Nanostructured Alloys as an Alternative to Copper-Beryllium

Project Number WP-2137 Integran Technologies Inc.

ASETS Defense 2014 November 19, 2014

Presented by Jonathan McCrea

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collecti this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 19 NOV 2014	2 DEDORT TYPE				3. DATES COVERED 00-00-2014 to 00-00-2014		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER			
Nanostructured Alloys as an Alternative to Copper-Beryllium				5b. GRANT NUMBER			
				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NUMBER			
				5e. TASK NUMBER			
				5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Strategic Environmental Research and Development Program (SERDP), Environmental Security Technology Certification Program (ESTCP), 4800 Mark Center Drive, Suite 17D08, Alexandria, VA, 22350-3605 8. PERFORMING ORGANIZATION REPORT NUMBER							
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
13. SUPPLEMENTARY NO ASETSDefense 201 Myer, VA.	otes 14: Sustainable Surf	ace Engineering for	Aerospace and I	Defense, 18-20	0 Nov 2014, Fort		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF				18. NUMBER	19a. NAME OF		
a. REPORT unclassified	a. REPORT b. ABSTRACT c. THIS PAGE Same as		Same as Report (SAR)	OF PAGES 26	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Advanced Materials

Integran Technologies provides innovation solutions to the material selection process to improve performance and decrease weight based on our **Structural** and **Functional** Nanometal coatings and electroforms.

Structural – High strength / stiffness / toughening structural reinforcement of aluminum, polymers and composites or bulk electroforms.

Functional – High wear resistance, low friction, anti-galling, low erosion, corrosion protection, magnetic shielding, electrical conductivity.

450

What is a Nanostructured Metal?

Nanovate™ Metals

Conventional Metals

Grain size = 10 - 100um

Grain size = ≤ 20 nm

Vickers Hardness

A Nanostructured Metal is simple a metal with an average grain size in the nanometer range (10-100nm) compared to >1µm for a conventional metal

Decreasing Grain Size Dramatically Improves Hardness and Strength Conventional Ni Nanovate Ni **Units Property** (20 um) (20 nm) Yield Strength **MPa** 100 900 **MPa** 400 1400 Ult. Tensile Strength

140

kg/mm²

How do we achieve unique properties?

Microstructural Control by Pulsed Electrodeposition

Pulse Plating favors nucleation of new grains over growth of existing grains, resulting in an ultra-fine grain structure throughout the entire thickness of the coating, right from the substrate interface.

Pulsed Electrodeposition from Aqueous solutions results in the deposition of fully dense metal with a nanocrystalline grain size. At **no point** in the fabrication process are nanosized powders produced.

Several Nanovate™ Alloys Available

N1000 Series - Nickel

Good hardness, wear, and corrosion resistance as well as good strength properties. Also used for erosion protection of composites.

Grafalloy Epic™ golf shaft - graphite/epoxy coated with Nanovate™ N1010

N2000 Series – *Nickel Alloy*

Higher strength than the N1000 series. Some compositions also offer magnetic shielding properties, increased resilience, or decreased CTE.

EMI shielded cell phone casing

R3000 Series - Cobalt

Superior hardness, wear, and corrosion resistance; it has been validated as an environmentally friendly alternative to hard chrome. Also has excellent structural properties.

Nanovate™ R3010 for hydraulic actuators

C4000 Series – Copper

Strong and hard, fine grained Cu being developed for electronics, high strength wires, anti-microbial and defense applications.

Nanovate™ C4010 shape charge liner

Problem Statement

The Benefits of Copper Beryllium

- Cu-Be is the hardest and strongest of any copper alloy.
- The high yield **strength** and high **stiffness** make it an ideal material for components under repeated stress and strain (spring wire, load cells, bushings, etc).
- Other advantageous properties include: good conductivity, low friction, non-galling, non-sparking, nonmagnetic, good high temperature and corrosion resistance.

The Drawbacks of Beryllium Copper

- Exposure to Be results in a range of diseases including lung cancer and Chronic Beryllium Disease (CBD).
- DoD employees are exposed to Be dust and fumes as a result of the wearing of Be-containing alloys during operation and during machining and other fabrication operations
- An <u>environmentally benign alternative</u> is required for worker health and safety

Technical Objective of SERDP

- Develop and validate a cost-effective and robust nanocrystalline alloy electroplating/electroforming process that is capable of producing material that conforms to property requirements for current and future copper-beryllium alloy needs/ applications
- Demonstrate with three distinct product forms:
 - ◆ 1) Bulk material for bushing applications;
 - ♦ 2) Nanometal/composite for high specific strength/stiffness components; and
 - ♦ 3) Nanometal cobalt/copper enabled conductor wire

Technical Approach

 Instead of employing age hardening with beryllium bearing copper alloys (or work hardening with current CuBe alternatives), Integran will improve the properties of copper alloys through grain size reduction / refinement to the nanostructured regime

Technical Approach

Phase I consisted of two main activities:

- 1) Core technology development
 - ♦ Nanostructured alloy development and fundamental material property characterization
- 2) Proof-of-concept demonstration for three proposed application types
 - **♦** Bulk forms for bushings
 - Nanometal/composite hybrids for components typically formed from sheet metal
 - ♦ Nanometal hybrid wire

Phase II consisted:

 Demonstration and Validation of the three application types explored in Phase I

Nanostructured Copper - Bulk Form

Nano/Composite Hybrid - Sheet Form

NanoConductor - Wire Form

Technical Approach

PHASE I

Proof of

Concept

Testing

Summary of Phase I Alloy Development

System	Roughness (R _a , µm)	Microhardness (HV)	Taber Wear (mg/1000)	Friction (vs. 440C SS)	Ductility
C17200 TF00		393 ± 10	72 ± 5	0.8-1.0	Low
nCu (Pyro)	0.7-0.8	200 ± 10	76 ± 14	0.7-0.8	Medium
nCu (Sulfate)	0.8-1.0	200 ± 10	N/D	0.8-0.9	Medium
nCu + TF/D	0.5	223 ± 9 (low D) 245 ± 3 (high D)	34 ± 7 (low D) 9 ± 2 (high D)	0.3-0.4 (low D) 0.7-0.8 (high D)	Low
nCuSn	N/D	400-500	N/D	0.6-0.8	Very low
nCuNi	0.5-0.6	350-450	27 ± 7	0.7-0.9	Low/medium
nCo-alloy	0.4-0.5	440-500	18-19	0.3-0.5	Medium/high
nNiCo	0.8	477 ± 11	17 ± 2	0.7-1.0	Medium
nNiCo + GR	2.7	488 ± 38	N/D	0.3-0.4	Low
nNiCo + GR/D	2.1	504 ± 13	3 ± 2	0.9-1.1	Low

Nanometal Bushing Performance Testing

Background

- Cu-Be alloys still represent the best combination of strength, wear properties and cost for highly loaded bushing applications
- In Phase II, various electroformed nano alloys (Co, NiCo, CuNi and nCu) were tested and evaluated as an alternative to Cu-Be
- Performance testing included:
 - ♦ Tensile and compressive strength
 - ◆ Coefficient of friction against various 'pin" materials
 - ♦ Galling resistance
 - ♦ High-load subscale bushing test

Mechanical Strength in Compression

Uniaxial Compression Testing (ASTM E9)

Material	0.2% Yield
CuBe TF00	973 ± 42 MPa
nNiCo	1508 ± 14 MPa
nNiCo ML1	1640 ± 40 MPa
nNiCo ML2	1373 ± 23 MPa
nCo-based	1967 ± 76 MPa
Cu (pyro)	<< CuBe TF00
nCuNi	1493 ± 61 MPa

All Nanometals investigated (except pure Cu) had signicantly higher compression strength than CuBe

Mechanical Strength in Tension

Uniaxial Tension Testing (ASTM E8)

Tensile performance of Integran's Nanovate cobalt-based and nickelcobalt metals is superior to copper beryllium (peak hardness);

Mechanical Property Summary

Nanostructured cobalt-based alloy has much higher compressive and tensile strength than conventional bushing materials

Material	Compression Strength ksi (MPa)	Tensile Yield Strength ksi (MPa)	Tensile Ultimate Strength ksi (MPa)	Tensile Modulus of Elasticity (GPa)
Nanostructured Cobalt Alloy	285 ksi (1967 MPa)	225 ksi (1550 MPa)	290 ksi (2000 MPa)	18855 ksi (130 GPa)
Copper Beryllium (C17200-TH04)	142 ksi (973 MPa)	172 ksi (1185 MPa)	190 ksi (1310 MPa)	18855 ksi (130 GPa)
Nickel Aluminum Bronze (C63000)	110 ksi (760 MPa)	68 ksi (470 MPa)	110 ksi (760 MPa)	16700 ksi (115 GPa)

Summary of Frictional Properties

Nanostructured cobalt-based bushings have low coefficient of friction against standard mating pin materials

Bushing /Mating Material	Hard Chrome coated HSS	HVOF (CoCr-WC) coated HSS	Nano Cobalt coated HSS
Nanostructured Cobalt Alloy	0.42	0.46	0.36
Copper Beryllium (C17200-TH04)	0.73	N/A	0.65
Nickel Aluminum Bronze (C63000)	0.48	0.45	0.45

^{*}COF obtained from Pin-on-disk testing per ASTM G99

Subscale Bushing Testing

Fabricated solid nanostructured bushings via electroforming for sub-scale busing testing

Geometry specific to

LHM-010 bushing test

(Tested at Cradin Aerospace)

Subscale Bushing Testing

- Task II-2: Bushing Performance Testing
 - ♦ Bushings fabricated to LHM-010/MIL-B-81820 and tested by Cradin Aerospace (Boerne, TX) using a hardened 440C steel pin
 - ♦ Test consists of loading the pin in 200 lbs load increments and rotating ±45° for 200 cycles before stepping up to the next load

♦ Pass consists of loading to 10,000 lbs (~50 ksi bearing stress) and run-out of 2000 cycles

Image from Scott Fetter, 2009 ASETS Presentation Cradin Aerospace Equipment

Sub-scale Bushing Performance

Nano Co-alloy bushings performed exceptionally well

 Excellent alloy strength; Low bushing noise; Low bushing temperature increase (10,000lbs = ~50ksi bearing stress)

Subscale Bushing Performance

Nanovate bushings have minimal deformation

• Less than 0.001" wear and no measureable wall flattening

Dimensions - Prior to Testing

Dimensions - After Testing

Sub-scale Bushing Performance

Nanovate bushings perform favourably to CuBe:

Cu-Be Bushing: MP 35N Pin 1725 cycles total 125 cycles at 10,000 lbs

Nano Co-alloy Bushing: 440C Pin 2000 cycles total 400 cycles at 10,000 lbs

Electroformed Nanometal Bushings

- Near Net Shape Manufacturing Process with high 'buy-to-fly' ratio
- Cost effective due to less material waste during machining

Step 1 - Electroform desired thickness (~0.25") onto temporary mandrel	Step 2 - Remove mandrel	Step 3 - Machine Bushings

22

Prototype Nanometal Bushings

Nanovate bushings samples – Diameter range from 0.5" to 2.5" fabricated to date

Cost Analysis

ROM Cost Analysis

 Additive manufacturing approach significantly reduces material waste and cost.

Material	Bushing Diameter	Material Required (lbs)	Material Cost (\$)	Material Waste (lbs)
CuBe	2"	10.3	\$124	86%
	3"	23.2	\$279	90%
	4"	41.3	\$496	93%
nCo-alloy (Additive Manufacturing)	2"	1.4	\$52 to \$173	-
	3"	2.3	\$81 to \$271	-
	4"	3.1	\$111 to \$369	-

 Assumptions – CuBe bushing machined from solid rod to 0.25" wall thickness, 12" rod length, Cost of CuBe: 12\$/lb, Cost of electroformed nCo: 3-10x base metal cost (36-120\$/lb)

Summary – Nanometal Hybrid Foil

Proof-of-Concept for Sheet/Foil Applications

 Nanometal-composite hybrids can be designed to possess similar bending stiffness and higher elastic limit at similar sheet thickness but at <30% the weight of copper-beryllium with improved fatigue resistance

Results Summary

- SERDP Project was successful in meeting original objectives
- Electroformed nano Co-alloy was tested and evaluated as an alternative to Cu-Be, demonstrating:
 - ♦ Significantly higher tensile and compressive yield strength than CuBe
 - ♦ Low coefficient of friction against various 'pin" materials
 - ♦ Excellent galling resistance
 - Superior performance than CuBe in highly-loaded subscale bushing test
- Nanometal/Composite Hybrid show good promise for leaf spring/contact
- Looking for interested DoD and commercial partners to continue the project to the Dem/Val stage.