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1. The Communications and Networks Collaborative
Technology Alliance

The Communications and Networks Collaborative Technollgsince (C&N CTA)
was a research consortium of academic, industry, and Gmenrtresearch partners
funded by the US Army Research Laboratory (ARL) for the psgof develop-
ing “technologies that enable a fully mobile, fully commcatiing, agile, situation-
ally aware, and survivable lightweight force with Intemwetked Command, Con-
trol, Communications, Computers, Intelligence, Suraeile, and Reconnaissance
(C4ISR) systems. These wireless network technologies vegpaired to operate
with a heterogeneous mixture of individual Soldiers, gibueahicles, airborne plat-
forms, unmanned aerial vehicles, robotics, and unattega®ehd sensor networks;
and operate while on-the-move with a highly mobile netwarkastructure, un-
der severe bandwidth and energy constraints, while pnogigecure, jam-resistant
communications in noisy hostile wireless environmehfstie C&N CTA program
started in fiscal year 2002, ended in fiscal year 2009 (FYO0®9%.,Yand produced
a total of 960 publications by 518 authors.

The C&N CTA dataset includes certain publication metadatalfe 8-year run of
the program and was collected in an Excel spreadsheet. piaadsheet consisted
of 16 pages, with each page including a single table corretipg to the FY and
the publication type (journal or conference proceedingthgage includes a list of
publications with fields for the paper title, paper authtiiese authors’ affiliations
(not always matched to the different authors in the case af-authored work),
the primary technical area of the paper, the journal or gemnige proceeding title,
and the publication date (this occasionally included atrmtandicating that the
submission date was entered instead).

There is “noise” observed in the recordkeeping of the tablée formats of the
tables are inconsistent from year to year, often includmme redundancy in the
information provided. For example, the FY02 Journal tabt#uded affiliation in-
formation in both the affiliation field and the author field.eléntries for the fields
are also often inconsistent. For example, the entry for d@noals name might in-
clude either a first name or first initial; title entries migitlude simply the title or
the complete citation; and publication date entries migtitide the month, quarter,
or just the FY information. As already stated, the submissiate was often sub-
stituted for the publication date. Also, the dataset inekid number of duplicate



entries (e.g., where an entry exists for when the paper watssfibmitted and an-
other entry exists for when the same paper appeared). GiesizZe of this dataset,
the obvious misspelling errors and duplicate entries as#yeeorrectable; also it is
easy to link entries with only an author’s first initial andit@ame to the full name.

The amended entries include 960 publications (292 jourapéps and 668 confer-
ence proceedings) by 518 authors. These data were impotte§MATLAB with
each paper recorded as an element in a structure array, agthstructure having
the following fields:

e ID_no (a number between 1 and 960),

e |ID (a tag based on FY, type, and order appearance of the papés table
page),

o Title,

e Authors,

e Organizations,

e Area (T1-T4),

e BookTitle (primarily journal or conference title),

e Type (“Journal” or “Conference”),

e Date,

e Abstract (if recorded on the Excel sheet), and

e Author.
In addition, for each paper entry, the Author field above wasilastructure array
whose length was determined by the number of co-authorsratdricluded the
following fields:

e ID_no (a number between 1 and 518),

¢ ID (atag based on the author’'s name),

e Name,



e First (name), and
e Last (name).
From these structure fields, any number of cell arrays orrathta structures can

be generated using the IDs. This report discusses the ligtkgslen each paper ID
and the authors’ IDs on that paper.

1.1 Metrics of the C&N CTA Dataset

The C&N CTA dataset includes publication information fockagear of the pro-

gram. This enables consideration of the data in at least 2 wsst, each year of
the data can be examined separately for a variety of metndscampared with

the other years’ metrics. Alternatively, the data can bdyaed in a cumulative

manner, so as to illuminate how properties evolved as thasdagrew from the

program’s first year to its completion. We consider both apphes simultaneously
throughout this report.

In determining these metrics, we use the data entered inubkécption date field,

even in instances where the submission date was used ingliatfithe paper was
listed on a table for a particular FY and publication types itreated as belonging
to that year's metrics. The only time this is not true is in thee instance when a
paper was duplicated or listed twice, once with the subminsdate and again with
the publication date. In such cases, we use the informatiothé latter entry and
omit the former.

Likely, the dataset contains other errors. For example papaight have multiple
entries with duplicate titles, i.e., when the title chandpetween submission and
publication. It is also possible that the dataset incluaeses for publications that
were submitted but never accepted. This last scenario, Vewstill represents a
collaboration, albeit, in some sense, an unsuccessfuMdasimply refer to a par-
ticular year’s listed publications as being published @&t tyear as the bulk of them
were. Some publications undoubtedly appeared after theAMaf the program;
these are included in the table for the final FY.

1.1.1 Number of Papers and Authors

Basic metrics for the number of papers and number of autheadved in this CTA
are given in Table 1. The entries for the numbers of paperkéartdble represent



the number of papers listed in the corresponding spreatiphge. No distinction
is made here between authors who were principal investigdRis) or authors
who were students or postdocs, nor between authors froneagadindustry, or
Government.

Table 1 C&N CTA: Paper and author metrics

Fiscal Year | # Papers #Journ. #Conf. #Papers (cum.)| #Authors # Authors (cum.)
2002 80 17 63 80 101 101
2003 104 16 88 184 99 153
2004 173 62 111 357 184 258
2005 118 30 88 475 143 293
2006 182 74 108 657 199 375
2007 130 37 93 787 136 424
2008 99 34 65 886 155 482
2009 74 22 52 960 105 518
mean 120 36.5 83.5 140.25

median 111 32 88 139.5

Some important properties follow. The mean and median nummbpapers pub-
lished yearly is 120 and 111, respectively. The mean andamedimber of authors
participating in at least 1 publication yearly is 140.25 488.5, respectively. The
numbers display a growth in the number of publications frof@Fto FY04 before
a dip in FYO05, a return to FY04 numbers in FY06, and then a steadline until
the conclusion of the CTA in FY09. A number of causes may haveributed to
this behavior.

One explanation involves the student participants. Theae wndoubtedly some
lag time at the start of the program due to the research timpained to produce
initial results, accounting for the initial upswing. Midggram, there was likely a
phasing out of many student authors (who graduated andhefptogram) and,
thus, a transitional period during which new student athware acclimated to the
program? This could explain the dip from FY04 to FYO05 and the return ¥0B.
The gradual decline after FY06 could then be explained byeitleof new students
participating in the program as it wound down.

An alternative explanation might be found from examining thudget numbers
for each FY. Less funding could have led to the departure sf IBss support for

4



students, or even fewer opportunities for collaboratiag.(ef travel funding was
curtailed). Program redirections could also be respoesdrlthe reduction of pub-
lishing output in FYO5, since a program shift redirects fungdand requires the
usual initialization time of a scientific investigation, seen at the start of the pro-
gram.

Of the more than 500 authors who participated at some levbircreation of the
publications in the C&N CTA, only 12 published in every yedrtloe program.
In alphabetical order, these authors are Paul D Amer, Johar&sBGeorgios B
Giannakis, Janardhan R lyengar, Tao Jiang, John E KleidaglMVa, Anthony J
McAuley, Tarek N Saadawi, Randall Stewart, Ananthram Swammil Lang Tong.

1.1.2 Number of Authors per Publication and Publications per Author

The empirical distribution of the number of authors per pdilon is depicted in
Fig. 1. The mean and median number of authors per paper at@®and 3, respec-
tively. The vast majority of papers are written by either B@uthors. An estimate
of the fraction of papers with authors for small collaborations in a large network
can be derived ds

p(k) = (e = 1)e™™, (1)

where is the reciprocal of the mean number of authors on a papethimdataset,

A =1/2.7708 = 0.3609 produces an estimate that decays too slowly, so instead the
plot depicts the above function with= 1 (rescaled to the total number of papers
instead of the fraction). It should not be inferred that imglies the program led

to fewer large collaborative teams than expected, as the C&A publication net-
work has an additional restriction relative to general mablon networks, namely,
that collaborations are restricted to papers that inclymticipants as co-authors
and were relevant to the program.

The empirical distribution of the number of publicationsaarthor contributed to is
displayed in Fig. 1. The solid line, given by

# authors who published papers= 180.89z 142, (2)

is an estimate of the slope from a linear regression exatuthie outlier with the
largest residual. The mean, median, and mode of the numhaulbications per
author are 5.1351, 2, and 1, respectively. The large numibgingle-publication
authors is primarily due to students who had a limited roléhim program. How-
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Fig. 1 The C&N CTA: Number of authors per publication and publications per author

ever, it 1s also likely that some work was “piggy-backed” on other (non-C&N CTA)
research efforts, which would include collaborations with academia, industry, and
Government outside of the core C&N CTA members. Excluding authors with only
a single publication, which are likely candidates to be either researchers not funded
by the program or students, the mean and median number of publications per author
jump to 7.9772 and 4, respectively. These numbers compare favorably to studies in
other scientific fields,* especially considering that the members of the C&N CTA

may have had other publications in the field not relevant to the program.

1.1.3 Publication Ranks

In a publications dataset, one measure of key authors is the number of publications
they account for in the dataset. If they are influential, they will account for the bulk
of the publications. Table 2 provides a list of the top 21 authors by publication rank,
1.e., the authors who published the most papers as part of the C&N CTA program.
These top 21 authors collectively contributed to 680 or 70.83% of the papers. The
top 10 authors collectively contributed to 471, or nearly half (49.06%) of the papers.
Amazingly, the top author (Giannakis) co-authored as many papers as the second
through fifth most-published authors combined. He contributed to 22.4% of the

publications in the dataset.



Table 2 C&N CTA: Number of publications top-21 list

Rank | Author # of Papers
1 | Georgios B Giannakis 215
2 | Lang Tong 73
3 | Qing Zhao 50
4 | Xiaoli Ma 47
5 | Ananthram Swami 45
6 | Gordon L Stuber 44
7 | Shengli Zhou 42
8 | Brian M Sadler 36
8 | John S Baras 36

10 | Zhengyuan Xu 33
11 | Myung Jong Lee 31
12 | Anthony J McAuley 30
12 | Tarek N Saadawi 30
14 | Yingbo Hua 29
14 | John E Kleider 29
14 | Sergio Verdu 29
17 | Mariusz A Fecko 28
18 | Paul D Amer 26
19 | Adarshpal S Sethi 24
20 | Sunil Samtani 22
21 | Alenka G Zajic 22




2. Graph Analysis of the C&N CTA Publication Network

A graph can be created from the co-authorship dataset by identifying vertices in
the graph with authors and identifying edges with the co-authorship relation,”®
1.e., an edge exists between 2 vertices if and only if the 2 authors corresponding
to the 2 vertices have co-authored at least 1 paper in the dataset.® (Naturally, if an
author published with no co-authors then the vertex corresponding to that author is
1isolated.) For the study here, we model the C&N CTA as a simple undirected graph,
although it is possible to consider the frequency or totality of an author pair’s co-

authorship using weighted directed graphs.'°

This construction on the C&N CTA dataset generates a graph of 518 vertices and
1248 edges:; a visualization 1s depicted in Fig. 2. Naturally, many edges exist for
certain papers (1.e., papers with at least 3 co-authors), and many papers might be

denoted by a single edge (i.e., authors who co-authored more than once).

Fig. 2 The C&N CTA graph



We study 2 important types of subgraphs on the C&N CTA netwbykhe subgraph
of vertices and edges for a particular FY, and 2) the subgadjhe vertices and
edges from the first FY to a particular FY, e.g., FY02 to FYO05.

We assume the reader has a general knowledge of much of thie graninology
used in this chapter. If there are any definitions the readenfamiliar with, these
can be found in other sourc&s,

2.1 Connectivity

In this section, we examine the evolution of various aspeftise network, such as
the number of vertices and edges, the average path lengthuthber of compo-
nents, density, diameter, and clustering.

2.1.1 Network Size

We have already stated that the graph of the C&N CTA datas¢théoprogram du-
ration has 518 vertices and 1248 edges. The evolution ofutther of vertices and
edges of this network graph over the program lifetime isgiveTable 3. The “per
year” (or yearly) numbers only include the authors’ intéi@ts recorded in that
FY. The “cumulative” numbers include the interactions frtime program begin-
ning in FYO02 to that current year. The “active” numbers omlglude interactions
by authors who are either active in that given FY or were adtia prior and later
FY.

Table 3 C&N CTA: Number of vertices and edges

i Per Year: Cumulative: Active:
Fiscal Year # Edges # Edges # Edges
# Authors # Authors # Authors
2002 101 158 101 158 101 158
2003 99 158 153 266 122 196
2004 184 294 258 475 206 353
2005 143 234 293 589 185 342
2006 199 345 375 811 218 443
2007 136 229 424 941 164 323
2008 155 316 482 1149 164 390
2009 105 170 518 1248 105 218

There is strong empirical evidence that a linear relatigmnskists between the num-
ber of vertices and the number of edges for the cumulativear&t The evidence

9



is weaker for the yearly and active networks. The best linabhrased estimator for
the cumulative network is given by

#edges= 2.6358 x #vertices— 153.3268, 3)

with a nearly unitary coefficient of determination 8f = 0.9917.

The slope and intercept estimates and the coefficients of determination for simple
linear regressions on the dataset for each network are given in Fig. 3. The greater
slope and lower intercept estimate for the cumulative data (Fig. 3b) compared with
the per-year data (Fig. 3a) indicates that the proportion of new edges each year is
greater than the proportion of new vertices each year. This perhaps implies that new
authors were collaborating with different existing authors and/or existing authors
were forming new collaborations among themselves. This is an expected observa-
tion given the program goals of fostering collaboration, which leads to more inter-
actions and/or larger group interactions (see Fig. 1). As each new author joins the
program, that author will publish with more than 1 author on average, thereby gen-
erating multiple new edges. These new authors are usually new students, post-docs,
and external collaborators as opposed to new Pls in the program.

C&N CTA Publ cation Dataset C&N CTA Publ cation Dataset C&N CTA Publ cat on Dataset
Number of authors vs. number of edges (each year) Number of authors vs. number of edges (cumulative) Number of authors vs. number of edges (active)

e 1200 #edges = 2.6358 x #vertices ~153.3268 o 00
300 o R?=09917
/ 1000 pd
7 A , 350
S / g
g 800 A& 2
o e H
- // 2 300
- P §
200 e o0 e s P
250 e

250

# of edges
# of edg

S -
A Hedges = 1.85T7 xfvertices - 225 67 00 /// #edges = 2.0711 x #vertices - 2 6153
A R?=09121

S x 2
150 g e P R?=08 59
S P 200~
200p - -
L

¥
80 100 120 10 160 180 2 100 150 200 250 300 35 00 50 500 S 100 120 10 160 180 200 220
# of ver ices # of vertices # of active vertices

(a) Per Year (b) Cumulative (c) Active

Fig. 3 The C&N CTA: Number of vertices vs. number of edges

At the same time, the longer an author remains in the program, the probability
of that author developing a new collaboration with another author already in the
program increases. Note that the negative intercept in a linear relationship such as
those in Fig. 3b indicates a generally increasing trend of authors who have a short
lifetime in the program (Table 4), thereby prohibiting collaborations (edges) with
other (later or continuing) program authors. This is a consequence of a program

10



ending, which shifts the line down.

Table 4 C&N CTA: New authors vs. single-year authors

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009
New authors 101 52 105 35 82 49 58 36
Single-year authors 31 12 45 23 42 27 a7 36

Whereas a linear fit appears to fit well to the yearly and cutivel@ata, a linear
model is a poorer match for the active vertices and edgesiddtaset (Fig. 3c).

2.1.2 Components

The number of components of the C&N CTA network over the cewrfsthe pro-
gram is detailed in Table 5. In any given year, there are tiomstaints that limit the
number of collaborations that will result in a publicatiduthors form core groups
that may or may not interact with other groups within a giveanor given sequence
of multiple years. It at first appears surprising that the hanof components did
not markedly decline over the evolution of the cumulativevoek. However, this is
explained by comparison with the active network componétasf the components
of the cumulative network are composed of inactive authggdices).

Table 5 C&N CTA: Number of components

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009
# of components (p.y.)| 20 15 31 21 26 16 17 18

# of components (cum.) 20 21 27 19 20 18 16 16

# of components (act.)| 20 21 28 16 15 8 8 7

The sizes of the key components and median size are preseriigole 6. The pri-
mary and secondary components (or largest and secondtlaayeponents) of the
yearly network contain, respectively, 34.8 and 16.9 vesgion average with small
deviations from these averages. These components repthserollaborative ac-
tivity in that given year, due to the various task collabimnag. The active network
contains more variability with larger secondary composgndicating that the con-
nections between various components are only preservad cumulative network
by inactive authors.

11



Table 6 C&N CTA: Sizes of components (measured by # of authojs

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009
Primary component size (p.y.) 40 32 23 31 48 35 44 25
Secondary componentsize (p.y.) 5 10 17 17 28 21 19 18

% in primary component (p.y.) 39.6 323 125 217 241 257 284 238
Mean component size (p.y.) 5.1 6.6 5.9 6.8 7.7 8.5 9.1 5.8
Median component size (p.y.) 3 4 4 5 4 3.5 5 3.5
Primary component size (cum.) | 40 57 110 175 290 347 419 453

Secondary component size (cun.) 5 15 18 35 10 9 9 9
% in primary component (cum.) | 39.6 37.3 426 59.7 773 818 86.9 875
Median (cum.) 3 4 4 5 4 4 4 4

Primary component size (act.) 40 37 44 59 172 85 76 52
Secondary componentsize (act.) 5 12 29 48 10 63 39 34
% in primary component (act) | 39.6 30.3 214 319 789 518 46.3 495
Median (act.) 3 3 4 5 3 3.5 9.5 4

By allowing interactions of inactive authors to persisg tumulative network is
characterized by a dominating primary component with aively shrinking sec-
ondary component. This behavior has been previously cteaized for much larger
networks> The only restriction on the growth of the primary componerthie num-
ber of inactive components. These small inactive comparggtome inactive due
to the relatively short lifetimes of their authors’ activiSix of the 15 nonprimary
components in the cumulative network consist entirely dhats who were only
active in the network for a single FY, i.e., their papers amfy disted on a single
year’s spreadsheet. For whatever reason, these 17 authi@swetive in the program
too briefly for collaboration to emerge with authors in ther@ry component. The
primary component also has a large number of authors whogtewm “lifespans”
in the network: 49.89% of these vertices were only active Bingle year com-
pared with 53.85% in the small components. However, onl9@%. of authors in
the primary component have lifespans of at most 3 years caadpaith 90.77%
of authors in the small components. The slightly larger @etage of authors who
have much shorter lifespans also limits the opportunitesfcollaborative link to
be established that would potentially reduce the numbeowiponents.

Unfortunately, the size of the C&N CTA dataset is insufficismdetermine if the
distribution of the component sizes has any pattern suclpawar law, as has been
found in other networkst
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2.1.3 Distances

2.1.3.1 Eccentricity

For the C&N CTA dataset, the center subgraph for the final year of the cumulative
network consists of 2 disconnected vertices with eccentricity 7 corresponding to
John S Baras and ND Sidiropoulos. The periphery vertices have eccentricity 12
and consist of 26 vertices that induce a 17-component graph with 2 triangles, 5
edges, and 10 isolated vertices. Eccentricity is one way to measure the “centrality”
of a vertex with respect to the rest of the graph (component). Obviously, the more
central a vertex is the more influential an author is, as the graph is in some sense
built upon the foundation of the center authors’ collaborations. This interpretation
1s especially valid here since these authors existed early in the evolution of the
(cumulative) network. (Unlike John S Baras, ND Sidiropoulos does not participate
in later years of the program and, hence, does not seem as important in the yearly
or active networks.) Collaborations of authors on the periphery, e.g., interactions
to leaf vertices, are remote from the core collaborations in the graph. Taking this
analogy further, this means that the small non-primary components are even more

remote.
2.1.3.2 Primary Component

The primary component for the cumulative network does exhibit the small world
phenomenon, in that the typical path length is log(n), where n is the number of
authors in the component. Figure 4 shows the average and median path lengths in

the graph, as well as its diameter, corresponding to data in Table 7.

C&N-CTA Publication dataset
Path Lengths and Diameter of the primary component
T T T T T T

12} / o o 4
4 —o— 0Ny

10} / —s— mean path length [
,v" £— median path length
/ —&— diameter

Path length

Fiscal Year

Fig.4 The C&N CTA: Path lengths and diameter over the evolution of the cumulative network
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Table 7 C&N CTA: Primary component path length characteristics

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009
log(npﬁma,y) 369 404 470 516 567 585 6.04 6.12
Mean path length 217 265 470 560 6.63 581 577 5.70
Median path length 2 2 4 6 6 6 6 6
Diameter 4 6 11 13 13 12 12 12

2.1.4 Clustering

The global clustering coefficient (transitivity) and average local clustering coeffi-

cient, both per year and cumulatively, are shown in Fig. 5.
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Fig. 5 The C&N CTA: Graph transitivity and average local clustering coefficient

Transitivity for the C&N CTA network graph for each FY (cumulatively) does not
vary much from its mean, and the yearly graph only varies slightly more after the

mitial increase in the second year of the program. The sample mean and variance

of the average local clustering coefficient (yearly and cumulatively), as well as the
transitivity, are shown in Table 8.

Table 8 C&N CTA: Transitivity and average clustering coefficient

Mean Variance
Transitivity (cum.) 0.1645  0.0004
Transitivity (p.y.) 0.3043  0.0056
Average Clustering Coefficient (cum.) 0.7113  0.0021
Average Clustering Coefficient (p.y.)  0.6996  0.0046

14



For comparison, the average local clustering coefficienafoErdés-Rényi graph
approaches the ratio of the average degree to the graphimh is also the prob-
ability of an edge existing between 2 verti¢édn the case of the C&N CTA co-
authorship graph, the ratio of edges to possible edges isd@n of magnitude less
than the numbers in the table. This is evidence of the smailleanature of this

co-authorship graph, which is perhaps not surprising gikianhthe network is con-
strained to participation within the C&N CTA.

If authors who formed connected triples but not trianglesrar longer in the pro-
gram, then the opportunity to “close” the triple and form iarigle is lost. Con-
sidering the large number of authors with short lifetimeshi@& network, the large
clustering coefficients in Table 8 indicate that clustenma@s an immediate and,
therefore, essential characteristic of the collaboration

2.2 Centrality

2.2.1 Vertex Degree

2.2.1.1 Local Characteristics of the Vertex Degrees

For the C&N CTA network, the most prominent authors in terfigaoious central-
ity metrics (vertex degree, closeness, and betweennesg)jvan in Table 9.

Giannakis, by the degree metric alone, is clearly a superglalive to the other
hubs on this list. However, as degree only determines the lmannections of an
author, this only implies that Giannakis collaborated vatfarge number of au-
thors. This is not surprising as we have seen from Table Zhnabllaborated on a
significant number of papers. It is also known that Giannh&i a large number of
students that participated in the program.

The list of authors with high degree in Table 9 does not giversgs of how rela-
tively large these degrees are to the other vertices. Fopagson, the mean and
median degrees for the yearly network, the active netwartt,the cumulative net-
work (both the whole network and just its primary componenthis latter case)
are given in Table 10. It makes sense to compare with the nmehmadian degrees
of the vertices in the primary component since all the awglisted in Table 9 are
in the primary component. In fact, the first 64 authors rartkgdertex degree are
in the primary component. Since the degrees have a hedeg-@istribution, the
mean is biased high. Even still, the program’s high-degutieaas in Table 9 have
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Table 9 C&N CTA: Centrality top-20 lists

Rank | Degree Closeness Betweenness
1 | Georgios B Giannakis 68 ND Sidiropoulos 0.2684 | John S Baras 0.3324
2 | John S Baras 32 Ananthram Swami 0.2681 | Georgios B Giannakis 0.3264
3 | Lang Tong 29| Brian M Sadler 0.2599 | Brian M Sadler 0.3140
4 | XiaoliMa 26 | Georgios B Giannakis 0.2592 | ND Sidiropoulos 0.3007
5 | Anthony J McAuley 26| Tao Jiang 0.2482 | Tao Jiang 0.2987
6 | Ananthram Swami 28 John S Baras 0.2383 | Ananthram Swami 0.2162
7 | Brian M Sadler 24| John E Kleider 0.2353 | Xiaodong Cai 0.1250
8 | Myung Jong Lee 23 Shengli Zhou 0.2348 | YiSun 0.1221
9 | Daniel Sterne 23 Lang Tong 0.2346 | Myung Jong Lee 0.1218
10 | Tarek N Saadawi 22 Xue Wu 0.2346 | Lang Tong 0.1130
11 | Sergio Verdu 22| Steve Gifford 0.2331 | H Vincent Poor 0.1095
12 | Mariusz A Fecko 20| Xiaoli Ma 0.2307 | Yingbo Hua 0.1011
13| Yingbo Hua 20| Qing Zhao 0.2307 | Giovanni Di Crescenzo 0.1010
14 | Qing Zhao 20| Liuging Yang 0.2269 | Lili Huang 0.0945
15 | Richard Gopaul 19 X Liu 0.2266 | Radha Poovendran 0.0938
16 | Kyriakos Manousakis 19 A Stamoulis 0.2253 | Qing Zhao 0.0936
17 | Radha Poovendran 19J Tao 0.2252 | Mariusz A Fecko 0.0915
18 | Adarshpal S Sethi 19 Yingbo Hua 0.2249 | Kyriakos Manousakis 0.0891
19 | Errol L Lloyd 18 | Zhengyuan Xu 0.2249 | Youngchul Sung 0.0869
20 | Latha Kant 17| M Ghogho 0.2243 | Maria Striki 0.0841
20 | Sunil Samtani

at least 4 times the end-of-program mean degree (4.818Bs€Tduthors also have
at least 7 times the end-of-program median degree (3).

Table 10 C&N CTA: Mean and median degrees

Fiscal Year 2002 2003 2004 2005 2006 2007 2008 2009
mean (p.y.) 3.1287 3.1919 3.1957 3.2727 3.4673 3.3676 4.0732381
mean (act.) 3.1287 3.2131 3.4272 3.6973 4.0642 3.9390 2.7961524
mean (cum.) 3.1287 3.4771 3.6822 4.0205 4.3253 4.4387 @.76W8185
mean (cum.p.c.)  4.2000 4.0351 4.3636 4.4800 4.6621 4.8761456 5.1876
median (p.y.) 3.0000 2.0000 2.0000 3.0000 3.0000 2.0000008.0 3.0000
median (act.) 3.0000 2.0000 3.0000 3.0000 3.0000 3.0000008.0 3.0000
median (cum.) 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000008.0 3.0000

median (cum. p.c.) 3.0000 3.0000 3.0000 3.0000 3.0000 8.00©0000 4.0000
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Table 10 also reflects that the mean degree over the evolution of the network does
not appear to have stabilized by the end of the program. This appears to be due
to the increasing trend of the mean degree in each FY with a rather sizable jump
from FYO07 to FY08. The median degree appears more stable. Even the jump in the
median degree from FY07 to FY08 in the yearly or active network is not sufficient
to change the median degree in the cumulative network, although it does imply

some incentive for the authors to become more collaborative late in the program.
2.2.1.2 Global Characteristics of the Vertex Degrees

The distribution for the C&N CTA final year cumulative network is shown in Fig. 6.
It is well documented™!%!? that the degree distribution of co-authorship graphs tend
to roughly follow a power law, possibly with an exponential cut-off in the tail and
a hook at the head. It 1s surmised that the hook is a characteristic of measuring the
new authors who join the network over a finite timeline, and the power law effect 1s
evidence of well-established authors who find it is easier to establish collaborations
the more they publish. Since many studies have occurred over a short timeframe,
it 1s doubtful that the data captures the full careers of most of the authors, which
leads to some question over the true nature of the long-term evolutionary degree
distribution. However, analyses of short-term datasets have been consistent in char-

acterizing the degrees of scientific co-authorship, as in the case here.

C&N-CTA Publication dataset

N Distribution of the Vertex—to—Edge Degrees
T

Number of authors

1
Degree (or number of edges)

Fig. 6 The C&N CTA co-authorship network: Vertex degree distribution (exponent = —2.02)

The distribution shows a clear hook at the head of the distribution and some evi-
dence of a power law in the tail. Because of the small size of this network, the tail is
noisy and it is more difficult to infer if the distribution has a true power law tail. In-

deed, if the network were larger and the noise tempered, then this distribution would
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likely be similar to that observed in the literature. Thisienewhat surprising since
this network is constrained to a particular program, hemétimg collaborations
external to the program. Ignoring extremal values, theribistion is estimated to
satisfy

#authors= 924.91 x degree*". (4)

2.2.2 Closeness

The authors with large closeness indices (for the primampmment of the end-
state cumulative network) are listed in Table 9. Perhapsibs surprising result is
that the highest ranked author in terms of closeness ciptidD Sidiropoulos, is
not ranked high in terms of degree centrality or even in thalmer of publications.
Sidiropoulos has a relatively low degree ®franked 57th) and4 publications
(ranked 36th). Of the top-20 ranked authors, closenessatiénishares 8 authors
with the degree centrality rank list and 9 authors with théljation rank list.
However, Sidiropoulos is 1 of the 2 vertices in the centesr{glwith John S Baras
who is ranked 6th in closeness).

2.2.3 Betweenness

Betweenness for each author in the primary component ofrtlestate cumulative
network is listed in Table 9. Only 7 authors appear on all 320gdists in Table

9: John S Baras, Georgios B Giannakis, Brian M Sadler, AmanttSwami, Lang
Tong, Yingbo Hua, and Qing Zhao. Each of these also apped#hs itop-20 list for

publication rank in Table 2.

The Pearson and Spearman correlation coefficients congpiuerprimary compo-
nent authors’ publication and centrality measures arengivdable 11.
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Table 11 C&N CTA: Pearson and Spearman correlation values foseveral centrality mea-
sures

Publications Degree Closeness Betweenness

Publications * 0.8268 0.3303 0.6147

Degree 0.8268 * 0.3086 0.6766
Pearson

Closeness 0.3303 0.3086 * 0.4028

Betweenness 0.6147 0.6766 0.4028 *

Publications * 0.5038 0.2469 0.7503

Degree 0.5038 * 0.1925 0.7119
Spearman

Closeness 0.2469 0.1925 * 0.3111

Betweenness 0.7503 0.7119 0.3111 *

By Pearson correlation, an author's number of publicatismsost correlated with
the number of collaborators, whereas closeness centeadiythe number of col-
laborators exhibit the least correlation. By Spearmani& @rrelation, the highest
correlation occurs between the number of publications hatétweenness central-
ity of an author. Again, the least correlation occurs betweleseness and vertex
degree.

3. Simplicial Complex Analysis of the C&N CTA Publication
Network

3.1 Motivation

Graphs are useful models of pairwise relations betweensabtd require signifi-
cant modification to represent group relations efficieriity. example, a clique be-
tweena vertices in a graph, represented@}?edges, does not distinguish between
(‘2’) independent pairwise relationships versus 1 collectiletiomship among the
vertices. In the co-authorship context, a cligue@uthors in a graph could mean
that the authors wrote (at least) 1 paper collectively ot dzeh author wrote (at
least) 1 paper with each of the other 2 separately.

There are several approaches to address the above issuirsTbgtion is to use
a bipartite graph (or affiliation network). This is the mostrplete representation
since it encompasses all the relationships, with muliipdis, that exist in the net-
work. These networks are often considered difficult for gsial and so “one-mode
projections” are often used inste#fdl he typical co-author network is derived from
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such a projection. More generally, a hypergraph can be arrepresentative pro-
jection as it captures the group structures. Because ofojp@dgical and com-
binatorial properties of simple hypergraphs with the sulotesure property, we
represent the C&N CTA dataset as a simplicial complex.

3.2 Definition and Background

A more complete introductory description of simplicial colexes can be found
elsewheré?1®only some of which is detailed here.

A hypergraphH = (V, £) is simply an extension of a graph that allows for any mul-
tiple of vertices to exist in an “edge,” now callechgperedgeFormally, the vertex
setV is exactly as described in the definition of a graph, but neettige set con-
sists of sets € £ of any size such thatC V. This allows for characterizations be-
yond pairwise relations found in a simple graph. &ystract simplicial complex

is a special case in which every subset of a hyperedge is dlgpeaedge. Because
of this closure property on subsets, simplicial complexesamenable to mathe-
matical formalism in combinatorics, abstract algebra, tapblogy (see Munkré

for definitions and properties relating to simplicial coew#s and homology not
presented here).

More formally, an abstract simplicial complex is a collectiA of sets such that
every subset of a set in the collection is also in the colecti.e., ifc € A and

T C o thent € A. An element ofA is called asimplex The union of all the
simplices (sets) iM is the vertex se¥, and the elements of the union are the
vertices of the complex. Note that this approach of definirsgngplicial complex
first describes the larger structure and then describestitgonents, although we
could have started with a description of the smallest stirest (the vertices) and
built up to the largest (the complex) as is often done in treedption of a graph.

By definition, every simplex is a set of vertices and, henee, lze denoted by the
vertices it contains, e.go, = vy . . . vx. Thedimensiorof the simplexs is 1 less
than the number of its vertices, i.e., dim) = |o| — 1. A simplex of dimensiort is
called ak-simplex A proper subset of the simplexis called aface Every face is
also a simplex. A face of dimension is called ann-face If a simplex is not a face
of any other simplex in the complex, then it is calletheet(or maximal simplex

The dimension of the complex is the supremum of the dimessbits simplices.
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For simplicity, we assume a finite vertex set, so that(dilm< oo. A subcomplexf

A is an abstract simplicial compléXsuch that every simplex i@ is also inA. The
k-skeletonof A is the subcomplex that includes every simplexXobf dimension

at mostk. In particular, thel-skeleton is often referred to as the underlying graph
of the complex, though technically tHeskeleton is isomorphic to a graph. The
simplicial complex can be described by a list of all of its plives, called arertex
schemeor simply by a list of its facets since we can assume the ssib$éhe facets
are implicitly in the list.

For any abstract simplicial complex, there exists a geametalization (simply
called asimplicial complexsatisfying certain properties. Among these properties,
a k-simplex is the convex hull ok + 1 affinely independent points and is, thus,
k-dimensional. For example,df, v, . . ., v, are affinely independent, then the sim-
plex of these points is simply the set

k k
{p:pzzaiviazai:1}~ (5)
i=0 i=0

Each of these points defining the simplex is a vertex. Hengesimplex is a vertex
(point), al-simplex is an edge (line segment between 2 vertice8)sianplex is

a triangle, a3-simplex is a tetrahedron, &simplex is a pentachoron, and so on.
A face of a simplex is the convex hull of a proper subset of tediees in the
simplex. Then a simplicial complex is a “gluing” togethersamplices such that
the following is true:

1. Any face of a simplex in the simplicial complex is also ie tomplex and

2. The intersection of any 2 simplices is a face of both siogsli

This latter condition requires that the geometric reaizateside in a dimension of
sufficient size (see Section 3.5.4). A geometric realiratian be useful for visual-
izing the relationships between the vertices.

3.2.1 Homology

An oriented simplexs a simplex with an orientation, denoted, vy, . . ., vx], such
that 2 oriented simplices with the same vertices are equitaf they differ by
an even permutation of their orderings. This induces a semuef modules (or
free Abelian groups) over a ring, denotéd A), with the basis set of (oriented)
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k-simplices of A for eachk. The elements of;(A) are calledk-chainsand are
written as) . aiai(k), where each; is an element in the ring and eaebk) is an
oriented simplexX! (Every k-simplex in A is a generator in the group. Also, by
definition,C,(A) = 0, the trivial group, for every: < 0 andk > dim(A).) If aj(-k)

is a simplex with the same vertices as thosefilﬂ but with an ordering differing
by an odd permutation, theﬁk) = —o—i('“).

The sequence of modules ovAris connected as ahain complexby boundary

operators(homomorphisms)y, : C,.(A) — Cr_1(A) defined by

k
Oclvo, vr, .- o] =D (=1 (v, 01, Dy, (6)

whereo; denotes that this vertex is missing from the oriented simplbat is, the
kth boundary operator maps eveéngsimplex to a sum of its oriented — 1)-faces,
i.e., a sum of the simplices in itsoundary (We defined, to be the zero map if
k < 1ork > dim(A).) Hence, we refer to the image of.; as thesubgroup of
k-boundaries inC,(A) and denote it ag;(A). If for a k-chainc®) € Cy(A) we
haveo,c®) = 0, then we say that*) is ak-cycle (analogous to cycles in a graph,
where the “flow” into each vertex equals the “flow” out of thartex). We refer
to the kernel o, as thesubgroup ofk-cycles inC,(A) and denote it ag,.(A).

It is trivial to show that5,(A) C Z,(A) for everyk. Therefore, we have theth
homology groumf A defined as the factor group

Hi(A) = Z(A)/B(A). (7)

A topological space can be classified (up to a homeomorphigrt)e determina-
tion of its homology class, a topological invariant. For plitial complexes, the
homology groups for everk determine the classification. Of particular interest are
the Betti numbersthe ranks of the homology groups &f which generally charac-
terize the number of unconnectéetlimensional surfaces. Formally, tkéh Betti
number is denoted by

bi(A) = rank(#H.(A)). (8)

Specifically,by(A) is the number of connected componentaoh; (A) is the num-
ber of 2-dimensional “holes” id\, b,(A) is the number of 3-dimensional holes or
voids inA, etc.
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3.2.2 Laplacian Matrices

The kth combinatorial Laplacian operatas the endomorphisnt;, on C,(A) de-
fined by L), = 0 0 Oy + Ok+1 0 O}, Whered;: is the adjoint o). It can be showt?
that if the ring inC,(A) is R, for example, then

ker(Ly(A)) = Hi(A). 9

For eachk, given an ordering of the, k-simplices of a complex, the Laplacian
operator has an equivalent representatiofRtmn

L® = pWT k) gkt g+D)T (10)

where B®) : R™ — R™-1 js the kth boundary matrixdefined by the boundary
operator in Eqg. (6) and the ordering of tke and (k — 1)-simplices. Note that
L is the familiar graph Laplacian, whef&)| is the vertex-edge incidence ma-
trix. Also, the kth combinatorial Laplacian matrixs the sum of positive definite
matrices, and itc € null(L®)), we have thate corresponds to &-cycle that is
orthogonal to the boundary space. It is not true, howevaet, éach suclt-cycle
will exist in null(L®)).

3.2.3 Representing Collaborations as a Simplicial Complex: The C&N CTA
Dataset

For the C&N CTA dataset described in Section 1, or for any athvarship network
dataset, a simplicial complex can be generated by idengfyertices in the com-
plex with authors and identifying simplices with the cotautship relation, i.e., if
the authors corresponding to a set of vertices collabom@ig@do-authored) a pub-
lication in the dataset, then the simplex of those vertigest®in the complex. This
definition using collaboration ensures the existence ohgpktial complex since
the subset closure property holds. A visualization of theNO&TA simplicial com-
plex is shown in Fig. 7.
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k=5
ket

Fig. 7 The C&N CTA simplicial complex

3.3 Connectivity

The key results and conclusions from this section incluéddhowing:

1. The subset property in complexes means the number ofisespk not an
accurate model of the number of collaboration groups.

2. The number of facets represents the number of distindighiig groups
(often, however, there exists a core publishing subgroupegroup).

3. The sample size may be too small to determine a model foyehdy net-
work links; the cumulative network model is smooth enouglpgéomit the
construction of a model.

4. There is a strong correlation between the numbérsimplices and number
of (k+ 1)-simplices (and little to none betweérsimplices and facets) in the
cumulative model.

5. There is a strong linear relationship between the numbé&cets and the
number of papers.
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3.3.1 Network Size

The evolution (or growth) of the number of vertices and edgevered in Sec-

tion 2.1.1. With a network simplicial complex, there arelfegdimensional objects
that characterize the network’s evolution. The obviousots to measure are the
k-dimensional simplices and facets fbr> 2, i.e., the co-authorship publishing
subgroups and groups in the dataset.

Given the facet or simplex list (for each year), it is a simptainting problem
to determine the number of objects in each dimension. If thenbdary matrices
have been constructed then the numbek-gfimplices corresponds to the number
of columns of B%*) or the number of rows aB*+1), and the number of facets can
also be found from the boundary matrices by determiningithel&ces that are not
part of the boundary of a higher-dimensional simplex.

3.3.1.1 k-Simplices

The numbers of:-simplices, for differentt, for the yearly and cumulative net-
works'® are shown in Fig. 8 against the FY and the dimengiokVe use;, and

n;, to denote the number @fsimplices yearly and cumulatively, respectively. The
plot in Fig. 8a demonstrates significant variability eaclrylr each dimension.
This may be due to correlation with the number of papers preduwhich we
discuss later. A clear inference from the figure is thatith@ppear to be rank cor-
related, i.e., ifn,.,, > 7, (Where they; index denotes théh FY), then generally
My, > Ty, as Well, regardless dfandk. (The cases where= 0 andl = k + 1
are discussed in the next section.) This explains the gsimhitactional shifts in the
lines in Fig. 8a are similar.

Figure 8b demonstrates the smoothing effect when conegléne cumulative net-
work, as the effect of new or active collaborations is teregdry existing collab-
orations from prior years. Each line in the plot is monotonereasing because
each year brings new collaborations and no collaboratiomseamoved. Also note
that then, are generally sortable (i.e., there are méssimplices thank + 1)-
simplices), with the exceptions of the vertices and the ghawoint occurring in
FYO06. The primary reason for this is the closure propertyutfsets in simplicial
complexes determines the rate of growth in the numbérsimplices when sim-
plices are created among a single existing vertex and neicegr However, when
simplices are created among existing vertices, which magpdy have connections,
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C&N-CTA Pub ication dataset
Number of k-Simplices (cumulative)

(a) The number 7, of k-simplices vs. (b) The number n;, of k-simplices cumulatively
FY for each k. vs. FY for each k.
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(c) The number 7, of k-simplices vs. k (d) The number n;. of k-simplices cumulatively
for each FY. vs. k for each FY.

Fig. 8 The number of k-simplices vs. FY and the number of k-simplices vs. simplex dimension,
for the yearly and cumulative networks

this should affect the rate of growth. For example, we can see that ng (the number
of tetrahedrons or groups of 4) is on track to pass ny at FY0S5, and this indicates
that 3-simplices are being created at a faster rate than vertices, which must be partly

because of new simplices (collaborations) among existing vertices (authors).

The change-point at FY06 in Fig. 8b demonstrates a peculiarity with the closure
property of subsets in simplicial complexes. There is a significant jump in n4 (5-
author collaborations); however, this is almost entirely due to a single conference
paper (paper ID 652) that has 10 co-authors. A paper with 10 co-authors generates
in the complex a 9-simplex that contains (15? ) = 252 4-simplices or distinct 5-author
subgroups. This paper accounts for the spikes in many of the values of n; for each
dimension k£ in FY06 in Fig. 8a, accounts for the super-linear growth in Fig. 8b,
accounts for the significantly different distribution of the number of k-simplices in

Fig. 8c, and also alters the shape of the distributions for the cumulative evolution
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in Fig. 8d. The smaller spikes in FY0O4 and FYO08 are similanhedo a larger
number of papers with 4 co-authorsgimplices) and 6 co-authors-6implices),
respectively. Absent this single large collaborative paghee growth inn;, appears
linear with respect to the change in FY for edch

Figure 8c shows that the distributions of the sizes of thepBoms are generally
single-spiked with a mode at= 2. That this is the mode is unsurprising given the
distribution of the number of authors on a paper in Fig. 1. bstiyears, the papers
consist primarily of3-person collaboration2{simplices). The 2 years where this
distribution is significantly different are FY06 and FYO0®. ¢ach case, the mode
is still at & = 2, but there are papers with a larger number of collaboratang;h
sufficiently skew the distribution in the cumulative netwam Fig. 8d. By the end
of the program, the mode is shifted from= 2 to k = 3.

One might argue that it is not desirable for a few papers these few with the large
collaborations) to have such a dramatic impact on the nsgfimicthe growth of the

complex or the distribution of its simplices. Hence, as asneaof the number of
groups in a network, the number of simplices of a certain siruld be viewed

as a very loose upper bound. We consider the numbgsfatets as an alternative
metric in the next section.

3.3.1.2 k-Facets

The number oft-facets for each year and cumulatively are shown in Fig. 9-com
pared against the FY and the facet dimengioklVe usemn, andm, to denote the
number ofk-facets yearly and cumulatively, respectively. As with theimplices,
there is significant variability in the number, of facets for some dimensions in
Fig. 9a. This variability is due to a large number of uniquiatarations, primarily

of dimensiong: = 1,2, 3. There are only a few large collaborations in this dataset
and, therefore, they are a less interesting aspect of thisefighAnother feature is
that there appears to be less correlation between the fatdiferent sizes than
evidenced in Fig. 8 (more on this in the next section). Thie&sonable since there
is no subset relation between facets of one size versusfatanhother size.

Figure 9b demonstrates the smoothing of the variation se@igi. 9a over time.
Note that the dramatic shifts seen in Fig. 8b at FY06 are negent here, since a
single new unique collaborative effort (or paper) is onlyeted once regardless of
its size. The general tendency is that the lines are inergaBut unlike the plots in
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C&N-CTA Pub ication dataset C&N-CTA Pub ication dataset
Number of k-Simplex Facets (each year) Number of k-Simpiex Facets (cumulative)

(a) The number 72, of k-facets vs. (b) The number my, of k-facets cumulatively vs.
FY for each k. FY for each k.
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Fig. 9 The CN CTA co-authorship network: The number of k-simplex facets vs. FY and the
number of k-simplex facets vs. facet dimension, for the yearly and cumulative networks

Fig. 8b, there are three instances where the number m,;, decreases from one year to
the next: twice for mg (FY03 and FY07) and once for m; (FY08). This occurs when
a facet or group of authors (or a lone author) that already produced a publication
produces a new work (collectively) with at least 1 other author.

Figure 9c plots the distributions of 7 for each FY. Surprisingly, the distributions
have a similar shape, 1.e., a skewed distribution with a mode at £ = 2. The vari-
ability is likely due to the extremely small sample size (there are significantly fewer
facets than simplices in many simplicial complex representations). This modal fea-
ture 1s enhanced 1in the distribution shapes of m,, for each FY in Fig. 9d.

Facets are clearly a better representation of the number of distinct publishing groups.
However, they mask the subgroup collaborations within each group. For example,

a group of 3 co-authors may have jointly written several papers together and only
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1 paper with another co-author. The facet count only indutie group of 4 co-

authors and ignores that a face of that simplex was a signifazatributor to the

collaborative output. In light of this, we should view thenmlber of k-facets as a

lower bound of the actual publishing collaborations. Tdytieapture these groups
and their output, weights on simplices are likely necessagy, the weight of a sim-
plex of authors could be the number of papers jointly pulelishy those author.

As an aside, we also note that it is the intersection of thaset$ (publishing
groups) that creates the connectivity necessary for thissdato be represented
as a simplicial complex instead of just a collection of siitgd. This can be char-
acterized by a generalization of the degree of a vertex,wikidiscussed in Section
3.3.3.2.

3.3.2 Correlation Among the Numbers of Simplices and Facets

An important characteristic studied in network graphs erdlationship between
the number of vertices and the number of edges. This stuéydsgtin network sim-
plicial complexes in 2 ways: 1) the relationship betweemtimmber of vertices and
the number of-simplices ork-facets, and 2) the relationship between the number
of simplices/facets with dimensidnand those with dimensioh+ 1.

3.3.2.1 k-Simplices

In Fig. 10a, we plot the number éfsimplices versus the number of vertices in each
year’s network and the coefficient of determinatiBh (or square of the Pearson
correlation coefficient) fok = 1,2, 3, 4. There is little evidence of any strong linear
correlation each year between the numbgrof vertices and the numbet, of
collaborations of a certain size. However, Fig. 10b doesafetnate an initially
strong relationship between, andn, that gradually weakens &sincreases. That
the linearity develops in the cumulative observation ofrtevork more so than the
yearly observation is not surprising because of the emlzkeduaEmory of including
simplices from prior years. This might also indicate thattlmmber of simplices for
each year in the program may be too small a sample size farimjea statistical
relationship.

This hypothesis is provided more evidence in Fig. 10c, whieeee is weak evi-

dence of a linear relationship between the numbérsimplices and the number of
(k 4+ 1)-simplices in the network each year. This is surprising beeahe closure
property of simplicial sets guarantekes+ 1 k-simplices in eachik + 1)-simplex.
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Fig. 10 The number of k-simplices vs. the number of vertices and the number of (k + 1)-
simplices vs. the number of k-simplices, for the yearly and cumulative networks

One would assume that this property should dominate the statistic given a sufficient
number of simplices; however, the connectivity between simplices sharing vertices
and even k-faces can be sufficiently different (nonlinearly) from year to year, which
affects the relationship between the number of k-simplices and (k + 1)-simplices.
This divergence from linearity may be a good sign if it indicates that groups inter-
sect (share members). In the cumulative network statistics, there is a significantly
greater number of simplices, and, with the embedded memory of prior years’ sim-
plices included, we do have clear evidence of a linear relationship in 1y vs. ng,
as shown in Fig. 10d. The sample linear regression models corresponding to this

figure?! are given as

ny, = 2.6358ng, — 153.3268 (11)
ngy, = 1.0953n;, — 111.1556 (12)
ng, = 0.817Tng, — 73.0945 (13)
niy, = 0.7383ns, — 29.3594 (14)
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It should be noted that the loweBf when comparingy,. , againstu_; , for k =
1,...,9occurs wherk = 4. However, the nonzero data points are scarce for higher
dimensional simplices (largé) in the yearly network and have infrequent changes
in the cumulative network.

Regardless of the linear relationships between the siepldue to the activity

within any given year, the (cumulative) network grows atreedir rate between the
simplices. This linear relation in the growth of the netwbds important implica-

tions for the development of matching generative models.

3.3.2.2 k-Facets

Figures 11a and b compare the numbek-dhcets with the number of edge-facets,
each year and cumulatively. Each year, the dataset is officisat size to infer a
linear relationship between the number of edge-facethiodigh the points might
fit a linear model for thé = 4, 5 cases, they are well fit by a constant, which does
not indicate any strong linear relation aiy. (This is the implication of data that
appears linearly flat with?? near zero.) The best linear fit in these 2 plots is for
the cumulative network model far = 2, but this is still a relatively weak fit based
solely on R?. However, since we lack any subset relationship when cerisigl
only the facets, thé?? might be considered surprisingly high. Ultimately, a large
dataset is needed in order to permit definitive conclusions.

Figures 11c and d compare the numbe(ief 1)-facets with the number df-facets,

each year and cumulatively. Again, there is little evideloc@ny linear relationship
for the network each year, and there is weak evidence of arliredation for the
cumulative network.

There is a higher correlation between the numbers of intidiemplices than the
number of incident facets, and there is a higher correldbothe cumulative net-
work than the yearly network. That the number of incidentiogs are more cor-
related is not a particularly surprising observation ag\e¥esimplex must consist
of £ + 1 (k — 1)-simplices. The higher correlation for the cumulative ratain-
dicates that the new simplices entering the network miglhdvioa pattern in how
they connect to the existing simplices.

31



C&N CT/

A Publicaton dataset C&N CTA
Number of 1-Facets vs. k-Facets (each year)
T T T

dataset
Number of 1-Facets vs. k-Facets (cumulative)
T T T T

o k2R 04021 ' O k2R 09287 °
* k3R 00565 o 1800« x 3R? 08497 °
B+ x45® oot0e 1 wol| + ¥4R*o0s108
4+ k SR® 0.0001 o + k5R® 07724 o
» af ® 120
H o ] ¢
1 1 100
Lk s
é 5 o ° é 80 o °
Z xnf o Z &0
x o x
40
10} * * 1 o x
* 20 x J
B .. b, i i gt
s 10 15 20 25 30 s 0 W 22 W 4 s 6 70 80
Number of 1-facets Number of 1-facets
(a) my, vs. my, for various k. (b) my, vs. my, for various k.
CAN-CTA Publicaton dataset CEN-CTA Publication dataset
Number of k-Facets vs. k+1-Facets (each year) Number of k-Facets vs. k+1-Facets (cumulative)
. ' I ' © k1R 0.4021 - ' ' ' . ' I O k1R 09287
o = x2R® 0081 180 ° % k2R 09622
sr + x 3R? 0164 + k3R 08849
+ x 4R? 00573 140 o + k4R 09102
2 wf ° 2120 °
i1 . i
+ + 100
B g
g g o?© g; a0 oo
Z 2 ° Z &0
x o
0 x
10} * »
. * . 20 ° PRI +t
e - olest
o w 2 x4 s &0 0 20 40 6 & 10 120 140 160 180
Number of k-facets Number of k-tacets
(¢) Mmyq Vs. 1y, for various k. (d) my_1 vs. my, for various k.

Fig. 11 The number of k-facets vs. the number of edge-facets and the number of (k + 1)-
facets vs. the number of k-facets, for each year of the network and cumulatively

3.3.3 Correlation Between the Number of Papers and Number of Sim-
plices/Facets

In graphs, there is often a linear relationship between the number of papers and the
number of authors over time in a co-authorship network graph. This implies a num-
ber of properties of the co-authorship network, such as that the number of authors
entering and leaving the network are constant and that there is an average rate of
production for authors over a short time interval. In this section, we investigate if a
linear relationship can be observed with respect to the number of groups of authors,

thereby inferring analogous properties for groups.
3.3.3.1 k-Simplices

Figures 12a and b compare the total number of simplices (each year and cumula-
tively) with the number of papers. In the network data for each year, the coefficient
R? = 0.5174, which indicates that the number of papers written in a given FY is

not linearly dependent on the number of simplices that year. However, in the cumu-
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lative network, R? = 0.9813, which is a strong indication of a linear relationship,
given by

py = 0.1731) _ nyy + 70.6770. (15)
k

This strong indication of a linear dependence is actually somewhat surprising. Dif-
ferent simplices are not necessarily distinct publishing groups. Just because a group
of 3 authors collaborated on a paper does not mean that each pair collaborated on
a separate paper. The same i1s true of a group of 4 authors. Yet a group of 3 au-
thors contributes 7 simplices while a group of 4 authors contributes 15 simplices
(1gnoring potential intersections). Hence, a linear relationship between papers and
simplices would only exist if on average groups of 4 authors are some unknown
factor times more productive in the papers they produce than groups of 3 authors.
Moreover, this unknown productivity factor would have to exist between groups of

5 authors (contributing 31 simplices) and groups of 4 authors as well.
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Fig. 12 The number of k-simplices vs. the number of papers for each year of the network
and cumulatively. The number of k-facets vs. the number of papers for each year and cumu-
latively
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3.3.3.2 k-Facets

Figures 12c and d compare the total number of facets (eactapdacumulatively)
with the number of papers. The data for the year-by-year ortexhibit a coeffi-
cient of determination aR? = 0.9204. The data for the cumulative network provide
compelling evidence of a linear dependence siiée= 0.9991. The linear model
is fitted by

py =3.0515 my, — 70.8247. (16)
k

Unlike the total number of simplices, which attributes geeaveight to larger di-
mensional simplices because of the subset inclusion psopke total number of
facets essentially characterizes the distinct workinigliphing groups in the net-
work. Hence, under the assumption of an average prodycéwuitong each group,
facets are a more reliable indicator for the number of paipetfse network.

3.4 Centrality

The key results and conclusions from this section incluéddhowing:

1. There is a clear power-law distribution for facet degrea wertex. It is un-
clear if this extends to other simplex degrees.

2. The ranking of simplex degrees and other graph-base@gmentrality met-
rics do not appear correlated (using Spearman’s coeffjcient

3. The location of holes, i.e., the shortest cycles that doboond, are inci-
dent to vertices with high graph centrality properties aminf a component
subcomplex.

For this section, we are only considering the complete nétwe., the end state of
the cumulative network.

3.4.1 Simplex Degrees

The degrees of the vertices were discussed earlier as Ibfwsdsitermination of
vertex centrality in the graph by degree ranking as well asaaacterization of a
network by the distribution of the degrees. This graph degtistribution is still

present in the simplicial complex (since the underlyingphres present). As such,
the degree distribution is in many senses a model of thleeleton. Similar models
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or characterizations might be possible (and, indeed, aressary) for the higher-
dimensional skeletons of the simplicial complex, whichteém more dimension-
ality than just vertices and edges. In fact, this idea has lseggested beforg,
although the particular model analyzed there did not pmsidnificant insight be-
yond the degree distribution.

The notion of degree of a vertex in a graph is generalizable-sonplices. For
example, the number of triangles incident to an edge is itapbin determining
how many other actors a pair is jointly related to or, in théatmration context
here, how many other authors that a pair of co-authors jopublished a paper.
This information is lost in a simple graph model of the cofledtions and is an
alternative to the number of co-authors with whom eithehauin a pair published
a paper, a graph-based notion of group degree defined in Bq.T(his induces a
centrality characteristic based on ranking the produgt pairs of authors in the
C&N CTA dataset. This will be less than the pair's number ahomon relations or
the number of common authors with whom both authors in thehaaie published,
as this “edge degree” does not include the strictly painnesstionships. Moreover,
this degree may help to characterize or model the grouptatesin the network.

Given the definition of vertex degree for graphs, it seemsrahto analogously
define thedegree for a-simplexas

d® (o™ = L& (A). (17)

This is indeed the usual definitidh However, this is not the number ¢f + 1)-
simplices incident toffk), but rather Eq. (17) is the sum of the upper and lower
degree of thé&-simplex, i.e.,

~

d®(c*) = upper degree of") = (B+D) BH+1T), |
d® (%) = lower degree ot\") = (B®TB®)), .. (18)
respectively. Theipper degree of\* is the number ofk + 1)-simplices incident
to afk), whereas théower degree ozfri('“) is the number ofk — 1)-simplices incident
to o). Note that the lower and upper degregiedimplices are determined by the
diagonal elements of the first and second term ofthecombinatorial Laplacian in
Eq. (10). Of course, the lower degree is fixed by definitioneambmber of boundary
faces of a simplex, e.g., there are always 3 edges in evangle. Hence, the lower

35



degree of any:-simplex is alwaysi® (c®)) = (*I) =k + 1.

For the collaborations in the C&N CTA dataset, the top-rahfairs and triples of
authors are given in Tables 12 and 13. It is difficult to coreghese lists with the
lists in Table 9 since the number of vertices (authors) iedght than the number
of edges (pairs of authors) and both are different than tmebeun of 2-simplices
(trios of authors). We can determine among the author paddgréos with top sim-
plex degrees how many of them also are authors with highaégtmeasures. For
example, of the 27 author pairs listed in Table 12, only in §esaare both authors
not included in the list of authors with high (graph) degnedable 9, whereas this
absence occurs in 23 and 19 cases for authors with high @ssamd betweenness,
respectively. Clearly, Table 13 is dominated by permutegiof some subset of au-
thors. This is due to a paper wiil) co-authors, where every trio of these authors
starts with a degree of at leasi (7 other authors plu8 edges in their triangle).
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Table 12 C&N CTA: Edge degree rankings

Rank | Author 1 Author 2 dV(-)
1 | Myung Jong Lee Tarek N Saadawi 19
2 | Mariusz A Fecko Sunil Samtani 18
3 | Maitreya Natu Adarshpal S Sethi 17
3 | Anthony J McAuley Raquel Morera 17
5 | Richard Gopaul Daniel Sterne 16
6 | Kyriakos Manousakis Anthony J McAuley 15
6 | Geoff Lawler Daniel Sterne 15
8 | Sunil Samtani M Umit Uyar 14
8 | Natalie lvanic Daniel Sterne 14
8 | Natalie lvanic Geoff Lawler 14
8 | Georgios B Giannakis Xiaoli Ma 14
8 | Mariusz A Fecko M Umit Uyar 14

13 | Peter Kruus Daniel Sterne 13
13 | Richard Gopaul Peter Kruus 13
13 | Peter Budulas Daniel Sterne 13
13 | Peter Budulas Richard Gopaul 13
17 | Georgios B Giannakis Shengli Zhou 12
17 | Ahmed Abd EI Al Mariusz A Fecko 12
19 | Ananthram Swami Lang Tong 11
19 | Brian Rivera Daniel Sterne 11
19 | Geoff Lawler Brian Rivera 11
19 | Peter Kruus Brian Rivera 11
19 | Peter Kruss Geoff Lawler 11
19 | John E Kleider Xiaoli Ma 11
19 | Richard Gopaul Brian Rivera 11
19 | Richard Gopaul Geoff Lawler 11
19 | Michalis Faloutsos Srikanth V Krishnamurthly 11
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Table 13 C&N CTA: Triangle degree rankings

Rank | Author 1 Author 2 Author 3 d? (-
1 | Natalie lvanic Geoff Lawler Daniel Sterne 14
1 | Mariusz A Fecko Sunil Samtani M Umit Uyar 14
3 | Richard Gopaul Peter Kruus Daniel Sterpe 13
3 | Peter Budulus Richard Gopaul Daniel Sterne 13
5 | Geoff Lawler Brian Rivera Daniel Sterne 11
5 | Peter Kruus Brian Rivera Daniel Sterne 11
5 | Peter Kruus Geoff Lawler Daniel Sterne 11
5 | Peter Kruus Geoff Lawler Brian Riverg 11
5 | Richard Gopaul Brian Rivera Daniel Sterne 11
5 | Richard Gopaul  Geoff Lawler Daniel Sterne 11
5 | Richard Gopaul  Geoff Lawler Brian Riverg 11
5 | Richard Gopaul Peter Kruus Brian Rivera 11
5 | Richard Gopaul Peter Kruus Geoff Lawler 11

We can make comparisons between metrics of group centiralifsaphs® with the
simplex degrees in complexes. These group centrality sxies are given by

Caler) = > |BYBY),
J#i

n—2
Z d(%? ei) ’
vjge;

" giulen) /g5

C.le;) =

C’b(ei) =

j<k

and

(n—2)(n—3)/2’

(19)

whered(v;, e;) is the length of the shortest path framto either vertex composing
edgee;, g;i, is the number of geodesics between verticesndu;,, andg;y(e;) is the
number of geodesics betweenandwv, that contain a vertex of;. Here, we only
consider the (graph) group centrality metrics for adjacesttices, although the
metrics are more general. The (Pearson) correlation ofdingp(ex) edge degree
with these centrality metrics (in the primary component) is

d® () 1.0000  0.1609
Ca(-) | | 0.1609  1.0000
C.() | |-0.1653 0.6185
Co(-) —0.1038 0.7893
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—0.1653 —0.1038
0.6185  0.7893
1.0000  0.7479
0.7479  1.0000
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It is clear that the edge upper degree is something diffdrent the (edge) group
centrality measures for graphs, which are in general mamreleted than the indi-
vidual centrality measures for graphs.

This notion of simplex degree is easily extendable. For gtanthe group structure
of a network might be partly characterized by the numberaigles connected to a
vertex, or the vertex-to-triangle degree. This can be fdunddding the number of
edge-to-triangle degrees for each edge connected to ttexard then dividing by
2 (since each triangle connected to a vertex must be corthecBedges connected
to that vertex and would be counted twice). More formallis tan be expressed as

vertex-to-triangle degrée;) = abg valz))abs{ B®)/2
= >3 |BY|| B2 (21)
koo

By an inductive argument, the vertex-tesimplex degree can be found by taking
the summation over each dimension of the numbéy ef 1)-simplex-to4-simplex
degrees for eachsimplex adjacent to the vertex and dividing this totalddyor

simply
S |8

J1,925- 50k

B(2)

J1,J2

/K. (22)

(k)
Jk—15Jk

To generalize this extension beyond the vertex;thgeimplex-to4-simplex degree
is inductively calculated as

m-simplex-to{m + k)-simplex degree"))
= abgB")abgB"*?)...abdB®)/(k — m)! (23)
o (m+1) (m+2) (m+k)
= > IBENBTEY Bk
J1:J25Jk

For the C&N CTA co-authorship network, Figs. 13, 14, and 1&pliy various
distributions of these simplicial complex degrees beydradraph. It should be
noted that for then-simplex-to%-simplex degrees, since these are log-log plots,
them-simplices having either O or 1 are counted togetherfor k£ — 1 orm > 1.

At least for this dataset, there do not seem to be clear méatetlse m-simplex-to-
k-simplex degree distributions when < k£ — 1. However, whenn = k£ — 1, the
data possibly exhibit power law-like behavior over certanges.
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Fig. 13 The C&N CTA co-authorship network: Simplex degree distributions
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3.4.1.1 Facet Degrees

While characteristics of the upper degrees and the upmggeddlistribution may
certainly be important in modeling simplicial complex netks, the utility of higher-
order simplex degrees is less clear. Perhaps a more intgrefternative extension
to them-simplex-to{m + k)-simplex degree (fok > 1) is the consideration of the
number of facets incident to a vertex (or possibly a simpliexa collaboration net-
work context, each facet represents the number of diffegemips within which a
social actor interacts. Hence, tfeeet degre®f an author is the number of distinct
(maximal) collaborative groups in collaboration with thetzor.

The calculation of a vertex’s facet degree involves findiogrlmanyk-simplices
incident to the vertex are not incident to aity+ 1)-simplices incident to the vertex
for eachk. More formally,

facet degre@) = » _card{c® 5 v:o® ¢ o* 1 50} (24)

k>1

Similarly, the calculation of the facet degree of a simplesoives determining how
manyk-simplices are incident to the simplex but not incident tg @ 1)-simplex
for eachk, i.e.,

facet degreg@r) =

> card{r" 5o : FrF st.70 c 7ETIY (25)
k

Given a facet list, this can be computed with a relativelgigtitforward searching
and counting procedure. The distribution of the facet degjad the vertices in the
C&N CTA network is shown in Fig. 16. An estimate of the expaonierthe power-
law relation is given by

#verticesx #degree! ", (26)

using a simple linear regression on the logarithm of the extnemal values.
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Fig. 16 The C&N CTA co-authorship network: Vertex-to-facet degree distribution.

3.4.2 Homology

Topological spaces can be classified by the number of holes in each dimension. The
holes are not found in the topology but are defined by the number of homologous-
independent cycles that do not bound. For each such cycle, all homologous cycles
form an equivalence class that is a generator in the homology group. Moreover, for
a given simplicial complex, we can characterize homology further by determining
a “location” for each hole, or rather for each hole’s boundary, defined as a cycle
with minimal path length in the class. This is not a traditional abstract topologi-
cal concept because homeomorphisms can change the geometric realization and,
hence, where a particular location is perceived to reside. However, this approach

has proven fruitful in determining gaps in coverage for sensor networks.!824

For a collaboration network, holes in the simplicial complex may prove useful for
characterizations and modeling of the network. The number of holes in each di-
mension potentially could significantly vary from what might typically be found
in the sensor network coverage problems. This is because the sensor topology is
ultimately characterized by the nature of its physical geometry, whereas a collab-
oration 1s not directly bounded by dimensions of physical space. As such, we can
expect hole locations to be incident to k-simplices of relatively high degree and

high clustering with (k + 1)-simplices with relatively low degree.

The small-world nature of large co-authorship implies that over time authors will
form relationships with other authors that are at some distance away in the network.
Each instance of such a collaboration between 2 authors generally creates a new

cycle that does not bound unless the relationship includes all authors on some path
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or chain between the 2 authors.

Figure 17 shows the homology for the cumulative network of the C&N CTA over
the timeline of the program. The number of connected components has been dis-
cussed earlier. The number of holes is monotonically increasing. In fact, no hole
when formed is ever “filled in” by latter collaborations in this dataset. This is coun-
terintuitive to the notion of the small-world properties in co-authorship networks.
Because of the presumed high clustering, connected triples on cycles defining hole
locations should shrink over time so long as the authors remain active. This property
should be present in larger networks observed over a sufficient timeline. However,
it is likely the number of newly generated holes will still outpace the holes that get
filled in.

C&N-CTA Publication dataset
First Betti numbers & Missed 3—Collaborations
60 T T T

# connected components
—#— # 2-dimensional holes

sob —&— # minimal non—2-faces D
+—%— # holes that are a minimal non-2-face|
- —©— - # minimal non—-2-faces that are a hole

Fig. 17 Comparison of number of components, holes, and minimal non-faces over the evolu-
tion of the network

An interesting feature of this particular network is that all holes are in the primary
component (all other components are tree-like complexes). In addition, the sub-
complex induced by the inclusion map restricted to the vertices adjacent to the hole
locations, i.e., the vertices comprising the shortest cycles that do not bound, form a
single component. As seen in Figs. 17 and 7, most of the holes are small (a hole lo-
cated by a 3-edge cycle is a minimal non-face, see below); however, there is a hole
with shortest bounding cycle of 14 edges (or vertices) linking many of the smaller
holes together. An interesting question for future work is whether this feature is

mherent in much larger networks.
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3.4.3 Minimal Non-Faces

A minimal non-facas a set of vertices in a simplicial complex such that every
subset except the set itself is a simplex in the complex, amaail it aminimal
non+-faceif the set of vertices has dimensi@n A minimal non-face in a col-
laboration network may indicate the potential for a largataborative connection.
Although a minimal nork-face is a hole in the subcomplex comprising only the
simplices of the vertices in the missing face, it is not neadly a hole in the entire
complex. For example, if each pair of vertices in a minimat42sface is collabo-
rating with another common author (geometrically, thisieenpty and bottomless
tetrahedron), then there is no hole.

Similar to the case with holes, minimal non-faces shouldnogdent to simplices
with high degree and centrality. The distinction is thatdsomay form from con-
nections made between distance parts of the network, whengamal non-faces
are formed explicitly by independent local clustering. Eample, a triangle in the
graph representation can either exist because of a 2-simglktion or a minimal

non-face relation in the simplicial complex.

Figure 17 shows the growth of the number of minimal non-fdoeshe cumula-
tive network of the C&N CTA, as well as a comparison betwedefiand minimal
non-faces. Not every minimal ndi¥face corresponds to a hole nor does every hole
correspond to a minimal nozHace. Clearly, minimal non-faces are more preva-
lent than holes. It is possible for the number of minimal rfiaces corresponding
to holes to be greater than the number of holes because obthe@miqueness of
shortest cycles identifying a hole location.

3.5 Miscellaneous

3.5.1 Q-analysis

In this section, we consider labeled simplices, which asdagous to hyperedges.
Not every simplex has a label. Only those corresponding &dadion have a label,

and it is possible for multiple labels to exist for a simpl&then we refer to a

simplex, we are referring to a labeled simplex. In the cdrarghip network context,

each labeled simplex corresponds one-to-one to a papeg thetiaset.

Two simplices arg-connectedf there exists a finite sequence gkimplices such
that each consecutive pair of simplices shayedamensional face, i.e., each consec-
utive pair isg-near. The length of this sequence, dnain ofg-connectionis 1 less
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than the number of simplices in the sequence. Hengsimplex isg-connected to
itself by a chain of length zero.

Theg number of a simplex is the greatedbr which the simplex ig-connected to a
distinct simplex. (If the simplex is a face of another simptléeng is the dimension

of the simplex.) Theg number of a simplex is simply the dimension of the simplex.
Theeccentricityof a simplex is defined as

ecqo@)=94"9_974 (27)

and is a measure of the individuality of a simplex. Since et@sty is undefined
wheng = —1 (i.e., when the simplex is isolated), it is convenient to mgamalized
eccentricity?® defined as o
q—4q
ecdo?) = FET (28)
With this normalization, an isolated simplex has ecceityricand a simplex that is
a subset of another has eccentricity zero.

As g-connectivity is a relation, the simplices with dimensidrneastq can be par-
titioned into equivalence classes in which 2 simplices arthé same equivalence
class org-connected component if they areeonnected. The number of such com-
ponents in the simplicial complex for a givemns denoted by),, and the vector

T

Q=] @ . Qu (29)

is called thefirst structure vectof the complex. (Note that the simplices with
dimension at leasy are the simplices left over after deleting the simplicds/se
from the (¢ — 1)-skeleton from the simplicial complex. Collectively, teesre not a
simplicial complex.)

For the final year of the cumulative network of the C&N CTA daf the first
structure vector is

T
Q=[16 139 240 99 37 21 9 5 1 1| . (30)

Comparing this with the number of labeled simplices thastefor eachq, i.e.,
(960,937,523, 151,48,22,10,6,2, 1), we see that the labeled simplices are very
weakly connected at dimensién> 2.
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3.5.2 Strong Collapsing

Every simplicial complex has a conjugate complex in whiah ldbeled simplices
are mapped to vertices and simplices exist in the conjugatang vertices whose
labeled simplices have non-empty intersection. This qgeteicomplex is similar to
the nerve of a complex. It can be shown that the simplicialglesnand conjugate
complex have the same homolodjy.

Note that when the eccentricity of a simplex is zero, thersthwlicial complex is
essentially the same without that simplex. Any subset oftimplex is covered by
some other simplex. Since the complex is unchanged, themlogynis preserved
even if that simplex is removed. Hence the homology is pweskm the conju-
gate when the vertex corresponding to the labeled simpléx md eccentricity is
removed (or collapsed). This motivates an iterative preadscollapsing vertices
in the conjugate complex and the original complex to redbeedimension and
size of the original complex while maintaining its homolo@is is calledstrong
collapsing?®

When applied to the cumulative network of the C&N CTA, thewmk collapses
to a core67 vertices (authors) witfi8 labeled simplices (papers). The non-primary
components collapse to single vertices. The primary compbeollapses to a con-
nected set of vertices that include all the authors with kightrality metrics. More-
over, strong collapsing preserves hole locations in amldiid preserving the holes,
i.e., at least 1 shortest cycle incident to the hole remdies strong collapsing.

3.5.3 f-vector and Euler Characteristic

The f-vector (or face vector) of a simplicial complex is simply ector whoseth
element indicates the number @f— 1)-simplices. For the C&N CTA, this is

= [518 1248 1272 952 648 362 156 49 10 1]. (31)

This can also be compared with the first structure vector;dvew this creates the
appearance of a greater number of potential componentsethisinsince many of
these simplices are from the large facets. As mentionetega$2 of the 648 4-
simplices are due to a single facet (paper).

The Euler characteristig is a topological invariant, which might be useful in dis-
tinguishing different network types. It can be calculatgddither an alternating
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sum of the elements of th&vector or an alternating sum of the Betti numbers, i.e.,

X = fi—fot+tfos—fat--- (32)
= byg—bi+by—bg+--- (33)

where f; represents the number ¢ — 1)-dimensional simplices in the complex
andb, represents thith Betti number.

For the C&N CTA yearly and cumulative network, Table 14 d&gsl the Euler char-

acteristics. It is not surprising that since the number dé&@s increasing whereas
the number of components remains relatively the same (ged F), the Euler char-

acteristic gradually decreases over time for the cumwdatetwork. For the yearly

network, the characteristic remains positive and osetlaea( because the holes
are created over multiple years rather than in a single year.

Table 14 C&N CTA: Euler characteristic

Fiscal Year 02 03 04 05 06 07 08 09
Euler char. (cum.) 19 18 24 14 11 1 -5 -8
Euler char. (peryear) 19 13 31 21 24 14 16 17

3.5.4 \Visualization

The visualization of a simplicial complex is more difficutiain that of a graph due
to the need to represent the groupings instead of just thesealpong the vertices.
Theoretically, &-dimensional simplicial complex can be geometrically i in
2k + 1 dimensiong®2°This is a difficult task for what ultimately is to be projected
onto a 2-dimensional picture of 3-dimensional space. Thezeto represent the
different size of the groups we use color.

An investigation of the existing visualization schemesdionplicial complexes re-
vealed Polymakd® as the best for small simplicial complexes. Unfortunatebyly-

make did not distinguish between different orders of siogdiwell because it did
not have an option to use color based on size. Another shoigpof Polymake
is the inability to visualize disconnected components siameously. Furthermore,
Polymake’s visualization algorithm did not have clear op$ to modify its rou-
tine. Thus, for a simplicial complex with a larger number eftices, the spring-
embedding component of Polymake’s algorithm did not cagyweand no visual
output is produced. Simply put, the simplicial complex ¢eelsfrom the C&N CTA

47



co-authorship dataset proved too large. Primarily to cojle this last failure, we
created code for visualization within MATLAB.

A visualization is of the C&N CTA is shown in Fig. 7. A greedygalithm is used
to place the vertices. Then a spring embedder is appliedisrinitialization. The
spring force encourages(é;rl) -sided polyhedron (imposed in2adimensional re-
alization of 3-dimensional space) fok-simplices while also creating separation
between disconnected vertices and simplices.

This approach includes several desirable features thghfadle does not as listed
above: color represents the simplex order, visualizatafrdisconnected compo-
nents are possible, and the approach handles the numberticksen the C&N
CTA simplicial complex without convergence issues.

4. Conclusions

A higher-dimensional analysis of ARL's C&N CTA co-authonshetwork was pre-
sented. This network represents the scientific collabmmatamong researchers that
resulted in publications. Although the network is mediuzed, many of the graph
theoretical measures and metrics are similar to what is aamhyrfound in large
co-authorship or other social networks. This justifies ttityiof this network in
our study of higher-dimensional collaborative structures

The higher-dimensional structures were modeled as sieglita simplicial com-
plex. The connectivity of the simplicial complex is detenmd by the facets and
their intersections. Facets represent particular cotith@ groups and their inter-
sections represent the interactions between the groups.nfdkes properties re-
lated to the facets of the simplicial complex key to chanaziteg the collaborative
structure of the these networks. We have demonstrateditbdatet degree distri-
bution follows a power law relationship. The homology of gplicial complex
can be characterized by the minimal length cycles that dboohd. These homol-
ogy cycles have connections to short cuts in small world asts In fact, such
1-cycles that are not non-minimal faces consist exclusiegélghort-cut edges. In
a sense, these homology cycles can be viewed as a form ofi glolstering. We
have shown that the cycles tend to intersect at authors wgth ¢entrality mea-
sures in the graph sense. We have also shown that minimaiaces-represent a
form of independent local clustering, which is also an ierfaature of small world
networks.

48



10.

11.

References and Notes

ARL: Collaborative Alliances: Completed CTAs. AdelphVD): United
States Army Research Laboratory; 2011 March [accessed RAEK4h 1].
www.arl.army.mil/.

If it were known how many doctorates were attained by sitglgupported by
the program in each FY, then one might expect a larger tharaggenumber
in FYO05. Unfortunately, this information was not availallethe time of this
report.

Hsu JW, Huang DW. Distribution for the number of coauthBtsysical Review
E. 2009;80:057101-1-4.

Newman MEJ. Coauthorship networks and patterns of stieecwllaboration.
Proceedings of The National Academy of Sciences. 20045200-5205.

Newman MEJ. Scientific collaboration networks. |. Netkvoonstruction and
fundamental results. Physical Review E. 2001;64:01613&.-1

Newman MEJ. 2010. Networks: An Introduction. Oxford (téai Kingdom):
Oxford University Press.

Wasserman S, Faust K. 1994. Social Network Analysis: btittand Applica-
tions. New York (NY): Cambridge University Press.

West DB. 2001. Introduction to Graph Theory. Upper Sa&iMer (NJ): Pren-
tice Hall.

Technically, the author vertices are linked to paperieestin a bipartite graph
where the link or edge between an author and paper indidaethe author is
1 of the co-authors of the paper. The co-authorship gragh, ik the “one-way
mode projection” of this bipartite graph onto the authottices.

Liu X, Bollen J, Nelson ML, Van de Sompel H. Co-authorshgiworks in the
digital library research community. Information Procegsand Management.
2005;41:1462-1480.

Zheleva E, Sharara H, Getoor L. Co-evolution of socia affiliation net-
works. In: ACM. Proceedings of The 15th ACM SIGKDD Conferenan
Knowledge Discovery and Data Mining; 2009 June 28-July @tis{France).
New York (NY): ACM; c2009. pp. 1007-1016.

49



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

For aG(n, p) model, the degree has a Bin— 1, p) binomial distribution and
approaches a Pdisp) Poisson distribution as grows; hence, the ratio of the
average degree to the graph size approaghke$.009.

Barabasi AL, Jeong H, Néda Z, Ravasz E, Schubert A, Vi€sé&kolution of
the social network of scientific collaborations. Physic&6802;311:590—-614.

Ramasco JJ, Dorogovtsev SN, Pastor-Satorras R. $glftiaation of collabo-
ration networks. Physical Review E. 2004;70(3):0361060L—

Hatcher A. 2002. Algebraic Topology. Cambridge (MA):n&taidge Univer-
sity Press.

Munkres JR. 1984. Elements of Algebraic Topology. Cadger (MA):
Perseus.

Fork = 1, this should not be confused with the concept of paths in pigra
Whereas, each path corresponds to an element df-tains, each path also
has an ordering on the fundamental basis, the edges, magititatielement.

Moreover, an element of thiechains can have weights that do not correspond
to any single path in the graph.

Muhammad A, Egerstedt M. Control using higher order &ejains in network
topologies. Paper presented at: MTNS 2006. Proceedindsedfith Interna-
tional Symposium on Mathematical Theory of Networks andi@&ys; 2006
July 24-28; Kyoto (Japan). p. 1024-1038.

The characteristics for the active network are closé¢oyearly network and
so are not shown in this analysis.

This would be an annotation to the simplicial complex aotaweighted sim-
plicial complexas it is commonly defined.

We only detail the linear models for Fig. 10d since thishis case with the
strongest evidence of a linear relationship.

Klivans CJ, Nyman KL, Tenner BE. Discrete Mathematid®302309:4377—
4383.

Everett MG, Borgatti SP. Extending centrality. In: Qagton PJ, Scott J,
Wasserman S, editors. Models and Methods in Social Netwoidysis. New
York (NY): Cambridge University Press; 2005. p. 57-76.

50



24

25.

26.

27.

28.

29.

30.

. de Silva V, Ghrist R. Coordinate-free coverage in senstworks with con-
trolled boundaries via homology. The International JounfaRobotics Re-
search. 2006;25(12):1205-1222.

Not to be confused with eccentricity of a vertex in a graph

Malett S, Rajkove M, Vasiljevic D. Simplicial complexes of networks and
their statistical properties. In: Bubak M, van Albada G, Darra J, Sloot PMA,
editors. ICCS 2008. Proceedings of the International Genfee on Computa-
tional Science, Lecture Notes in Computer Science 51028 20be 23-25;
Krakow (Poland). Berlin (Germany): Springer, c2008. p.-S655.

Dowker CH. Homology groups of relations. Annals of Mattagics, 2nd Se-
ries. 1952;56(1):84-95.

Wilkerson AC, Moore TJ, Swami A. Simplifying the homologf networks via
strong collapses. Paper presented at: ICASSP 2013. Pingsetf the IEEE
International Conference on Acoustics, Speech, and SBradessing; 2013
May 26—31; Vancouver (Canada). p. 5258-5262.

van Kampen ER. Komplexe in euklidischen Raumen. Abharg#n aus dem
Mathematischen Seminar der Universitat Hamburg. 1933:P4%78.

Gawrilow E, Joswig M. Polymake: a framework for analgzitonvex poly-
topes. In: Kalai G, Ziegler GM, editors. Polytopes—Comiamigs and Com-
putation. Basel (Switzerland): Birkhauser; 2000. p. 43-74

51



(PDF)

(PDF)

(PDF)

(PDF)

(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

DIRECTOR

US ARMY RESEARCH LAB

RDRL CIO LL

IMAL HRA MAIL & RECORDS MGMT

GOVT PRINTG OFC
A MALHOTRA

US ARMY RSRCH LAB

RDRLCINT
TERRENCE J MOORE
ROBERT J DROST
ANANTHRAM SWAMI
BRIAN M RIVERA

US ARMY RSRCH LAB
RDRL CIN
ALEXANDER KOTT

52



