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2. Cold-Sprayed Rotating Band Fabrication  

The development of the cold-sprayed copper rotating band begins with the target 

substrate that the supersonic copper-particle stream impacts to form a bulk-

deposited material that is subsequently machined to the final rotating-band 

dimensions. The copper particles are 99% copper and have diameters of a few 

hundred microns.2 This copper rotating band is copper-rich compared to the 

M483A1 copper rotating band which is reported to use a copper alloy that is nearly 

90% copper.3 The target substrate for this application is an aluminum (7075 alloy) 

base designed for a 155-mm artillery munition as shown in Fig. 3.  

 

 

Fig. 3 Target substrate used to form cold-sprayed copper rotating band 

The aluminum base has a circumferential channel machined into it to 

accommodate the cold-sprayed copper material. The dimensions of the channel 

are shown in “Detail B” of Fig. 4.
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Fig. 4 Aluminum-base drawings, with circumferential-channel dimensions in Detail B; all 

dimensions are in inches and threads per inch (TPI). 

The aluminum base is mounted into a computer numerically controlled (CNC) 

fixture that rotates the base as the copper particles are sprayed toward it. The CNC-

aided supersonic nozzle deposits the copper particles onto the aluminum base as it 

traverses laterally across the channel width, as shown in Fig. 5.
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The product of the cold-spray process is a bulk-deposited material as shown in 

Fig. 6. The material properties of the bulk-deposited copper material depend on 

the cold-spray process parameters, which include particle material (pure versus 

multimaterial powders), gas temperature, particle velocity, particle size, and 

particle shape. 

 

 

Fig. 6 Cold-sprayed–bulk-deposited copper on aluminum base 

The bulk-deposited material is larger than the final rotating-band geometry to allow 

machining the rotating-band profile to the drawing shown in Fig. 7. 

 

 

Fig. 7 Drawing of final copper rotating-band geometry (all dimensions in inches) 
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The finished copper rotating band is shown in Fig. 8. It is noteworthy that after 

machining 2 rotating bands, machine-shop personnel informed the author that the 

cold-spray material was brittle and flaked—large and irregular metal chips 

extended below the cutting surface—during machining of the rotating band. It was 

decided the 2 unmachined rotating bands would be removed (by machining) and 

that new material be deposited using a modified cold-spray process designed to 

increase in the ductility of the deposited-copper material. The resulting bulk-

deposited copper rotating bands were machined to the final rotating-band geometry; 

the machine-shop personnel noted that these copper rotating bands, fabricated with 

the updated cold-spray process, machined like conventional copper alloys. 

Unfortunately, the identification of the bands was not tracked; therefore, it was not 

possible to identify which bands were fabricated from which cold-spray process. 

 

Fig. 8 Finished cold-sprayed copper rotating band machined from the bulk-deposited 

material 

3. Experimental 

The finished copper rotating band and aluminum-base assembly is threaded onto a 

billet of aluminum to form a demonstration test projectile whose rotational moment 

of inertia closely approximates that of the M483A1 155-mm artillery munition; 

however, it differs slightly in mass. The demonstration test projectile is shown in 

Fig. 9. Four demonstration test projectiles are fabricated and painted with 

alternating white and black, longitudinally oriented stripes to aid in the  
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visual spin-rate calculation. The spin rate is also measured using radar. The spin 

measurement is important because any projectile spinning at a rate significantly 

less than the kinematic spin rate, the spin rate dictated by the projectile velocity and 

the gun rifling, is surmised to have suffered a rotating-band failure during gun 

launch. Consequently, the projectile spin rate is an indirect measure of the 

robustness of the copper rotating band. 

During testing, M483A1 munitions were used for charge establishment and 

verification of supporting test. Because the demonstration test projectile weighs 

approximately 3 pounds more than the M483A1, the demonstration projectiles were 

shot at various modified M4A2 zones in order to match the M483A1 projectile 

muzzle velocity and the projectile spin rate that were shot prior in order to define 

the camera settings.  

 

 

Fig. 9 Demonstration projectile (before paint) and partially fastened, comprising 

aluminum-base–copper cold-sprayed rotating band and solid aluminum forward body 

The modified M4A2 zones are shown in the Table. The values in parentheses to the 

right of the identified zone indicate how much propellant was added (+) or removed 

(–) from the nominal M4A2-zone charge mass.  
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Table Demonstration test-firing log data 

  Spin Rate Absolute   Chamber  Muzzle 

  Kine Radar Visual Error M4A2 Pressure Charge Velocity 

Shot Projectile (Hz) (Hz) (Hz) (%) Charge (kpsi) (oz) (m/s) 

1 M483A1 85.8 84.0   2.1 Z3 (–20 oz) 5.7 45.6 266 

2 Demo 88.4 90.0   1.8 Z3 (–16 oz) 6.4 49.6 274 

3 M483A1 93.9 92.0   2.0 Z3 7.8 65.6 291 

4 Demo  88.7 … … … Z3 (–10 oz) 6.9 55.6 275 

5 M483A1 115.5 113.0   2.2 Z4 (–4 oz) 8.1 81.2 358 

6 Demo 115.8 112.0   3.3 Z4 8.4 85.2 359 

7 M483A1 164.8 165.0   0.1 Z6 15.8 157.4 511 

8 Demo 165.5 … 178 7.6 Z6 (+4 oz) 16.0 161.4 513 

 

The kinematic spin rate is determined from the relationship between the projectile 

velocity and the gun rifling defined by 

 v
d
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,                                       (1) 

where  is the projectile spin rate (rad/s),  is the gun twist rate (caliber/revolution), 

d is the gun bore diameter (m), and v is the projectile velocity (m/s). The M199 gun 

tube is used in this experiment; the M199 has a diameter d = 0.155 m and features 

a constant 20-calibers-per-revolution twist rate (i.e.,  = 20).  

4. Results and Discussion 

The projectile spin rates for the M483A1 (Shots 1, 3, 5, and 7) and the 

demonstration test projectile shot at 274 m/s and 359 m/s (Shot 2 and Shot 6, 

respectively) were measured by radar; their rates differed from the kinematic spin 

rate by less than 3.3%, indicating proper functioning of the rotating bands. 

However, the radar was unable to measure the spin rate of the demonstration test 

projectile for Shots 4 and 8, in which rotating-band failure was observed (Shot 8) 

and suspected (Shot 4). It is theorized that these 2 rotating bands were fabricated 

with the initial cold-spray process that was noted to lack ductility. For these shots, 

the spin rate was to be estimated using the high-speed video. However, the spin rate 

for Shot 4 is unknown because the high-speed cameras failed to trigger. The spin 

rate for Shot 8 is estimated to be 178 Hz, which is approximately 13 Hz greater than 

the kinematic spin rate and therefore judged to be inaccurate due to the difficulty 

in visually measuring the projectile angular position. However, this spin-rate 

estimate does indicate the projectile has a significant spin rate and that the copper 

rotating band was able to impart spin to the projectile. The linearity of  
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the projectile spin rate with projectile velocity is shown in Fig. 10. (The kinematic 

and measured spin rates are shown with the muzzle-exit velocities in the Table.) 

 

Fig. 10 Measured projectile spin rate’s comparison with kinematic spin rate 

The cold-sprayed copper rotating bands are shown to provide excellent obturation 

as there was little indication of propellant gas at or in front of the projectile—

“leakage”—for any shot, excluding Shot 4 (cameras did not trigger). Further, the 

cold-sprayed rotating bands are shown to be structurally robust at relatively high 

charge masses; a sequence of images for Shot 8 is shown in Fig. 11, where the 

demonstration projectile is launched with a charge mass of 157.4 oz of propellant 

and achieves a muzzle velocity is 513 m/s. It is noted that the shiny object identified 

in Fig. 11d is believed to be a failed portion of the rotating band seen shortly after 

muzzle exit. Since the measured projectile-spin rate is nearly equivalent to the 

kinematic spin rate and no evidence of leakage was observed, it is believed the 

rotation band failed after muzzle exit in a tensile spall-failure mode due to the 

sudden unloading from a compressive stress state. Further, it is believed the 2 

rotating bands that failed in this manner were fabricated using the initial cold-spray 

process that was noted to be brittle during machining of the bulk-deposited copper 

material.  
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The evidence indicating partial structural failure of the copper rotating band after 

muzzle exit is from the recovered test projectile from Shot 8 (shown in Fig. 12). 

The engraving pattern on the rotating band on this test projectile is seen in the 

figure.  

 

Fig. 12 Recovered test projectile (painted) from demonstration 

Failure of the rotating band is seen in Fig. 13, as a portion of the copper-band 

material is missing; this missing portion of the copper rotating band is likely the 

“shiny object” identified in Fig. 11d. 
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Fig. 13 Cold-sprayed copper rotating band a) engraved on Side 1 and b) engraved with 

failure on Side 2 

Lastly, the various steps of development of the cold-sprayed copper band are shown 

in Fig.14; from left to right: target substrate, finished copper rotating band–

aluminum-base assembly, and post-shot engraved copper rotating band–aluminum-

base assembly. 

 

Fig. 14 Sequential development process (left to right) of cold-sprayed copper rotating band–

aluminum-base assembly 
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5. Summary 

Copper rotating bands fabricated using the cold-spray process have been 

successfully demonstrated for the first time. The development of the cold-sprayed 

copper rotating band substrate was an aluminum base. The copper particles were 

deposited onto this aluminum substrate to form the rotating band. The copper 

rotating band performed well as there was no evidence of leakage or in-bore failure. 

There was indication of a partial rotating-band failure corresponding to muzzle exit. 

It is believed this failure was largely due to the cold-spray process parameters used 

during the initial deposition of copper material, given the observation that these 

initial copper rotating bands tended to “flake” during machining. The cold-spray 

process’s parameters were altered and new copper rotating bands then were noted 

to have machined similarly to conventional copper-alloy materials.  
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