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1. The Communications and Networks Collaborative

Technology Alliance

The Communications and Networks Collaborative TechnologyAlliance (C&N CTA)

was a research consortium of academic, industry, and Government research partners

funded by the US Army Research Laboratory (ARL) for the purpose of develop-

ing “technologies that enable a fully mobile, fully communicating, agile, situation-

ally aware, and survivable lightweight force with Internetworked Command, Con-

trol, Communications, Computers, Intelligence, Surveillance, and Reconnaissance

(C4ISR) systems. These wireless network technologies wererequired to operate

with a heterogeneous mixture of individual Soldiers, ground vehicles, airborne plat-

forms, unmanned aerial vehicles, robotics, and unattendedground sensor networks;

and operate while on-the-move with a highly mobile network infrastructure, un-

der severe bandwidth and energy constraints, while providing secure, jam-resistant

communications in noisy hostile wireless environments.”1 The C&N CTA program

started in fiscal year 2002, ended in fiscal year 2009 (FY02–FY09), and produced

a total of 960 publications by 518 authors.

The C&N CTA dataset includes certain publication metadata for the 8-year run of

the program and was collected in an Excel spreadsheet. This spreadsheet consisted

of 16 pages, with each page including a single table corresponding to the FY and

the publication type (journal or conference proceeding). Each page includes a list of

publications with fields for the paper title, paper authors,those authors’ affiliations

(not always matched to the different authors in the case of a co-authored work),

the primary technical area of the paper, the journal or conference proceeding title,

and the publication date (this occasionally included a notation indicating that the

submission date was entered instead).

There is “noise” observed in the recordkeeping of the tables. The formats of the

tables are inconsistent from year to year, often including some redundancy in the

information provided. For example, the FY02 Journal table included affiliation in-

formation in both the affiliation field and the author field. The entries for the fields

are also often inconsistent. For example, the entry for an author’s name might in-

clude either a first name or first initial; title entries mightinclude simply the title or

the complete citation; and publication date entries might include the month, quarter,

or just the FY information. As already stated, the submission date was often sub-

stituted for the publication date. Also, the dataset includes a number of duplicate
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entries (e.g., where an entry exists for when the paper was first submitted and an-

other entry exists for when the same paper appeared). Given the size of this dataset,

the obvious misspelling errors and duplicate entries are easily correctable; also it is

easy to link entries with only an author’s first initial and last name to the full name.

The amended entries include 960 publications (292 journal papers and 668 confer-

ence proceedings) by 518 authors. These data were imported into MATLAB with

each paper recorded as an element in a structure array, with each structure having

the following fields:

• ID_no (a number between 1 and 960),

• ID (a tag based on FY, type, and order appearance of the paper on its table

page),

• Title,

• Authors,

• Organizations,

• Area (T1-T4),

• BookTitle (primarily journal or conference title),

• Type (“Journal” or “Conference”),

• Date,

• Abstract (if recorded on the Excel sheet), and

• Author.

In addition, for each paper entry, the Author field above was asubstructure array

whose length was determined by the number of co-authors and that included the

following fields:

• ID_no (a number between 1 and 518),

• ID (a tag based on the author’s name),

• Name,
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• First (name), and

• Last (name).

From these structure fields, any number of cell arrays or other data structures can

be generated using the IDs. This report discusses the links between each paper ID

and the authors’ IDs on that paper.

1.1 Metrics of the C&N CTA Dataset

The C&N CTA dataset includes publication information for each year of the pro-

gram. This enables consideration of the data in at least 2 ways. First, each year of

the data can be examined separately for a variety of metrics and compared with

the other years’ metrics. Alternatively, the data can be analyzed in a cumulative

manner, so as to illuminate how properties evolved as the dataset grew from the

program’s first year to its completion. We consider both approaches simultaneously

throughout this report.

In determining these metrics, we use the data entered in the publication date field,

even in instances where the submission date was used in that field. If the paper was

listed on a table for a particular FY and publication type, itis treated as belonging

to that year’s metrics. The only time this is not true is in therare instance when a

paper was duplicated or listed twice, once with the submission date and again with

the publication date. In such cases, we use the information for the latter entry and

omit the former.

Likely, the dataset contains other errors. For example, a paper might have multiple

entries with duplicate titles, i.e., when the title changedbetween submission and

publication. It is also possible that the dataset includes entries for publications that

were submitted but never accepted. This last scenario, however, still represents a

collaboration, albeit, in some sense, an unsuccessful one.We simply refer to a par-

ticular year’s listed publications as being published in that year as the bulk of them

were. Some publications undoubtedly appeared after the final FY of the program;

these are included in the table for the final FY.

1.1.1 Number of Papers and Authors

Basic metrics for the number of papers and number of authors involved in this CTA

are given in Table 1. The entries for the numbers of papers in the table represent
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the number of papers listed in the corresponding spreadsheet page. No distinction

is made here between authors who were principal investigators (PIs) or authors

who were students or postdocs, nor between authors from academia, industry, or

Government.

Table 1 C&N CTA: Paper and author metrics

Fiscal Year # Papers # Journ. # Conf. # Papers (cum.) # Authors # Authors (cum.)

2002 80 17 63 80 101 101

2003 104 16 88 184 99 153

2004 173 62 111 357 184 258

2005 118 30 88 475 143 293

2006 182 74 108 657 199 375

2007 130 37 93 787 136 424

2008 99 34 65 886 155 482

2009 74 22 52 960 105 518

mean 120 36.5 83.5 140.25

median 111 32 88 139.5

Some important properties follow. The mean and median number of papers pub-

lished yearly is 120 and 111, respectively. The mean and median number of authors

participating in at least 1 publication yearly is 140.25 and139.5, respectively. The

numbers display a growth in the number of publications from FY02 to FY04 before

a dip in FY05, a return to FY04 numbers in FY06, and then a steady decline until

the conclusion of the CTA in FY09. A number of causes may have contributed to

this behavior.

One explanation involves the student participants. There was undoubtedly some

lag time at the start of the program due to the research time required to produce

initial results, accounting for the initial upswing. Mid-program, there was likely a

phasing out of many student authors (who graduated and left the program) and,

thus, a transitional period during which new student authors were acclimated to the

program.2 This could explain the dip from FY04 to FY05 and the return in FY06.

The gradual decline after FY06 could then be explained by thelack of new students

participating in the program as it wound down.

An alternative explanation might be found from examining the budget numbers

for each FY. Less funding could have led to the departure of PIs, less support for
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students, or even fewer opportunities for collaboration (e.g., if travel funding was

curtailed). Program redirections could also be responsible for the reduction of pub-

lishing output in FY05, since a program shift redirects funding and requires the

usual initialization time of a scientific investigation, asseen at the start of the pro-

gram.

Of the more than 500 authors who participated at some level inthe creation of the

publications in the C&N CTA, only 12 published in every year of the program.

In alphabetical order, these authors are Paul D Amer, John S Baras, Georgios B

Giannakis, Janardhan R Iyengar, Tao Jiang, John E Kleider, Xiaoli Ma, Anthony J

McAuley, Tarek N Saadawi, Randall Stewart, Ananthram Swami, and Lang Tong.

1.1.2 Number of Authors per Publication and Publications per Author

The empirical distribution of the number of authors per publication is depicted in

Fig. 1. The mean and median number of authors per paper are 2.7708 and 3, respec-

tively. The vast majority of papers are written by either 2 or3 authors. An estimate

of the fraction of papers withk authors for small collaborations in a large network

can be derived as3

p(k) = (eλ − 1)e−λk, (1)

whereλ is the reciprocal of the mean number of authors on a paper. Forthis dataset,

λ = 1/2.7708 = 0.3609 produces an estimate that decays too slowly, so instead the

plot depicts the above function withλ = 1 (rescaled to the total number of papers

instead of the fraction). It should not be inferred that thisimplies the program led

to fewer large collaborative teams than expected, as the C&NCTA publication net-

work has an additional restriction relative to general publication networks, namely,

that collaborations are restricted to papers that includedparticipants as co-authors

and were relevant to the program.

The empirical distribution of the number of publications anauthor contributed to is

displayed in Fig. 1. The solid line, given by

# authors who publishedx papers= 180.89x−1.42, (2)

is an estimate of the slope from a linear regression excluding the outlier with the

largest residual. The mean, median, and mode of the number ofpublications per

author are 5.1351, 2, and 1, respectively. The large number of single-publication

authors is primarily due to students who had a limited role inthe program. How-
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Table 2 C&N CTA: Number of publications top-21 list

Rank Author # of Papers

1 Georgios B Giannakis 215

2 Lang Tong 73

3 Qing Zhao 50

4 Xiaoli Ma 47

5 Ananthram Swami 45

6 Gordon L Stuber 44

7 Shengli Zhou 42

8 Brian M Sadler 36

8 John S Baras 36

10 Zhengyuan Xu 33

11 Myung Jong Lee 31

12 Anthony J McAuley 30

12 Tarek N Saadawi 30

14 Yingbo Hua 29

14 John E Kleider 29

14 Sergio Verdu 29

17 Mariusz A Fecko 28

18 Paul D Amer 26

19 Adarshpal S Sethi 24

20 Sunil Samtani 22

21 Alenka G Zajic 22
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We study 2 important types of subgraphs on the C&N CTA network: 1) the subgraph

of vertices and edges for a particular FY, and 2) the subgraphof the vertices and

edges from the first FY to a particular FY, e.g., FY02 to FY05.

We assume the reader has a general knowledge of much of the graph terminology

used in this chapter. If there are any definitions the reader is unfamiliar with, these

can be found in other sources.6–8

2.1 Connectivity

In this section, we examine the evolution of various aspectsof the network, such as

the number of vertices and edges, the average path length, the number of compo-

nents, density, diameter, and clustering.

2.1.1 Network Size

We have already stated that the graph of the C&N CTA dataset for the program du-

ration has 518 vertices and 1248 edges. The evolution of the number of vertices and

edges of this network graph over the program lifetime is given in Table 3. The “per

year” (or yearly) numbers only include the authors’ interactions recorded in that

FY. The “cumulative” numbers include the interactions fromthe program begin-

ning in FY02 to that current year. The “active” numbers only include interactions

by authors who are either active in that given FY or were active in a prior and later

FY.

Table 3 C&N CTA: Number of vertices and edges

Fiscal Year
Per Year: Cumulative: Active:

# Authors
# Edges

# Authors
# Edges

# Authors
# Edges

2002 101 158 101 158 101 158

2003 99 158 153 266 122 196

2004 184 294 258 475 206 353

2005 143 234 293 589 185 342

2006 199 345 375 811 218 443

2007 136 229 424 941 164 323

2008 155 316 482 1149 164 390

2009 105 170 518 1248 105 218

There is strong empirical evidence that a linear relationship exists between the num-

ber of vertices and the number of edges for the cumulative network. The evidence

9



is weaker for the yearly and active networks. The best linear unbiased estimator for

the cumulative network is given by

#edges= 2.6358× #vertices− 153.3268, (3)

with a nearly unitary coefficient of determination ofR2 = 0.9917.

The slope and intercept estimates and the coefficients of determination for simple

linear regressions on the dataset for each network are given in Fig. 3. The greater

slope and lower intercept estimate for the cumulative data (Fig. 3b) compared with

the per-year data (Fig. 3a) indicates that the proportion of new edges each year is

greater than the proportion of new vertices each year. This perhaps implies that new

authors were collaborating with different existing authors and/or existing authors

were forming new collaborations among themselves. This is an expected observa-

tion given the program goals of fostering collaboration, which leads to more inter-

actions and/or larger group interactions (see Fig. 1). As each new author joins the

program, that author will publish with more than 1 author on average, thereby gen-

erating multiple new edges. These new authors are usually new students, post-docs,

and external collaborators as opposed to new PIs in the program.
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Fig. 3 The C&N CTA: Number of vertices vs. number of edges

At the same time, the longer an author remains in the program, the probability

of that author developing a new collaboration with another author already in the

program increases. Note that the negative intercept in a linear relationship such as

those in Fig. 3b indicates a generally increasing trend of authors who have a short

lifetime in the program (Table 4), thereby prohibiting collaborations (edges) with

other (later or continuing) program authors. This is a consequence of a program
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ending, which shifts the line down.

Table 4 C&N CTA: New authors vs. single-year authors

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009

New authors 101 52 105 35 82 49 58 36

Single-year authors 31 12 45 23 42 27 47 36

Whereas a linear fit appears to fit well to the yearly and cumulative data, a linear

model is a poorer match for the active vertices and edges in the dataset (Fig. 3c).

2.1.2 Components

The number of components of the C&N CTA network over the course of the pro-

gram is detailed in Table 5. In any given year, there are time constraints that limit the

number of collaborations that will result in a publication.Authors form core groups

that may or may not interact with other groups within a given year or given sequence

of multiple years. It at first appears surprising that the number of components did

not markedly decline over the evolution of the cumulative network. However, this is

explained by comparison with the active network components. Half the components

of the cumulative network are composed of inactive authors (vertices).

Table 5 C&N CTA: Number of components

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009

# of components (p.y.) 20 15 31 21 26 16 17 18

# of components (cum.) 20 21 27 19 20 18 16 16

# of components (act.) 20 21 28 16 15 8 8 7

The sizes of the key components and median size are presentedin Table 6. The pri-

mary and secondary components (or largest and second largest components) of the

yearly network contain, respectively, 34.8 and 16.9 vertices on average with small

deviations from these averages. These components represent the collaborative ac-

tivity in that given year, due to the various task collaborations. The active network

contains more variability with larger secondary components, indicating that the con-

nections between various components are only preserved in the cumulative network

by inactive authors.
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Table 6 C&N CTA: Sizes of components (measured by # of authors)

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009

Primary component size (p.y.) 40 32 23 31 48 35 44 25

Secondary component size (p.y.) 5 10 17 17 28 21 19 18

% in primary component (p.y.) 39.6 32.3 12.5 21.7 24.1 25.7 28.4 23.8

Mean component size (p.y.) 5.1 6.6 5.9 6.8 7.7 8.5 9.1 5.8

Median component size (p.y.) 3 4 4 5 4 3.5 5 3.5

Primary component size (cum.) 40 57 110 175 290 347 419 453

Secondary component size (cum.) 5 15 18 35 10 9 9 9

% in primary component (cum.) 39.6 37.3 42.6 59.7 77.3 81.8 86.9 87.5

Median (cum.) 3 4 4 5 4 4 4 4

Primary component size (act.) 40 37 44 59 172 85 76 52

Secondary component size (act.) 5 12 29 48 10 63 39 34

% in primary component (act.) 39.6 30.3 21.4 31.9 78.9 51.8 46.3 49.5

Median (act.) 3 3 4 5 3 3.5 9.5 4

By allowing interactions of inactive authors to persist, the cumulative network is

characterized by a dominating primary component with a relatively shrinking sec-

ondary component. This behavior has been previously characterized for much larger

networks.5 The only restriction on the growth of the primary component is the num-

ber of inactive components. These small inactive components become inactive due

to the relatively short lifetimes of their authors’ activity. Six of the 15 nonprimary

components in the cumulative network consist entirely of authors who were only

active in the network for a single FY, i.e., their papers are only listed on a single

year’s spreadsheet. For whatever reason, these 17 authors were active in the program

too briefly for collaboration to emerge with authors in the primary component. The

primary component also has a large number of authors who haveshort “lifespans”

in the network: 49.89% of these vertices were only active in asingle year com-

pared with 53.85% in the small components. However, only 81.90% of authors in

the primary component have lifespans of at most 3 years compared with 90.77%

of authors in the small components. The slightly larger percentage of authors who

have much shorter lifespans also limits the opportunities for a collaborative link to

be established that would potentially reduce the number of components.

Unfortunately, the size of the C&N CTA dataset is insufficient to determine if the

distribution of the component sizes has any pattern such as apower law, as has been

found in other networks.11
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For comparison, the average local clustering coefficient for an Erdös-Rényi graph

approaches the ratio of the average degree to the graph size,which is also the prob-

ability of an edge existing between 2 vertices.12 In the case of the C&N CTA co-

authorship graph, the ratio of edges to possible edges is an order of magnitude less

than the numbers in the table. This is evidence of the small-world nature of this

co-authorship graph, which is perhaps not surprising giventhat the network is con-

strained to participation within the C&N CTA.

If authors who formed connected triples but not triangles are no longer in the pro-

gram, then the opportunity to “close” the triple and form a triangle is lost. Con-

sidering the large number of authors with short lifetimes inthe network, the large

clustering coefficients in Table 8 indicate that clusteringwas an immediate and,

therefore, essential characteristic of the collaborations.

2.2 Centrality

2.2.1 Vertex Degree

2.2.1.1 Local Characteristics of the Vertex Degrees

For the C&N CTA network, the most prominent authors in terms of various central-

ity metrics (vertex degree, closeness, and betweenness) are given in Table 9.

Giannakis, by the degree metric alone, is clearly a superhubrelative to the other

hubs on this list. However, as degree only determines the local connections of an

author, this only implies that Giannakis collaborated witha large number of au-

thors. This is not surprising as we have seen from Table 2 thathe collaborated on a

significant number of papers. It is also known that Giannakishad a large number of

students that participated in the program.

The list of authors with high degree in Table 9 does not give a sense of how rela-

tively large these degrees are to the other vertices. For comparison, the mean and

median degrees for the yearly network, the active network, and the cumulative net-

work (both the whole network and just its primary component in this latter case)

are given in Table 10. It makes sense to compare with the mean and median degrees

of the vertices in the primary component since all the authors listed in Table 9 are

in the primary component. In fact, the first 64 authors rankedby vertex degree are

in the primary component. Since the degrees have a heavy-tailed distribution, the

mean is biased high. Even still, the program’s high-degree authors in Table 9 have
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Table 9 C&N CTA: Centrality top-20 lists

Rank Degree Closeness Betweenness

1 Georgios B Giannakis 68 ND Sidiropoulos 0.2684 John S Baras 0.3324

2 John S Baras 32 Ananthram Swami 0.2681 Georgios B Giannakis 0.3264

3 Lang Tong 29 Brian M Sadler 0.2599 Brian M Sadler 0.3140

4 Xiaoli Ma 26 Georgios B Giannakis 0.2592 ND Sidiropoulos 0.3007

5 Anthony J McAuley 26 Tao Jiang 0.2482 Tao Jiang 0.2987

6 Ananthram Swami 25 John S Baras 0.2383 Ananthram Swami 0.2162

7 Brian M Sadler 24 John E Kleider 0.2353 Xiaodong Cai 0.1250

8 Myung Jong Lee 23 Shengli Zhou 0.2348 Yi Sun 0.1221

9 Daniel Sterne 23 Lang Tong 0.2346 Myung Jong Lee 0.1218

10 Tarek N Saadawi 22 Xue Wu 0.2346 Lang Tong 0.1130

11 Sergio Verdu 22 Steve Gifford 0.2331 H Vincent Poor 0.1095

12 Mariusz A Fecko 20 Xiaoli Ma 0.2307 Yingbo Hua 0.1011

13 Yingbo Hua 20 Qing Zhao 0.2307 Giovanni Di Crescenzo 0.1010

14 Qing Zhao 20 Liuqing Yang 0.2269 Lili Huang 0.0945

15 Richard Gopaul 19 X Liu 0.2266 Radha Poovendran 0.0938

16 Kyriakos Manousakis 19 A Stamoulis 0.2253 Qing Zhao 0.0936

17 Radha Poovendran 19J Tao 0.2252 Mariusz A Fecko 0.0915

18 Adarshpal S Sethi 19 Yingbo Hua 0.2249 Kyriakos Manousakis 0.0891

19 Errol L Lloyd 18 Zhengyuan Xu 0.2249 Youngchul Sung 0.0869

20 Latha Kant 17 M Ghogho 0.2243 Maria Striki 0.0841

20 Sunil Samtani

at least 4 times the end-of-program mean degree (4.8185). These authors also have

at least 7 times the end-of-program median degree (3).

Table 10 C&N CTA: Mean and median degrees

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009

mean (p.y.) 3.1287 3.1919 3.1957 3.2727 3.4673 3.3676 4.0774 3.2381

mean (act.) 3.1287 3.2131 3.4272 3.6973 4.0642 3.9390 4.7561 4.1524

mean (cum.) 3.1287 3.4771 3.6822 4.0205 4.3253 4.4387 4.7676 4.8185

mean (cum. p.c.) 4.2000 4.0351 4.3636 4.4800 4.6621 4.8761 5.1456 5.1876

median (p.y.) 3.0000 2.0000 2.0000 3.0000 3.0000 2.0000 3.0000 3.0000

median (act.) 3.0000 2.0000 3.0000 3.0000 3.0000 3.0000 4.0000 3.0000

median (cum.) 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

median (cum. p.c.) 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 4.0000 4.0000
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likely be similar to that observed in the literature. This issomewhat surprising since

this network is constrained to a particular program, hence omitting collaborations

external to the program. Ignoring extremal values, the distribution is estimated to

satisfy

#authors= 924.91× degree−2.02. (4)

2.2.2 Closeness

The authors with large closeness indices (for the primary component of the end-

state cumulative network) are listed in Table 9. Perhaps themost surprising result is

that the highest ranked author in terms of closeness centrality, ND Sidiropoulos, is

not ranked high in terms of degree centrality or even in the number of publications.

Sidiropoulos has a relatively low degree of9 (ranked 57th) and14 publications

(ranked 36th). Of the top-20 ranked authors, closeness centrality shares 8 authors

with the degree centrality rank list and 9 authors with the publication rank list.

However, Sidiropoulos is 1 of the 2 vertices in the center (along with John S Baras

who is ranked 6th in closeness).

2.2.3 Betweenness

Betweenness for each author in the primary component of the end-state cumulative

network is listed in Table 9. Only 7 authors appear on all 3 top-20 lists in Table

9: John S Baras, Georgios B Giannakis, Brian M Sadler, Ananthram Swami, Lang

Tong, Yingbo Hua, and Qing Zhao. Each of these also appears inthe top-20 list for

publication rank in Table 2.

The Pearson and Spearman correlation coefficients comparing the primary compo-

nent authors’ publication and centrality measures are given in Table 11.
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Table 11 C&N CTA: Pearson and Spearman correlation values for several centrality mea-
sures

Pearson

Spearman

Publications Degree Closeness Betweenness

Publications * 0.8268 0.3303 0.6147

Degree 0.8268 * 0.3086 0.6766

Closeness 0.3303 0.3086 * 0.4028

Betweenness 0.6147 0.6766 0.4028 *

Publications * 0.5038 0.2469 0.7503

Degree 0.5038 * 0.1925 0.7119

Closeness 0.2469 0.1925 * 0.3111

Betweenness 0.7503 0.7119 0.3111 *

By Pearson correlation, an author’s number of publicationsis most correlated with

the number of collaborators, whereas closeness centralityand the number of col-

laborators exhibit the least correlation. By Spearman’s rank correlation, the highest

correlation occurs between the number of publications and the betweenness central-

ity of an author. Again, the least correlation occurs between closeness and vertex

degree.

3. Simplicial Complex Analysis of the C&N CTA Publication

Network

3.1 Motivation

Graphs are useful models of pairwise relations between actors but require signifi-

cant modification to represent group relations efficiently.For example, a clique be-

tweena vertices in a graph, represented as
(

a
2

)

edges, does not distinguish between
(

a
2

)

independent pairwise relationships versus 1 collective relationship among the

vertices. In the co-authorship context, a clique of3 authors in a graph could mean

that the authors wrote (at least) 1 paper collectively or that each author wrote (at

least) 1 paper with each of the other 2 separately.

There are several approaches to address the above issue. Thefirst option is to use

a bipartite graph (or affiliation network). This is the most complete representation

since it encompasses all the relationships, with multiplicities, that exist in the net-

work. These networks are often considered difficult for analysis, and so “one-mode

projections” are often used instead.14 The typical co-author network is derived from
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such a projection. More generally, a hypergraph can be a better representative pro-

jection as it captures the group structures. Because of the topological and com-

binatorial properties of simple hypergraphs with the subset closure property, we

represent the C&N CTA dataset as a simplicial complex.

3.2 Definition and Background

A more complete introductory description of simplicial complexes can be found

elsewhere,15,16 only some of which is detailed here.

A hypergraphH = (V, E) is simply an extension of a graph that allows for any mul-

tiple of vertices to exist in an “edge,” now called ahyperedge. Formally, the vertex

setV is exactly as described in the definition of a graph, but now the edge set con-

sists of setsǫ ∈ E of any size such thatǫ ⊂ V. This allows for characterizations be-

yond pairwise relations found in a simple graph. Anabstract simplicial complex∆

is a special case in which every subset of a hyperedge is also ahyperedge. Because

of this closure property on subsets, simplicial complexes are amenable to mathe-

matical formalism in combinatorics, abstract algebra, andtopology (see Munkres16

for definitions and properties relating to simplicial complexes and homology not

presented here).

More formally, an abstract simplicial complex is a collection ∆ of sets such that

every subset of a set in the collection is also in the collection, i.e., ifσ ∈ ∆ and

τ ⊂ σ then τ ∈ ∆. An element of∆ is called asimplex. The union of all the

simplices (sets) in∆ is the vertex setV, and the elements of the union are the

vertices of the complex. Note that this approach of defining asimplicial complex

first describes the larger structure and then describes its components, although we

could have started with a description of the smallest structures (the vertices) and

built up to the largest (the complex) as is often done in the description of a graph.

By definition, every simplex is a set of vertices and, hence, can be denoted by the

vertices it contains, e.g.,σ = v0v1 . . . vk. Thedimensionof the simplexσ is 1 less

than the number of its vertices, i.e., dim(σ) = |σ| − 1. A simplex of dimensionk is

called ak-simplex. A proper subset of the simplexσ is called aface. Every face is

also a simplex. A face of dimensionm is called anm-face. If a simplex is not a face

of any other simplex in the complex, then it is called afacet(or maximal simplex).

The dimension of the complex is the supremum of the dimensions of its simplices.
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For simplicity, we assume a finite vertex set, so that dim(∆) < ∞. A subcomplexof

∆ is an abstract simplicial complexΘ such that every simplex inΘ is also in∆. The

k-skeletonof ∆ is the subcomplex that includes every simplex of∆ of dimension

at mostk. In particular, the1-skeleton is often referred to as the underlying graph

of the complex, though technically the1-skeleton is isomorphic to a graph. The

simplicial complex can be described by a list of all of its simplices, called avertex

scheme, or simply by a list of its facets since we can assume the subsets of the facets

are implicitly in the list.

For any abstract simplicial complex, there exists a geometric realization (simply

called asimplicial complex) satisfying certain properties. Among these properties,

a k-simplex is the convex hull ofk + 1 affinely independent points and is, thus,

k-dimensional. For example, ifv0, v1, . . . , vk are affinely independent, then the sim-

plex of these points is simply the set

{

p : p =

k
∑

i=0

αivi,

k
∑

i=0

αi = 1

}

. (5)

Each of these points defining the simplex is a vertex. Hence, a0-simplex is a vertex

(point), a1-simplex is an edge (line segment between 2 vertices), a2-simplex is

a triangle, a3-simplex is a tetrahedron, a4-simplex is a pentachoron, and so on.

A face of a simplex is the convex hull of a proper subset of the vertices in the

simplex. Then a simplicial complex is a “gluing” together ofsimplices such that

the following is true:

1. Any face of a simplex in the simplicial complex is also in the complex and

2. The intersection of any 2 simplices is a face of both simplices.

This latter condition requires that the geometric realization reside in a dimension of

sufficient size (see Section 3.5.4). A geometric realization can be useful for visual-

izing the relationships between the vertices.

3.2.1 Homology

An oriented simplexis a simplex with an orientation, denoted[v0, v1, . . . , vk], such

that 2 oriented simplices with the same vertices are equivalent if they differ by

an even permutation of their orderings. This induces a sequence of modules (or

free Abelian groups) over a ring, denotedCk(∆), with the basis set of (oriented)
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k-simplices of∆ for eachk. The elements ofCk(∆) are calledk-chainsand are

written as
∑

i aiσ
(k)
i , where eachai is an element in the ring and eachσ(k)

i is an

oriented simplex.17 (Every k-simplex in∆ is a generator in the group. Also, by

definition,Ck(∆) = 0, the trivial group, for everyk < 0 andk > dim(∆).) If σ(k)
j

is a simplex with the same vertices as those inσ
(k)
i but with an ordering differing

by an odd permutation, thenσ(k)
j = −σ

(k)
i .

The sequence of modules over∆ is connected as achain complexby boundary

operators(homomorphisms)∂k : Ck(∆) → Ck−1(∆) defined by

∂k[v0, v1, . . . , vk] =
k

∑

j=0

(−1)j[v0, v1, . . . , v̂j , . . . , vk], (6)

wherev̂j denotes that this vertex is missing from the oriented simplex. That is, the

kth boundary operator maps everyk-simplex to a sum of its oriented(k− 1)-faces,

i.e., a sum of the simplices in itsboundary. (We define∂k to be the zero map if

k < 1 or k > dim(∆).) Hence, we refer to the image of∂k+1 as thesubgroup of

k-boundaries inCk(∆) and denote it asBk(∆). If for a k-chainc(k) ∈ Ck(∆) we

have∂kc(k) = 0, then we say thatc(k) is ak-cycle (analogous to cycles in a graph,

where the “flow” into each vertex equals the “flow” out of that vertex). We refer

to the kernel of∂k as thesubgroup ofk-cycles inCk(∆) and denote it asZk(∆).

It is trivial to show thatBk(∆) ⊂ Zk(∆) for everyk. Therefore, we have thekth

homology groupof ∆ defined as the factor group

Hk(∆) = Zk(∆)/Bk(∆). (7)

A topological space can be classified (up to a homeomorphism)by the determina-

tion of its homology class, a topological invariant. For simplicial complexes, the

homology groups for everyk determine the classification. Of particular interest are

theBetti numbers, the ranks of the homology groups of∆, which generally charac-

terize the number of unconnectedk-dimensional surfaces. Formally, thekth Betti

number is denoted by

bk(∆) = rank(Hk(∆)). (8)

Specifically,b0(∆) is the number of connected components of∆, b1(∆) is the num-

ber of 2-dimensional “holes” in∆, b2(∆) is the number of 3-dimensional holes or

voids in∆, etc.
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3.2.2 Laplacian Matrices

Thekth combinatorial Laplacian operatoris the endomorphismLk on Ck(∆) de-

fined byLk = ∂∗
k ◦ ∂k + ∂k+1 ◦ ∂

∗
k+1 where∂∗

k is the adjoint of∂k. It can be shown18

that if the ring inCk(∆) isR, for example, then

ker(Lk(∆)) ∼= Hk(∆). (9)

For eachk, given an ordering of thenk k-simplices of a complex, the Laplacian

operator has an equivalent representation onRnk :

L(k) = B(k)TB(k) +B(k+1)B(k+1)T , (10)

whereB(k) : Rnk → Rnk−1 is thekth boundary matrixdefined by the boundary

operator in Eq. (6) and the ordering of thek- and (k − 1)-simplices. Note that

L(0) is the familiar graph Laplacian, where
∣

∣B(1)
∣

∣ is the vertex-edge incidence ma-

trix. Also, thekth combinatorial Laplacian matrixis the sum of positive definite

matrices, and ifx ∈ null(L(k)), we have thatx corresponds to ak-cycle that is

orthogonal to the boundary space. It is not true, however, that each suchk-cycle

will exist in null(L(k)).

3.2.3 Representing Collaborations as a Simplicial Complex: The C&N CTA

Dataset

For the C&N CTA dataset described in Section 1, or for any co-authorship network

dataset, a simplicial complex can be generated by identifying vertices in the com-

plex with authors and identifying simplices with the co-authorship relation, i.e., if

the authors corresponding to a set of vertices collaboratedon (co-authored) a pub-

lication in the dataset, then the simplex of those vertices exists in the complex. This

definition using collaboration ensures the existence of a simplicial complex since

the subset closure property holds. A visualization of the C&N CTA simplicial com-

plex is shown in Fig. 7.
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Fig. 7 The C&N CTA simplicial complex

3.3 Connectivity

The key results and conclusions from this section include the following:

1. The subset property in complexes means the number of simplices is not an

accurate model of the number of collaboration groups.

2. The number of facets represents the number of distinct publishing groups

(often, however, there exists a core publishing subgroup ofthe group).

3. The sample size may be too small to determine a model for theyearly net-

work links; the cumulative network model is smooth enough topermit the

construction of a model.

4. There is a strong correlation between the number ofk-simplices and number

of (k+1)-simplices (and little to none betweenk-simplices and facets) in the

cumulative model.

5. There is a strong linear relationship between the number of facets and the

number of papers.
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3.3.1 Network Size

The evolution (or growth) of the number of vertices and edgesis covered in Sec-

tion 2.1.1. With a network simplicial complex, there are higher-dimensional objects

that characterize the network’s evolution. The obvious objects to measure are the

k-dimensional simplices and facets fork > 2, i.e., the co-authorship publishing

subgroups and groups in the dataset.

Given the facet or simplex list (for each year), it is a simplecounting problem

to determine the number of objects in each dimension. If the boundary matrices

have been constructed then the number ofk-simplices corresponds to the number

of columns ofB(k) or the number of rows ofB(k+1), and the number of facets can

also be found from the boundary matrices by determining the simplices that are not

part of the boundary of a higher-dimensional simplex.

3.3.1.1 k-Simplices

The numbers ofk-simplices, for differentk, for the yearly and cumulative net-

works19 are shown in Fig. 8 against the FY and the dimensionk. We useñk and

nk to denote the number ofk-simplices yearly and cumulatively, respectively. The

plot in Fig. 8a demonstrates significant variability each year for each dimension.

This may be due to correlation with the number of papers produced, which we

discuss later. A clear inference from the figure is that theñk appear to be rank cor-

related, i.e., if̃nk,yi > ñk,yj (where theyi index denotes theith FY), then generally

ñl,yi > ñl,yj , as well, regardless ofl andk. (The cases wherel = 0 andl = k + 1

are discussed in the next section.) This explains the similar directional shifts in the

lines in Fig. 8a are similar.

Figure 8b demonstrates the smoothing effect when considering the cumulative net-

work, as the effect of new or active collaborations is tempered by existing collab-

orations from prior years. Each line in the plot is monotone increasing because

each year brings new collaborations and no collaborations are removed. Also note

that thenk are generally sortable (i.e., there are morek-simplices than(k + 1)-

simplices), with the exceptions of the vertices and the change-point occurring in

FY06. The primary reason for this is the closure property of subsets in simplicial

complexes determines the rate of growth in the number ofk-simplices when sim-

plices are created among a single existing vertex and new vertices. However, when

simplices are created among existing vertices, which may already have connections,
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in Fig. 8d. The smaller spikes in FY04 and FY08 are similarly due to a larger

number of papers with 4 co-authors (3-simplices) and 6 co-authors (5-simplices),

respectively. Absent this single large collaborative paper, the growth innk appears

linear with respect to the change in FY for eachk.

Figure 8c shows that the distributions of the sizes of the simplices are generally

single-spiked with a mode atk = 2. That this is the mode is unsurprising given the

distribution of the number of authors on a paper in Fig. 1. In most years, the papers

consist primarily of3-person collaborations (2-simplices). The 2 years where this

distribution is significantly different are FY06 and FY08. In each case, the mode

is still at k = 2, but there are papers with a larger number of collaborators,which

sufficiently skew the distribution in the cumulative network in Fig. 8d. By the end

of the program, the mode is shifted fromk = 2 to k = 3.

One might argue that it is not desirable for a few papers (i.e., those few with the large

collaborations) to have such a dramatic impact on the metrics for the growth of the

complex or the distribution of its simplices. Hence, as a measure of the number of

groups in a network, the number of simplices of a certain sizeshould be viewed

as a very loose upper bound. We consider the number ofk-facets as an alternative

metric in the next section.

3.3.1.2 k-Facets

The number ofk-facets for each year and cumulatively are shown in Fig. 9 com-

pared against the FY and the facet dimensionk. We usem̃k andmk to denote the

number ofk-facets yearly and cumulatively, respectively. As with thek-simplices,

there is significant variability in the numbermk of facets for some dimensions in

Fig. 9a. This variability is due to a large number of unique collaborations, primarily

of dimensionsk = 1, 2, 3. There are only a few large collaborations in this dataset

and, therefore, they are a less interesting aspect of this figure. Another feature is

that there appears to be less correlation between the facetsof different sizes than

evidenced in Fig. 8 (more on this in the next section). This isreasonable since there

is no subset relation between facets of one size versus facets of another size.

Figure 9b demonstrates the smoothing of the variation seen in Fig. 9a over time.

Note that the dramatic shifts seen in Fig. 8b at FY06 are not present here, since a

single new unique collaborative effort (or paper) is only counted once regardless of

its size. The general tendency is that the lines are increasing. But unlike the plots in
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1 paper with another co-author. The facet count only includes the group of 4 co-

authors and ignores that a face of that simplex was a significant contributor to the

collaborative output. In light of this, we should view the number ofk-facets as a

lower bound of the actual publishing collaborations. To truly capture these groups

and their output, weights on simplices are likely necessary, e.g., the weight of a sim-

plex of authors could be the number of papers jointly published by those authors.20

As an aside, we also note that it is the intersection of these facets (publishing

groups) that creates the connectivity necessary for this dataset to be represented

as a simplicial complex instead of just a collection of simplices. This can be char-

acterized by a generalization of the degree of a vertex, which is discussed in Section

3.3.3.2.

3.3.2 Correlation Among the Numbers of Simplices and Facets

An important characteristic studied in network graphs is the relationship between

the number of vertices and the number of edges. This study extends in network sim-

plicial complexes in 2 ways: 1) the relationship between thenumber of vertices and

the number ofk-simplices ork-facets, and 2) the relationship between the number

of simplices/facets with dimensionk and those with dimensionk + 1.

3.3.2.1 k-Simplices

In Fig. 10a, we plot the number ofk-simplices versus the number of vertices in each

year’s network and the coefficient of determinationR2 (or square of the Pearson

correlation coefficient) fork = 1, 2, 3, 4. There is little evidence of any strong linear

correlation each year between the numberñ0 of vertices and the number̃nk of

collaborations of a certain size. However, Fig. 10b does demonstrate an initially

strong relationship betweenn0 andnk that gradually weakens ask increases. That

the linearity develops in the cumulative observation of thenetwork more so than the

yearly observation is not surprising because of the embedded memory of including

simplices from prior years. This might also indicate that the number of simplices for

each year in the program may be too small a sample size for inferring a statistical

relationship.

This hypothesis is provided more evidence in Fig. 10c, wherethere is weak evi-

dence of a linear relationship between the number ofk-simplices and the number of

(k + 1)-simplices in the network each year. This is surprising because the closure

property of simplicial sets guaranteesk + 1 k-simplices in each(k + 1)-simplex.
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It should be noted that the lowestR2 when comparingnk,y againstnk−1,y for k =

1, . . . , 9 occurs whenk = 4. However, the nonzero data points are scarce for higher

dimensional simplices (largerk) in the yearly network and have infrequent changes

in the cumulative network.

Regardless of the linear relationships between the simplices due to the activity

within any given year, the (cumulative) network grows at a linear rate between the

simplices. This linear relation in the growth of the networkhas important implica-

tions for the development of matching generative models.

3.3.2.2 k-Facets

Figures 11a and b compare the number ofk-facets with the number of edge-facets,

each year and cumulatively. Each year, the dataset is of insufficient size to infer a

linear relationship between the number of edge-facets. Although the points might

fit a linear model for thek = 4, 5 cases, they are well fit by a constant, which does

not indicate any strong linear relation oñm1. (This is the implication of data that

appears linearly flat withR2 near zero.) The best linear fit in these 2 plots is for

the cumulative network model fork = 2, but this is still a relatively weak fit based

solely onR2. However, since we lack any subset relationship when considering

only the facets, theR2 might be considered surprisingly high. Ultimately, a larger

dataset is needed in order to permit definitive conclusions.

Figures 11c and d compare the number of(k+1)-facets with the number ofk-facets,

each year and cumulatively. Again, there is little evidencefor any linear relationship

for the network each year, and there is weak evidence of a linear relation for the

cumulative network.

There is a higher correlation between the numbers of incident simplices than the

number of incident facets, and there is a higher correlationfor the cumulative net-

work than the yearly network. That the number of incident simplices are more cor-

related is not a particularly surprising observation as every k-simplex must consist

of k + 1 (k − 1)-simplices. The higher correlation for the cumulative network in-

dicates that the new simplices entering the network might follow a pattern in how

they connect to the existing simplices.
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3.3.3.2 k-Facets

Figures 12c and d compare the total number of facets (each year and cumulatively)

with the number of papers. The data for the year-by-year network exhibit a coeffi-

cient of determination ofR2 = 0.9204. The data for the cumulative network provide

compelling evidence of a linear dependence sinceR2 = 0.9991. The linear model

is fitted by

py = 3.0515
∑

k

mk,y − 70.8247. (16)

Unlike the total number of simplices, which attributes greater weight to larger di-

mensional simplices because of the subset inclusion property, the total number of

facets essentially characterizes the distinct working/publishing groups in the net-

work. Hence, under the assumption of an average productivity among each group,

facets are a more reliable indicator for the number of papersin the network.

3.4 Centrality

The key results and conclusions from this section include the following:

1. There is a clear power-law distribution for facet degree of a vertex. It is un-

clear if this extends to other simplex degrees.

2. The ranking of simplex degrees and other graph-based group centrality met-

rics do not appear correlated (using Spearman’s coefficient).

3. The location of holes, i.e., the shortest cycles that do not bound, are inci-

dent to vertices with high graph centrality properties and form a component

subcomplex.

For this section, we are only considering the complete network, i.e., the end state of

the cumulative network.

3.4.1 Simplex Degrees

The degrees of the vertices were discussed earlier as 1 possible determination of

vertex centrality in the graph by degree ranking as well as a characterization of a

network by the distribution of the degrees. This graph degree distribution is still

present in the simplicial complex (since the underlying graph is present). As such,

the degree distribution is in many senses a model of the1-skeleton. Similar models
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or characterizations might be possible (and, indeed, are necessary) for the higher-

dimensional skeletons of the simplicial complex, which contain more dimension-

ality than just vertices and edges. In fact, this idea has been suggested before,22

although the particular model analyzed there did not provide significant insight be-

yond the degree distribution.

The notion of degree of a vertex in a graph is generalizable tok-simplices. For

example, the number of triangles incident to an edge is important in determining

how many other actors a pair is jointly related to or, in the collaboration context

here, how many other authors that a pair of co-authors jointly published a paper.

This information is lost in a simple graph model of the collaborations and is an

alternative to the number of co-authors with whom either author in a pair published

a paper, a graph-based notion of group degree defined in Eq. (19). This induces a

centrality characteristic based on ranking the productivity of pairs of authors in the

C&N CTA dataset. This will be less than the pair’s number of common relations or

the number of common authors with whom both authors in the pair have published,

as this “edge degree” does not include the strictly pairwiserelationships. Moreover,

this degree may help to characterize or model the group structures in the network.

Given the definition of vertex degree for graphs, it seems natural to analogously

define thedegree for ak-simplexas

d(k)(σ
(k)
i ) = L

(k)
i,i (∆). (17)

This is indeed the usual definition.18 However, this is not the number of(k + 1)-

simplices incident toσ(k)
i , but rather Eq. (17) is the sum of the upper and lower

degree of thek-simplex, i.e.,

d̂(k)(σ
(k)
i ) = upper degree ofσ(k)

i = (B(k+1)B(k+1)T )i,i

ď(k)(σ
(k)
i ) = lower degree ofσ(k)

i = (B(k)TB(k))i,i,
(18)

respectively. Theupper degree ofσ(k)
i is the number of(k + 1)-simplices incident

toσ
(k)
i , whereas thelower degree ofσ(k)

i is the number of(k−1)-simplices incident

to σ
(k)
i . Note that the lower and upper degree ofk-simplices are determined by the

diagonal elements of the first and second term of thekth combinatorial Laplacian in

Eq. (10). Of course, the lower degree is fixed by definition to be number of boundary

faces of a simplex, e.g., there are always 3 edges in every triangle. Hence, the lower
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degree of anyk-simplex is alwayšd(k)(σ(k)) =
(

k+1
k

)

= k + 1.

For the collaborations in the C&N CTA dataset, the top-ranked pairs and triples of

authors are given in Tables 12 and 13. It is difficult to compare these lists with the

lists in Table 9 since the number of vertices (authors) is different than the number

of edges (pairs of authors) and both are different than the number of2-simplices

(trios of authors). We can determine among the author pairs and trios with top sim-

plex degrees how many of them also are authors with high centrality measures. For

example, of the 27 author pairs listed in Table 12, only in 5 cases are both authors

not included in the list of authors with high (graph) degree in Table 9, whereas this

absence occurs in 23 and 19 cases for authors with high closeness and betweenness,

respectively. Clearly, Table 13 is dominated by permutations of some subset of au-

thors. This is due to a paper with10 co-authors, where every trio of these authors

starts with a degree of at least10 (7 other authors plus3 edges in their triangle).
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Table 12 C&N CTA: Edge degree rankings

Rank Author 1 Author 2 d(1)(·)

1 Myung Jong Lee Tarek N Saadawi 19

2 Mariusz A Fecko Sunil Samtani 18

3 Maitreya Natu Adarshpal S Sethi 17

3 Anthony J McAuley Raquel Morera 17

5 Richard Gopaul Daniel Sterne 16

6 Kyriakos Manousakis Anthony J McAuley 15

6 Geoff Lawler Daniel Sterne 15

8 Sunil Samtani M Umit Uyar 14

8 Natalie Ivanic Daniel Sterne 14

8 Natalie Ivanic Geoff Lawler 14

8 Georgios B Giannakis Xiaoli Ma 14

8 Mariusz A Fecko M Umit Uyar 14

13 Peter Kruus Daniel Sterne 13

13 Richard Gopaul Peter Kruus 13

13 Peter Budulas Daniel Sterne 13

13 Peter Budulas Richard Gopaul 13

17 Georgios B Giannakis Shengli Zhou 12

17 Ahmed Abd El Al Mariusz A Fecko 12

19 Ananthram Swami Lang Tong 11

19 Brian Rivera Daniel Sterne 11

19 Geoff Lawler Brian Rivera 11

19 Peter Kruus Brian Rivera 11

19 Peter Kruss Geoff Lawler 11

19 John E Kleider Xiaoli Ma 11

19 Richard Gopaul Brian Rivera 11

19 Richard Gopaul Geoff Lawler 11

19 Michalis Faloutsos Srikanth V Krishnamurthy 11
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Table 13 C&N CTA: Triangle degree rankings

Rank Author 1 Author 2 Author 3 d(2)(·)

1 Natalie Ivanic Geoff Lawler Daniel Sterne 14

1 Mariusz A Fecko Sunil Samtani M Umit Uyar 14

3 Richard Gopaul Peter Kruus Daniel Sterne 13

3 Peter Budulus Richard Gopaul Daniel Sterne 13

5 Geoff Lawler Brian Rivera Daniel Sterne 11

5 Peter Kruus Brian Rivera Daniel Sterne 11

5 Peter Kruus Geoff Lawler Daniel Sterne 11

5 Peter Kruus Geoff Lawler Brian Rivera 11

5 Richard Gopaul Brian Rivera Daniel Sterne 11

5 Richard Gopaul Geoff Lawler Daniel Sterne 11

5 Richard Gopaul Geoff Lawler Brian Rivera 11

5 Richard Gopaul Peter Kruus Brian Rivera 11

5 Richard Gopaul Peter Kruus Geoff Lawler 11

We can make comparisons between metrics of group centralityin graphs23 with the

simplex degrees in complexes. These group centrality extensions are given by

Cd(ei) =
∑

j 6=i

|B
(1)
i: B

(1)
:j |,

Cc(ei) =
n− 2

∑

vj /∈ei

d(vj , ei)
, and

Cb(ei) =

∑

j<k

gjk(ei)/gjk

(n− 2)(n− 3)/2
,

(19)

whered(vj, ei) is the length of the shortest path fromvj to either vertex composing

edgeei, gjk is the number of geodesics between verticesvj andvk, andgjk(ei) is the

number of geodesics betweenvj andvk that contain a vertex ofei. Here, we only

consider the (graph) group centrality metrics for adjacentvertices, although the

metrics are more general. The (Pearson) correlation of the (simplex) edge degree

with these centrality metrics (in the primary component) is

corr













d(2)(·)

Cd(·)

Cc(·)

Cb(·)













=













1.0000 0.1609 −0.1653 −0.1038

0.1609 1.0000 0.6185 0.7893

−0.1653 0.6185 1.0000 0.7479

−0.1038 0.7893 0.7479 1.0000













. (20)
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It is clear that the edge upper degree is something differentfrom the (edge) group

centrality measures for graphs, which are in general more correlated than the indi-

vidual centrality measures for graphs.

This notion of simplex degree is easily extendable. For example, the group structure

of a network might be partly characterized by the number of triangles connected to a

vertex, or the vertex-to-triangle degree. This can be foundby adding the number of

edge-to-triangle degrees for each edge connected to the vertex and then dividing by

2 (since each triangle connected to a vertex must be connected to 2 edges connected

to that vertex and would be counted twice). More formally, this can be expressed as

vertex-to-triangle degree(vi) = abs(B(1)
i,: )abs(B(2))/2

=
∑

k

∑

j

∣

∣

∣
B

(1)
i,j

∣

∣

∣

∣

∣

∣
B

(2)
j,k

∣

∣

∣
/2. (21)

By an inductive argument, the vertex-to-k-simplex degree can be found by taking

the summation over each dimension of the number of(j− 1)-simplex-to-j-simplex

degrees for eachj-simplex adjacent to the vertex and dividing this total byk!, or

simply
∑

j1,j2,...,jk

∣

∣

∣
B

(1)
i,j1

∣

∣

∣

∣

∣

∣
B

(2)
j1,j2

∣

∣

∣
· · ·

∣

∣

∣
B

(k)
jk−1,jk

∣

∣

∣
/k!. (22)

To generalize this extension beyond the vertex, them-simplex-to-k-simplex degree

is inductively calculated as

m-simplex-to-(m+ k)-simplex degree(σ(k)
i )

= abs(B(m+1)
i,: )abs(B(m+2)) · · ·abs(B(k))/(k −m)! (23)

=
∑

j1,j2,...,jk

|B
(m+1)
i,j1

||B
(m+2)
j1,j2

| · · · |B
(m+k)
jk−1,jk

|/k!

For the C&N CTA co-authorship network, Figs. 13, 14, and 15 display various

distributions of these simplicial complex degrees beyond the graph. It should be

noted that for them-simplex-to-k-simplex degrees, since these are log-log plots,

them-simplices having either 0 or 1 are counted together form < k − 1 orm > 1.

At least for this dataset, there do not seem to be clear modelsfor them-simplex-to-

k-simplex degree distributions whenm < k − 1. However, whenm = k − 1, the

data possibly exhibit power law-like behavior over certainranges.
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3.4.1.1 Facet Degrees

While characteristics of the upper degrees and the upper-degree distribution may

certainly be important in modeling simplicial complex networks, the utility of higher-

order simplex degrees is less clear. Perhaps a more interesting alternative extension

to them-simplex-to-(m+ k)-simplex degree (fork > 1) is the consideration of the

number of facets incident to a vertex (or possibly a simplex). In a collaboration net-

work context, each facet represents the number of differentgroups within which a

social actor interacts. Hence, thefacet degreeof an author is the number of distinct

(maximal) collaborative groups in collaboration with the author.

The calculation of a vertex’s facet degree involves finding how manyk-simplices

incident to the vertex are not incident to any(k+1)-simplices incident to the vertex

for eachk. More formally,

facet degree(v) =
∑

k≥1

card
{

σ(k) ∋ v : σ(k) * σ(k+1) ∋ v
}

. (24)

Similarly, the calculation of the facet degree of a simplex involves determining how

manyk-simplices are incident to the simplex but not incident to any (k+1)-simplex

for eachk, i.e.,

facet degree(σ) =
∑

k

card
{

τ (k) ⊃ σ : ∄τ (k+1) s.t.τ (k) ⊂ τ (k+1)
}

. (25)

Given a facet list, this can be computed with a relatively straightforward searching

and counting procedure. The distribution of the facet degrees of the vertices in the

C&N CTA network is shown in Fig. 16. An estimate of the exponent in the power-

law relation is given by

#vertices∝ #degree−1.97, (26)

using a simple linear regression on the logarithm of the non-extremal values.
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3.4.3 Minimal Non-Faces

A minimal non-faceis a set of vertices in a simplicial complex∆ such that every

subset except the set itself is a simplex in the complex, and we call it aminimal

non-k-face if the set of vertices has dimensionk. A minimal non-k-face in a col-

laboration network may indicate the potential for a larger collaborative connection.

Although a minimal non-k-face is a hole in the subcomplex comprising only the

simplices of the vertices in the missing face, it is not necessarily a hole in the entire

complex. For example, if each pair of vertices in a minimal non-2-face is collabo-

rating with another common author (geometrically, this is an empty and bottomless

tetrahedron), then there is no hole.

Similar to the case with holes, minimal non-faces should be incident to simplices

with high degree and centrality. The distinction is that holes may form from con-

nections made between distance parts of the network, whereas minimal non-faces

are formed explicitly by independent local clustering. Forexample, a triangle in the

graph representation can either exist because of a 2-simplex relation or a minimal

non-face relation in the simplicial complex.

Figure 17 shows the growth of the number of minimal non-facesfor the cumula-

tive network of the C&N CTA, as well as a comparison between holes and minimal

non-faces. Not every minimal non-2-face corresponds to a hole nor does every hole

correspond to a minimal non-2-face. Clearly, minimal non-faces are more preva-

lent than holes. It is possible for the number of minimal non-faces corresponding

to holes to be greater than the number of holes because of the non-uniqueness of

shortest cycles identifying a hole location.

3.5 Miscellaneous

3.5.1 Q-analysis

In this section, we consider labeled simplices, which are analogous to hyperedges.

Not every simplex has a label. Only those corresponding to a relation have a label,

and it is possible for multiple labels to exist for a simplex.When we refer to a

simplex, we are referring to a labeled simplex. In the co-authorship network context,

each labeled simplex corresponds one-to-one to a paper in the dataset.

Two simplices areq-connectedif there exists a finite sequence ofq-simplices such

that each consecutive pair of simplices share aq-dimensional face, i.e., each consec-

utive pair isq-near. The length of this sequence, orchain ofq-connection, is 1 less

44



than the number of simplices in the sequence. Hence aq-simplex isq-connected to

itself by a chain of length zero.

Theq̌ number of a simplex is the greatestq for which the simplex isq-connected to a

distinct simplex. (If the simplex is a face of another simplex, thenq̌ is the dimension

of the simplex.) Thêq number of a simplex is simply the dimension of the simplex.

Theeccentricityof a simplex is defined as

ecc(σ(q)) =
q̂ − q̌

q̌ + 1
=

q − q̌

q̌ + 1
, (27)

and is a measure of the individuality of a simplex. Since eccentricity is undefined

whenq̌ = −1 (i.e., when the simplex is isolated), it is convenient to usenormalized

eccentricity,26 defined as

ecc(σ(q)) =
q̂ − q̌

q̂ + 1
. (28)

With this normalization, an isolated simplex has eccentricity 1 and a simplex that is

a subset of another has eccentricity zero.

As q-connectivity is a relation, the simplices with dimension at leastq can be par-

titioned into equivalence classes in which 2 simplices are in the same equivalence

class orq-connected component if they areq-connected. The number of such com-

ponents in the simplicial complex for a givenq is denoted byQq, and the vector

Q =
[

Q0 Q1 . . . Qm

]T

(29)

is called thefirst structure vectorof the complex. (Note that the simplices with

dimension at leastq are the simplices left over after deleting the simplices/sets

from the(q− 1)-skeleton from the simplicial complex. Collectively, these are not a

simplicial complex.)

For the final year of the cumulative network of the C&N CTA dataset, the first

structure vector is

Q =
[

16 139 240 99 37 21 9 5 1 1
]T

. (30)

Comparing this with the number of labeled simplices that exist for eachq, i.e.,

(960, 937, 523, 151, 48, 22, 10, 6, 2, 1), we see that the labeled simplices are very

weakly connected at dimensionk > 2.

45



3.5.2 Strong Collapsing

Every simplicial complex has a conjugate complex in which the labeled simplices

are mapped to vertices and simplices exist in the conjugate among vertices whose

labeled simplices have non-empty intersection. This conjugate complex is similar to

the nerve of a complex. It can be shown that the simplicial complex and conjugate

complex have the same homology.27

Note that when the eccentricity of a simplex is zero, then thesimplicial complex is

essentially the same without that simplex. Any subset of thesimplex is covered by

some other simplex. Since the complex is unchanged, then homology is preserved

even if that simplex is removed. Hence the homology is preserved in the conju-

gate when the vertex corresponding to the labeled simplex with nil eccentricity is

removed (or collapsed). This motivates an iterative process of collapsing vertices

in the conjugate complex and the original complex to reduce the dimension and

size of the original complex while maintaining its homology. This is calledstrong

collapsing.28

When applied to the cumulative network of the C&N CTA, the network collapses

to a core67 vertices (authors) with78 labeled simplices (papers). The non-primary

components collapse to single vertices. The primary component collapses to a con-

nected set of vertices that include all the authors with highcentrality metrics. More-

over, strong collapsing preserves hole locations in addition to preserving the holes,

i.e., at least 1 shortest cycle incident to the hole remains after strong collapsing.

3.5.3 f -vector and Euler Characteristic

Thef -vector (or face vector) of a simplicial complex is simply a vector whoseith

element indicates the number of(i− 1)-simplices. For the C&N CTA, this is

fT =
[

518 1248 1272 952 648 362 156 49 10 1
]

. (31)

This can also be compared with the first structure vector; however, this creates the

appearance of a greater number of potential components thanexist since many of

these simplices are from the large facets. As mentioned earlier, 252 of the648 4-

simplices are due to a single facet (paper).

The Euler characteristicχ is a topological invariant, which might be useful in dis-

tinguishing different network types. It can be calculated by either an alternating
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sum of the elements of thef -vector or an alternating sum of the Betti numbers, i.e.,

χ = f1 − f2 + f3 − f4 + · · · (32)

= b0 − b1 + b2 − b3 + · · · (33)

wherefk represents the number of(k − 1)-dimensional simplices in the complex

andbk represents thekth Betti number.

For the C&N CTA yearly and cumulative network, Table 14 displays the Euler char-

acteristics. It is not surprising that since the number of holes is increasing whereas

the number of components remains relatively the same (see Fig. 17), the Euler char-

acteristic gradually decreases over time for the cumulative network. For the yearly

network, the characteristic remains positive and oscillates near20 because the holes

are created over multiple years rather than in a single year.

Table 14 C&N CTA: Euler characteristic

Fiscal Year 02 03 04 05 06 07 08 09

Euler char. (cum.) 19 18 24 14 11 1 -5 -8

Euler char. (per year) 19 13 31 21 24 14 16 17

3.5.4 Visualization

The visualization of a simplicial complex is more difficult than that of a graph due

to the need to represent the groupings instead of just the edges among the vertices.

Theoretically, ak-dimensional simplicial complex can be geometrically realized in

2k + 1 dimensions.16,29This is a difficult task for what ultimately is to be projected

onto a 2-dimensional picture of 3-dimensional space. Therefore, to represent the

different size of the groups we use color.

An investigation of the existing visualization schemes forsimplicial complexes re-

vealed Polymake30 as the best for small simplicial complexes. Unfortunately,Poly-

make did not distinguish between different orders of simplices well because it did

not have an option to use color based on size. Another shortcoming of Polymake

is the inability to visualize disconnected components simultaneously. Furthermore,

Polymake’s visualization algorithm did not have clear options to modify its rou-

tine. Thus, for a simplicial complex with a larger number of vertices, the spring-

embedding component of Polymake’s algorithm did not converge and no visual

output is produced. Simply put, the simplicial complex created from the C&N CTA
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co-authorship dataset proved too large. Primarily to cope with this last failure, we

created code for visualization within MATLAB.

A visualization is of the C&N CTA is shown in Fig. 7. A greedy algorithm is used

to place the vertices. Then a spring embedder is applied on this initialization. The

spring force encourages a
(

k+1
3

)

-sided polyhedron (imposed in a2-dimensional re-

alization of 3-dimensional space) fork-simplices while also creating separation

between disconnected vertices and simplices.

This approach includes several desirable features that Polymake does not as listed

above: color represents the simplex order, visualizationsof disconnected compo-

nents are possible, and the approach handles the number of vertices in the C&N

CTA simplicial complex without convergence issues.

4. Conclusions

A higher-dimensional analysis of ARL’s C&N CTA co-authorship network was pre-

sented. This network represents the scientific collaborations among researchers that

resulted in publications. Although the network is medium-sized, many of the graph

theoretical measures and metrics are similar to what is commonly found in large

co-authorship or other social networks. This justifies the utility of this network in

our study of higher-dimensional collaborative structures.

The higher-dimensional structures were modeled as simplices in a simplicial com-

plex. The connectivity of the simplicial complex is determined by the facets and

their intersections. Facets represent particular collaborative groups and their inter-

sections represent the interactions between the groups. This makes properties re-

lated to the facets of the simplicial complex key to characterizing the collaborative

structure of the these networks. We have demonstrated that the facet degree distri-

bution follows a power law relationship. The homology of thesimplicial complex

can be characterized by the minimal length cycles that do notbound. These homol-

ogy cycles have connections to short cuts in small world networks. In fact, such

1-cycles that are not non-minimal faces consist exclusivelyof short-cut edges. In

a sense, these homology cycles can be viewed as a form of global clustering. We

have shown that the cycles tend to intersect at authors with high centrality mea-

sures in the graph sense. We have also shown that minimal non-faces represent a

form of independent local clustering, which is also an innate feature of small world

networks.
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