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1. Introduction 

Meandering is a method by which a resonant antenna can be reduced in size to fit a smaller 
application.1 Because resonant antennas are directly proportional to the operating wavelength, 
applications that require lower frequencies but possess size limitations are challenged by the 
contradiction. Most common meanders use a square function as the basis for the meander line; 
this allows for efficient use of space as the meanders can be placed quite close to one another as 
long as the distance of separation between traces is not be less than the trace width (preferably 
slightly larger). However, continued meandering of the antenna trace introduces some 
detrimental effects.  

The biggest negative impact is the reduced reflection coefficient that occurs when an antenna 
line is meandered. Each turn introduces a mutual capacitance that not only influences the 
resonant frequency but also the reflection coefficient, making it difficult to design an efficient 
meander as the antenna may not be able to be reduced by as much as desired without severe 
detrimental effects. Gain loss also occurs since with every additional turn opposing currents are 
introduced creating field cancelations.2 Bandwidth reduction is another problem with meandered 
line antennas.  

The goal of this report is to design a square meander line antenna using a circuit equivalent 
model and compare its function to 2 other types of meander: sinusoidal and triangular. The 2 
new meanders use the square meander as a template in order to maintain construction 
consistency. All 3 are simulated using FEKO3 and subsequently compared to determine the 
individual impact on size reduction (frequency shift), realized gain, reflection coefficient, and 
bandwidth. 

2. Design 

The circuit equivalent for the meandered dipole is a modified version of the well-known dipole 
circuit equivalent model.4 Figure 1 shows the standard circuit model for the straight line dipole 
antenna (SLDA) that will be used for the meander line dipole antenna (MLDA).4,5 Figure 2 
shows 1 of the 2 MLDA arms with 3 meanders. In this report, a meander is defined as an 
individual section made of 3 additional segments. This is important to note as the equations are 
dependent upon the number of meanders and a different definition can result in a different 
answer. 

 𝐶31 =  � 12.0674(𝐿−2𝑤𝑁)

log�2𝐿−2𝑤𝑁𝑎 �− 0.7245
�  𝑝𝐹 (1) 
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 𝐶32 = 2(𝐿 − 2𝑤𝑁) � 0.89075

�log2(𝐿−2𝑤𝑁)
𝑎 �

0.8006
− 0.861

−  0.02541�  𝑝𝐹 (2) 

 𝐿31 = 0.2𝐿 ��1.4813 log �2𝐿
𝑎
��

1.012
−  0.6188� µ𝐻 (3) 

 𝐶𝑚 = � 𝜋𝜀0𝑤

ln�𝑙𝑠𝑎+ ��𝑙𝑠𝑎�
2
−1�

�𝐹 (4) 

 𝑓0 =  � 1

2𝜋�𝐿31�𝐶31+𝐶32+
𝐶𝑚

2(2𝑁−1)�
�𝐻𝑧 (5) 

 

Fig. 1   SLDA circuit model 

 

Fig. 2   Square meandered dipole arm 
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Equations 1–3 are the SLDA equivalent circuit equations adapted for an MLDA, where L is the 
total wire length, w is the meander width, N is the number of meanders, and a is the equivalent 
wire radius for trace width d (a = d/4).4,6 Equation 4 determines the mutual capacitance between 
the adjacent wire sections, where ls is the spacing between the 2 parallel wires that form a 
meander.4 Equation 5 is the estimated resonant frequency for the MLDA. It should be noted that 
these equations are reasonably accurate for an MLDA whose number of meanders lie between 1 
and 6 with an accuracy of less than 15% error, providing a good start for MLDA design.  

The design constraints required that the MLDA does not occupy anymore area than what is 
present on the baseline model’s substrate. The baseline model is an antipodal planar dipole 
structure with a tapered micro-strip line feed; the structure and modifications were validated in a 
previous report.7 Due to the space restrictions, the arms of the MLDA cannot exceed 152.4 mm 
in mechanical length, and the meander width must be less than 50 mm. Also, the spacing 
between the arms must not interfere with the placement of the micro-strip feed and its associated 
ground plane. For these reasons, the meander width was held constant at 30.42 mm with only the 
meander lengths being free to change. Both the triangular and sinusoidal meanders used the 
square meander as a template in order to maintain relative consistency with the definition of a 
meander. 

3. Simulations 

The simulations were done using computer-aided design (CAD) FEKO3 as the design and 
simulation tool. Figure 3 shows the baseline antipodal dipole. The MLDA simulation models are 
shown in Fig. 4. Each model maintains the same antipodal planar structure as the baseline model 
and uses a micro-strip line that has been tapered to achieve a 50-Ω impedance match; the ground 
plane is also reduced in width. Each model is fed with an edge feed to maintain consistency with 
the baseline model. It is important to note that the trace width of the triangular meander is thinner 
than the baseline trace width by a factor of 1.41 due to the trace being drawn along the diagonal.  
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Fig. 3   Baseline antipodal dipole 

 

Fig. 4   MLDA frequency-shifted antipodal simulation models 
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Figures 5 and 6 show that the square meander results in the largest frequency shift at 27.5%, due 
to the fact that more space is being occupied on the dielectric, but has a reduced reflection 
coefficient (6.00 dB), severe loss of bandwidth (53.39%), and decreased realized gain (0.36 dBi). 
Field cancelations due to opposing current flow direction along the meander widths explain the 
decreased realized gain. The reductions in bandwidth and reflection coefficient are attributed to 
the increase in inductance due to a longer trace and the mutual capacitances between meander 
sections.   

 

Fig. 5   Reflection coefficient for frequency-shifted meanders 
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Fig. 6   Realized gain for frequency-shifted meanders 

The sinusoidal meander results in a frequency shift not as large as that achieved by the square 
meander (23.04%). Though the sinusoid may not have reduced the frequency by as much as the 
square, it does help to remove some of the field cancelations that were present in the square. The 
bandwidth does not decrease by as much as the square either (43.13%), most certainly due to the 
smaller trace inductance and mutual capacitance. There is a reduction in the reflection coefficient 
(2.24 dB) and a loss in realized gain (0.21 dBi)—still an improvement over the square meander. 
The triangular meander possesses the smallest frequency shift (19.82%), but shows the smallest 
reduction in realized gain (0.12 dBi) and bandwidth (40.51%), and improves the reflection 
coefficient (1.16 dB additional). 

Taking the percentage in frequency shift and applying it to the respective meandered structures 
in order to reduce their sizes results in corresponding resonances that are near the baseline mode 
(Figs. 7, 8, and 9). From here it can be shown that the previous trends of additional loss (square 
and sinusoidal), reduced loss (triangular), and reduced realized gain reduction (sinusoidal and 
triangular) still hold true. Here bandwidth reductions seem to be more structurally dependent 
showing that meandering results in bandwidth loss (22.37% for square, 12.9% for sinusoidal, and 
16.0% for triangular). See Table 1 for the square meander dimensions and Tables 2 and 3 for the 
comprehensive results. 
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Fig. 7   Size reduction comparisons (not to scale) 

 

Fig. 8   Reflection coefficient for reduced-size meanders 
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Fig. 9   Realized gain for reduced-size meanders 

Table 1   Dimensions for the frequency-shifted square meander 
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Table 2   Simulation results for the frequency-shifted meander results 

 

Table 3   Simulation results for the reduced-size meanders results 

 
 

4. Conclusion 

This report explored the impact that 3 different meander trace structures (square, sinusoidal, and 
triangular) can have on size reduction (frequency shift), reflection coefficient, bandwidth, and 
realized gain. The results show that the square meander is the preferred method for size 
reduction, but it can severely negatively impact the gain, reflection coefficient, bandwidth, and 
realized gain. The sinusoidal meander results in a more manageable reduction in bandwidth and 
realized gain but increases the reflection coefficient. The triangular meander improves the 
reflection coefficient and nearly maintains the realized gain of the baseline, but has the least 
impact on size reduction. Ultimately, the particular design requirements determine which 
meander structure should be used. 
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