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1.0  SUMMARY 

This project was part of the DARPA Virtual Robotics Challenge (VRC). The problem statement, 
competition rules and scoring procedures were identical for all teams. Briefly, the goal was to 
control a simulated Atlas robot in the Gazebo/Open Dynamics Engine (ODE) virtual 
environment and make it walk, drive a car, and connect a hose. Our approach was based on 
model-predictive control (MPC). We created a parallel simulation in our virtual environment 
(MuJoCo) which was able to simulate the robot dynamics much faster than real-time. This made 
it possible to optimize the controls online -- by exploring many candidate movement strategies 
and finding the one that is expected to work best starting from the currently estimated state of the 
robot. The quality of the candidate strategies was evaluated by a cost function, which we 
designed in advance so as to capture the requirements of each task. The operator was able to 
assign different tasks to the robot by selecting (from a menu) the cost function to be optimized 
next. The operator was also responsible for visual perception -- by positioning and orienting 
spatial targets overlaid on images from the robot's camera. 

In the course of the project we succeeded in refining our MPC machinery to the point where it 
could indeed run in real-time on such a complex robot, without any dynamics simplifications or 
model reductions. We also made progress in cost function design, and identified families of costs 
that capture common tasks and yet are amenable to efficient optimization. Furthermore we 
developed a framework for hierarchical MPC, where the high level can modify the cost being 
optimized on the low level. In the present implementation this high level can be either an 
operator using an interface designed specifically for this type of control, or a state machine that 
switches costs automatically when certain predefined criteria are met. The work we did in this 
project is described in a paper accepted in Humanoids 2013. 

In the actual competition our system did not perform as well as we had hoped. This was partly 
because we run out of time, and partly because Gazebo/ODE inaccuracies caused more 
complications for us than for most other teams (we relied heavily on model-based control, and 
also generated very dynamic movements which resulted in large error spikes in the Gazebo 
simulated Inertial Measurement Units (IMUs) for unknown reasons). As one team member put it, 
this was a competition for building model airplanes and instead we built a 3D printer. But now 
that we have this universal control machinery, it is helping us make rapid progress in other 
robotics projects. 

Overall we believe that the MPC approach we pursued in the VRC will revolutionize robotic 
control in the near future. The main challenge is to be able to run the necessary optimization in 
real-time, and we can already do it. Additional computing hardware and algorithmic 
improvements will of course help, but our simulation results are already better than any other 
approach to automatic control we are aware of. The next step is to address modeling and 
estimation errors which are inevitable with physical systems. This is something we are already 
working on. Our first results along these lines, on controlling a physical 12-degree-of-freedom 
hand in dexterous object manipulation, were just submitted to ICRA 2014. 
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2.0  INTRODUCTION 

Disaster response is an area where robots can play an important role, by performing tasks in 
hazardous environments. Remote human operators are likely to be available to help the robot in 
every way possible. However disasters tend to interfere with communications, limiting the ability 
to tele-operate the robot by traditional means. This calls for an approach somewhere in between 
tele-operation and full autonomy: the operator receives sensor data intermittently, and sends 
commands that activate low-level behavioral routines -- which then manage all the degrees of 
freedom of the robot in real-time, until the next command from the operator arrives. 

Apart from its practical importance, this setting is interesting scientifically because it isolates the 
challenging and relatively well-defined problem of sensorimotor control from high level 
perception and decision making (which are offloaded to the human operator). The problem 
difficulty arises from the complexity of the robot and environment, combined with the 
requirement to perform multiple different tasks -- which in principle should limit adhoc 
approaches and favor more principled solutions that generalize to multiple tasks. 

We opted for a universal control strategy, aiming to solve all the VRC tasks using the same 
algorithms and software. The only thing that changes from one task to another is the cost 
function quantifying the notion of performance. The key idea is real-time numerical 
optimization: given the current estimate of the robot's state, we optimize a trajectory plan up to 
some time horizon, and execute it until the next plan becomes available. This makes it possible 
for the robot to discover online what control signals are appropriate at the current state, without 
having to pre-compute global solutions that work in every possible situation (which is generally 
difficult due to the curse of dimensionality). The principal challenge is performing the 
optimization fast enough to keep up with the real-time physics. We are able to do this thanks to 
recent advances in algorithms and software, as well as ever-faster computing hardware.  
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3.0  METHODS, ASSUMPTIONS AND PROCEDURES 

3.1  System Overview 

Figure 1 shows a block diagram of our system. The box labeled "Control System" corresponds to 
two high-end workstations connected to the simulated robot via high-speed Ethernet. One of the 
workstations is dedicated to model-predictive control (MPC). Its job is to update the trajectory 
plan as often as possible. How often the plan can be updated depends on the complexity of the 
robot, the processing power of the computer, and the planning time horizon. In the VRC context 
we were able to update the plan at 30Hz on average. 

The second workstation (Support Tasks) is responsible for everything else: communication with 
the Operator Station, communication with the Gazebo simulation of the robot, communication 
with the MPC server, state estimation, and evaluation of the latest plan at a high rate (1000Hz). 
Note that the plan supplied by the MPC server includes both an open-loop state-control trajectory 
and a time-varying linear feedback control law around that trajectory, so it can be used for 
feedback control at high update rates. Of course this plan is only locally optimal, and if the state 
deviates too much the corresponding feedback controller may no longer be suitable. However the 
MPC server updates the plan fast enough, always starting at the latest estimated state, so in 
practice the state does not have enough time to "run away". 

The Operator Station is the computer used by the human operator, on the other side of the 
communication bottleneck. This computer renders a 3D model of the Atlas simulation in our 
own virtual environment, using the latest state estimate. It also displays images from the robot's 
cameras allowing the operator to identify spatial targets visually, and provide the target position 
and orientation by aligning a geometric model over the camera image. The Operator Station also 
presents a menu of cost functions, enabling the operator to select which task or subtask should be 
performed when. The selected cost is sent to the MPC server, which immediately starts to 
optimize it -- resulting in very rapid behavioral transitions. 

Figure 1. Block diagram of our system. From Erez et al, Humanoids 2013. 
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3.2  Modeling and Simulation 

The Atlas simulation provided by Gazebo was neither fast enough nor stable enough for model-
based optimization. This is why we created a parallel simulation in our environment (MuJoCo) 
and used it for MPC. MuJoCo is able to load Unified Robot Description Format (URDF) models, 
which made it possible to replicate the Atlas model as well as the geometry of the car, hose, 
valve etc. We also had the ability to edit model parameters in runtime to reflect the environment 
presented in each test run. 

This dual-simulation approach put us in an awkward situation: we had a better physics engine 
than ODE, yet we had to control the ODE simulation which was defined as the ground truth.  
We also encountered a psychological problem: working with Gazebo was a significant step 
backward compared to working with MuJoCo, thus no one in the team was particularly eager to 
make the transition until the last minute. The fact that Gazebo was frozen very late in the VRC 
only reinforced this approach. 

3.3  State Estimation 

Our initial plan for state estimation was to combine joint angle data, IMU data, and 3D visual 
SLAM; the latter also providing a geometric model of the environment. We developed a 3D 
visual SLAM module based on an adaptation of the KinectFusion algorithm, however this was 
done late in the VRC because we had to wait for the Gazebo visual environment to become 
sufficiently rich. As a result we did not have time to integrate this module in the final system. 

The state estimation approach we used in the competition only relied on joint angle data and 
simulated IMU data. Since the joint angles were exactly known, there were only 6 degrees of 
freedom (root translation and rotation) that had to be estimated. We did this using a predictor-
corrector approach. In the predictor step we simply integrated the IMU data at 1000Hz. In the 
corrector step we assumed that the robot is always touching the ground. This was enforced by 
translating the estimated state in the vertical direction until the lowest point on the robot touched 
the ground. In addition we imposed a no-slip prior: if the estimated contact-space tangential 
velocity was non-zero, we modified the estimate of the root velocity so as to bring the contact-
space velocity closer to zero (but not all the way, because the robot could actually slip). 

The estimated state was computed by the "Support Tasks" workstation and sent to the MPC 
server to plan the next update, and to the operator console for visualization. It was also used 
locally to evaluate the feedback control law corresponding to the current plan, and send the 
resulting control signal to the Gazebo simulation. 

3.4  Control 

Our MPC approach was already described in high-level terms in Abstract and Introduction. Here 
we provide additional technical details. For trajectory optimization we used the iterative LQG 
(iLQG) algorithm we had developed earlier, with a number of refinements to speed it up for 
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online computation. We applied one iLQG iteration per plan update. Since we could warm-start 
from the previous solution, this was sufficient to track the local minimum. One iteration of iLQG 
involves the following computations: 

1. Apply the open-loop controls from the last plan starting at the new estimated state, and
integrate the dynamics forward to obtain an initial trajectory; 
2. Construct a time-varying linearization of the dynamics around this trajectory, as well as a
time-varying quadratic model of the cost function; 
3. Perform a backward pass of local dynamic programming, approximating the optimal value
function as a quadratic; 
4. Perform a parallel line-search in trajectory space, by applying the improvement computed in
the backward pass with different amplitudes, evaluating the cost for each resulting trajectory (on 
the full nonlinear model) and selecting the best amplitude. 

Steps 1 and 3 are sequential but very fast. Steps 2 and 4 require more computation but 
fortunately they can be take advantage of parallel processing. Step 2 in particular is the most 
computationally demanding. This is because the dynamics are too complex for analytical 
differentiation, thus we have to resort to a finite-difference approximation. In other words, if we 
have D degrees of freedom (in the robot and any movable objects) and T time steps, the robot 
dynamics need to be evaluated on the order of D*T times per update. This entire computation 
takes 30 msec on average (see below).  In our case we used T=16 timesteps, to match the number 
of processor cores available on the MPC server. The derivative computations for each time step 
were processed on a different core, resulting in 100% processor utilization. The simulation 
timestep for the MPC model was 20 msec, which is possible because MuJoCo is sufficiently 
accurate and thus remains stable at large timesteps. 

As is always the case with MPC, some progress (i.e. reduction in cost) must be possible within 
the planning horizon in order for this control scheme to work. To this end we carefully designed 
cost functions that capture the tasks, but at the same time provide some cost gradient at all states. 
The main idea here is to avoid terminal costs and replace them with running costs. For example, 
suppose we want the hand to reach a spatial target 2 sec from now. If we only provided a 
terminal cost, MPC will not be able to accomplish the task because it does not see any evidence 
of progress within its planning horizon. So we use a different cost, which says that the hand 
should be at the target at all times. This is of course impossible, but what it does is encourage the 
optimizer to get to the target as fast as possible. At the same time we use a control energy cost, 
and the relative weighting of these two costs determines how fast the robot actually moves. In 
addition to these basic costs, we introduced more heuristic shaping costs (related to various 
stability criteria) to help overcome the limitations of the small planning horizon. 

Apart from the technical challenge of applying MPC in real-time on a high-dimensional robot, 
we had to overcome a more fundamental issue -- which is that contact dynamics are inherently 
discontinuous and thus incompatible with gradient-based optimization. We have made a lot of 
progress over the past few years in terms of developing new formulations of the physics of 
contact that remain realistic, but at the same time provide just enough contact smoothing to 
enable gradient computations. Our MuJoCo engine has contact parameters that determine the 
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amount of smoothing. In practice we often plan through a smoother model and execute on a 
model with harder contacts, which (somewhat surprisingly) this yields good performance. 

3.5  Operator Guidance 

The human operator had two roles: use human vision to analyze the scene and determine spatial 
targets, and select costs that specify different behaviors for the robot. 

Spatial target selection was done as follows. On request from the operator, the cloud simulation 
transmitted a JPEG image from the selected camera (head or hand). We did not stream video 
continuously to save bandwidth. The image was then displayed on the operator screen, and a 3D 
rendering of the Atlas robot (in MuJoCo) was superimposed on it using transparency and the 
same viewpoint as the robot's camera. This provided the operator with good situation awareness 
(having an operator who is an avid gamer seemed to help). The operator selected a 3D model 
from a menu, corresponding to the object in the visual scene. Then the operator used a 6D mouse 
to adjust the position and orientation of the model object so as to match the camera image. Once 
the adjustment was done, the operator issued a command which transmitted the object 
coordinates to the MPC server. These coordinates became parameters of the cost function being 
optimized (for example, the cost might compute the distance between the robot's hand and the 
target position specified by the operator). 

Cost selection was done from a menu, where the different costs were labeled intuitively. The 
operator had prior experience with the MPC server optimizing these predefined costs, and knew 
what performance can be expected in different situations. Each cost was actually a composite 
cost, with multiple terms corresponding to energy, spatial targets, stability, or other shaping costs 
we introduced as needed. These cost terms had scalar weights that could also be adjusted. Both 
discrete cost selection and continuous weight adjustment proved useful. 

Ideally the operator would be able to specify one task-level cost and let the MPC machinery fill 
in all the details and perform the task. In practice this is too much to expect with existing 
computing power (reflected in the relatively short planning horizon). Thus the operator has to 
provide additional guidance, specifying sub-tasks rather than complete tasks. These subtasks do 
not always have well-defined meaning; rather they may correspond to intuitive mid-level actions 
that have some physical consequences the operator has learned to expect (e.g. nudge the robot a 
bit to get in a configuration from which we can successfully execute a stand-up behavior). 
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4.0  RESULTS AND DISCUSSION 

Our initial concern was that the discrepancies between the MuJoCo physics used for planning 
and the ODE physics used for simulation might result in poor MPC performance. To our pleasant 
surprise this was not the case. The performance of the ODE-Atlas was of course not as good as 
the MuJoCo-Atlas. However, if we could accomplish a task in MuJoCo, we could almost always 
accomplish it in ODE as well.  

Estimation errors turned out to be a much bigger issue, for reasons beyond our control. The 
predictor-corrector approach described earlier relied on the IMU having low noise. The specified 
amplitude of the simulated noise was indeed very low, and if the simulated IMU had performed 
as advertised, our approach to estimation would have worked perfectly. Indeed it did work 
perfectly almost all the time. There was however a problem. Our MPC controller generated very 
dynamic movements (more dynamic than anything we saw from the other teams). For some 
reason this caused Gazebo to inject large noise spikes in the simulated IMU. A typical case is 
shown in Figure 2 below. The red trace is the vertical IMU acceleration reported by Gazebo (the 
version used during the competition) at 1000Hz. The blue trace is the true acceleration -- which 
we obtained by finite-differencing the ground truth position reported by Gazebo, also at 1000 Hz 
(we modified the SDF file to get 1000Hz output). Note that most of the time the two traces are 
perfectly superimposed (numerically there is a difference, but it is on the order of the expected 
noise amplitude and is not even visible). However there is the occasional large discrepancy.  

Figure 2. Illustration of IMU errors when Gazebo/ODE performed dynamic movements. 

These IMU errors in turn caused the predictor step to occasionally estimate a large slip which 
was not there. Our no-slip prior could not really help in this case, because sometimes slip was 
real and we could not just ignore it. Filtering did not help either, because the dynamics involved 
many contacts, and so the error spikes were difficult to distinguish from real spikes in the IMU 
output due to large contact forces. The end effect was that MPC was occasionally given a state 
estimate with large slip (or some other dynamic abnormality) that was not real, and it naturally 
attempted to "fix" it, thus causing a real disturbance. This vicious cycle was very difficult to 
escape. Unfortunately we uncovered this Gazebo glitch on the first day of the competition, and it 
was too late to request fixing it. 

Coming back to MPC, getting the machinery to work in real-time on a simulation as complex as 
Atlas was a significant achievement. Figure 3 shows histograms of the "policy lag", which 
corresponds to how long it took MPC to update the plan. This time interval is dependent on the 
state of the robot (states with many contacts were slower to compute), but nevertheless we 
observed consistent performance; the maximum lag ever recorded was 36 msec. 
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Figure 3. Histogram showing how long it took for MPC to update the plan. This is called Policy 
Lag, because it also corresponds to how old is the plan that is currently being executed. 

Even though we did not advance to the next phase of the DRC, the system we developed is a 
significant step towards a universal robotic controller. The state estimation issue we encountered 
in the VRC is not likely to be a problem in real applications with real sensors. The main 
challenges we need to address are the need for longer planning horizons, and the issue of model 
errors. We have found locomotion tasks to be surprisingly forgiving to (simulated) model errors, 
possibly because gravity works to create contacts and contact forces in a predictable way. Object 
manipulation appears to be more sensitive in this regard, and we are now pursuing several ideas 
for extending MPC to operate with non-negligible model errors. Preliminary results illustrated 
below are quite promising. Here the task is to make the object achieve positions and orientations 
specified by the user online (with the 6D mouse on the bottom right of the figure). MPC 
computes the control signals needed to make the "fingers" (which are Phantom robots) establish 
and maintain contact with the object, and apply contact forces such that the object does what it 
was required to do. 

Figure 4. MPC of dexterous object manipulation with a 12-dof "hand" made of 4 Phantom 
robots. This figure is from Erez et al, submitted to ICRA 2014. 
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5.0  CONCLUSIONS 

In this project we attempted to develop a universal robotic controller, which was intended to 
solve the VRC among many other problems. We did not have the time and manpower to both 
develop this universal machinery and sufficiently customize it to the VRC, especially in the 
suboptimal conditions created by Gazebo. Nevertheless we believe that our approach holds great 
promise, and has the potential to transform robotic control in the next few years. We still have a 
lot of work to do, in particular increasing the planning horizon as well as the quality of the MPC 
solutions, and addressing unavoidable model errors in a principled way. We do not expect this to 
be routine; instead some of this work may require fundamental advances that remain to be made. 
Nevertheless, the ability to solve hard control problems in simulation with MPC, without need 
for simplifications or model reductions, is a significant step forward. 
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