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ABSTRACT

There are three types of data association problems. The firstis the observation-to-track association (OTTA) problem,
where given an observation with some known measurement statistics and a set of existing candidate (uncertain) res-
ident space object (RSO) tracks the analyst seeks to associate each observation with a unique track (or none). The
second association problem is where we have multiple tracksat different time instances and wish to determine whether
any of the tracks belong to the same RSO. This is the track-to-track association (TTTA) problem. The final association
problem is where we are given a set of observations at different time instances and wish to determine which of these
observations were generated by the same RSO. This is the observation-to-observation association (OTOA) problem.
The focus of our paper is the OTOA problem. In this paper, we tackle the OTOA problem by using an appropriate
initial orbit determination (IOD) method as well as criteria from information theory. The two main criteria we use in
this paper are mutual information and information divergence. We demonstrate how these two criteria can be used
within an unscented transform framework as well as with a particle-based approach. The information theoretic solu-
tions described in this paper can be adjusted to address the other (OTTA and TTTA) association problems, which will
be the focus of future research. We will demonstrate the mainresult in simulation.

1. INTRODUCTION

Consider a set of indistinguishable objects moving continuously under the influence of a common set of deterministic
dynamics and stochastic environmental influences. One or more of these objects appear randomly in the field of view
(FOV) of one or more sensors (i.e. they are detectable above the background sensor noise). While these objects
persist in the sensor FOV and remain detectable, the sensor provides a set of noisy measurements of the object states
and their time stamp, which typically includes a subset of false detections and clutter. The essence of the multi-
object tracking problem is to find tracks from these noisy sensor measurements and to rule out clutter from resident
space objects (RSOs). The literature is replete with techniques on state estimation if the sequence of measurements
associated with each object is known. However, the association between measurement observations and objects is not
always known, leading to the well known problem of un-correlated tracks (UCTs) when attempting to update the space
catalog of observed RSOs. The crux of modern space surveillance from an algorithmic point of view is to solve the
data association problem and determine which measurementswere generated by which objects.

In general, there are three types of data association problems. The first is the observation-to-track association (OTTA)
problem described above, where the analyst seeks to associate each observation with a unique track (or none) given
an observation with some known measurement statistics and aset of existing candidate (uncertain) resident space
object (RSO) tracks. The second association problem is where we have multiple tracks at different time instances
from one or more sensors and wish to determine whether any of the tracks belong to the same RSO. This is the track-
to-track association (TTTA) problem. The final associationproblem is where we are given a set of observations at
different time instances and wish to determine which of these observations were generated by the same RSO. This is
the observation-to-observation association (OTOA) problem, which this paper will focus on.

Most methods for observation-to-track data association fall into one of two broad categories: multiple hypothesis
tracking (MHT) and joint probabilistic data association (JPDA). MHT has been studied extensively in the literature
and is a methodology that uses some or all reasonable measurements to update a track and delay the decision on which
observation was correctly associated to a track until all measurements have been processed. Alternatively, JPDA
calculates a weighted sum of reasonable observations in order to create and update a track [1]. These weights are
the probability that the observation originated from a specific object, also known as the probability of detection or
appearance probability. While conceptually attractive, both MHT and JPDA suffer from the curse of dimensionality
where the computational burden increases exponentially asthe number of potential objects increases. Modern im-
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plementations of near optimal JPDA algorithms and multi-frame adaptations of MHT have recently been introduced
which run in polynomial time, greatly improving the computational effectiveness of JPDA based approaches [2–5].
For an extensive literature review and discussion of the nuances of different MHT and JPDA techniques, please refer
to Ref. [6]. For an extensive discussion of JPDA as applied to classical filtering (JPDAF), please refer to Ref. [7].

Many data association techniques rely upon an assumption ofGaussianity of measurement errors; however, this is
not typical of the space surveillance problem. For this reason, particle filter-based methods are attractive for data
association but they have the significant disadvantage of being computationally expensive due to the fact that they are
based upon Monte Carlo sampling approaches. In the broader multiobject multitracking community, Markov Chain
Monte Carlo (MCMC) methods have been proposed to reduce the computational load [6] but, until recently, the space
surveillance community has largely shied away from these types of approaches because the full implications of proper
statistical sampling are yet to be fully understood [8].

The track-to-track problem can be thought of as the problem where one track is propagated forward to the time of
the subsequent track and then determining an efficient gating strategy for associating the two tracks [9]. The classic
space object cataloging approach has used fixed rectangulargates in Cartesian position and velocity space leading to
the generation of large numbers of UCTs as the space object population has grown significantly in recent decades.
This fixed gating approach was improved upon recently by Alfriend and then Hill with the introduction of covariance
based track association (CBTA) [10,11]. CBTA has been shown to be more effective than classic gating techniques
but is fundamentally constrained by the validity and realism of the2nd moment of the measurement errors. In many
cases, sensors belonging to the Space Surveillance Network(SSN) do not provide individual observation or track
errors requiring the analyst to construct an appropriate representation and hope that it is adequate to perform CBTA.

This paper considers the final problem of observation-to-observation association. This problem can be thought of as
determining the statistical dependence of observations ofwhich there are numerous metrics to choose from. A recent
approach combines an adaptive Gaussian sum filter with the Kullback-Leibler (KL) divergence measure for effective
data association [12]. However, the KL divergence does not satisfy all the properties of a true distance metric making
analysis of results all the more challenging in addition to the fact that computing the KL divergence is computationally
demanding. In general, we want the chosen statistical dependence metric between two observations to identify a non-
linear higher-than-second order dependence between measurements in order to claim a pair-wise association between
observations. Mutual information (MI) has been identified in the literature as the most promising metric of statistical
dependence for OTOA but there are alternative non-parametric techniques such as Kendall tau, Cross Correlograms,
and Independent Component Analysis that could also be considered [13]. Ideally, the measure of statistical dependence
should be valid without any assumptions of an underlying probability density function and should be extended to high
dimensionality of input measurements. In this paper, we further explore both information divergence (ID) and mutual
independence indexes for the OTOA problem.

In this paper we demonstrate the promise of these indexes fordata association and their efficacy in solving a simple
OTOA problem with two closely spaced RSOs. In Section2., we first describe the overall procedure and how it
relates to initial orbit determination (IOD). In Section3., we describe the various information theoretic indexes one
may consider. We demonstrate efficacy of the methods in a numerical example in Section4. We summarize the main
results of the paper in Section5.

2. INITIAL ORBIT DETERMINATION AND THE OTOA PROBLEM

The core idea in the proposed OTOA approach is to use an appropriate initial orbit determination (IOD) method
to generate an uncertain track from a set of measurements (that we wish to test for association) and their known
statistics (see Fig. (1)). One can then, for example, compare (in some information theoretic sense) the amount of
information shared between the generated orbit statisticsand the measured output statistics. The more consistent
the estimated track is with the measurements, the more likely the observations were generated by the same physical
phenomenon. One may also compare the degree of consistency between the generated orbit’s output and the measured
output statistics. The former method of comparison is basedon the notion of mutual information between the IOD-
based orbit statistics and the measured observation statistics (see Fig. (2)). The second method is based on some notion
of information divergence or “distance” between the measured observation statistics and the IOD-based reconstructed
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observation statistics (see Fig. (3)). Clearly, the performance of the proposed data association schemes depends on the
performance of the underlying IOD method. We will describe in detail the two approaches in the next section.

3 Angles-Only Measurements and their 

statistics in a total of 6-dimensional space

Map uncertainty in 

measurements to 
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time t2
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time t3
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state uncertainty at time 
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Fig. 1. The general probabilistic IOD approach developed byHussein et al. [14].

For illustration purposes, we will assume that the observations are angles-only. We will use the classical Gauss method
approach for the IOD step (see Ref. [15]). In general, assume we are given a set ofn observations{z1, . . . , zn} taken
at observation timest1, . . . , tn (times are assumed distinct, without any loss of generality). Of these we will choose 3
observations (as required by the Gauss method) to test whether they were generated by the same RSO. The procedure
is applied to all combinations of observations. How to computationally address the combinatorics problem is beyond
the scope of this paper and we will only address the problem ofdetermining whether a set of three observations
were generated by the same RSO. But in the generaln observation problem, those observations that were deemed
to be associated will now form tracks and the remainder of this problem becomes a TTTA problem that results in
“stringing”’ these tracks together to form a set of non-redundant new tracks. We do not address the TTTA problem
here.

Given three distinct measurementsz = (z1, z2, z3) taken att1, t2, andt3, the Gauss IOD method produces a candidate
orbit described by the six-dimensional statex2 = g (z) at timet2, whereg (·) is the function that maps a set of three
angles-only measurements to orbital space coordinates. The state may be specified in orbital elements, Cartesian
coordinates, etc. Furthermore, letfij be the function that propagates the statexi defined at timeti to the statexj

defined at timetj . Thenx1 = f21(x2) is the (backward) propagated state at timet1 andx3 = f23(x2) is the
propagated state at timet3 given the statex2 at timet2. Finally, lethi be the function that maps the state at timeti to
an observationzi = hi(xi).

In order to analyze the uncertainty in the orbital space resulting from a given uncertainty in the measurement space,
we will use both the unscented transform (UT) and the Monte Carlo (MC) method (see Hussein et al. [14]). For the
UT analysis, the measurement process is assumed Gaussian and the generated orbit uncertainty will, therefore, also
be Guassian. Likewise, the measurement statistics in the MCapproach will be assumed Gaussian. 5000 particles are
generated from the 6-dimensional measurement uncertaintyprobability density function (pdf)pM (z) and mapped into
orbital space coordinates at the time of the second measurement t2. The resulting Gaussian distribution from the UT
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Fig. 2. Mutual information can be used as an index of how much dependence exist between a
set of measurements and the orbit they generate if they were associated. The “more” unasso-
ciated the observations are the smaller the mutual information will be, and vice versa.

analysis and the particle cloud from the MC analysis in the orbital space are approximations of the actual uncertainty
pdf p2O (x2) of the IOD solution. In the UT method, there are a total of13 = 2× 6 + 1 sigma points{Z(j)} since the
measurement space has a dimension of 6.

As noted by Hussein et al. [14], there is a subtle difference between this description of the problem compared to
other approaches which have appeared previously in the literature. The nonlinear mappingg (·) is a map from the
entire three-measurement space to the orbital space, and isnot a map of an individual measurementzi, i = 1, 2, 3,
to the orbital space. Therefore, samples of the measurementuncertainty should be drawn from the distribution in
the six-dimensional measurement space defined with the global measurement variablez and not from the individual
distributions defined on the individual measurement variableszi, i = 1, 2, 3. For the UT method, in particular, this
will result in the correct number (13) of sigma points being generated to describe the uncertainty distribution in six-
dimensional orbital space.

For example, an MC sample and UT sigma points are shown in Fig.(4) for a Gaussian uncertainty with each dimension
independently distributed with3σ = 10 arcsec. Each colored set of dots represents a two dimensional projection of
the MC sample onto each individual measurement plane (i.e.,there are5000 × 3 = 15 000 dots shown, but the MC
sample only contains 5000 particles). The remaining dimensions of the sigma points overlap each other since the
uncertainty is the same in each direction. The histograms show the marginal distributions of the MC azimuth and
elevation uncertainty samples for one of the measurement times.
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Fig. 3. Information divergence can be used to measure how different the measurement statis-
tics are from that of the reconstructed measurement statistics under the hypothesis that the
observations are associated.

3. INFORMATION THEORETIC CRITERIA FOR OTOA

3.1 Information Divergence

Assuming that the measurements are statistically independent, letpM (z1, z2, z3) = p1M (z1)p
2
M (z2)p

3
M (z3) be the

joint pdf in the three measurements. With abuse of notation,let p2O(x2) = g(pM (z1, z2, z3)) be the orbital IOD-based
reconstructed pdf att2, andp1O(x1) = f21(p

2
O(x2)) andp3O(x3) = f23(p

2
O(x2)) be the propagated pdfs at timest1

andt3, respectively. Finally, let̃piM (zi) = h(piO(xi)) be the uncertainty in the measurement as mapped from the
uncertainty in the state at timeti. If

1. all three observations were generated by the same RSO,

2. the IOD method perfectly produces the exact orbit that generated the measurements, and

3. the orbital propagation and measurement models perfectly match the true orbital motion and measurement pro-
cesses

then p̃iM (zi) should be equal topiM (zi). In this paper we will assume that the third condition holds.However, the
second condition is guaranteed not to be true since the GaussIOD method is not exact. Therefore, any mismatch
betweenp̃iM andpiM would be the result of the IOD method’s errors or if the hypothesis that the three observations
were generated by the same RSO does not hold.The key insight is that among the different associations between a
set of measurements {z1, . . . , zn} the ones that result in the least amount of discrepancy between p̃iM and piM , above
and beyond the discrepancy introduced by the IOD method that is shared among all associations∗, are the more likely
ones to be true associations. The key question is: How can one measure the discrepancy between two pdfs?

∗This assumes that the performance of the IOD method is independent of the measurements and their statistics. To the best of our knowledge,
such a dependence has not been studied in the literature.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



 

 

MC Obs 1
MC Obs 2
MC Obs 3
Sigma Points
UT 3−Sigma

−15 −10 −5 0 5 10
Right Ascension Error, arcsec

−10

−5

0

5

10

D
ec

lin
at

io
n 

E
rr

or
, a

rc
se

c

Fig. 4. Example of sampling a six-dimensional Gaussian measurement uncertainty.

One such method is the use of information divergence [16]. While there are many definitions of information divergence
[17,18], we will use the Kullback-Leibler (KL) divergence [16]. The KL divergence between two pdfsp(x) andq(x)
is given by:

DKL(p(x)||q(x)) =

∫

p(x) log
p(x)

q(x)
dx (1)

If both p andq are Gaussian, then one can computeDKL(p||q) in closed form and is given by (see for example,
Ref. [12])

DKL(p(x)||q(x)) =
1

2

[

log

(

‖Σq‖

‖Σp‖

)

+Tr
(

Σ
−1
q Σp

)

− d+
(

µp − µq

)

·Σ−1
q ·

(

µp − µq

)

]

, (2)

whereµp andΣp (resp.,µq andΣq) are the mean and covariance of the pdfp (resp.,q), and whered is the dimension
of the underlying space. In the case wherep andq are Gaussian mixtures, there is no known closed-form expression
for the KL divergence. However, other definitions of divergence can be used to obtain a closed-form expression. One
such divergence is the Cauchy-Schwarz divergence [19,20].

3.1.1 Unscented Transform: Following the UT procedure described in Ref. [14], one starts by assuming Gaus-
sian statistics for the observations:piM (zi) = pg(zi;µzi

,Σzi
), wherepg(r;µr

,Σr) is a Gaussian distribution
in r with meanµ

r
and covarianceΣr. Using the Gauss IOD method, one can obtain a Gaussian approxima-

tion p̃2O(x2) = pg(x2;µx2
,Σx2

) of the pdfp2O(x2). As one would normally do in an Unscented Kalman Filter
(UKF), this pdf can be propagated backward (respectively, forward) in time to obtain the Gaussian pdf approximation
p̃1O(x1) = pg(x1;µx1

,Σx1
) (respectively,̃p3O(x3) = pg(x3;µx3

,Σx3
)). From these and using the assumed-known

measurement model, one can generate the pdf for the measurements at these three times based on the IOD-based orbit

under the assumption that the observations are associated:p̃iM

(

zi; µ̃
i
zi
, Σ̃

i

zi

)

= h(p̃iO(xi)), i = 1, 2, 3. We may

now compute the information divergenceDi
KL(p̃

i
M (zi)||p

i
M (z)) betweenp̃iM andpiM for each of the three timesti,

i = 1, 2, 3. The overall criterion for assessing association would then be

DKL =

3
∑

i=1

Di
KL(p̃

i
M (zi)||p

i
M (z)). (3)

The association that maximizes this index among all possible combinations of three angles-only measurements is
one way to assess association. We call this solution to the OTOA problem theUT-ID solution to be referenced in the
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numerical example section later in the paper. This index is similar in spirit to the divergence-based (OTTA) association
discussed in Ref. [12].

3.1.2 Particle Based Methods: The underlying assumption of Gaussianity in the UT approach, while analytically
appealing, is not necessarily a faithful representation ofthe uncertainty in the reconstructed state from the IOD method.
A more accurate representation would be to represent uncertainty using a Monte Carlo (MC) particle cloud. However,
computing divergence based on a particle cloud poses analytical challenges. To see this, consider a particle cloud
{

Z(i)
}

with weights
{

w
(i)
z

}

drawn frompM (z1, z2, z3) = p1g(z1;µz1
,Σz1

)p2g(z2;µz2
,Σz2

)p3g(z3;µz3
,Σz3

). This

cloud can be mapped into the state space using the Gauss IOD method and that, in return, mapped to the measurement

space using the observation functionh(·). Denote the resulting cloud by{Z̃(i)} with weights
{

w̃
(i)
z

}

. If the IOD

method was exact and the motion and measurement models were known perfectly, the particle set{Z̃(i)} should be
identical to the set{Z(i)} and the KL divergence can be shown to be:

DKL(p̃
i
M (zi)||p

i
M (z)i) =

∫

p̃iM (zi) log

(

p̃iM (zi)

piM (zi)

)

dzi

= Ep̃i
M

(zi)

[

log

(

p̃iM (zi)

piM (zi)

)]

≃
∑

i

w̃i log

(

p̃iM (Z̃(i))

piM (Z(i))

)

=
∑

i

w̃i log

(

∑

j w̃
jδZ̃(j)(Z̃(i))

∑

k w
kδZ(k)(Z̃(i))

)

=
∑

i

w̃i log

(

w̃i

wi

)

=
∑

i

w̃i log

(

wi

wi

)

= 0,

which is what we would expect under perfect knowledge of the system model and with a perfect IOD method. How-
ever, because of errors in the IOD solution, the two sets{Z̃(i)} and{Z̃(i)} will not match and the delta functions in the
denominator in the previous equation will evaluate to zero for all i and we will getDKL ∝ log(1/0) = log∞ = ∞.
Even if one uses other definitions of divergence, the value ofthe divergence would not correspond to the actual di-
vergence betweenpiM (zi) andp̃iM (z). Note, however, that if pM is analytically known, can be sampled and can be
evaluated, then information divergence can be computed when p̃iM is represented by a cloud of particles. We will
demonstrate this in a future publication. We point out, however, that in the next subsection we will be able to com-
pute the mutual information between two particle clouds andnot run into the issue mentioned above for information
divergence.

An alternative approach to computing the divergence directly using the particle cloud is to approximate the particle
cloud using some analytic pdf for which we can compute the divergence. One such approach would be to use the
expectation maximization algorithm to convert the particle cloud into a Gaussian Mixture Model [21]. We will not
describe the details of the method here. Instead we refer thereader to an EM algorithm described in Ref. [22], which
is a robust and versatile EM algorithm, called the FJ-EM algorithm. The method allows for the user to specify a
maximum number of GMM components and it selects the number ofcomponents that best represent the particle
cloud. The user is also not required to choose a good initial guess of the components. In other words, the method does
not require a careful initialization of the algorithm (other EM algorithms do require a very careful initialization.)

As an illustration, consider the 2000 particle cloud generated from the four component planar GMM with weights:

wi = 0.25, i = 1, 2, 3, 4,
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means:

µ1 = [10.0 0.0]
T

µ2 = [−10.0 0.0]
T

µ3 = [0.0 10.0]
T

µ4 = [0.0 − 10.0]
T

and covariances:

Σi =

[

2.0 0.0
0.0 2.0

]

, i = 1, 2, 3, 4.

The generated particle cloud was then fed into the EM algorithm and the following 5-component GMM initial guess
was used for initializing the algorithm:

w0
1 = 0.1

w0
2 = 0.4

w0
3 = 0.2

w0
4 = 0.2

w0
5 = 0.1

µ0
1 = [1.0 0.0]

T

µ0
2 = [−1.0 0.0]

T

µ0
3 = [0.0 1.0]

T

µ0
4 = [−1.0 − 1.0]

T

µ0
5 = [−5.0 − 5.0]

T

Σ
0
i =

[

1.0 0.0
0.0 1.0

]

, i = 1, 2, 3, 4, 5.

The algorithm resulted in the following set of GMM weights:

wf
1 = 0.25

wf
2 = 0.24849

wf
3 = 0.26156

wf
4 = 0.23995

wf
5 = 0.0

where we notice that one component has been eliminated. The final set of means were found to be

µ
f
1 = [9.96428 0.02116]

T

µ
f
2 = [−9.87450 − 0.02471]

T

µ
f
3 = [0.03449 10.06634]

T

µ
f
4 = [0.04656 − 9.96678]

T
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and the final set of covariances were found to be

Σ
f
1 =

[

1.92951 0.02156
0.02156 1.92172

]

Σ
f
2 =

[

2.10782 −0.04989
−0.04989 1.92587

]

Σ
f
3 =

[

1.89439 0.05116
0.05116 2.35834

]

Σ
f
4 =

[

1.99178 0.01623
0.01623 1.85653

]

The resulting GMM is graphically shown in Fig.5 against the particles. Note that a component has a weight of zero
(i.e., eliminated) resulting in an effective number of components of 4. While the true values of the weights, means and
covariances were not recovered exactly, the error in these parameters is quite small.
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Fig. 5. An example showing the original means (equally weighted) that generated the shown
particle cloud. The cloud was then fed into the FJ-EM algorithm that generated the GMM
approximation shown. The FJ-EM algorithm was able to very accurately reconstruct the true
GMM that generated the particle cloud.

To summarize starting with the two particle clouds{Z(i)} and{Z̃(i)}, one can convert each into a GMM to ap-
proximatepM (zi) andp̃M (zi), i = 1, 2, 3. There is, however, no known closed-form expression for KL divergence
between two GMMs. The Cauchy-Schwarz (CS) divergence, however, can be computed for GMMs [19, 20]. The
general expression for CS divergence,KCS , between two pdfsp(x) andq(x) is given by

DCS(p(x)||q(x) =
1

2
log

[

(∫

p2(x)dx
) (∫

q2(x)dx
)

(∫

p(x)q(x)dx
)2

]

,

Our ability to compute the CS divergence for GMMs in closed-form lies in the fact that ifp(x) =
∑Np

i=1 w
ipg(x;µ

i
p,Σ

i
p)
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andq(x) =
∑Nq

i=1 w
ipg(x;µ

i
q,Σ

i
q) one can show that

∫

p(x)q(x)dx =

Np
∑

i=1

Nq
∑

j=1

wiwjpg(µ
i
p;µ

j
q,Σ

i +Σ
j).

This expression can be used to compute
∫

p2(x)dx and
∫

q2(x)dx, and henceDCS(p(x)||q(x)) when bothp andq
are GMMs.

Thus, the two particle clouds{Z(i)} and{Z̃(i)} are first converted to GMMs using the FJ-EM algorithm, which
are then subsequently used to compute the approximate CS divergence betweenpiM (zi) and p̃iM (zi). The overall
divergence-based index for the MC case is the sum of the threedivergences:

Dtot
CS =

3
∑

i=1

DCS(p
i
M (zi)||p̃

i
M (zi)). (4)

We call this solution to the OTOA problem theMC-ID solution to be referenced in the numerical example section later
in the paper.

3.2 Mutual Information

The mutual information,I(x, z), between two random variablesx andz is a measure of the degree of dependence
between these two variables. Formally, it is given by

I(x, z) =

∫ ∫

p(x, z) log

(

p(x, z)

p(x)p(z)

)

dxdz, (5)

wherep(x, z) is the joint distribution ofx andz and wherep(x), respectivelyp(z), is the marginalization ofp(x, z)
with respect toz, respectivelyx. Two important properties are to be noted here. Firstly, mutual information is a
symmetric function ofx andz. Secondly, ifx andz are independent thenp(x, z) = p(x)p(z) and the mutual
information is zero.

The mutual information index we propose to use is as follows.First, consider the mutual informationIi(xi, zi)
between the statexi and the measured outputzi at time ti. The overall mutual information index would then be
Itot = I1+I2+I3. Other indexes based on mutual information can also be considered. For example, one can consider
the mutual information between thejoint orbital state variablexjoint = (x1,x2,x3) and the joint measurement
variablezjoint = (z1, z2, z3). Such indexes will be the subject of future research.

It can be shown that the mutual informationIi(xi, zi) can be expressed in terms of the KL divergence:

Ii(xi, zi) = DKL(p(xi, zi)||p(xi)p(zi)). (6)

Therefore, if the joint pdfp(xi, zi) is Gaussian, one can computeIi in closed-form. However, for the GMM case, no
closed-form solution exists because the mutual information is related to the KL divergence and not a divergence for
which a GMM has a closed-form solution.

3.2.1 Unscented Transform: Following the UT procedure described in Ref. [14], one can obtain a Gaussian approx-
imation of the pdf of the statex2. One can then use the UKF to obtain the joint distributionp(xi, zi) after propagating
and updating with the corresponding measurementzi, i = 1, 2, 3. It can be shown that this distribution is Gaussian
with the following mean:

µ
joint
i =

[

µ
xi

µ
zi

]

and covariance:

Σ
joint
i =

[

Σxi
Σxi,zi

Σ
T
xi,zi

Σzi

]

,
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whereµ
xi

is the UKFupdated state mean at timeti, µzi
is the measurement mean at timeti, Σxi

is the covariance
in the state at timeti, Σxi

is the measurement covariance at timeti, andΣxi,zi
is the cross-covariance between the

state and the measurement at timeti.

Since the joint pdf is Gaussian, the marginalization with respect toxi andzi are both Gaussian and have meansµ
xi

andµ
zi

, respectively, and covariancesΣxi
andΣzi

, respectively. Now that we have Gaussian approximations of
p(xi, zi) andp(xi)p(zi), one can use Eq. (6) and Eq. (2) to compute the mutual informationIi(xi, zi). We call this
solution to the OTOA problem theUT-MI solution to be referenced in the numerical example section later in the paper.
This index is similar in spirit to the mutual information-based (OTTA) association discussed in Ref. [12].

3.2.2 Particle Based Methods: As mentioned previously, converting particle clouds to GMMs to compute MI is not
feasible since MI is defined in terms the KL divergence Eq. (6) for which we do not have a closed-form GMM-based
expression. Rather surprisingly, however, we can actuallyuse the particle cloud to compute a faithful evaluation of
the mutual information index. This solution is motivated bythe MC approach in Ref. [23]. While this solution is
faithful to the particle nature of the densities, it is computationally expensive. At the time of publication we were
in the process of parallelizing the particle-based solution on a graphics processing unit (GPU). However, results are
not readily available at the present time. Instead we will describe the mathematics behind the solution and provide a
non-SSA example to verify that the particle-based expression for mutual information is correct.

Again, we begin with a particle cloud
{

Z(j)
}

with weights
{

w
(j)
z

}

for the joint distributionpM (z1, z2, z3) =

p1M (z1)p
2
M (z2)p

3
M (z3). This cloud can then be fed through the Gauss IOD method to produce a particle cloud

{

X
(j)
2

}

and weights
{

w
(j)
x2

}

representing the uncertainty in the state at timet2. This cloud can then be propagated

backward and forward in time to obtain the state particle clouds
{

X
(j)
1

}

and
{

X
(j)
3

}

(with weights
{

w
(j)
x1

}

and
{

w
(j)
x3

}

, respectively) at timest1 andt3, respectively.

We begin by following the same procedure as in Ref. [23] by noting that

Ii(xi, zi) = H(xi)−H(xi|zi)

whereH(xi) is the entropy ofxi andH(xi|zi) is the conditional entropy ofxi givenzi. Notice that given a particle-
based distributionpiM (zi) =

∑Nz

j=1 w
j
z
δ
Z

(j)
i

(zi), we can obtain an expression forpiO(xi) by marginalization and

using the basic MC integration approximation we obtain:

piO(xi) =

∫

p(xi|zi)p(zi)dzi

= Epi
M

(zi) [p(xi|zi)]

≃

Nz
∑

j=1

wj
z
p(xi|Z

(j)
i ).
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Therefore, the entropyH(xi) is given by:

H(xi) = −

∫

piO(xi) log p
i
O(xi)dxi (7)

= −

∫





Nz
∑

j=1

wj
z
p(xi|Z

(j)
i )



 log

(

Nz
∑

l=1

wl
z
p(xi|Z

(l)
i )

)

dxi (8)

= −

Nz
∑

j=1

wj
z

∫

p(xi|Z
(j)
i ) log

(

Nz
∑

l=1

wl
z
p(xi|Z

(l)
i )

)

dxi (9)

= −

Nz
∑

j=1

wj
z
E

p(xi|Z
(j)
i

)

[

log

(

Nz
∑

l=1

wl
z
p(xi|Z

(l)
i )

)]

(10)

= −

Nz
∑

j=1

wj
z

Nxi
∑

k=1

wk
xi

log

(

Nz
∑

l=1

wl
z
p(X

k|j
i |Z

(l)
i )

)

, (11)

where{Xk|j
i }, k = 1, . . . , Nxi

, areNxi
(assumed to be the same for allj) particles drawn fromp(xi|Z

(j)). Account-
ing for possible errors in the IOD solution and dynamic propagation and modeling them as additive noise, we have
xi = f2i(g(z1, z2, z3)) + v, wherev is an additive noise term with some densitypv(v). In this case, the particles
X

k|j
i are drawn such thatXk|j

i = f2i(g(Z
(j))) + V(k) whereV(k) ∼ pv(v) and whereZ(j) = (Z

(j)
1 ,Z

(j)
2 ,Z

(j)
3 ).

However, an open area of research is the characterization ofthe error introduced in the IOD method. If one ignores
these errors and assume that the state and the measurements are deterministically related, then we can simply propagate
the particlesZ(j) through the various transformations without sampling. However, this will result inNxi

identical
particles{Xk|j

i } which can then be simply replaced by a single particle:{X
1|j
i } = f2i(g(Z

(j))).

Following a similar procedure as above one can show that

H(xi|zi) = −

Nz
∑

j=1

wj
z

Nxi
∑

k=1

wk
xi

log
(

p(X
k|j
i |Z(j))

)

(12)

One can now use Eq. (7) and Eq. (12) to compute the mutual informationIi(Xi,Zi). The overall index, as above,
would then beItot = I1 + I2 + I3.

As a way to verify that the above equations, we consider a simple non-SSA problem for which we have a closed-
form solution to compare against. Let some variablex be related to another variablez via the linear relationship:
x = Hz + v, wherez ∼ pg(µz

,Σz) andv ∼ pg(µv
,Σv). One can use Eq. (2) and Eq. (6). It was found that the

exact mutual information is given by 5.5254529. Fig. (6) shows the percentage error of the MC-based computation
from the true MI value. While performing this analysis, it wasfound that the accuracy of the method depended heavily
on the number ofz particles and was very insensitive to the number ofx sub-samples. In the figure we show the
percentage error for a fixed number ofx samplesNx = 100. As can be seen the error is converging to zero with a
larger number of samples.

4. SIMULATION RESULTS

In this simulation we compare the performance of the three OTOA solutions: UT-ID, MC-ID, and UT-MI. The MC-MI
solution described at the end of last section will be tested in a future publication. For testing, we consider two objects,
with identification numbers 0 and 1, in close proximity of each other. They both have the same orbital elements shown
in Table1 except for the value of true anomaly at the initial time. A setof two observations from the two RSos are
collected at three different times. If we arbitrarily indexthe two measurements with 0 and 1, then the question is
which sequence of tags are the correct ones? There are eight possible combinations of tags: 000 (i.e., observations
with tags 0 at the three time instances are associated to one of the two objects and so on), 001, 010, 100, 011, 101, 110
and 111. The observations were tagged such that the two correct ones are 000 (all coming from RSO number 0) and
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Fig. 6. Percentage error from true value vs. number ofz samples in the MC-based MI
computation for the linear Gaussian problem.

111 (all coming from RSO number 1). The criterion to evaluatethe three OTOA methods will be how close the two
objects are (in true anomaly) before the method being testedfails to return the two correct associations as the two most
likely ones. Note that when a method “fails”, while the correct associations may not be the one most highly ranked,
they would rank very close to the top and as the separation distance between the two objects decreases further, the
correct association are further from being top ranked and are more or less arbitrarily ranked as all solutions become
indistinguishable. The sensor is assumed to be the Socorro,NM, ground sensor. Topocentric azimuth and elevation
observations were collected at the rate of one observation every 20 minutes. The measurement noise is assumed to be
Gaussian with an angular standard deviation of 2 arcsec for both azimuth and elevation.

Table 1. Orbital Elements of the True Orbit

Orbital Element Value

Semi-major Axis (km) 26 600.
Eccentricity 0.2
Inclination (deg) 55.0
Perigee (deg) -120.0
Right Ascension of the Ascending Node (deg) -13.24

For each of the methods, the separation in angular anomaly between the two RSOs is steadily decreased until the
method fails to report the correct associations as the most likely ones. The association picked by each method is the
one that produces the maximum value of MI index or minimum ID index. As can be seen in Table2, the UT-MI
index is the one that performs the best among the ones considered in this paper. It has a resolution of 0.30997 degrees
separation in true anomaly. It is important to note that while this number is relatively large (∼ 1000 arcsec) compared
to typical sensor resolutions, one has to remember that the OTOA problem being solved is far more challenging that
the classical OTTA problem. With the methods proposed in this paper, and others to be considered in future work,
one can sift through a collection of observations, not correlated to any object or uncorrelated track, and sort out which
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ones belong to each other under minimal amount of knowledge of the observation statistics.

Table 2. True Anomaly Difference at which Association MethodFails

Method True Anomaly Difference (deg)

UT-ID 0.64458
MC-ID 0.68182
UT-MI 0.30997

5. CONCLUSION

In this paper we considered four different information theoretic approaches to the observation-to-observation associ-
ation problem. Three of these methods (UT-ID, MC-ID and UT-MI) have been implemented and the fourth (MC-ID)
has been demonstrated to work on a non-SSA problem and is currently being developed for implementation in a GPU
environment. It was shown that the mutual information method is the one that performed the best among the methods
tested. Variations of these techniques exist and may prove to be even more accurate than the ones tested in this pa-
per. It is generally conjectured that MC-based methods, on the long run, will prove to be more efficient as they more
faithfully represent the underlying distributions. We further conjecture that the use of mutual information will be more
accurate than divergence-based approaches as they more accurately capture degree of dependence between variables.
This paper barely touches the tip of the iceberg, and its mostbasic goal is to induce the space community to further
consider the use of information theoretic measures for solving the various data association problems (OTOA, OTTA,
and TTTA).
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