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ABSTRACT

There are three types of data association problems. Thésfits¢ observation-to-track association (OTTA) problem,
where given an observation with some known measuremeigtgtatand a set of existing candidate (uncertain) res-
ident space object (RSO) tracks the analyst seeks to asseeiah observation with a unique track (or none). The
second association problem is where we have multiple traio#li$ferent time instances and wish to determine whether
any of the tracks belong to the same RSO. This is the tratkatde association (TTTA) problem. The final association
problem is where we are given a set of observations at diftéime instances and wish to determine which of these
observations were generated by the same RSO. This is thevatiea-to-observation association (OTOA) problem.
The focus of our paper is the OTOA problem. In this paper, wkléathe OTOA problem by using an appropriate
initial orbit determination (I0OD) method as well as criefrom information theory. The two main criteria we use in
this paper are mutual information and information diverggenWe demonstrate how these two criteria can be used
within an unscented transform framework as well as with éiglarbased approach. The information theoretic solu-
tions described in this paper can be adjusted to addressitee(@TTA and TTTA) association problems, which will
be the focus of future research. We will demonstrate the mesiult in simulation.

1. INTRODUCTION

Consider a set of indistinguishable objects moving comtirsly under the influence of a common set of deterministic
dynamics and stochastic environmental influences. One og nfdhese objects appear randomly in the field of view
(FOV) of one or more sensors (i.e. they are detectable ablimvédackground sensor noise). While these objects
persist in the sensor FOV and remain detectable, the sensades a set of noisy measurements of the object states
and their time stamp, which typically includes a subset tdefaletections and clutter. The essence of the multi-
object tracking problem is to find tracks from these noisyssemeasurements and to rule out clutter from resident
space objects (RSOs). The literature is replete with tegles on state estimation if the sequence of measurements
associated with each object is known. However, the associbetween measurement observations and objects is not
always known, leading to the well known problem of un-cated! tracks (UCTs) when attempting to update the space
catalog of observed RSOs. The crux of modern space sunadlitom an algorithmic point of view is to solve the
data association problem and determine which measurementsgenerated by which objects.

In general, there are three types of data association pnsbl€he first is the observation-to-track association (OTTA
problem described above, where the analyst seeks to atseeieh observation with a unique track (or none) given
an observation with some known measurement statistics ased af existing candidate (uncertain) resident space
object (RSO) tracks. The second association problem isewverhave multiple tracks at different time instances
from one or more sensors and wish to determine whether amedfacks belong to the same RSO. This is the track-
to-track association (TTTA) problem. The final associatiwablem is where we are given a set of observations at
different time instances and wish to determine which of ¢h&lsservations were generated by the same RSO. This is
the observation-to-observation association (OTOA) mrhlwhich this paper will focus on.

Most methods for observation-to-track data associatidinrfeo one of two broad categories: multiple hypothesis
tracking (MHT) and joint probabilistic data associatioRIRQA). MHT has been studied extensively in the literature
and is a methodology that uses some or all reasonable meauieto update a track and delay the decision on which
observation was correctly associated to a track until athsneements have been processed. Alternatively, JPDA
calculates a weighted sum of reasonable observations ar toccreate and update a tradg.[ These weights are
the probability that the observation originated from a #peobject, also known as the probability of detection or
appearance probability. While conceptually attractivahbddHT and JPDA suffer from the curse of dimensionality
where the computational burden increases exponentialtieasaumber of potential objects increases. Modern im-
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plementations of near optimal JPDA algorithms and muéife adaptations of MHT have recently been introduced
which run in polynomial time, greatly improving the compiinaal effectiveness of JPDA based approacts]||

For an extensive literature review and discussion of thexces of different MHT and JPDA techniques, please refer
to Ref. [6]. For an extensive discussion of JPDA as applied to clakfiesing (JPDAF), please refer to Ref7][

Many data association techniques rely upon an assumpti@aagsianity of measurement errors; however, this is
not typical of the space surveillance problem. For this gaagparticle filter-based methods are attractive for data
association but they have the significant disadvantagein§lm®mputationally expensive due to the fact that they are
based upon Monte Carlo sampling approaches. In the broadéiobject multitracking community, Markov Chain
Monte Carlo (MCMC) methods have been proposed to reduceotingutational loadd] but, until recently, the space
surveillance community has largely shied away from thepegyf approaches because the full implications of proper
statistical sampling are yet to be fully understo8H [

The track-to-track problem can be thought of as the probldrara one track is propagated forward to the time of
the subsequent track and then determining an efficientgyatmategy for associating the two traclé.[The classic
space object cataloging approach has used fixed rectargaits in Cartesian position and velocity space leading to
the generation of large numbers of UCTs as the space objeciagimn has grown significantly in recent decades.
This fixed gating approach was improved upon recently byiéiil and then Hill with the introduction of covariance
based track association (CBTA)(Q, 11]. CBTA has been shown to be more effective than classic gagohniques
but is fundamentally constrained by the validity and realf the2”! moment of the measurement errors. In many
cases, sensors belonging to the Space Surveillance Ne{®&M) do not provide individual observation or track
errors requiring the analyst to construct an approprigieesentation and hope that it is adequate to perform CBTA.

This paper considers the final problem of observation-teeolation association. This problem can be thought of as
determining the statistical dependence of observatiomghath there are numerous metrics to choose from. A recent
approach combines an adaptive Gaussian sum filter with tiibatk-Leibler (KL) divergence measure for effective
data associatiorlp]. However, the KL divergence does not satisfy all the pripsrof a true distance metric making
analysis of results all the more challenging in additiorh®fiact that computing the KL divergence is computationally
demanding. In general, we want the chosen statistical diepee metric between two observations to identify a non-
linear higher-than-second order dependence between neeasuts in order to claim a pair-wise association between
observations. Mutual information (MI) has been identifiedHe literature as the most promising metric of statistical
dependence for OTOA but there are alternative non-par&mrethniques such as Kendall tau, Cross Correlograms,
and Independent Component Analysis that could also beaeresl [L3]. Ideally, the measure of statistical dependence
should be valid without any assumptions of an underlyindpphbality density function and should be extended to high
dimensionality of input measurements. In this paper, wih&rrexplore both information divergence (ID) and mutual
independence indexes for the OTOA problem.

In this paper we demonstrate the promise of these indexatafarassociation and their efficacy in solving a simple
OTOA problem with two closely spaced RSOs. In Sectibnwe first describe the overall procedure and how it
relates to initial orbit determination (IOD). In Secti@n we describe the various information theoretic indexes one
may consider. We demonstrate efficacy of the methods in a ncmhexample in Sectiod. We summarize the main
results of the paper in Sectién

2. INITIAL ORBIT DETERMINATION AND THE OTOA PROBLEM

The core idea in the proposed OTOA approach is to use an ajgjnitial orbit determination (I0D) method

to generate an uncertain track from a set of measuremerasvih wish to test for association) and their known
statistics (see Fig.lJ). One can then, for example, compare (in some informati@oretic sense) the amount of
information shared between the generated orbit statiaticsthe measured output statistics. The more consistent
the estimated track is with the measurements, the more ltkel observations were generated by the same physical
phenomenon. One may also compare the degree of consistetwayen the generated orbit’s output and the measured
output statistics. The former method of comparison is basethe notion of mutual information between the IOD-
based orbit statistics and the measured observationt&staisee Fig.Z)). The second method is based on some notion
of information divergence or “distance” between the meaduwbservation statistics and the IOD-based reconstructed
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observation statistics (see Fi@)). Clearly, the performance of the proposed data assoniathemes depends on the
performance of the underlying IOD method. We will describelétail the two approaches in the next section.
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uncertainty at Propagated state
Propagated state time t, uncertainty at
uncertainty at time t,

time tl f ®
\ Propagate state ®

® Propagate state uncertainty at time t, to

uncertainty at time t, to state uncertainty at time

uncertainty at time t, G

Map uncertainty in
measurements to
uncertainty in orbital state
at time t, using probabilistic
Gauss 10D

3 Angles-Only Measurements and their
statistics in a total of 6-dimensional space

Fig. 1. The general probabilistic IOD approach developed byHussein et al. [L4].

For illustration purposes, we will assume that the obs@matare angles-only. We will use the classical Gauss method
approach for the 10D step (see Ref5]). In general, assume we are given a set @bservationg zy, . .., z, } taken

at observation times, . .., t,, (times are assumed distinct, without any loss of genejal@f these we will choose 3
observations (as required by the Gauss method) to test eihtéiy were generated by the same RSO. The procedure
is applied to all combinations of observations. How to cotafianally address the combinatorics problem is beyond
the scope of this paper and we will only address the problemetérmining whether a set of three observations
were generated by the same RSO. But in the geneservation problem, those observations that were deemed
to be associated will now form tracks and the remainder & finoblem becomes a TTTA problem that results in
“stringing™ these tracks together to form a set of non-nedant new tracks. We do not address the TTTA problem
here.

Given three distinct measurements- (z1, 2, z3) taken at, to, andts, the Gauss |OD method produces a candidate
orbit described by the six-dimensional state= g (z) at timet., whereg (-) is the function that maps a set of three
angles-only measurements to orbital space coordinates. sttte may be specified in orbital elements, Cartesian
coordinates, etc. Furthermore, Igt; be the function that propagates the statedefined at time; to the statec;
defined at timel;. Thenz; = fo1(x2) is the (backward) propagated state at titpeandzs = fas(x2) is the
propagated state at timig given the stater, at timet,. Finally, leth; be the function that maps the state at titn®

an observatior; = h;(x;).

In order to analyze the uncertainty in the orbital spaceltiegufrom a given uncertainty in the measurement space,
we will use both the unscented transform (UT) and the MontdoG&IC) method (see Hussein et al4]). For the

UT analysis, the measurement process is assumed Gausdidmeagenerated orbit uncertainty will, therefore, also
be Guassian. Likewise, the measurement statistics in theppCoach will be assumed Gaussian. 5000 particles are
generated from the 6-dimensional measurement uncergaiobability density function (pdf),; (z) and mapped into
orbital space coordinates at the time of the second measutesn The resulting Gaussian distribution from the UT
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uncertainty at time 6 uncertainty at
time t; time t,

®
®
AAL
If measurements have same Mutual information seeks to
source, the mutual information find degree of informational
index would be higher than if dependence between generated
they did not orbit and measurements

Measurements and their
statistics

Fig. 2. Mutual information can be used as an index of how much deendence exist between a
set of measurements and the orbit they generate if they weresaociated. The “more” unasso-
ciated the observations are the smaller the mutual informabn will be, and vice versa.

analysis and the particle cloud from the MC analysis in th@tak space are approximations of the actual uncertainty
pdfp2 (x2) of the IOD solution. In the UT method, there are a total ®f= 2 x 6 + 1 sigma points{ Z()} since the
measurement space has a dimension of 6.

As noted by Hussein et all{], there is a subtle difference between this descriptiorhef groblem compared to
other approaches which have appeared previously in thatlitee. The nonlinear mapping(-) is a map from the
entire three-measurement space to the orbital space, amotl ésmap of an individual measurement i = 1,2, 3,

to the orbital space. Therefore, samples of the measureameetrtainty should be drawn from the distribution in
the six-dimensional measurement space defined with thelghbasurement variableand not from the individual
distributions defined on the individual measurement véemb;, i = 1,2,3. For the UT method, in particular, this
will result in the correct number (13) of sigma points beirengrated to describe the uncertainty distribution in six-
dimensional orbital space.

For example, an MC sample and UT sigma points are shown ir{4ifpr a Gaussian uncertainty with each dimension
independently distributed witBo = 10 arcsec. Each colored set of dots represents a two dimehgiajection of

the MC sample onto each individual measurement plane ttiere are5000 x 3 = 15 000 dots shown, but the MC
sample only contains 5000 particles). The remaining dino@ssof the sigma points overlap each other since the
uncertainty is the same in each direction. The histograrm# she marginal distributions of the MC azimuth and
elevation uncertainty samples for one of the measurentaesti
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Fig. 3. Information divergence can be used to measure how dérent the measurement statis-
tics are from that of the reconstructed measurement statists under the hypothesis that the
observations are associated.

3. INFORMATION THEORETIC CRITERIA FOR OTOA

3.1 Information Divergence

Assuming that the measurements are statistically indegsentetp,s (21, 22, z3) = pi,(21)p3,(22)p3,(23) be the
joint pdf in the three measurements. With abuse of notalip?, (z2) = g(pas (21, 22, z3)) be the orbital IOD-based
reconstructed pdf @b, andpy (1) = fo1(p3 (z2)) andpd, (z3) = fa3(p? (z2)) be the propagated pdfs at timas
andt;, respectively. Finally, lef%,(z;) = h(p,(x;)) be the uncertainty in the measurement as mapped from the
uncertainty in the state at tintg. If

1. all three observations were generated by the same RSO,
2. the IOD method perfectly produces the exact orbit thaegeed the measurements, and

3. the orbital propagation and measurement models pegrfectich the true orbital motion and measurement pro-
cesses

thenpi, (z;) should be equal tpi,(z;). In this paper we will assume that the third condition holdwever, the
second condition is guaranteed not to be true since the Ga@snethod is not exact. Therefore, any mismatch
betweenp’, andp’, would be the result of the IOD method’s errors or if the hygsik that the three observations
were generated by the same RSO does not hothet. key insight is that among the different associations between a

set of measurements {z1, ..., z, } the ones that result in the least amount of discrepancy between 5, and p,, above
and beyond the discrepancy introduced by the IOD method that is shared among all associations*, are the more likely
ones to be true associations. The key question is: How can one measure the discrepancyebetiwo pdfs?

*This assumes that the performance of the IOD method is indepeatithe measurements and their statistics. To the best ofrmwlkdge,
such a dependence has not been studied in the literature.
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Fig. 4. Example of sampling a six-dimensional Gaussian measment uncertainty.

One such method is the use of information diverged€g [While there are many definitions of information divergence
[17,18], we will use the Kullback-Leibler (KL) divergencd§]. The KL divergence between two pdigxz) andq(x)
is given by:

Dis(p(a)la(e)) = [ p(e)1og 25 da W

If both p and ¢ are Gaussian, then one can compDtg . (p||q) in closed form and is given by (see for example,
Ref. [12])

1 b _ _

Disp(@)lata)) = 3 flog (1500 ) + 10 (212 — dt Gy~ ) 2" G- )| @
p

wherep,, and¥, (resp.,u, andX,) are the mean and covariance of the pdfesp.¢), and wherel is the dimension

of the underlying space. In the case whgr@ndq are Gaussian mixtures, there is no known closed-form esjoes

for the KL divergence. However, other definitions of diverge can be used to obtain a closed-form expression. One

such divergence is the Cauchy-Schwarz divergeh®8g2[].

3.1.1 Unscented Transform: Following the UT procedure described in Ret4], one starts by assuming Gaus-
sian statistics for the observationgi, (z;) = py(zi; p.,. X=,), wherep,(r; u,., 3,) is a Gaussian distribution

in = with meanu, and covariance:,.. Using the Gauss IOD method, one can obtain a Gaussian aprox
tion p7,(x2) = pg(x2; gy, Xa,) Of the pdfp? (x2). As one would normally do in an Unscented Kalman Filter
(UKF), this pdf can be propagated backward (respectivetyyérd) in time to obtain the Gaussian pdf approximation
Po(T1) = py(T1; [T Yy (respectivelyp?, (z3) = Pg(T3; g, , Bz, )). From these and using the assumed-known
measurement model, one can generate the pdf for the measureat these three times based on the I0D-based orbit
under the assumption that the observations are assocjﬁj;gté'zi; ﬁ;,il) = h(p5(x;)), i = 1,2,3. We may

now compute the information divergené¥, ; (5, (z:)||p%,(2)) betweenp, andpi, for each of the three times,

1 =1,2,3. The overall criterion for assessing association would the

3
Dicr = " Diey (s (20) 17 (2)). 3

=1

The association that maximizes this index among all possibmbinations of three angles-only measurements is
one way to assess association. We call this solution to tH@A3droblem theUT-1D solution to be referenced in the
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numerical example section later in the paper. This indexidar in spirit to the divergence-based (OTTA) associatio
discussed in Reflp].

3.1.2 Particle Based Methods: The underlying assumption of Gaussianity in the UT apprpadtile analytically
appealing, is not necessarily a faithful representatigcgh@fincertainty in the reconstructed state from the |OD oukth

A more accurate representation would be to represent @icrusing a Monte Carlo (MC) particle cloud. However,
computing divergence based on a particle cloud poses @&alghallenges. To see this, consider a particle cloud
{2®} with Welghts{w } drawn frompys (21, 22, 23) = pg(21; s, , Bz, P2 (225 Mays By )P3 (233 iy, Bz, ). This
cloud can be mapped into the state space using the Gauss I@Ddrand that, in return, mapped to the measurement
space using the observation functibf). Denote the resulting cloud byz ()} with weights{u}g)}. If the IOD

method was exact and the motion and measurement models nar lperfectly, the particle séé“)} should be
identical to the sef Z(V)} and the KL divergence can be shown to be:

Dicr (Fos (2)Iphs (2):) = / By (2) log <§M§§) dz,

- s[5
M P (2i)
) i g( i)
~ Zﬂ}’ log (pf” )>
p p
— w 5z<n (i))
= Zw log
; Wk 50 (20)
= Zw log ( >
= Z ‘log ( ) 0,

which is what we would expect under perfect knowledge of tretesn model and with a perfect IOD method. How-
ever, because of errors in the 10D solution, the two §£t¢) } and{ Z ("} will not match and the delta functions in the
denominator in the previous equation will evaluate to zercafl « and we will getD g, o log(1/0) = log oo = oc.
Even if one uses other definitions of divergence, the valudefdivergence would not correspond to the actual di-
vergence betweep,, (z;) andp’,(z). Note, however, that if p,, is analytically known, can be sampled and can be
evaluated, then information divergence can be computed when p', is represented by a cloud of particles. We wiill
demonstrate this in a future publication. We point out, haavethat in the next subsection we will be able to com-
pute the mutual information between two particle clouds aoidrun into the issue mentioned above for information
divergence.

An alternative approach to computing the divergence direwing the particle cloud is to approximate the particle
cloud using some analytic pdf for which we can compute therdience. One such approach would be to use the
expectation maximization algorithm to convert the pagticloud into a Gaussian Mixture Modeél]]. We will not
describe the details of the method here. Instead we refeetter to an EM algorithm described in R&X2], which

is a robust and versatile EM algorithm, called the FJ-EM @lgm. The method allows for the user to specify a
maximum number of GMM components and it selects the numbeaoofponents that best represent the particle
cloud. The user is also not required to choose a good intiesg of the components. In other words, the method does
not require a careful initialization of the algorithm (otl&M algorithms do require a very careful initialization.)

As an illustration, consider the 2000 particle cloud getestdrom the four component planar GMM with weights:

w; =0.25, i =1,2,3,4,
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means:

py = [10.00.0]"
=[-10.00.0]"
=1[0.010.0]"
u47m04,m0}

and covariances:

2.0 007 .
Ei_{oo 20},Z—LZ3A.

The generated particle cloud was then fed into the EM algariand the following 5-component GMM initial guess
was used for initializing the algorithm:

wd =0.1
wd = 0.4
wd = 0.2
w) =0.2
w = 0.1

1.00.0]"
1.00.0)"

pi =
[-
=[0.01.0]"
[-1
[-

0
1=
0
M2
o
K3 =

1.0 —1.0"
5.0 —5.0]"

n
n

0
4
0
5

20—

1.0 0.0
0.0 1.0

},sz&45.

The algorithm resulted in the following set of GMM weights:

w1—025
w) = 0.24849
wi = 0.26156
704-—()23995
w5 =0.0

where we notice that one component has been eliminated. fdlesét of means were found to be

u1 = [9.96428 0.02116]"

= [-9.87450 — 0.02471]"
pd = [0.03449 10.06634] "
pl =10.04656 — 9.96678] "
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and the final set of covariances were found to be

0.02156 1.92172
¥ [2.10782 —0.04989
¥ =

1.92951  0.02156
»f = {

—0.04989  1.92587

s/ _ [ 1.89439 0.05116
371 0.05116 2.35834

s/ _ 1.99178 0.01623
471 0.01623 1.85653

The resulting GMM is graphically shown in Fi§.against the particles. Note that a component has a weigtgrof z
(i.e., eliminated) resulting in an effective number of caments of 4. While the true values of the weights, means and
covariances were not recovered exactly, the error in thessneters is quite small.

15 - — 0.018
P Particles
X True Means
10t i1 O GMM Means|; 0.016
C=> GMM
‘L 0.014
5r |
10.012
ot 1t Hoo1
10.008
_5 L _
0.006
_10 L _
0.004
-15 - A S i 0.002
-15 -10 -5 0 5 10 15

Fig. 5. An example showing the original means (equally weidhd) that generated the shown
particle cloud. The cloud was then fed into the FJ-EM algorihm that generated the GMM
approximation shown. The FJ-EM algorithm was able to very acurately reconstruct the true
GMM that generated the particle cloud.

To summarize starting with the two particle cloufi§(?} and {Z()}, one can convert each into a GMM to ap-
proximatep,(z;) andpas(2;), ¢ = 1,2,3. There is, however, no known closed-form expression for Kledence
between two GMMs. The Cauchy-Schwarz (CS) divergence, emvean be computed for GMM4.9, 20]. The
general expression for CS divergenég; s, between two pdfg(x) andq(x) is given by

Des(p(a)lafa) = 2 1og | U2 ((ﬁji;)q((i ;gﬁ )

Our ability to compute the CS divergence for GMMs in closedif lies in the fact that if () = Zfi”l w'pg(; 2;)
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andg(z) = Y1 wipy(a; pi, SL) one can show that

/p( )a( dw—zzw wpg(pl; ), B+ 27).

=1 j=1

This expression can be used to compfite(z)dx and | ¢*(z)dx, and henceDcs(p(x)||q(xz)) when bothp andq
are GMMs.

Thus, the two particle cloud§Z(»} and {Z()} are first converted to GMMs using the FJ-EM algorithm, which
are then subsequently used to compute the approximate @8eice betweepi,(z;) andp’,(z;). The overall
divergence-based index for the MC case is the sum of the tliveegences:

3
D¢y = ZDCS (P (z)|1Phr (2))- (4)

1=1

We call this solution to the OTOA problem thC-ID solution to be referenced in the numerical example section later
in the paper.

3.2 Mutual Information

The mutual information/ (x, z), between two random variablasand z is a measure of the degree of dependence
between these two variables. Formally, it is given by

I(z, z) // T, z) log( (<) ())>dwdz (5)

wherep(x, z) is the joint distribution ofr andz and wherep(x), respectivelyp(z), is the marginalization of(x, z)
with respect toz, respectivelyr. Two important properties are to be noted here. Firstly,ualuinformation is a
symmetric function ofr and z. Secondly, ifx and z are independent thew(x, z) = p(x)p(z) and the mutual
information is zero.

The mutual information index we propose to use is as followgst, consider the mutual informatioh(x;, z;)
between the state; and the measured outpat at timet;. The overall mutual information index would then be
Iyoy = I1 + 15+ I3. Other indexes based on mutual information can also bederei. For example, one can consider
the mutual information between theint orbital state variablerjoine = (1,2, 23) and the joint measurement
variablezjqine = (21, 22, 23). Such indexes will be the subject of future research.

It can be shown that the mutual informatidsix;, z;) can be expressed in terms of the KL divergence:
Ii(zi, zi) = Drr(p(xi, 2i)||p(xi)p(2i))- (6)

Therefore, if the joint pdb(x;, z;) is Gaussian, one can computdn closed-form. However, for the GMM case, no
closed-form solution exists because the mutual informaaelated to the KL divergence and not a divergence for
which a GMM has a closed-form solution.

3.21 Unscented Transform:  Following the UT procedure described in Ref4], one can obtain a Gaussian approx-
imation of the pdf of the state,. One can then use the UKF to obtain the joint distribupi¢m;, z;) after propagating
and updating with the corresponding measurement = 1,2, 3. It can be shown that this distribution is Gaussian
with the following mean:
j_oint _ lj'mi
H [ e, }

and covariance:

Ejoint _ |: Emz Emiyzi :|
i - T ’
Em, z; Ezi
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wherep,,. is the UKFupdated state mean at timg, . is the measurement mean at timeX,, is the covariance
in the state at time;, 3, is the measurement covariance at titheandX,;,, ., is the cross-covariance between the
state and the measurement at titne

Since the joint pdf is Gaussian, the marginalization witspegt tox; andz; are both Gaussian and have means
andpu, , respectively, and covariancés,, andX,, respectively. Now that we have Gaussian approximations of
p(x;, z;) andp(z;)p(2;), one can use Eq6) and Eq. R) to compute the mutual informatiaHi (z;, z;). We call this
solution to the OTOA problem thdT-MI solution to be referenced in the numerical example section lateripéper.
This index is similar in spirit to the mutual informationgzad (OTTA) association discussed in R&2][

3.2.2 Particle Based Methods: As mentioned previously, converting particle clouds to G&id compute Ml is not
feasible since Ml is defined in terms the KL divergence Byf¢r which we do not have a closed-form GMM-based
expression. Rather surprisingly, however, we can actuedé/the particle cloud to compute a faithful evaluation of
the mutual information index. This solution is motivated thg MC approach in Ref2B]. While this solution is
faithful to the particle nature of the densities, it is corgtionally expensive. At the time of publication we were
in the process of parallelizing the particle-based sofutio a graphics processing unit (GPU). However, results are
not readily available at the present time. Instead we witlatie the mathematics behind the solution and provide a
non-SSA example to verify that the particle-based expoassir mutual information is correct.

Again, we begin with a particle cloutﬂz(ﬂ')} with weights {wg)} for the joint distributionpy/(z1, 22, 23) =
pis(21)p3, (22)p3;(23). This cloud can then be fed through the Gauss IOD method tduse a particle cloud

{Xéj)} and weights{wf(jz)} representing the uncertainty in the state at timeThis cloud can then be propagated
backward and forward in time to obtain the state particleldn){Xl(‘j)} and {Xéj)} (with Weights{w(j)} and

1

{ wc(gg)} respectively) at timeg, andts, respectively.

We begin by following the same procedure as in R28] py noting that
[i((Ei, Zi) = H((El) — H(azi|zi)

whereH (x;) is the entropy ofc; and H («z;|z;) is the conditional entropy a; given z;. Notice that given a particle-
based distribution?,(z;) = Z;V;l wld ;) (zi), we can obtain an expression fof,(x;) by marginalization and
using the basic MC integration approxin%ation we obtain:

po(:) = / plas|z)p(zi)dz:

= Ep’M(zi) [p(i|2:)]
Nz . .
~ N wip(a;|z?).

j=1
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Therefore, the entrop¥ (x;) is given by:

H(x;) = — /pi0<wi)10gpio(wi)dwi (7)
N, . N,

== / > wip(@i|Z?) | log (Z w;p<:ci|zi<”>> da; (8)
Jj=1 =1

Nz

Il
|
(]
NSM

Nz
' / (x| Z7) log (Z w;pmzf”)) da; ©)
j=1 =1

Nz Nz
. l
SB[ 3 w2
j=1 =1
N, Na, Nz .
~- 33t (S ). )
j=1 k=1 =1

(10)

Where{Xf”}, k=1,...,N,, areN,, (assumed to be the same for glparticles drawn fromp(x;| Z)). Account-

ing for possible errors in the 10D solution and dynamic piggigon and modeling them as additive noise, we have
x; = f2(g(z1, 22, 23)) + v, wherew is an additive noise term with some densify(v). In this case, the particles
X! are drawn such thaX 7 = f,,(g(ZD)) + V*) whereV® ~ p,(v) and wherez() = (z\9), 2 z{)).
However, an open area of research is the characterizatithreddrror introduced in the 10D method. If one ignores
these errors and assume that the state and the measureraeatgteaministically related, then we can simply propagate
the particlesZ(?) through the various transformations without sampling. Ewesv, this will result inN,, identical

particles{Xf‘j} which can then be simply replaced by a single parti{:lK:j‘j} = foi(g(ZW))).

Following a similar procedure as above one can show that

Nz Nm,i
H(wilz) = = wl>" wk log (p(X/V]21))) (12)
j=1 k=1

One can now use Eqg7) and Eg. 12) to compute the mutual informatioh(X;, Z;). The overall index, as above,
would then bel,,, = I1 + I + I5.

As a way to verify that the above equations, we consider alsimpn-SSA problem for which we have a closed-
form solution to compare against. Let some variablbe related to another variabtevia the linear relationship:

x = Hz + v, wherez ~ p,(u,,3,) andv ~ py(p,, E,). One can use Eq2) and Eq. ). It was found that the
exact mutual information is given by 5.5254529. Fig). ¢hows the percentage error of the MC-based computation
from the true Ml value. While performing this analysis, it wasnd that the accuracy of the method depended heavily
on the number ok particles and was very insensitive to the numberafub-samples. In the figure we show the
percentage error for a fixed numbersofsamplesV, = 100. As can be seen the error is converging to zero with a
larger number of samples.

4. SIMULATION RESULTS

In this simulation we compare the performance of the thre®@®3olutions: UT-ID, MC-ID, and UT-MI. The MC-MI
solution described at the end of last section will be testedfuture publication. For testing, we consider two objects
with identification numbers 0 and 1, in close proximity of eather. They both have the same orbital elements shown
in Table1 except for the value of true anomaly at the initial time. A gktwo observations from the two RSos are
collected at three different times. If we arbitrarily indte two measurements with 0 and 1, then the question is
which sequence of tags are the correct ones? There are eiggible combinations of tags: 000 (i.e., observations
with tags 0 at the three time instances are associated toféohne o objects and so on), 001, 010, 100, 011, 101, 110
and 111. The observations were tagged such that the twoctaimes are 000 (all coming from RSO number 0) and
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Fig. 6. Percentage error from true value vs. number ofz samples in the MC-based Ml
computation for the linear Gaussian problem.

111 (all coming from RSO number 1). The criterion to evaluhtethree OTOA methods will be how close the two
objects are (in true anomaly) before the method being téatisdo return the two correct associations as the two most
likely ones. Note that when a method “fails”, while the catrassociations may not be the one most highly ranked,
they would rank very close to the top and as the separatidandis between the two objects decreases further, the
correct association are further from being top ranked aadare or less arbitrarily ranked as all solutions become
indistinguishable. The sensor is assumed to be the Soddkoground sensor. Topocentric azimuth and elevation
observations were collected at the rate of one observatieny 20 minutes. The measurement noise is assumed to be
Gaussian with an angular standard deviation of 2 arcsefbrdzimuth and elevation.

Table 1. Orbital Elements of the True Orbit

Orbital Element Value
Semi-major Axis (km) 26 600.
Eccentricity 0.2
Inclination (deg) 55.0
Perigee (deg) -120.0

Right Ascension of the Ascending Node (deg) -13.24

For each of the methods, the separation in angular anomaleba the two RSOs is steadily decreased until the
method fails to report the correct associations as the rii@dy lones. The association picked by each method is the
one that produces the maximum value of Ml index or minimum hBeix. As can be seen in Tal?e the UT-MI
index is the one that performs the best among the ones coediaethis paper. It has a resolution of 0.30997 degrees
separation in true anomaly. It is important to note that eittiis number is relatively large{1000 arcsec) compared
to typical sensor resolutions, one has to remember that T@Aproblem being solved is far more challenging that
the classical OTTA problem. With the methods proposed is figiper, and others to be considered in future work,
one can sift through a collection of observations, not datee to any object or uncorrelated track, and sort out which
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ones belong to each other under minimal amount of knowlefitfeembservation statistics.

Table 2. True Anomaly Difference at which Association Methodrails

Method True Anomaly Difference (deg)

UT-ID 0.64458
MC-ID 0.68182
UT-MI 0.30997

5. CONCLUSION

In this paper we considered four different information tietic approaches to the observation-to-observation assoc
ation problem. Three of these methods (UT-ID, MC-ID and UT}-Nave been implemented and the fourth (MC-ID)
has been demonstrated to work on a non-SSA problem and entlyrbeing developed for implementation in a GPU
environment. It was shown that the mutual information mdtisadhe one that performed the best among the methods
tested. Variations of these techniques exist and may pmbe even more accurate than the ones tested in this pa-
per. It is generally conjectured that MC-based methodsherdng run, will prove to be more efficient as they more
faithfully represent the underlying distributions. Wethar conjecture that the use of mutual information will bereno
accurate than divergence-based approaches as they marataticcapture degree of dependence between variables.
This paper barely touches the tip of the iceberg, and its l@sit goal is to induce the space community to further
consider the use of information theoretic measures forisglthe various data association problems (OTOA, OTTA,
and TTTA).
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