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OBJECTIVES

To carry out fundamental and wide ranging research investigations involving the nonlinear

wave propagation which arise in physically significant systems with emphasis on nonlinear optics.

The modeling and computational studies of wave phenomena in nonlinear optics include nonlinear

wave propagation in photonic lattices, ultrashort pulse dynamics in mode-locked lasers, dynamics

of dark solitons and analysis of dispersive shock waves.

STATUS OF EFFORT

The PI’s research program in nonlinear wave propagation with emphasis in nonlinear optics is

extremely active and covers a number of research areas. There have been a number of important

research contributions carried out as part of the effort . During the period 15 April, 2012 – 14 April,

2015, fourteen papers were published in refereed journals. In addition, two refereed conference

proceeding were published, and twenty one invited lectures were given. The PI also received a

number of honors during this period.

The key results and research directions are described below in the section on accomplish-

ments/new findings. Full details can be found in our research papers which are listed at the end of

this report.
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The lattice nonlinear Schrödinger equation, which is derived from Maxwell’s equations under

the paraxial approximation, provides the starting point of the analysis associated with lattice pho-

tonics. The linear index of refraction is associated with the lattice background; the nonlinearity

is derived from the inclusion of cubic nonlinearity. Often the background potential is periodic,

but not always. In our research we have also studied quasi-crystal lattices and lattices with de-

fects; we have carried detailed computational studies investigating stability properties, boundaries

of associated bandgaps with solitons and vortices.

When the Schrödiunger potential is taken large, one can employ an approximation, called the

tight binding limit. Within this approximation key nonlinear discrete systems are derived. In a

regime near ‘Dirac points’, associated with special locations in the underlying linear dispersion re-

lation, which exhibit conical singular structure, new phenomena are found. Some of the properties

can be described in terms of the continuous limit where special (nonlinear Dirac type) systems are

obtained. When the background lattice is weak different types of Dirac systems result.

Our first research efforts describe the wave dynamics in situations where boundary effects were

not important. Subsequently we investigated cases when boundary edges and effects are important.

In the latter case novel dynamics are fund to occur. In such situations sometimes unidirectional

waves associated with Floquet topological insulators can be found. Such waves can propagate over

very long distances with no backscatter. This situation is under current careful study.

Besides studying the dynamics and propagation of edge wave dynamics in honeycomb lattices

we have also analyzed the propagation of multidimensional nonlinear surface plasmon waves in

dielectric/metal interfaces.

Novel continuous and discrete systems closely related to the classical nonlinear Schrd̈inger

equation and which exhibit parity time symmetry were solved exactly via the inverse scattering

transform. They have have the property that the nonlinear induced potential simultaneously de-

pends on current and reflected spatial locations.

The properties of mode-locked lasers which are used to create ultrashort pulses were analyzed
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under conditions where one has higher order perturbative terms such as third order and nonlinear

dispersion. The basic mathematical model employs gain and filtering terms saturated by energy and

a loss term saturated by power; this is referred to as the power energy saturation (PES) equation.

Since dark solitons in mode locked lasers have been observed, we also used this model to study

their mode locking characteristics.

Motivated by experiments at the University of Colorado, dispersive shock waves (DSWs) were

also investigated. DSWs are found in many applications including nonlinear optics, fluid dynamics

and Bose Einstein condensation. We showed that for certain fundamental nonlinear wave equations

with multi-step initial conditions, even though the data breaks up in to numerous DSWs in an

intermediate long time limit, eventually the solution tends to one DSW.
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ACCOMPLISHMENTS/NEW FINDINGS

Nonlinear photonic lattices

Nonlinear light wave propagation in periodic optical photonic lattices is an exciting and active

area of research. This is partially due to the realization that photonic lattices can be constructed on

extremely small scales of only a few microns in size. Hence they allow the possibility of careful

manipulation and navigation of lightwaves on small scales. Localized nonlinear optical pulses

have been studied when they occur on one and two dimensional backgrounds. In one dimension

the periodic backgrounds are often referred to as waveguide arrays

The periodic backgrounds can be either fabricated mechanically such as those comprised of

AlGaAs materials (cf. [1] where one dimensional arrays are considered) or all-optically using

photo-refractive materials as done in [2, 3]. These latter photonic structures can be constructed via

interference of two or more plane waves.

Waveguide arrays

One dimensional coupled optical waveguides is a setting that represents a convenient labora-

tory for experimental observations. By etching the surface of the optical material one can form

a periodic structure which is referred to here as a waveguide array. Typically, such a waveguide

array is composed of numerous single-mode individual waveguides each being a few microns in

width and a few millimeters in length. Such small scale structures could be embedded in a large

scale environment and potentially can be used to guide light in a controllable manner.

In general an input optical beam will diffract in the lateral or horizontal direction unless it is

balanced by nonlinearity. The first theoretical prediction of nonlinear wave propagation in an opti-

cal waveguide array which possessed localized discrete waves; i.e. discrete solitons, was reported

in [4]. The wave phenomena satisfies the well known discrete nonlinear Schrödinger (DNLS)

equation

i
∂En
∂z

+ C(En+1 + En−1) + κ|En|2En = 0 ,

where En is the field strength at site n, C is a coupling constant which depends on adjacent waveg-
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uides, κ is a constant describing the nonlinear index change and z is the direction of propagation.

In 1998 self-trapping of light in a discrete nonlinear waveguide array was experimentally ob-

served by a group of researchers at the Weizmann Institute, Israel [1]. In their experiment, an

array of ridge waveguides were etched onto an optical substrate. In the experiments, at low power,

linear behavior is observed; see Figure 1-top. The light is found to spread among nearly all the

waveguides hence experiencing discrete diffraction. However, at sufficiently high power, the beam

self-traps to form a localized state (a soliton) in the center waveguides see Figure 1 -bottom.

Figure 1: Images of the output for different powers. Top figure corresponds to low peak power;
linear features are demonstrated. Middle inset is taken at moderate peak power where it is seen
that the pattern is shrinking. Bottom figure corresponds to high peak power At sufficiently high
power, a localized structure, i.e. a discrete soliton, is formed.

Subsequently many theoretical studies of discrete solitons in waveguide arrays which found

switching, steering and other interesting properties.

This motivated many interesting properties of nonlinear lattices and discrete solitons including

switching, steering and other interesting properties. Discrete systems exhibit phenmomena that are

absent in continuous media such as the possibility of producing anomalous diffraction [5]. Hence,

in discrete systems self-focusing and defocusing processes can be achieved in the same medium

(structure) and wavelength. This also leads to the possibility of observing discrete dark solitons in

self-focusing Kerr media [6]. The experimental observations of discrete solitons [1] and diffraction
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management [5] also motivated interest in discrete solitons in nonlinear lattices.

In [7] we considered the possibility of moving discrete solitons; we found that as discretiza-

tion effects become important the solitons slowed down. This work motivated our studies of more

complicated situations in which laser beams can propagate in a discrete medium with alternating

diffraction. A natural question which arises is: What happens if we launch a high power laser

beam into a diffraction managed waveguide array [8]? We found modes which “breathe” peri-

odically upon propagation. During propagation the peak amplitude, FWHM, and phase of the

beam evolve. For example, during each map period, the FWHM of the beam oscillates between a

nonzero minimum and a maximum value while maintaining conservation of power.

By designing the diffraction properties of a linear waveguide array, additional new phenomena

are found to occur. In [9] we showed that by appropriately tailoring the diffraction properties of

a waveguide array, the interaction between discrete solitons can be altered to achieve better tun-

ability and control over the collision outcome. For example, by colliding vector discrete solitons,

remarkably the interaction picture involves beam shaping, fusion and fission. Interestingly it was

also shown that discrete solitons in two-dimensional networks of nonlinear waveguides can be used

to realize intelligent functional operations cf. [10].

Two dimensional periodic nonlinear photonic lattices

In many photonics applications a nonlinear Schrödinger equation with an external potential, or

the lattice NLS equation, is the governing equation. It can be derived from Maxwell’s equations,

and in dimensionless form it is given by

iuz + ∆u− V (r)u+ |u|2u = 0 . (1)

Here u(r, z) corresponds to the slowly-varying complex amplitude of the electric field in the r =

(x, y) plane propagating along the z direction, ∆u corresponds to diffraction, V (r) is an optical

potential representing the linear index of refraction and the cubic nonlinear term originates with

the nonlinear-Kerr change of the refractive index often referred to as the χ(3) nonlinear index.

The potential is assumed uniform along the propagation direction z, although non-uniform
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potentials in z could also be considered in a manner analogous to diffraction or dispersion man-

agement, and more recently has been employed in a novel way in honeycomb lattices [11].

Most studies consider V (r) to be periodic in r = (x, y), though some work on lattice defects

have been carried out cf. [12]. When the lattice, V (x, y) is given by

V (x, y) =
V0
N2
|
N−1∑
0

ei(kxx+kyy)|2 (2)

where kx = k cos(2πn/N), ky = k sin(2πn/N), k are constant, it is periodic with N = 4; this is

sometimes called a square lattice. Aperiodic lattices or quasi-crystals arise when N = 5, 7.

In [13] solitons were observed in “irregular ” quasi-crystal lattices (e.g. N=5) and in [14] a

detailed computational study carried out for this potential and for other potentials with defects.

In [15] we studied the stability properties and the boundaries of the bandgaps associated with

the above potential for the lowest band of the dispersion surface; and in [16] we computationally

investigated the existence and stability of vortex solitons.

Next we consider certain two-dimensional periodic optical external potentials:

Figure 2: Left: simple square lattice; right: non-simple honeycomb (HC) lattice

V (r +mv1 + nv2) = V (r)

with m,n ∈ Z, separated into two categories: simple and non-simple honeycomb (HC) lattices.

In a simple lattice all sites can be constructed from one site, whereas non-simple HC lattices are
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constructed from more than one site; Figure 2 illustrates a simple square lattice and a non-simple

honeycomb lattice.

In the case of a simple square lattice, the analog experiment described above in the context

of one dimensional waveguides, was explored. At low power an input beam diffracts whereas at

high power a 2d lattice soliton is observed [17]; see: Figure 3– experiment, and Figure 4 where

computational results were obtained by solving equation (1). Subsequently there have been many

studies which have investigated a variety of localized soliton solutions in two-dimensional simple

lattices cf. [18, 19, 20, 21, 22]

Figure 3: Experiment: Left: Low Power; Right: High Power

Figure 4: Typical 2d lattice soliton: Computational

In what follows next, we describe some of our recent work involving two dimensional optical

lattices.

The underlying linear problem, is obtained from equation (1) by assuming u(r, z) = ϕ(r)e−iµz

with |ϕ| � 1,; this yields the linear Schrödinger equation with periodic coefficients:

(∇2 − V (r))ϕ = −µϕ (3)
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where V (r) is a 2-d periodic potential with lattice vectors: v1,v2 on the lattice P = {mv1 + nv2 :

m,n ∈ Z}.

Bloch theory implies that solutions ϕ of equation (3), called Bloch modes, have the form ϕ =

ϕ(r;k) = eik·rU(r;k) where k is real, U(r;k) is periodic in r with the same periodicity as V (r)

and ϕ(·,k), µ = µ(k) are periodic in k with ‘dual’ lattice vectors: k1,k2 where vm · kn =

2πδmn; µ = µ(k) is called the dispersion relation.

Due to periodicity in k we can represent ϕ(r;k) as ϕ(r;k) =
∑
v

φv(r)eik·v where the
∑

v is

over all values in P; φv(r) is termed a ‘Wannier function’. Using the physical space periodicity it

follows that φv(r) = φ0(r− v).

In general one cannot find explicit analytical solutions for these Wannier functions. But when

the potential is large, i.e. |V | � 1, which is termed the tight binding approximation (TBA) and

is well studied in the literature, one can approximate the Wannier functions. For simple lattices

Wannier functions are approximated by “orbitals” via:

(
∇2 − V0(r)

)
φ(r) = −Eφ(r)

where V0(r) is the potential in the fundamental cell, constant outside; φ(r), E are the corresponding

eigenfunction (orbital) and eigenvalue. The approximation involves solving for φ(r), E in the limit

|V | � 1; it is often useful to consider V0(r) ≈ D0(a
2(x2 + c2y2)) locally near the minima; in this

case at the origin.

In [23, 24] we developed the necessary mathematical foundations to study nonlinear waves in

simple and non-simple HC periodic lattices.

Simple lattices

For simple lattices with one dispersion branch we can find discrete evolution equations for the

envelope associated with the lattice NLS equation (1) by looking for solutions of the form

u ∼
∑
v

av(Z)φ(r− v)eik·v
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where Z = εz, |ε| � 1 and av(Z) represents the slowly varying Bloch wave envelope at the

site Sv. Substituting this approximation into the lattice NLS equation (1), multiplying by φ(r −

p)e−ik·p, integrating over all space after some manipulation yields a discrete NLS equation at

general values of k

iε
dap
dZ
−
∑
<v>

ap+vCve
ik·v + σg|ap|2ap = 0

where φ is an orbital (see above), g =
∫

[φ(r)]4dr and < v > means we take nearest neighbors

to point p. This is a generalization of the well-known one dimensional lattice problem [4], but

extended to two dimensional square and triangular lattices [23]. These results can be extended to

cases where there are more than one dispersion relation band.

As a further limit, when the envelope av varies slowly over v with a scale R = νr, |ν| � 1;

then

ψ ∼
∑
v

av(Z)φ(r− v)eik·v ≈
∑
v

a(R, Z)φ(r− v)eik·v

The continuous limit yields a continuous NLS equation for each k point in the Brillouin zone

iε
∂a

∂Z
+ iν∇̄µ · ∇̃a+

ν2

2

2∑
m,n=1

∂̄m,nµ∂̃m,na+ σg|a|2a = 0.

where ∂̃m = ∂
∂Rm

, ∂̄m = ∂
∂km

and ∇̄µ plays the role of the group velocity. For different locations

in a Brillouin zone (periodic cell in k space) the spatial operator in the above NLS equation can

be elliptic, hyperbolic or parabolic. We remark that further reduction is possible by going into a

moving frame with the group velocity and introducing a slower evolution scale Z̃ = νZ; maximal

balance is obtained when ε = O(ν) = O(σg).

Non-simple honeycomb lattices

Next we consider background honeycomb (HC) lattices such as that depicted in Figure 2–right;

this was considered in photonic lattices by Segev’s group cf. [25, 26]. A typical intensity plot of

a honeycomb lattice is given in Figure 5 where the local minima are in the blue regions, which in

turn form an hexagonal lattice.

10





form

u ∼
∑
v

av(Z)φA(r− v)eik·v +
∑
v

bv(Z)φB(r− v)eik·v

where Z = εz, |ε| << 1 and sum v takes all values m,n ∈ Z associated with A,B (minima in

each cell) sites respectively and the orbitals φA, φB satisfy

(
∇2 − Vj(r)

)
φj(r) = −Ejφj(r); j = A,B

Substituting u into the lattice NLS equation (1), multiplying by φj(r − p)e−ik·p; j = A,B

and integrating we find after some manipulation and normalization (with maximal balance: slow

evolution, dispersion, nonlinearity) the following Discrete HC system, at a general location k:

i
dap
dZ

+ L−bp + σ̃|ap|2ap = 0 (4)

i
dbp
dZ

+ L+ap + σ̃|bp|2bp = 0 (5)

L−bp = bp + ρbp−v1e
−ik·v1 + ρbp−v2e

−ik·v2

L+ap = ap + ρap+v1e
ik·v1 + ρap+v2e

ik·v2

where σ̃ depends on the original coefficient of nonlinearity and integrals over the orbitals, Z =

εz,and ρ is deformation parameter which depends on given HC lattice parameters; when ρ = 1 we

have perfect hexagonal HC lattice. The effect of ρ in physical space is to squeeze the bottom/top

hexagonal corners of the HC lattice when ρ < 1 and push them apart when ρ > 1; when ρ < 1/2

a gap opens at the Dirac points.

The above system is a discrete evolution system which governs the evolution of Bloch wave

envelopes at a general location k. For different values of k, we find that the evolution of the

envelopes can be very different. We can consider a further limit like we did for simple lattices; i.e.

ap+v ∼ (1+νv ·∇+ · · · )a; namely the continuous limit where the envelopes can be written in the
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form a(R, Z) and b(R, Z) where R = νr represents the spatial coordinate of the slowly varying

envelope. If we assume the wave is propagating with k near a Dirac point we find the following

continuous system of equations which is quite different from an NLS type equation

i
∂a

∂z
+ ∂̃−b+ σ̃ν |a|2a = 0

i
∂b

∂z
− ∂̃+a+ σ̃ν |b|2b = 0 (6)

where ∂̃± = ∂x±iζ∂y, σ̃ν = σ̃
ν

and ζ =
√

4ρ2−1
3

. If σ̃ν = 0, find a linear system which is the

familier 2 dimensional wave equation; otherwise this is termed a NL Dirac system.

In Figure 7 is a typical comparison between the governing lattice NLS equation and the above

reduced system with ρ = 1. In Figure 7 top panel a-c: the intensity of the solution is plotted

while in the lower panel d-f: only the a component of the continuous Dirac system (6) is given–

the b component looks similar to a. The initial condition is a unit gaussian for a and zero for the

b component. We see bright rings emanating from the center; this is termed conical diffraction.

Interestingly, similar conical structure occurs in the linear system–i.e. when σ = 0. We note that

when the initial condition for both a, b are unit gaussians we observe conical diffraction with a

‘notch’ [29, 30].

The main difference between the linear and nonlinear systems is the phase structure which

becomes increasingly complex in the nonlinear case. Conical diffraction was observed experimen-

tally [25]. It is interesting to note that remarkable complex phase structures were also recently

observed [31].

In [32] direct computation on the lattice nonlinear Schrödinger equation (1) showed that when

the nonlinear coefficient was significantly increased one obtains triangular diffraction as opposed

to conical diffraction. Using our discrete system we showed [33] that triangular diffraction was

present. Figure 8 describes the situation. We see that for small nonlinear coefficient the resulting

pattern is nearly conical. But as the nonlinear coefficient is increased to unity a clear triangular

structure emerges. When the nonlinear coefficient takes the opposite sign the triangular diffraction
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(c)(b)(a)

(d) (e) (f)

Figure 7: An initial ‘spot’ evolves into bright rings; the top panel is from direct integration of the
lattice NLS equation (1). The bottom panel is the a component of the above continuous Dirac
system (6) with ρ = 1.

changes from a triangle pointing upward to one pointing downward.

Figure 8: Effective NL coefficient in the discrete system with ρ = 1, σ̃ = (a) 0 (b) 0.1 (c) 1 (d) -1

We find that when we consider the continuous limit one needs to keep higher order terms in

order to see the triangular structure. The relevant higher order continuous equations with ρ = 1

are given [33] by

i∂Z a+ (∂− −
ν

2
∆+)b+ σ̃ν |a|2a = 0

i∂Z b+ (∂+ −
ν

2
∆−)a+ σ̃ν |b|2b = 0

where ∂± = ±∂X+i∂Y , ∆± = ∂XX+∂Y Y /3±2i∂X∂Y and the corresponding figures demonstrat-

ing triangular diffraction are given below in Fig. 9. If the higher order terms ∆± are not included

in the above equations the resulting diffraction patterns are conical, not triangular.

Interestingly, when we consider initial conditions for the discrete system which are on the scale

of the discretization, then in the linear discrete problem with σ̃ = 0 we see spots at the hexagonal
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Zabolotskaya, Sov. Phys. -Acoust., 1969 given by

∂θ(∂tu+ u∂θu) + γ∂2yu = 0 KZ

From a initial conditions for a, b of guassian type we find that there are two small parabolic

structures emanating from the center. The asymptotic theory is found to provide a good approxi-

mation to the underlying complex situation. More details can be found in our papers [34, 35].

Recently it has been shown [11] that semi-infinite HC lattices with a periodic helical structure

written along the propagating direction can support linear traveling edge modes. The written heli-

cal HC structure has the effect of introducing a pseudo-magnetic field. In [11] it is found that these

linear edge modes can move along and follow the boundary even when there are corners. In pre-

liminary work we have developed an asymptotic theory, assuming a relatively fast helical change,

to describe this situation. We first studied the case without a pseudo-magnetic field present; i.e.

the existence of edge modes in system (4). In this case we found a class of stationary edge cor-

responding to so-called zig-zag boundary conditions cf. [36] and references therein. In [37] we

developed an asymptotic theory that describes and extends the results of [11] to the case where

there is a pseudo-magnetic field. The advantage of the asymptotic theory is that all formulae are

explicit which allows us to readily generalize to other cases of physical interest.

In addition to studying the dynamics and propagation of edge wave dynamics in honeycomb

lattices we also analyzed the propagation of multidimensional nonlinear surface plasmon waves

in dielectric/metal interfaces [38]. Knowledge of both areas is important in order for us to deeply

understand the nature of wave dynamics along edges and surfaces.

Using the HC lattice theory with a pseudo-field we were able to examine situations with more

general pseudo-magnetic fields. We find that the linear edge modes are remarkably robust in a

certain regime of parameter space; in other regimes they disperse. We have also used the theory to

generalize to nonlinear lattices and have found that the envelope function associated with the edge

modes satisfy the classical nonlinear Schrödinger (NLS) equation. We will continue studying this
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problem and will carefully investigate whether the nonlinear soliton states can propagate without

dispersion along boundaries even when there are corners present.

The robust behavior of the propagating edge modes appears to be correlated with underlying

topology associated with the Bruillouin zone [11, 39]. Propagating edge modes persist over long

distances despite the fact that we are in a gap regimes of the edge mode spectrum. This situa-

tion/effect is sometime referred to as a ‘Floquet topological insulator’ in the physics literature.

Topological insulators are insulators in the bulk but admit boundary conducting sates whose en-

ergies lie in a bulk energy gap. The term Floquet derives from the fact that the pseudo-field in

periodic in the longitudinal direction. Preliminary calculations indicate that the robustness of the

Floquet topological insulator in the linear case can also lead to similar results for the nonlinear

regime. We are continuing to study this in detail.

PT-Symmetric systems

Another area of interest in modern optics is so called PT systems. These systems are made

by introducing gain and loss in just such a way that the equations describing the propagation of

fields which are invariant under the combined action of spatial inversion, P , and time reversal,

T . PT -symmetric optical systems represent a new class of optical metamaterials allowing for

greater control of light. In particular, PT -symmetric optical systems, phenomena such as novel

beam diffraction patterns and unidirectional invisibility have been observed. All of this phenomena

depends on the fundamental question of whether spectra is real or if a ‘phase transition’ [40] has

caused spectra with non-zero imaginary part to appear. Establishing whether phase-transitions

do or do not occur has been studied in many contexts cf. [41]. In [42], starting from a linear

Schrödinger equation of the type discussed above, see eq. (1) with a PT symmetric lattice potential,

we develop a necessary and sufficient condition which establishes when phase transitions can or

can not occur in PT symmetric honeycomb lattices for small PT perturbations. We we show that

honeycomb potentials with added symmetry allow us to find PT perturbations which satisfy this

condition. Via numerical experiments, it is seen that PT -symmetric lattices satisfying the analytic
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condition do not exhibit phase transitions for a range of parameter regimes, sometimes even for

relatively large PT perturbations. This goes beyond the standard theory, and shows with added

symmetry that carefully designed PT symmetric lattices can be robust against phase transitions.

In a related direction we have found that a ‘simple looking’ nonlocal PT-symmtric equation is

integrable. The equation takes the form

iqt(x, t) = qxx(x, t)± 2q(x, t)q∗(−x, t)q(x, t) (8)

where ∗ denotes complex conjugation and q(x, t) is a complex valued function of the real vari-

ables x and t. Eq. (8) admits a linear (Lax) pair formulation and possesses an infinite number of

conservation laws; hence it is an integrable system. Using the the inverse scattering transform we

can linearize the equation, corresponding to rapidly decaying initial data, and obtain solutions to

Eq. (8) including pure solitons solutions [43]. Some of the important properties of the nonlocal

NLS equation are contrasted with the classical NLS equation where the nonlocal nonlinear term

q∗(−x, t) is replaced by q∗(x, t). Indeed we note that both equation (8) and the classical NLS share

the symmetry that when x → −x, t → −t and a complex conjugate is taken, then the equation

remains invariant. Thus, the new nonlocal equation is PT symmetric which, in the case of classi-

cal optics, amounts to the invariance of the induced potential V (x, t) = q(x, t)q∗(−x, t) under the

combined action of parity and time reversal symmetry. Finally, wave propagation in PT symmet-

ric coupled waveguides/photonic lattices has been experimentally observed in classical optics cf.

[40].

Similarly we find the following, also ‘simple looking’, nonlocal discrete nonlinear Schrödinger

equation is integrable [44]

i
dqn
dt

=
1

h2
(qn+1 − 2qn + qn−1)± qnq∗−n (qn+1 + qn−1) (9)

where ∗ denotes complex conjugation and qn is a complex function and n is an integer. As with

equation (8) this discrete equation (9) admits a linear (Lax) pair formulation and possesses an

infinite number of conservation laws; hence it too is an integrable system. Corresponding to rapidly
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decaying initial data one can exactly linearize Eq. (9) using the inverse scattering transform and

obtain solutions including pure solitons. Some of the important properties of Eq. (9) are contrasted

with the better known model where the nonlocal nonlinear term qnq
∗
−n is replaced by |qn|2. Indeed

as with the continuous model, the discrete equation shares the symmetry that when n→ −n, t→

−t and a complex conjugate is taken, then the equation remains invariant. Thus, the new discrete

nonlocal equation is PT symmetric which, in the case of classical optics, amounts to the invariance

of the self-induced potential Vn = qnq
∗
−n under the combined action of parity and time reversal

symmetry.
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where the constant parameters g, τ , l, Esat, Psat are positive. The first term on the right hand

side represents saturable gain, the second is nonlinear filtering (τ 6= 0) and the third is saturable

loss. This model generalizes the well-known master laser equation originally developed by Haus

and collaborators. When the loss term is approximated in the weakly-nonlinear regime by a first

order Taylor polynomial we obtain the master laser equation. Hence, the master laser equation is

included in the power saturated model as a first order approximation.

In our papers we discuss in detail how this equation applies to the system described in Fig. 11.

The system is dispassion managed because there is a difference between the dispersion inside the

crystal and in the prisms/mirrors.

In our earlier research investigations in fiber optics [45] we derived, based on the asymptotic

procedure of multiple scales, a nonlinear integro-differential equation (not given here due to space

considerations) which governs the dynamics of dispersion-managed pulse propagation. This gov-

erning equation is referred to as the dispersion-managed nonlinear Schrödinger (DMNLS) equa-

tion. When there is no gain or loss in the system, for strongly dispersion-managed systems, the

DMNLS equation plays the role of the “pure” NLS equation–which is the relevant averaged equa-

tion when there is either small or no dispersion-management. When gain and loss are included as

in the PES equation we find a modification of the “pure” DMNLS equation [46].

With or without dispersion-management the PES equation naturally describes the locking and

evolution of pulses in mode-locked lasers that are operating in the soliton regime. In our research

[46, 47] we took a unit gaussian input, typical values of the parameters, and we varied the gain

parameter g. When g < g∗ no localized solution was obtained; i.e. in this case the effect of loss

is stronger than a critical gain value and the evolution of a Gaussian profile decays to the trivial

solution. Conversely, when g > g∗, there exists a single localized solution, u = U0(t) exp(iµz)

where µ, called the propagation constant, is uniquely determined given the specific values of the

other parameters.
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(when the loss term is taken to be the first two terms of the Taylor expansion of the last, power

saturated term, in the PES equation) have stable soliton solutions or mode-locking evolution. In

general the solitons are found to be unstable; either dispersing to radiation or evolving into nonlo-

calized quasi-periodic states. For different parameters, the amplitude can also grow rapidly under

evolution. Thus, the basic master laser equation captures some qualitative aspects of pulse propa-

gation in a laser cavity; however, since there is only a small range of the parameter space for which

stable mode-locked soliton pulses exist, it does not reflect the wide ranges of operating conditions

where mode-locking occurs.

Interestingly, as the gain becomes stronger additional soliton states are possible and 2, 3, 4 or

more coupled pulses are found to be supported. This means that strings of soliton states can be

obtained [48].

Power saturation models also arise in other problems in nonlinear optics and are central in the

underlying theory. For example, power saturation models are important in the study of the dy-

namics of localized lattice modes (solitons, vortices, etc) propagating in photorefractive nonlinear

crystals. If the nonlinear term in these equations was simply a cubic nonlinearity, without satu-

ration, two dimensional fundamental lattice solitons would be vulnerable to blow up singularity

formation, which is not observed. Thus saturable terms are crucial in these problems.

In recent work we analyzed how the mode-locking mechanism responds to higher order per-

turbative terms including third order and nonlinear dispersion and Raman gain; we considered the

following perturbation of the PES equation (10) with constant dispersion and nonlinearity

i
∂u

∂z
+
d0
2

∂2u

∂t2
+ |u|2u =

igu

1 + E/Esat

+
iτ

1 + E/Esat

∂2u

∂t2
− ilu

1 + P/Psat

+ iβ
∂3u

∂t3
− iγ ∂(|u|2u)

∂t
+Ru

∂(|u|2)
∂t

(11)

where β represents third order dispersion, γ nonlinear dispersion or self-steepening and R the

Raman gain. When β = γ = R = 0 this equation is the PES model. In [49] mode-lockiing

was found to be maintained even with these higher order terms terms; mode-locking occurs for
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both the anomalous and normal regimes. In the anomalous regime, these perturbations are found

to affect the speed but not the structure of the locked pulses. The pulses behave like solitons of

a classical nonlinear Schrödinger equation and as such a soliton perturbation theory verifies the

numerical observations. In the normal regime, the effect of the perturbations is small, in line with

recent experimental observations [50].
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Dark Solitons and mode locked lasers

Dark solitons or envelope solitons having the form of density dips with a phase jump across

their density minimum, are fundamental nonlinear excitations which arise for example, in the

defocusing nonlinear Schrödinger (NLS) equation. They are termed black if the density minimum

is zero or grey otherwise. The discovery of these structures, which dates back to early 1970s,

was followed by intensive study both in theory and in experiment: in fact, the emergence of dark

solitons on a modulationally stable background is a fundamental phenomenon arising in diverse

physical settings. Dark solitons have been observed and studied in numerous physical contexts

including: discrete mechanical systems electrical lattices, magnetic films, plasmas, fluids, atomic

Bose-Einstein condensates as well as nonlinear optics.

In nonlinear optics, dark solitons have some advantages as compared to their bright coun-

terparts, which are solutions of the focusing NLS mode. Dark solitons are more robust against

Gordon-Haus jitter, background noise and higher order dispersion.

Recently, there has been an interest in “dark pulse lasers”, namely laser systems emitting trains

of dark solitons as envelopes of a continuous wave (cw) emitted by the laser; various experimental

results have been reported utilizing fiber ring lasers, quantum dot diode lasers and dual Brillouin

fiber lasers [51, 52]. These works, apart from introducing a method for a systematic and control-

lable generation of dark solitons, can potentially lead to other important applications related, e.g.

with optical frequency combs, optical atomic clocks, fiber optics etc. An important aspect in these

studies is the ability of the laser system to induce a fixed phase relationship between the modes of

the laser’s resonant cavity, i.e. to mode-lock; in such a case, interference between the laser modes

in the normal dispersion regime causes the formation of a sequence of dark pulses on top of the

stable cw background emitted by the laser.

We have studied dark solitons subject to general perturbations

iuz −
1

2
utt + |u|2u = F [u] (12)

where |F | � 1. We have developed a general perturbation theory for dark solitons [53]. One of
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Dispersive Shock Waves

Shock waves in compressible fluids is a classically important field in applied mathematics and

physics, whose origins date back to the work of Riemann. Such shock waves, which we refer to as

classical or viscous shock waves (VSWs), are characterized by a localized steep gradient in fluid

properties across the shock front. Without viscosity one has a mathematical discontinuity; when

viscosity is added to the equations, the discontinuity is “regularized” and the solution is smooth.

An equation that models classical shock wave phenomena is the Burgers equation

ut + uux = νuxx (13)

If ν = 0,we have the inviscid Burgers equation which admits wave breaking. When the underlying

characteristics cross a discontinuous solution, i.e. a shock wave, is introduced which satisfies

the Rankine-Hugoniot jump conditions which, in turn, determines the shock speed. Analysis of

Burgers equation shows that there is a smooth solution given by

u =
1

2
− 1

2
tanh{ 1

4ν
(x− 1

2
t)}

which tends to the shock solution as ν → 0. Thus the mathematical discontinuity is regularized

when viscosity ν is introduced. A typical regularized shock wave can be seen in Fig. 14 below in

red.

Another type of shock wave is a so-called dispersive shock wave (DSW). Early observations of

DSWs were ion-acoustic waves in plasma physics; indeed the Korteweg-deVries (KdV) equation

describes ion-acoustic waves in plasmas. Subsequently, Gurevich and Pitaevskii [55] studied the

small dispersion limit of the KdV equation. They obtained an analytical representation of a DSW.

As opposed to a localized shock as in the viscous problem, the description of a DSW is one with a

sharp front with an expanding, rapidly oscillating rear tail. The Korteweg-deVries (KdV) equation

with small dispersion is given by

ut + uux = ε2uxxx (14)
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interest in DSWs. The BEC experiments, originally performed in the Physics Department at the

University of Colorado, motivated our studies [56]. Recent experiments in nonlinear optics carried

out in the laboratory of J. Fleischer at Princeton University have also observed similar blast waves

and other interesting DSW phenomena [57]. Since the equations governing the phenomena are

similar, this provides further support for our DSW theory.

While interactions of viscous shock waves are well known, the understanding of interacting

DSWs is still at an early stage. Nevertheless we have made some progress towards understanding

the interaction picture. We note that in recent nonlinear optics experiments [57] interacting DSWs

were observed. We are investigating DSW interactions in physically interesting systems by em-

ploying both Whitham methods and asymptotic analysis applied to the solution obtained by the

inverse scattering transform.

Recently we have investigated the KdV equation with step-like data. We found that the long-

time-asymptotic solution of the KdV equation for general, step-like data is a single-phase DSW;

this DSW is the largest possible DSW based on the boundary data. We find this asymptotic solu-

tion using the inverse scattering transform and matched asymptotic expansions and confirmed the

phenomena numerically. So while multi-step data evolve to have multiphase dynamics at interme-

diate times, these interacting DSWs eventually merge to form a single-phase DSW at large time

[58, 59, 60].

Dispersive shock waves are an interesting and developing area of research which we believe

will play an increasingly important role in nonlinear optics applications and other areas of physics.
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