strong PUF.

The other reason for choosing ALUs as path delay
sources is that ALUs are combinational logics in micro-
processors and they have delay paths which are comprised
of a long series of gates. It makes adversaries difficult
to perform a model building attack. This is because the
adversaries should perform multiple stages of gate-level
delay table lookups and additions to obtain the accurate
path delays through their PUF model. Determination of
carry propagation behaviors also introduce a lot of control
dependencies, which means it is difficult for adversaries
to exploit the massively parallel computations in order to
acquire a PUF response time comparable to that from the
real PUF hardware. In this case, one can give a timing
constraint (time-bound) during the PUF challenge in order
to distinguish the real PUF and the modeled PUF. Time-
bounded authentication by PUF has been introduced earlier
[10].

Our PUF design can be applied to any adder structures,
though in this paper we build our PUF based on ripple-
carry adders (RCAs) as a proof-of-concept. In fact, PUFs
are broadly used in small embedded systems (e.g., sen-
sor nodes or RFIDs) [11][12] or FPGAs [13][14][15] in
which RCAs are more beneficial for energy-efficiency than

Challenge programChallenge program

Arbiter2Arbiter2

Arbiter1Arbiter1

These challenge 

programs are 

exactly same

Arbiter4Arbiter4

Arbiter3Arbiter3

S1

ALU in 

Core0

ALU in 

Core1

Operand A1

Operand B1
Operand A2

Operand B2
Operand A3

Operand B3
Operand A4

Operand B4

Challenge programChallenge program

Operand A1

Operand B1
Operand A2

Operand B2
Operand A3

Operand B3
Operand A4

Operand B4

S2

S3

S4

S1

S2

S3

S4

Response1

Response2

Response3

Response4

Fig. 2. The basic structure of our two-core PUF (bit width=4-bit).

high-performance adders such as carry-lookahead adders
(CLAs). Note that the first design consideration of those
embedded systems is typically energy-efficiency, not per-
formance.

B. Overall design
1) PUF design: Delay-based PUFs [6] exploit delay

differences between multiple paths which have inherently
different delays across chips due to process variations.
One may deploy arbiters (or counters/comparators in case
of ring-oscillator PUFs) to capture the delay difference
between two delay lines and convert it into a digitized
value. In this paper, we propose an alternative strong PUF
design which utilizes already built-in components in a
processor architecture as our delay lines instead of building
separate delay lines (e.g., a series of the switches in arbiter
PUFs or a series of the inverters in ring oscillator PUFs).

Although our new strong PUF can be built based on
any multi-core processor architecture, in the remainder
of the paper we focus on a two-core proof-of-concept
design. Generalization to more cores is straightforward.
Figure 2 shows a high-level design of our two-core PUF.
For simplicity, we provide a simple 4-bit two-core PUF
design in this figure. Our PUF utilizes arithmetic logic
units (ALUs) in the multi-core microprocessors/controllers
as symmetric delay lines. In order to give a challenge input
to the PUF, the identical challenge program runs in both
cores. As shown in Figure 2, two 4-bit operands (operand A
and B) are fed into each ALU and a 4-bit output (S1 ∼ S4)
can be obtained from each ALU. For delay comparison,
the n-th output lines (Sn) from each ALU are connected to
the n-th arbiter (Arbitern). The challenge program should
start at the same cycle in both cores to guarantee correct
PUF operations. Note that the arbiters in the circuit layout
should be very carefully placed for correct operations of
the two-core PUF. In addition, the wire lengths from two
ALUs to the arbiter should be symmetric not to generate
biased PUF outputs.

In our proof-of-concept example, bitwidth of our base
microprocessor is 32-bit. Hence, each core has a 32-bit
ALU. Sn from Core0 and Core1 are connected to the
Arbitern, where n is 1-32. Thus, we need 32 arbiters for
delay comparison. Note that our design can be easily ex-
tended to 64-bit microprocessors by simply adding 32 more
arbiters and connecting the corresponding ALU output ports
to those arbiters.

2) Security enhancement by XOR obfuscation: Typical
security applications desire a high inter-response variations
(i.e., high unpredictability). A low inter-response variation
may make the PUF vulnerable to the modeling attack [16]

3



4

00

00

11

00

Response1

11

00

00

11

.
.

.
.

.
.

32 

response 

bits

.
.

.

11

00

11

11

Final output1

.
.

.

Response2

Response3

Response4

Response17

Response18

Response19

Response20

Final output2

Final output3

Final output4

Fig. 3. Additional logic for XOR obfuscation.

because only a small set of CRPs may enable an accurate
modeling of a specific PUF by adversaries. For better inter-
response variations of our PUF design, one can deploy
an additional XOR obfuscation step between two different
response bits as described in [17].

By paying a little more hardware cost, one can perform
an XOR operation between i-th bit and (i+ bitwidth2 )-th bit
from a response, as shown in Figure 3. PUF operations
should be performed twice with different challenges in
order to generate a bitwidth-bit response, which also incurs
timing overhead. Considering the trade-off among the hard-
ware cost, performance, and security, one can employ the
additional XOR obfuscation step only for the case where a
high level of security is required.

As shown in Figure 4, the inter-response variation is
greatly improved by adding the XOR obfuscation step.
Comparing between the case with and without XOR ob-
fuscation, an average inter-response Hamming distance is
increased from 5.06 bits to 10.64 bits and from 11.81 bits
to 20.53 bits when using 32-bit and 64-bit two-core PUF,
respectively.

C. Detailed design and architectural modifications
Delay characteristics in our PUF depend on the carry

propagation behavior in the conventional ripple-carry adder
(which is included in ALUs). As shown in Figure 5, two
operands (Ai and Bi) are fed into the full adders. Between
the full adders, there are carry bits (Ci), which depend on
the operands (Ai and Bi) and previous carry bit (Ci−1).
Depending on the carry bit, delay characteristics of the
full adder rely on those of either the preceding full adders
or only the current full adder. These carry propagation
behaviors generate an exponential number of the signal
propagation behaviors in the adder, which eventually en-
ables a generation of challenge-dependent PUF outputs.
The summation result bits (Si) from the ALU (in each
core) are connected to the arbiters. Si is also connected
to the ALU output storage which is already implemented
in general processor architectures, though it is not shown in
Figure 5. The signals from two separate ALUs race to the
arbiter, which in turn generates a digitized output depending
on which delay line is faster. The arbiter output is stored
to a temporary register (‘PUF Responsei’ in Figure 5).

As we explained in Section III-B2, the response bits may
be XOR-ed together (i-th bit ⊕ (i+ bitwidth2 )-th bit) and the
XOR-ed results are finally stored into one half of the final

1 bit

Full!adder

1 bit

Full!adder

1 bit

Full!adder
.. .

A1 B1

Q

From!the!

other!core

D

C1 C2 C3

S1 S2 S3

PUF!

Response1

.. .

A2 B2 A3 B3

.. .

XOR

Arbiter1

.. .

PUF!

Response32

C0

Final!output!(16 bit!or!32 bit)

Stored!into!$rp

Fig. 5. A more detailed structure of our two-core PUF. For simplicity,
only one arbiter and one temporary register (flip-flop) are shown in the
figure. The XOR obfuscation logic is drawn in a dashed-line since it is
an optional logic.

An example assembly code for one-time PUF query 

1 addi   $1, $0, A   (or from register)     # load operand A to register r1  
2 addi   $2, $0, B   (or from register)     # load operand B to register r2  
3 add    $5, $0, $0                                   # initialization for delay measurement  
4 add    $3, $1, $2                                   # the first add operation - $r3=$r1+$r2 
5 addi   $5, $0, 0xffffffff                          # initialization for delay measurement 
6 add    $3, $1, $2                                   # the second add operation - $r3=$r1+$r2 

 

Fig. 6. An example challenge program (instruction sequence) for one-
time PUF query (bitwidth=32-bit).

output register ($rp: a special purpose register to store the
output from the two-core PUF). The other half of the output
register is filled by performing the PUF operation once
again with different challenge inputs. After the results are
stored to the PUF output register, the challenge program
can access this register for later usages.

D. Challenge procedure

In order to give challenge inputs to our two-core PUF,
we utilize a software-level challenge program. Figure 6
shows an example program for a PUF query based on
MIPS assembly codes. One-time PUF query is performed
as follows. Before starting the PUF operation, the operands
(A and B) are loaded into the registers (Line 1-2 in
Figure 6). The actual PUF operation is performed by
four consecutive addition operations (Line 3-6 in Figure
6). Among these four add instructions, the instructions
in Line 3 and 5 in Figure 6 are used to initialize the
ALU output ports to ‘0’ and ‘1’, respectively. In addition,
these instructions also initialize the signals in the carry
propagation chains (from C1 to C32) to ‘0’. The add
instructions in Line 4 and 6 in Figure 6 are to perform
an actual PUF operation by stimulating the internal gates
in the ALUs. The instructions in Line 3-4 and Line 5-6
are dedicated to capture 0 → 1 and 1 → 0 transitions
in the arbiter, respectively. In this work, we use dual-
trigger latches (arbiters) to capture both up (0 → 1) and
down-transitions (1 → 0). Note that the operating system
can block the other program execution during the PUF
operation to prevent the unintended resource (ALU) sharing
which may incur cycle-level discrepancy between the two
cores.

4



5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Before XOR

After XOR

P
ro
b
a
b
il
it
y

 M
a
ss

 F
u
n
ct
io
n

Inter!response variation (64!bit)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Before XOR

After XOR

P
ro
b
a
b
il
it
y

 M
a
ss

 F
u
n
ct
io
n

Inter!response variation (32!bit)

(a) with 32-bit PUF outputs (b) with 64-bit PUF outputs

Fig. 4. Inter-response Hamming distance variations when 10,000 random different inputs are fed into the two-core PUF. The x-axis and y-axis
corresponds to the Hamming distances and probability mass function.

E. Practicality issues

Since our design utilizes an in-built structure (adder)
instead of the specialized circuit for PUF, some imple-
mentation issues may arise. In this subsection, we address
several practicality issues of the two-core PUF design.

1) Intermediate signal fluctuations in the output port: In
the general circuit structures, there could be some ripples
(fluctuations of the signal before capturing the true signal)
in the output port. If the multiple input ports are connected
to one output port, these fluctuations may occur because
signal propagation delays from those input ports connected
to the output port are likely to be diverse. Therefore, if the
path delay sources for a delay-based PUF are generated
from the general circuit structures, it could be problematic
due to the ambiguity of when to capture the transition signal
in the arbiters (i.e., selecting the signal to capture).

However, in the case of a ripple-carry adder that con-
stitutes the path delay sources in the two-core PUF, the
signal in the output ports fluctuates at most twice. In
most cases, the first and second output signal fluctuations
result from the operands fluctuations (i.e., when Ai and
Bi are fed into the full adder) and carry propagations (i.e.,
a signal transition in Ci−1), respectively. Once the carry
signal (Ci−1) is converted from 0 to 1, it does not make
a transition into 0 again within one add operation, which
restricts the maximum number of possible transitions in the
output port of the adder to 2.

There can be 6 different cases of signal fluctuations cap-
tured by the arbiter in our PUF: 0 → 1 → 0, 1 → 0 → 1,
0→ 1, 1→ 0, 0→ 0 (not fluctuating from 0), and 1→ 1
(not fluctuating from 1). Among them, only the cases of
0 → 1 and 1 → 0 generate valid outputs in the arbiters.
In the other cases, the values generated in the arbiter are
ignored. The following subsection describes sorting of valid
and invalid output bits.

2) Sorting of the valid and invalid output bits: In order
to make use of only valid output bits, one may need addi-
tional MUXes between the arbiter and temporary register
to generate desired PUF outputs.

As shown in Figure 7, one can deploy a MUX between
the arbiter and temporary register. By referring to the
control signal, the MUX selects the value either from the
arbiter or from the temporary register. Control signals can
be generated by referring to the summation result bit (Si).
In the first phase of the PUF query, which corresponds to
Line 3-4 in Figure 6, Si is directly fed into the control
port of the MUX. If Si is ‘1’, the MUX selects the value

QD

Temporary 

Registeri

Arbiteri

From Core0

From Core1

Si or ~Si 1 0

Fig. 7. Selection of the valid PUF outputs by using a MUX.

from the arbiter whose output is generated by capturing
0→ 1 transitions. Otherwise, the arbiter output is ignored
by selecting the temporary register value in the MUX. In
contrast, the negation of Si is fed into the control signal
of the MUX in the second phase (Line 5-6 in Figure 6)
to identify the valid arbiter output generated by capturing
1→ 0 transitions.

3) Runtime temperature difference between two cores:
Since our two-core PUF design is based on the structures
in different processor cores, there may be a temperature
difference between two cores which may incur delay dif-
ferences (i.e., delay behavior may be biased). Since thermal
behaviors of the two cores are likely to be diverse depend-
ing on characteristics of the program previously executed
before the PUF operation, it may make our PUF responses
different from the expected responses.

To deal with different thermal behaviors of two ALUs,
we can employ thermal sensors to detect the temperature
difference between the ALUs. Typical microprocessors
already have the thermal sensors in their expected localized
hotspots [18], which means one does not need to deploy
additional thermal sensors only for the two-core PUF. To
guarantee the PUF operation correctness, operating systems
(OSes) can read the temperature from the thermal sensors
before the PUF operation begins. If there is a temperature
difference between two ALUs, the OS cools the hotter ALU
down by enforcing the sleep mode. Though it may incur
performance overhead due to the sleep period in one core,
the performance loss is insignificant in the authentication
process (i.e., it is not performed in general program run-
time, but only in authentication program runtime).

For a design-level solution, one can utilize two ALUs
from one core in the case of superscalar processors. The
ALUs in one core are likely to have similar thermal
behaviors due to their close physical distance. Otherwise,

5



6

one can also add redundant ripple-carry adders in the
microprocessor, which will yield a little more hardware
overhead, though our PUF has only a small implementation
overhead (a detailed analysis on the hardware overhead will
be described in the following subsection).

F. Implementation overhead
Typical microprocessors or microcontrollers already have

several cores or ALUs to support multi-programmed/multi-
threaded workloads or higher instruction-level parallelism
(ILP). Our PUF design realizes a strong PUF with much
lower hardware overhead by leveraging built-in compo-
nents. Assuming one builds a two-core PUF based upon
already built-in ALUs in a 32-bit processor, an additional
hardware cost is only arbiters, MUXes, and temporary
storage for 32-bit data. If one needs an additional XOR
obfuscation stage, only additional XOR gates are to be
added. Even if one builds a two-core PUF without an
underlying processor architecture, our PUF design only
needs 96 2-to-1 MUXes (or 288 NANDs), 128 XOR gates,
32 arbiters, and 32 flip-flops including the logic shown in
Figure 7. Compared to the conventional arbiter PUF (32-
input/32-output) which needs 2048 2-to-1 MUXes and 32
arbiters, our PUF design incurs far less hardware cost. As
a result, our PUF design yields much lower area/power
overhead compared to the conventional strong PUF designs.

IV. POST-SILICON TUNING OF TWO-CORE PUF VIA
INTENTIONAL AGING

A. High-level description of our post-silicon tuning
1) Rationale: Though our two-core PUF provides fairly

good statistical distributions in general cases (see Section
V-B), the manufactured PUFs may not show sufficiently
good statistical properties in practice. In this case, one may
have to discard manufactured PUF chips due to the low
quality statistical properties, which results in yield losses
of the chips.

The two possible problematic conditions for our manu-
factured PUFs include:

• Low inter-chip variations: This case may often hap-
pen (particularly for two-core PUFs) because the two
ALUs in each core are not close together, which may
result in systematic bias between two ALUs across
the chip instances [19]. It can also be incurred by
suboptimal layouts (i.e., asymmetric placement of the
arbiters and different wire lengths between each ALU
to the arbiters) as well as inherent process variation. In
this case, regardless of the process variation in chips,
arbiter outputs would be biased to either ‘0’ or ‘1’,
which in turn results in losing the uniqueness of the
PUF instances (i.e., reduced randomness among the
PUF outputs from different chip instances).

• High intra-chip variations: Delay-based PUFs are of-
ten susceptible to various environmental conditions.
PUFs should be able to produce stable outputs even
under extreme environmental situations. Fluctuating
environmental conditions include voltage/temperature
variation and arbiter metastability. Since circuit delay
is heavily dependent on the voltage/temperature vari-
ations, the PUF output might also be diverse under
voltage/temperature variations. Arbiter metastability is
another source of PUF output instabilities. In general
arbiter-based delay PUFs, if the delay difference be-
tween two delay lines connected to one arbiter is less

XOR1

NAND1

XOR2

NAND2

NAND3

A
i

B
i

C
i 1

C
i

S
i

Arbiter
i

i th full!adder!in!the!two core!PUF

Fig. 8. i-th full adder structure in the two-core PUF.

than the setup and hold time of the arbiter, the PUF
output is not stable and may fluctuate depending on
environmental conditions.

Manufactured PUF instances should avoid those two
conditions that definitely degrade quality of the PUFs. In
this paper, we introduce a systematic intentional aging
method to make the statistical quality of the two-core PUF
much better in terms of both inter- and intra-chip variations.
Our aging method complements the possible drawbacks of
our PUF design.

2) Strategy: Since the aging process is a one-way pro-
cess and may degrade circuit’s performance, a careful
intentional aging strategy is desired. In particular, our
PUF design leverages in-built structures as our path delay
sources (i.e., not deploying additional dedicated circuits).
In this case, aging may in turn degrade the entire circuit
performance. In pipelined processors, though the execution
stage where a processor performs ALU operations [20]
does not typically lie in the critical path of processors [21],
performance of a few chips which have their critical path in
the execution stage may be adversely affected by increased
ALU delay after the intentional aging process.

Our aging strategy is to apply intentional aging only
to the gates which do not lie in the critical path of the
adder. Figure 8 shows the structure of a full adder which
is a substructure of our two-core PUF. The critical path of
the entire adder is a carry propagation chain (NAND2 and
NAND3 gates), which implies XOR1, XOR2, and NAND1
gates except those in the last full adder (FA) do not affect
the critical path delay. In summary, the XOR1, XOR2, and
NAND1 are safe to apply the intentional aging while the
NAND2 and NAND3 gates might be very sensitive to the
circuit’s entire performance. Thus, to minimize side-effects
from the intentional aging, we selectively apply intentional
aging only to XOR1, XOR2, and NAND1 gates in the full
adder.

A careful selection of the full adders that must be
intentionally aged is also important. In our PUF design, the
n-th bit response is closely related to delay characteristics
of the n-th full adder. Our strategy is to utilize statistical
metrics to determine which full adders have bad statistical
properties. First, we figure out which PUF output bits show
a relatively bad statistical quality by investigating its output
behaviors (i.e., the probability of occurring ‘0’ and ‘1’ in
each PUF output bit). And then, we choose the full adders
which correspond to those PUF output bit. Our main targets
for intentional aging algorithms are XOR1, XOR2, and
NAND1 gates in the selected full adders.

3) Figuring out the input vectors for aging: Figure 9
shows how to generate input vectors for intentional aging.
One input vector is an operand A=0xffffffff (unsigned) and

6



7

1 1 1 1 1 1…

0 0 0 0 0 0…

0xf f f f f f f f

0x00000000

0 0 0 0 0 0…

0 0 0 1 0 0… The i th bit: 1

The remaining bits: 0

i th bit

Operand A

Operand B

Operand A

Operand B

First 

input 

vector

To apply the intentional aging to the i th full adder

0x00000000

Initial carry bit (C
0
) = 1

Second

input 

vector Initial carry bit (C
0
) = 0

Fig. 9. Input vector generation for our intentional aging process.

TABLE I
A TRUTH TABLE OF FULL ADDERS.

State Ai Bi Ci−1 XOR1 XOR2 NAND1 NAND2 NAND3
0 0 0 0 0 0 1 1 0
1 0 0 1 0 1 1 1 0
2 0 1 0 1 1 1 1 0
3 0 1 1 1 0 1 0 1
4 1 0 0 1 1 1 1 0
5 1 0 1 1 0 1 0 1
6 1 1 0 0 0 0 1 1
7 1 1 1 0 1 0 1 1

B=0x00000000 (unsigned) with an initial carry bit C0=1
(see Figure 5), assuming 32-bit two-core PUF is used. The
first input vector (two operands) is stationary regardless of
which full adder (FA) is aged. For the other input vector,
operand A is an operand of all ‘0’ (A=0x00000000). The
operand B of the second input vector has different bit
sequences depending on which full adders are intentionally
aged. The i-th bit of the operand B is ‘1’ if the i-th FA
must be aged and the rest of bits are all ‘0’. For example,
let us suppose that the first and third FA should be aged. In
this case, one can make the operand B of the second input
vector as 0x00000005 (i.e., within the 32-bit operand, only
the first and third bit are ‘1’ and all other bits are ‘0’). Note
that the initial carry bit of the second input vector should
be ‘0’ (C0=0). For our aging process, the first and second
input vectors are fed into the two-core PUF alternately.

Our aging input vector generation leverages the stress
and recovery mechanism of CMOS NBTI [22]. When a gate
has an output of ’1’, the current passes through the PMOS
devices, which means the gate is in the stress period of
NBTI. Otherwise, the gate is in the recovery period. Thus,
to age a gate, one should enforce the gate in the stress
period more than the recovery period.

As we explained in Section IV-A2, our goal is to age
only XOR gates and NAND1 gate in the full adder. The
first input vector enforces all of the full adders to reside in
the state 5 in Table I. In this cycle, XOR1, NAND1, and
NAND3 gates are in the stress period (i.e., gate output=1)
while XOR2 and NAND2 gates are in the recovery period
(i.e., gate output=0). In the next cycle, by using the second
input vector, the full adders which must be aged are
enforced to be in the state 2 in Table I while the other
full adders are in the state 0.

Table II shows the ratio between the stress and recovery
period when our first and second aging input vector are
alternately fed into the two-core PUF. As a result, only
XOR1 and NAND1 gate are aged while the other gates
are minimally affected because the stress and recovery
period occur alternately. Though it seems that NAND1
gates are aged far more than the other gates, NAND1 gates
hardly affect output delays since they are neither directly

TABLE II
STRESS/RECOVERY PERIOD RATIO AND DUTY CYCLE OF EACH GATE IN

A FULL ADDER (FA).

FA in which aging is applied FA in which aging is not applied
Stress period Recovery period Duty cycle Stress period Recovery period Duty cycle

XOR1 100% 0% 1 50% 50% 0.5
XOR2 50% 50% 0.5 0% 100% 0

NAND1 100% 0% 1 100% 0% 1
NAND2 50% 50% 0.5 50% 50% 0.5
NAND3 50% 50% 0.5 50% 50% 0.5

connected to the paths to the arbiters nor placed on the
critical path of the adder.

NAND2 and NAND3 gates may also be a little aged
together due to the partial recovery mechanism of NBTI.
In the case of stress period=50% and recovery period=50%
(i.e., duty cycle=0.5), the gate is aged 2∼3 times less
than the gate with a stress period of 100% [7]. However,
assuming that one increases Vth by 0.1V via our aging
process, the entire impact on the critical paths of the adder
is only 7.53% in the worst case. Note that increasing Vth by
0.1V is fairly sufficient to obtain a good statistical property
of our PUF (detailed results will be shown in Section
V-C). It means that our aging process hardly affects the
entire circuit performance because most processors have
their critical path in the cache access (MEM stage) or
register file access pipeline stage (RF/ID stage) [21]. Note
that there is no additional hardware overhead required only
for our intentional aging which can be performed with the
specialized input vectors or programs.

During our aging process, the wires as well as logic
gates would be aged. However, the NBTI aging mechanism
mostly affects PMOS devices [7], which means the aging
in wires is negligible compared to the aging in the logic
gates.

For efficient intentional aging in the post-silicon stage,
designers or manufacturers can perform the intentional
aging process with appropriately high temperature envi-
ronment. We also note here that the high temperature
environment used in our intentional aging process should
not incur any break down in devices, but only accelerate
aging process.

4) Sample spaces to measure the statistical properties:
There are two types of the sample spaces which are used
in our aging algorithms: inter-chip sample space and intra-
chip sample space.

• inter-chip sample space: it is composed of the PUF
responses from different chip instances when the same
challenge input is fed. Note that one can feed a large
number of challenges to generate a representative and
sufficiently large number of inter-chip sample spaces.
In this paper, we give 1,000,000 random challenge in-
puts to the PUF instances (i.e., we generate 1,000,000
inter-chip sample spaces).

• intra-chip sample space: the bit samples are the PUF
responses from the same chip with the same challenge
under different environmental conditions. The sample
space is composed of 11 PUF responses and each re-
sponse is extracted under different environmental con-
ditions. There are three factors considered to generate
different environmental conditions: voltage variation,
temperature variation, and arbiter metastability. For
generating 11 different environmental parameters, the
voltage and temperature are randomly selected within
the range of 1.0V-1.2V and 253K-393K, respectively.
Arbiter metastability is also considered as a source of
unstable PUF responses. For high representativeness

7



8

Alg. 1 Algorithm for intentional aging to N-bit two-core PUF to
increase inter-chip variations.
Input: Statistical distribution of the PUF results

in the inter-chip sample space
1 for i ← 1 to k // Main loop
2 Update PUF results and statistical distribution;
3 for j ← 1 to N
4 Pj ← prob. of occurrence of ‘1’

in j-th bit within the responses
across different chip instances;
(i.e., in the inter-chip sample spaces);

5 if(Pj ≥ 0.6)
6 Apply aging (Vth increment of 0.01V)

to j-th FA in Core0;
7 if(Pj ≤ 0.4)
8 Apply aging (Vth increment of 0.01V)

to j-th FA in Core1;
9 endfor
10 endfor

of the samples, 1,000,000 different intra-chip sample
spaces are generated with 1,000,000 different chal-
lenge inputs for each chip sample.

B. Aging algorithm to increase inter-chip variations

To increase inter-chip variations, one should make the
probability occurring ‘0’ and ‘1’ as close as possible for
each response bit across PUF instances to minimize a bias
in the responses. For i-th PUF response bit, i-th full adder
(FA) mainly contributes to the delay to i-th arbiter. Thus,
in the case that one tries to change the i-th bit response,
one can selectively apply the aging process to the i-th full
adder. Depending on the occurring frequency of 0 and 1
for each response bit in the inter-chip sample spaces, one
can determine which core’s i-th full adder must be aged.

Alg. 1 shows a detailed algorithm to make inter-chip
variations of the two-core PUFs higher. For the input of this
algorithm, the statistical distribution of the PUF responses
in the inter-chip sample spaces is required. To determine
which core’s full adders must be aged, our algorithm in-
vestigates the Pj which represents probability of occurring
‘1’ in j-th bit in the inter-chip sample spaces (Line 4 in
Alg. 1). In this paper, when updating the PUF statistical
distributions with the generated inter-chip sample spaces,
we use 1,000,000 random challenge programs which are
newly selected for each iteration. Thus, the bias towards
a certain set of challenges (i.e., 1,000,000 challenges used
for updating the statistical distributions) is removed. If Pj is
greater than 0.6, it means that the j-th FA in the core0 tends
to be faster than that in the core1. Thus, our algorithm apply
the aging process to the j-th FAs in Core0. Our algorithm
increases Vth of the XOR1 gate in the FA by 0.01V for
each iteration of the intentional aging process. The input
vectors for our aging process are alternately fed into the
PUF until the Vth of the XOR1 gate is increased by 0.01V.
By using Equation 2, one can obtain an appropriate stress
time to increase Vth by 0.01V under a certain temperature.
The input vector sequence for selectively applying the aging
process to a specific FA is already explained in Section
IV-A3. On the other hand, if Pj is less than 0.4, our
algorithm applies the aging process to j-th FAs in Core1
to make Core1’s FAs slower than before. This process is
iterated k times and the number of iterations (k) can be

Alg. 2 Algorithm for intentional aging to N-bit two-core PUF to
reduce intra-chip variation.
Input: Statistical distribution of the PUF results

in the intra-chip sample space
1 for i ← 1 to k // Main loop
2 Update PUF results and statistical distribution;
3 for j ← 1 to N
4 Pj ← prob. of occurrence of ‘1’ in j-th bit

from the responses in the sample space
across various environmental parameters;
(i.e., in the intra-chip sample spaces);

5 if(Pj ≥ 0.5)
6 Apply aging (Vth increment of 0.01V)

to j-th FA in Core1;
7 else
8 Apply aging (Vth increment of 0.01V)

to j-th FA in Core0;
9 endfor
10 endfor

determined by considering the degree of the delay bias.
Note that this algorithm is applied globally to the chips.

C. Aging algorithm to reduce intra-chip variation

To reduce intra-chip variation, one should make the delay
difference between two delay lines (which are connected to
the arbiters) larger so that the PUF can be stable under a
certain degree of the environmental variabilities. By doing
so, we try to make the probability of occurrence of unstable
PUF responses as low as possible.

Alg. 2 describes our algorithm to reduce intra-chip
variations. With a given or updated statistical distribution of
the PUF responses in intra-chip sample spaces (as in Alg.
1, one million random challenges which are newly chosen
for each iteration are used), our algorithm applies the aging
process to make the PUF responses more stable. For j=1
to 32, if Pj is greater than 0.5 (i.e., Core0’s j-th FA tends
to be faster than Core1’s j-th FA), then our algorithm ages
the j-th FA in Core1 to make the delay difference between
the FAs in Core0 and Core1 larger than before. Otherwise,
our algorithm ages j-th FAs in Core0. Similar to Alg. 1,
Vth of the XOR1 gate in the FA is increased by 0.01V for
each iteration and the main loop is repeated by k times.
Unlike Alg. 1, Alg. 2 is individually applied to each chip.

Applying the intentional aging by using our algorithms
may incur a huge post-processing cost. In case that the huge
post-processing overhead is expected, one can selectively
apply the Alg. 2 to the PUF chips of which stability does
not meet a quality standard, which can be determined by
PUF designer or manufacturer considering the field usage of
the PUFs. There can also be an efficient trade-off between
the post-processing cost and PUF quality standard (or yield
of the manufactured PUF), though analyzing the detailed
trade-off between them is out of scope of this paper.

D. Reliability and security discussions on aging

For our PUF design, there are several security, reliability,
and maintainability issues on aging: malicious usage of our
aging algorithm and natural aging effect. In this subsection,
we address those issues and introduce possible countermea-
sures.

8



9

1) Malicious usage of our algorithm: An adversary may
try to make the PUF responses of a certain chip as he or
she desires by using our algorithms’ capability of changing
the PUF responses. For example, the adversary can try
to use our aging algorithm in the opposite way, which
may make the statistical property of our PUF worsened.
One possible way to prevent this attack is to deploy aging
sensors [23][24], which can detect how much the circuit
is aged by measuring the frequency of ring oscillators or
delay elements. If the aging sensor detects a certain degree
of the aging within a short time period, the OS can enforce
the PUF to reside in a sleep mode so that the ALU can
be cooled down and stop executing the malicious code. As
another solution, already employed thermal sensors can also
detect the execution of the malicious code for malicious
aging. This is because the malicious code which tries to
age the PUF by an adversary should intensively access the
ALU, which makes it significantly hot. It triggers dynamic
thermal management (DTM) to prevent thermal emergency
in a microprocessor [18][25]. The DTM also cools down
the ALU by engaging the coercive sleep mode in the
microprocessor. Since the NBTI aging heavily depends on
the circuit temperature, cooled ALUs are affected little from
the malicious aging by the adversary.

2) Natural aging and recovery due to the NBTI: The
natural aging may affect the PUF responses. However, there
are two important reasons which support the claim that
our PUF design is safe against the natural aging effect.
i) Our PUF is based on the delay comparison between two
symmetric delay lines by using the arbiter. In real usage
cases, both paths are generally aged together, so that the
PUF responses are not likely to be affected by natural aging
effects. ii) NBTI mechanism has a recovery period (i.e.,
increased Vth due to the aging is recovered to a certain
extent) when PMOS devices are not used. It means that
the PUF structure may not be aged too much under the
assumption that the most of the gates have a duty cycle of
0.5. For a safeguard mechanism, one can also deploy the
aging sensors as introduced in the previous subsection, in
order to detect the natural aging as well as malicious aging.

In addition to the natural aging, increased Vth due to our
intentional aging may be recovered by the NBTI recovery.
In this case, the improved statistical property of the PUFs
may be worsened again. However, the recovered Vth by
the NBTI recovery cannot reach the original Vth due to
the partial recovery of the NBTI [7]. In case that a high
degree of natural NBTI recovery is expected, one can make
that the partial recovery from NBTI hardly affects the
PUF responses (e.g., further conducting the aging process
considering the expected partial recovery). Note that quan-
tifying the impact of NBTI recovery and investigating a
detailed mechanism for the aging process considering the
NBTI recovery are out of the scope of this paper. We leave
them as our future work.

V. EVALUATION

A. Evaluation setup
Our evaluation results are based on an accurate gate-level

delay simulation framework. We gave a threshold voltage
(Vth) variation to each chip instance. Though, in the case
of Vth, random variation is known to be more remarkable
than systematic variation [1], Vth distributions are also
spatially correlated [2][21][26]. Hence, we used a quad-
tree process variation model [1] to precisely model both
the random and systematic variation of the Vth. Assuming

TABLE III
AVERAGE INTER-CHIP HAMMING DISTANCE RESULTS.

Mean
3×σ/µ Vth×20% Vth×30% Vth×40%

32-bit output 12.38 (38.69%) 12.21 (38.16%) 12.48 (39.00%)
64-bit output 22.67 (35.42%) 21.92 (34.25%) 22.92 (35.81%)

Standard deviation
3×σ/µ Vth×20% Vth×30% Vth×40%

32-bit output 2.76 2.75 2.76
64-bit output 3.83 3.80 3.84

Vth distributions in a chip follow the normal distribution
N (µ, σ2), we considered three different process variation
severities: 3×σ/µ=Vth×20%, Vth×30%, and Vth×40%.
We generated 1,000 different chip instances for our Monte
Carlo simulations for each process variation severity. Our
ALU (adder) model is based on the Xilinx fast ripple-carry
adder model [27]. The placement information is used to
map Vth parameters (generated by [1]) to each gate in
a chip. We obtained a nominal gate delay from HSPICE
circuit simulations with 45nm process technology. By using
Equation 1, we figured out delay of each gate according to
Vth of that gate. Note that we exclude the simulation results
when the additional XOR obfuscation step is deployed since
it is not essential but optional in our PUF design.

B. Statistical results for two-core PUFs
1) Inter-chip variations: In this subsection, we present

inter-chip variation results of our two-core PUF for both
32-bit and 64-bit ALUs. To quantify the inter-chip varia-
tions, we measure inter-chip Hamming distances between
different PUF instances when we feed the same challenge
program to both cores. We show the average inter-chip
Hamming distance results from 1,000,000 different chal-
lenge inputs (challenge programs).

Table III shows the inter-chip Hamming distances (mean
and standard deviation) across three difference process
variation severities. As Table III suggests, uniqueness of
our two-core PUF is comparable to the existing strong PUF
designs [4]. On average, the inter-chip Hamming distance
is 12.35 bits (38.61% - ideally 50%) within the 32-bit re-
sponses. Regardless of process variation severities (3×σ/µ
=Vth×20%, 30%, and 40%), the inter-chip variations are
shown to be around 38%. It means that our two-core PUF
can be a low-overhead alternative for conventional strong
PUFs.

We also provide the results for 64-bit two-core PUF
design since many commodity microprocessors are using
the 64-bit datapath. Across three process variation severity
cases, the average inter-chip Hamming distance is 22.51
bits (35.16%).

2) Intra-chip variations: In this subsection, we present
intra-chip variation results under various environmental
circumstances. We consider three cases that can affect the
intra-chip variations: voltage variation, temperature varia-
tion, and arbiter metastability.

Table IV shows intra-chip variation results. To estimate
the intra-chip variations, we first give the same challenge to
the same chip by 11 times and collect the PUF responses.
Each of 11 PUF operations is performed under random
environmental conditions (the voltage and temperature are
randomly selected within the range of 1.0V-1.2V and 253K-
393K, respectively). Arbiter metastability also generates
some noise to PUF responses. Intra-chip Hamming distance

9



10

TABLE IV
AVERAGE INTRA-CHIP HAMMING DISTANCE VARIATION RESULTS

UNDER 1,000,000 DIFFERENT CHALLENGE INPUTS.

Mean
3×σ/µ Vth×20% Vth×30% Vth×40%

32-bit output 3.59 (11.22%) 2.77 (8.66%) 1.36 (4.25%)
64-bit output 6.76 (10.56%) 5.06 (7.91%) 3.31 (5.17%)

Standard deviation
3×σ/µ Vth×20% Vth×30% Vth×40%

32-bit output 1.79 1.59 1.14
64-bit output 2.46 2.16 1.77

TABLE V
AVERAGE INTER-CHIP HAMMING DISTANCE RESULTS BEFORE AND

AFTER OUR INTENTIONAL AGING PROCESS.

Normal case Extreme case
Before aging 12.47 (38.96%) 5.79 (18.10%)
After aging 14.47 (45.23%) 13.58 (42.45%)

results are collected under 1,000,000 different challenge
inputs and also averaged out to obtain the final results.

As shown in Table IV, the average intra-chip Hamming
distances are 2.58 bits and 5.04 bits (8.05% and 7.88% -
ideally 0%), in the case of 32-bit ALUs and 64-bit ALUs,
respectively. Since our PUF design is based on the delay
comparison mechanism of the arbiter, most of the intra-
chip variations are due to the arbiter metastability. One
thing worth noting is the intra-chip Hamming distances
under more severe process variation scenarios tend to be
lower. This is because the delay differences between two
symmetric delay paths tend to be higher under severe
process variations, which makes our PUF more robust under
a certain level of the environmental variations.

Though the intra-chip Hamming distances under less
severe process variation scenarios may seem to be non-
negligible, it can be alleviated by our post-silicon inten-
tional aging algorithms. The post-silicon tuning results for
intra-chip variation reduction will be presented in Section
V-C2.

C. Statistical results for post-silicon tuning
1) For inter-chip variation improvement: To figure out

the effectiveness of our proposed intentional aging method,
we performed a Monte Carlo simulation with 1,000 differ-
ent chip instances. The process variation severity is 3×σ/µ
=Vth×30%. In this subsection, we provide two different
practical cases to apply our intentional aging method to
increase inter-chip variations. The first is a normal case
where the delay of two cores are not significantly biased.
The other is an extreme case in which the delay of two
cores is significantly biased [19]. For the extreme case, after
generating the chip instances using the quad-tree process
variation model, we gave an additional 5% delay bias effect
between two cores in each chip instance so that the ALU
in one core tends to be faster than that in the other core.

Table V shows average inter-chip Hamming distance
(HD) results before and after our intentional aging process.
Before applying our intentional aging process, the baseline
(before aging) inter-chip HD is 12.47 (12.47/32=38.96% -
50% is an ideal case) and 5.79 (5.79/32=18.10%) for the
normal and extreme case, respectively. It is quite natural
that the inter-chip HD for the extreme case is lower than
that for the normal case because it has a higher possibility
not to have unique responses but to have biased responses

14

16 50%

10

12

ip
 H

D 37.5%

8

10

te
r-

c
h

25%

4

6
Normal case Extreme case

A
v
g

.i
n

12.5%

0

2

A

0%0

0 1 2 3 4 5 6 7 8 9 1011 121314151617181920

k (# of iterations)

0%

(# o e a o s)

Fig. 10. Average inter-chip Hamming distance results with regard to the
number of iterations (k) in Alg. 1.

3.5

4 12.5%

2.5

3

h
ip

H
D

9.375%

1 5

2

2.5

in
tr

a
-c

h

6.25%

1

1.5

A
v
g

.i

3.125%

0

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k (# of iterations)

Fig. 11. Average intra-chip Hamming distance results with regard to the
number of iterations (k) in Alg. 2.

across the different chip instances. For the normal case,
after applying Alg. 1 with k=20, the inter-chip HD be-
comes 14.47 (14.47/32=45.23%), which means uniqueness
of the PUF responses across different chips is significantly
improved. For the extreme case, the average inter-chip HD
becomes up to 13.58 (13.58/32=42.45%). It implies that
our intentional aging method makes the chip instances
practically usable even in the case that a significant delay
bias exists between two cores due to systematic process
variations.

To see how one can determine the parameter k in
practice, we also show a trend of the inter-chip HD as
we increase k in Figure 10. After 7 iterations (i.e., Vth
increase by at most 0.07V via our intentional aging), the
inter-chip HD is almost saturated. In other words, only
with 7 iterations one can gain the maximum obtainable
uniqueness for a certain set of the chip samples.

2) For intra-chip variation reduction: Figure 11 shows
effectiveness of Alg. 2. Before applying Alg. 2, the
average intra-chip Hamming distance (HD) is 3.77
(3.77/32=11.78% - 0% is an ideal case), which implies there
exist Hamming distances of 3-4 bits upon the repetitive
measurements with the same challenge. However, after
applying Alg. 2 to each chip with k=20, the intra-chip
HD is reduced to 0.07 (0.07/32=0.26%), which implies
a significant the intra-chip HD reduction. With only 3
iterations of our algorithm (i.e., Vth increase by at most
0.03V via our intentional aging), one can get the the intra-
chip HD values below 1.0, which implies that there is an
average of at most only one-bit Hamming distances within
the 32-bit responses upon the repetitive measurements. In
this case, one can deploy a light-weight error correction
method (e.g., single error correction double error detection)

10



11

0.24

Before aging After aging
b

it
i

24%

0.18

H
D

 o
f 
b

18%

0.12

tr
a

-c
h

ip

12%

0.06

A
v
g

.i
n

t

6%

0

1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829303132

Bit number i (1~32)

0%

Bit number i (1 32)

Fig. 12. Average intra-chip Hamming distance of bit i (i=1-32) results
within 32-bit responses before and after applying Alg. 2 with k=20.

instead of the high overhead error correction methods such
as BCH coding [5][6]. If the PUF designers want to make
the PUF responses in terms of intra-chip variations more
robust, it is possible to apply a higher k in Alg. 2.

Figure 12 shows the average intra-chip HD per bit results
within the 32-bit responses before and after applying Alg.
2 with k=20. It is measured by slicing the 32-bit response
into each bit and measuring the HD for each bit i of the
PUF responses in the intra-chip sample spaces. Though
the average intra-chip HD per bit depends on the delay
characteristics of each chip, after applying Alg. 2, the
intra-chip HD of bit i becomes under 0.01 for all is (1-
32), which means the bit responses become very stable
across different environmental conditions. On average, our
algorithm reduces the average intra-chip HD of bit i from
0.11 to 0.002 after 20 iterations of the intentional aging
process, which means the average intra-chip HD per bit is
reduced by 98%.

VI. RELATED WORK

A. Physically Unclonable Functions (PUFs)
A plausible method for unique and unclonable identifica-

tion of devices and objects is based on the inherent and hard
to forge randomness or disorder of their underlying physical
fabrics. To overcome the exposure associated with storage
of digital keys, a novel class of secret embedding, storage,
and extraction widely known as PUFs has emerged. The se-
cret generation and storage mechanisms in PUFs are based
on the inherent disorder present in the silicon [3]. Memory-
based PUFs, which are a type of weak PUFs [4][28][29],
are typically used for secure key storages. Arbiter PUFs
[6], that are known to belong to the strong PUF family, are
composed of a series of switches (MUXes), which change
delay paths according to the input challenge bits. For better
statistical properties and to make the structure resilient to
modeling attacks, different PUF outputs can also be XOR-
ed [30]. Ring-oscillator (RO) PUFs [6] are composed of a
long chain of inverters. Glitch PUFs [31] exploit a glitch
propagation variability along the delay paths. In [5] and
[32], the PUF structures combined with microprocessor
architecture are proposed. Apart from PUF design studies,
there exists work in literature on detailed analysis [33][34],
formal models [35], and modeling attacks on PUFs [16].

In this work, we proposed a new strong PUF design,
which is fundamentally based on delay comparison between
two symmetric paths by using arbiters. Our PUF design is
instruction-controlled, and leverages built-in components,
i.e., arithmetic logic unit (ALU) in a classic processor
architecture for path delay sources instead of deploying
separate delay sources as presented in [6].

B. Leveraging aging to PUFs and circuits
Circuit aging is a common mechanism by which perfor-

mance of the circuits is degraded as they are used. Though a
large body of work for aging resilience in circuit structures
has been studied, in this paper, we focus on the case where
one leverages the intentional aging of the PUFs for tuning
the statistical properties of the PUF responses. Reference
[36] provided the first set of formal properties for the
statistical distribution of the PUF responses in terms of the
inter-chip and intra-chip variation.

A hardware aging-based software metering technique
[37] precisely tracks the software usage by feeding the
test vectors to the specific circuit. Device-aging based PUF
design [38] leverages aging mechanism to shape the PUF
responses. It can also be used for a graduation of the PUF
responses which is robust to PUF modeling attacks or for
better statistical properties of the PUF by changing the PUF
responses. Public PUFs (PPUFs) [39][40][41] leverage the
aging to shape the PUF responses. The main purpose of
applying aging to PPUFs is to make the responses of the
PUFs, which are shared among the trusted parties, iden-
tical for low-power consumption and fast authentication.
Leveraging intentional aging for generating stable outputs
in SRAM (static random access memory) PUFs was also
proposed [42]. Negative bias temperature instability (NBTI)
aging mechanism enables a more stable output generation
from SRAM PUFs.

To the best of our knowledge, our work is the first to
introduce systematic aging of a strong PUF (two-core PUF)
to get a better statistical distribution of PUF responses
(i.e., signatures) both in terms of inter-chip and intra-chip
variations.

VII. CONCLUSION

In this paper, we proposed a two-core strong PUF archi-
tecture. Our design is low overhead and robust to systematic
variations because of its inherently symmetric construction.
To improve the statistical distribution of the PUF outputs,
we devised a novel intentional aging algorithm which
makes the PUF instances much more secure and stable in
terms of both inter- and intra-chip variations. Our evaluation
results suggest that our proposed algorithms greatly im-
prove the quality of the PUF challenge-response statistical
properties. By applying the algorithm to increase inter-chip
variations, one can obtain the PUF responses which have
higher uniqueness across different chip instances. Also, the
algorithm to reduce intra-chip variations make our PUF
much more robust to the environmental fluctuation, which
also enables a deployment of low overhead error correction
schemes for robustness and stability of our PUFs.

ACKNOWLEDGMENT

The contractor acknowledges government support in the
publication of this paper. This material is based upon work
funded by AFRL under contract No. FA8750-12-2-0062.
Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of AFRL. This research
was also supported in parts by NSF trust hub (R3C880) and
ARO YIP grant (R17450).

REFERENCES

[1] B. Cline, K. Chopra, D. Blaauw, and Y. Cao, “Analysis and modeling
of CD variation for statistical static timing,” in ICCAD, 2006.

11



12

[2] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas, “VARIUS: A model of process variation and
resulting timing errors for microarchitects,” IEEE Transactions on
Semiconductor Manufacturing, vol. 21, no. 1, pp. 3–13, 2008.

[3] U. Ruhrmair, S. Devadas, and F. Koushanfar, Security based on
Physical Unclonability and Disorder. Springer, 2011.

[4] R. Maes and I. Verbauwhede, Physically Unclonable Functions:
a Study on the State of the Art and Future Research Directions,
D. Naccache and A.-R. Sadeghi, Eds. Springer, 2010.

[5] G. E. Suh, C. W. O’Donnell, and S. Devadas, “AEGIS: A single-chip
secure processor,” Inf. Secur. Tech. Rep., 2005.

[6] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in DAC, 2007.

[7] R. Vattikonda, W. Wang, and Y. Cao, “Modeling and minimization
of PMOS NBTI effect for robust nanometer design,” in DAC, 2006.

[8] D. Markovic, C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey,
“Ultralow-power design in near-threshold region,” in Proceedings
of the IEEE, 2010.

[9] F. N. Najm, “A survey of power estimation techniques in VLSI
circuits,” IEEE Trans. Very Large Scale Integr. Syst., 1994.

[10] M. Majzoobi and F. Koushanfar, “Time-bounded authentication of
FPGAs,” Information Forensics and Security, IEEE Transactions on,
vol. 6, no. 3, pp. 1123–1135, 2011.

[11] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short paper:
Lightweight remote attestation using physical functions,” in WiSec,
2011.

[12] S. Devadas, G. E. Suh, S. Paral, R. Sowell, and T. Ziola, “Design
and implementation of PUF-based unclonable RFID ICs for anti-
counterfeiting and security applications,” in IEEE International
Conference on RFID, 2008, pp. 58–64.

[13] L. N. Chakrapani, K. K. Muntimadugu, A. Lingamneni, J. George,
and K. V. Palem, “Highly energy and performance efficient embed-
ded computing through approximately correct arithmetic: a math-
ematical foundation and preliminary experimental validation,” in
CASES, 2008, pp. 187–196.

[14] Z. M. Kedem, V. J. Mooney, K. K. Muntimadugu, and K. V. Palem,
“An approach to energy-error tradeoffs in approximate ripple carry
adders,” in ISLPED, 2011, pp. 211–216.

[15] D. G. Bailey, Design for Embedded Image Processing on FPGAs.
John Wiley & Sons, 2011.

[16] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” in ACM CCS, 2010.

[17] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and
S. Devadas, “Slender PUF protocol: A lightweight, robust, and
secure authentication by substring matching,” in TrustED, 2012.

[18] J. Kong, S. W. Chung, and K. Skadron, “Recent thermal management
techniques for microprocessors,” ACM Computing Surveys, vol. 44,
no. 3, pp. 13:1–13:42, 2012.

[19] E. Humenay, D. Tarjan, and K. Skadron, “Impact of process varia-
tions on multicore performance symmetry,” in DATE, 2007.

[20] D. A. Patterson and J. L. Hennessy, Computer Organization and
Design - The Hardware / Software Interface (Revised 4th Edition),
ser. The Morgan Kaufmann Series in Computer Architecture and
Design. Morgan Kaufman, 2012.

[21] J. Kong, Y. Pan, S. Ozdemir, A. Mohan, G. Memik, and S. W. Chung,
“Fine-grain voltage tuned cache architecture for yield management
under process variations,” IEEE Trans. VLSI Syst., 2012.

[22] S. V. Kumar, C. H. Kim, and S. S. Sapatnekar, “NBTI-aware
synthesis of digital circuits,” in DAC, 2007.

[23] M. Chen, V. Reddy, S. Krishnan, V. Srinivasan, and Y. Cao, “Asym-
metric aging and workload sensitive bias temperature instability
sensors,” IEEE Design & Test of Computers, vol. 29, no. 5, pp.
18–26, 2012.

[24] M. Valdes-Pena, J. Fernandez Freijedo, M. Moure Rodriguez,
J. Rodriguez-Andina, J. Semiao, I. Teixeira, J. Teixeira, and F. Var-
gas, “Design and validation of configurable online aging sensors
in nanometer-scale FPGAs,” IEEE Transactions on Nanotechnology,
vol. 12, no. 4, pp. 508–517, 2013.

[25] J. Kong, J. K. John, E.-Y. Chung, S. W. Chung, and J. S. Hu, “On
the thermal attack in instruction caches,” IEEE Trans. Dependable
Sec. Comput., vol. 7, no. 2, pp. 217–223, 2010.

[26] J. Kong and S. W. Chung, “Exploiting narrow-width values for
process variation-tolerant 3-D microprocessors,” in DAC, 2012, pp.
1197–1206.

[27] P. Zicari and S. Perri, “A fast carry chain adder for Virtex-5 FPGAs,”
in MELECON, 2010.

[28] D. Holcomb, W. Burleson, and K. Fu, “Power-up SRAM state as an
identifying fingerprint and source of true random numbers,” IEEE
Transactions on Computers, 2009.

[29] S. S. Kumar, J. Guajardo, R. Maes, G. J. Schrijen, and P. Tuyls,
“The butterfly PUF: Protecting IP on every FPGA,” in HOST, 2008.

[30] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” in ICCAD, 2008.

[31] D. Suzuki and K. Shimizu, “The glitch PUF: a new delay-PUF
architecture exploiting glitch shapes,” in CHES, 2010.

[32] A. Maiti and P. Schaumont, “A novel microprocessor-intrinsic phys-
ical unclonable function,” in FPL, 2012.

[33] S. Katzenbeisser, Ünal Kocabas, V. Rozic, A.-R. Sadeghi, I. Ver-
bauwhede, and C. Wachsmann, “PUFs: Myth, Fact or Busted? a
security evaluation of physically unclonable functions (PUFs) cast
in silicon,” in CHES, 2012.

[34] M.-D. M. Yu, R. Sowell, A. Singh, D. M’Raı̈hi, and S. Devadas,
“Performance metrics and empirical results of a PUF cryptographic
key generation ASIC,” in HOST, 2012.

[35] F. Armknecht, R. Maes, A. Sadeghi, F.-X. Standaert, and C. Wachs-
mann, “A formalization of the security features of physical func-
tions,” in IEEE Symposium on Security and Privacy, 2011.

[36] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for
design and implementation of secure reconfigurable PUFs,” ACM
Transactions on Reconfigurable Technology and Systems, 2009.

[37] F. Dabiri and M. Potkonjak, “Hardware aging-based software me-
tering,” in DATE, 2009.

[38] S. Meguerdichian and M. Potkonjak, “Device aging-based physically
unclonable functions,” in DAC, 2011.

[39] M. Potkonjak, S. Meguerdichian, A. Nahapetian, and S. Wei, “Dif-
ferential public physically unclonable functions: architecture and
applications,” in DAC, 2011.

[40] S. Meguerdichian and M. Potkonjak, “Matched public PUF: ultra
low energy security platform,” in ISLPED, 2011.

[41] ——, “Using standardized quantization for multi-party PPUF match-
ing: Foundations and applications,” in ICCAD, 2012.

[42] M. Bhargava, C. Cakir, and K. Mai, “Reliability enhancement of
bi-stable PUFs in 65nm bulk CMOS,” in HOST, 2012.

Joonho Kong (S’07-M’11) received the B.S.
degree in Computer Science from Korea Uni-
versity, Seoul, Korea, in 2007. He received the
M.S. and Ph.D. degrees in Computer Science
and Engineering from Korea University, Seoul,
Korea, in 2009 and 2011, respectively. He is
currently a postdoctoral researcher in the Depart-
ment of Electrical and Computer Engineering,
Rice University. His research interests include
computer architecture design, temperature-aware
microprocessor design, reliable microprocessor
cache design, and hardware security. He is a

member of IEEE.

Farinaz Koushanfar (S’99-M’06) received the
Ph.D. degree in electrical engineering and com-
puter science and the M.A. degree in statistics,
both from University of California Berkeley, in
2005, and the M.S. degree in electrical engineer-
ing from the University of California Los Ange-
les. She is currently an Associate Professor with
the Department of Electrical and Computer En-
gineering, Rice University, Houston, TX, where
she directs the Texas Instruments DSP Leader-
ship University Program. Her research interests
include adaptive and low power embedded sys-

tems design, hardware security, and design intellectual property protec-
tion.

Prof. Koushanfar is a recipient of the Presidential Early Career Award
for Scientists and Engineers (PECASE), the ACM SIGDA Outstanding
New Faculty Award, the National Academy of Science Kavli Foundation
fellowship, the Army Research Office (ARO) Young Investigator Program
Award, the Office of Naval Research (ONR) Young Investigator Program
Award, the Defense Advanced Project Research Agency (DARPA) Young
Faculty Award, the National Science Foundation CAREER Award, MIT
Technology Review TR-35, an Intel Open Collaborative Research fellow-
ship, and a best paper award at Mobicom.

12




