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Project Summary 
 

1.  Task Objectives 
 The general goal of this research effort was to design and develop a novel biologically 
inspired framework for flight envelope estimation and protection, which is conceptually 
integrated with the abnormal detection and accommodation processes and is general and 
comprehensive such that it can operate at all conditions, normal and abnormal, a priori known or 
unknown.  The proposed methodology relies primarily on the artificial immune system (AIS) 
paradigm.  To reach this objective, the following 3 technical objectives (TO) with a total of 14 
main research tasks and one additional task over the no-cost-extension period have been planned.   
 
 TO #1.  Develop a novel bio-mimetic framework for flight envelope estimation and 
protection under upset flight conditions. 
Task #1.1.  Problem formulation including definition of abnormal conditions addressed, 
parameter ranges, and envelope parameters targeted. 
Task #1.2.  Development of schemes for qualitative failure evaluation. 
Task #1.3.  Development of schemes for direct quantitative failure evaluation.  
Task #1.4.  Development of schemes for indirect quantitative failure evaluation.  Flight envelope 
reduction evaluation. 
Task #1.5.  Design and execution of flight simulator tests for AIS abnormal condition evaluation 
schemes development. 
 TO #2.  Investigate the use of the artificial immune system paradigm for aircraft adaptive 
guidance and control under abnormal conditions. 
Task #2.1.  Formulation of the AIS-based framework for flight envelope protection.  
Task #2.2.  Immune adaptive control laws design and implementation. 
Task #2.3.  System integration. 
Task #2.4.  Design and execution of flight simulator tests for development of AIS-based 
abnormal condition accommodation schemes.   
 TO #3.  Implement and demonstrate the proposed syst. on a motion based flight simulator. 
Task #3.1.  Design of flight simulator tests for proposed methodology demonstration.  
Task #3.2.  Customization of existing computational tools for aircraft simulation, adaptive 
control laws, and artificial immune system generation.  
Task #3.3.  Implementation and integration of a simulation environment for design, testing, and 
demonstration of the novel flight envelope estimation and protection methodology.  
Task #3.4.  Execution of the 6-degrees-of-freedom (DOF) flight simulator tests and data 
processing.  
Task #3.5.  Analysis of results and evaluation of the novel flight envelope estimation and 
protection methodology.  
Task #3.6  Reduced system demonstration on an unmanned aerial vehicle (UAV).   
 
 The following project milestones were defined and scheduled as follows: 
M#1.  Formulation of a generalized conceptual framework for flight envelope estimation based 
on the AIS paradigm (End of Month #8) 
M#2.  Flight envelope protection algorithms implemented and tested (End of Month #14) 
M#3.  Integrated system demonstration in the motion-based flight simulator (End of Month #18, 
re-scheduled at the end of no-cost-extension period) 
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 The activity chart for the project is presented in Table 1.  The periods of performance for all 
tasks over the initial duration of the project are marked in blue.  The re-scheduled periods for 
Tasks 1.4, 2.3, 3.3-3.6 and Milestone #3 over the no-cost-extension (NCE) period are marked in 
light blue.  The due dates for the three project milestones are marked with green lines.   
 

Table 1.  Activity Chart for the Project 
  Months during 1st Year Months during 2nd Year NCE 
  1-4 5-8 9-12 1-2 3-4 5-6 7-9 10-11 12-13.5 
 1.1                   
TO 1.2                   
#1 1.3                   
 1.4                   
 1.5                   
 2.1                   
TO 2.2                   
#2 2.3                   
 2.4                   
 3.1                   
TO 3.2                   
#3 3.3                   
 3.4                   
 3.5                   
 3.6                   
       M#1        M#2            M#3 
 
 

2.  Technical Problems 
 In this project, the AIS paradigm was used to accomplish critical steps towards the 
development of a holistic framework for an effective, comprehensive, and integrated solution to 
the problem of aircraft operation under abnormal conditions (AC).  The complete aircraft AC 
management process is envisioned as consisting of four major components: AC detection, 
identification, evaluation, (ACDIE) and accommodation (ACDIEA).  From this perspective, 
performing aircraft AC management becomes an extremely challenging, complex, and multi-
dimensional task.   
 In continuation of previous research establishing conceptual and practical approaches for 
AIS-based AC detection and identification, this project was primarily focused on addressing the 
qualitative and quantitative evaluation of abnormal flight conditions consisting of 
failures/damages affecting aircraft actuators, sensors, propulsion system, and aerodynamic 
surfaces.  The AC evaluation process is highly specific and requires individualized approaches 
due to the synergistic interaction between aircraft subsystems, aircraft states, and the nature of 
the ACs.  Within the project, classes of AC were considered that alter subsystem aerodynamics 
in a manner consistent with and predictable based on aircraft operation at normal condition, 
referred to as “self” within the AIS paradigm.  Integration of AC evaluation with prior detection 
and identification was given significant attention. 
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 The multi-dimensionality of the feature (or relevant variable) space implied by the 
development of a comprehensive AIS creates computational and logical issues that need to be 
addressed carefully.  The use of lower dimensional projections of the self (sub-selves) within the 
hierarchical multi-self strategy was proposed in this project.  It should be noted that the issue of 
computational time for off-line and on-line processing has not been specifically targeted within 
the project. 
 The AC accommodation problem was also addressed within the project.  The possibility of 
using immunity mechanisms for adaptive control and compensation of abnormal flight 
conditions was investigated along two directions.  One relied on the antibody 
activation/suppression mechanism converted into an adaptive control approach.  The other, relied 
on extending the classification capabilities of the AIS and using them not only to detect and 
diagnose the problem, but also to select or find the solution.  In other words, once a certain 
abnormal situation is detected and identified, the AIS-based system can determine the adequate 
compensation. 
 
 

3.  General Methodology 
 Developing a generalized conceptual framework (comprehensive and integrated) for the 
detection, identification, evaluation, and accommodation of aircraft sub-system abnormal 
conditions requires specific tools that can handle the high complexity and multi-dimensionality 
of aircraft dynamic response in the context of abnormal conditions.  The tools for the 
development of the proposed methodology rely on a new concept inspired from the biological 
immune system.  The immune system protects the body against intruders by recognizing and 
destroying harmful cells or molecules through simple in principle yet powerful mechanisms, 
such as negative/positive selection, mutation, and cloning, which exhibit robust, adaptive, and 
highly distributed cognitive capabilities.  It can be thought of as a robust adaptive system that is 
capable of dealing with an enormous variety of known and unknown disturbances and 
uncertainties.  Another critical aspect of the bio-immune system is that it can “remember” how 
previous encounters were successfully handled.  As a result, it can respond faster to similar 
encounters in the future.  The AIS is capable of mimicking these mechanisms (such as 
negative/positive selection, antibody activation/suppression, state/resource assessment, and 
memory) to solve the problem of aircraft subsystem ACDIEA in a general and comprehensive 
manner. 
 The failure evaluation process must address several distinct aspects such as determining the 
type of the failure, its magnitude or severity, and evaluating the reduction of the flight envelope 
due to the failure, in the most general sense.  Evaluation requires the previous correct detection 
and identification of the anomalous conditions.  Detection is the process of declaring that a 
generic malfunction of the system has occurred in any of the subsystems, while the identification 
implies determining what is the failed subsystem and/or component. These two aspects are 
important to diagnose the effect of the failure on the aircraft operational limits and provide 
necessary information to the pilot and the automatic control system to avoid commands that 
might lead to loss of control and other dangerous/catastrophic situations.   
 The computational issues associated with high-dimensionality hyper-spaces is addressed by 
using lower dimensional projections of the self/non-self within the hierarchical multi-self (HMS) 
strategy, which relies on two main concepts.  First, the normal/abnormal discrimination 
capability of complete sets of projections is the same as the entire hyper-self under certain 
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conditions.  Second, projections along specific feature axes have better capabilities in capturing 
the dynamic fingerprint of specific AC than others.  This hierarchical ranking of sub-selves with 
respect to targeted AC can be used to develop less computationally intensive detection, 
identification, and evaluation schemes. 
 The AIS paradigm is based only on data acquisition and structuring and does not need 
sophisticated modeling of the targeted system.  However, this requires extensive amount of data, 
mostly at normal operational conditions, and specific processing in some instances.  For the 
purpose of this project, data for a supersonic fighter were acquired from a motion-based 6-DOF 
flight simulator. 
 This research effort has been performed as a close collaboration between researchers from 
West Virginia University (WVU) and Embry-Riddle Aeronautical University (ERAU). 
 
 

4.  Technical Results 
 The proposed AIS-based generalized conceptual framework for aircraft AC management has 
been demonstrated to be able to handle simultaneously several major aircraft subsystems, under 
known and unknown abnormal conditions of different types, and severities.  The subsystems 
considered under abnormal conditions were: actuators (left/right stabilator, aileron, rudder), 
sensors (pitch, roll, yaw gyros), propulsion (throttle), structural components (left/right wing, 
horizontal tail, vertical tail). 
 Two different methodologies were proposed, developed, and successfully tested for AC 
detection, identification, and evaluation: dendritic cell (DC) mechanism and structured non-self 
approach.  Integrated schemes were implemented and evaluated in terms of false alarms and 
success rates for detection, identification, and evaluation.  In most cases considered, the 
proposed ACFDIE schemes achieve zero false alarms and success rates between 95-100%. 
 Specific algorithms for post-failure flight envelope evaluation have been developed, 
implemented and successfully tested.  The post-failure flight envelope evaluation is defined in 
terms of relevant features and targets classes of AC that affect the aerodynamics of the system in 
a manner consistent with the operation at normal conditions. 
 The preliminary investigation of AIS-based abnormal condition accommodation included 
the use of antibody activation-suppression mechanism for adaptive control laws and the transfer 
of immunity memory capabilities to AIS for enabling for pilot compensatory commands 
extraction.  Both approaches have been implemented and successfully tested demonstrating very 
promising potential. 
 The outcomes of this project have been widely disseminated.  The record to date of peer-
reviewed journal publications includes 3 published papers, 7 in review, and 1 in preparation.  
The record to date of peer-reviewed conference publications includes 7 papers presented and 
published and 2 papers accepted (see Appendix A for complete list of titles). 
 
 

5.  Important Findings and Conclusions 
 The technical outcomes of this project include the formulation of novel concepts and 
methodologies that are expected to improve pilot situational awareness and improve the guidance 
and control capabilities of aircraft systems under normal and abnormal flight conditions.  The 
proposed framework for ACDIEA has been demonstrated to possess the capability for providing 
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a comprehensive solution to the problem of aircraft AC management including flight envelope 
estimation and protection at post-failure conditions.   
 A set of integrated computational tools with a high degree of flexibility, portability, and 
modularity have been implemented and successfully tested.  They can be used for the design, 
development, testing, simulation, and evaluation of fault tolerant control laws and schemes for 
ACDIEA.   
 Specific algorithms within the AIS paradigm have been developed and demonstrated to 
achieve high performance rates for various phases of the aircraft ACDIEA process. 
 The proposed methodology has the capabilities for facilitating the design of advanced 
aircraft with high survivability, improved operation safety, and optimized performance at both 
normal and abnormal/upset conditions.   
 The proposed framework was used to design, implement, and test through simulation 
integrated schemes for aircraft AC detection, identification, and evaluation that achieved 
excellent performance for a large variety of scenarios. 
 
 

6.  Significant Hardware Development 
 Development of hardware was not part of this project. 
 
 

7.  Special Comments 
 There are no special comments relative to the technical aspects of this project. 
 
 

8.  Implications for Future Research 
 The outcomes of this project create premises for research continuation in the following 
directions. 
 1).  Extension of AC spectrum for post-failure evaluation .  The algorithms developed within 
this project address specific classes of ACs.  For a complete and comprehensive AC management 
process, additional classes of AC should be investigated. 
 2).  Further investigation and development of AIS-based abnormal condition 
accommodation.  Solving the abnormal condition accommodation problem within the AIS 
paradigm is expected to provide a compact, consistent, and relatively easy to implement 
framework that will address completely all major processes related to fault tolerant control 
(abnormal condition detection, identification, evaluation, and accommodation).  This research 
effort should produce a novel adaptive architecture based on hybrid approaches and artificial 
intelligence techniques to increase robustness, autonomy, and safety of aircraft systems.  
 3).  Testing the proposed methodology in flight using a remotely piloted reduced size 
aircraft.  The proposed AIS-based framework for aircraft AC management should be 
implemented and tested under more realistic conditions using existing aerial platforms.  This 
project is expected to provide the opportunity to apply and investigate lessons learned, fine-tune 
and extend algorithms, and validate the proposed methodology through actual flight tests.  It is 
expected that issues related to memory allocation and computational time during both off-line 
development and on-board operation will be addressed.  
 4).  Extension of the AIS paradigm into an alternative or complementary modeling 
methodology for dynamic systems.  The versatility of the AIS and its capabilities to store 
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extensive system information can be expanded  through combination with mechanisms inspired 
by genetics to develop methodologies for building data driven system models that are expected 
to remove or mitigate the burden of complex and challenging modeling tasks.  The proposed 
strategy is to rely on experimental and analytical data and information that is typically available 
for a technical system for building a representation of the system that includes all the elements 
necessary for system build up and operation, similar to the genome of biological organisms.  
This will create the premises for the development of intelligent, evolving system with a wide 
range of applications. 
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Chapter 1 
 

General Framework for Immunity-based Abnormal Condition Detection, 
Identification, Evaluation, and Accommodation 

 
 

1.1.  Biological Immune System 
 The biological immune system consists of two equally important components: the innate 
system and the adaptive system1.  The former is an inherited system that functions as the first 
line of defense against invading entities, while the latter is an acquired system built through 
previous exposures to invading agents.  The innate immune system is always active and responds 
immediately to any class of pathogen without distinction.  On the other hand, the adaptive 
immune system is normally silent and is much more potent in recognizing specific antigens with 
slower response.   
 The immune system is composed of cells that are developed from stem cells in the bone 
marrow and differentiate into different populations, the most important of which in the immune 
response are macrophages (MΦs), dendritic cells (DCs), T-cells, and B-cells.  The MΦ and DC 
populations form what is known as phagocytes (part of the innate system) whereas populations 
of T-cells and B-cells form the lymphocytes (part of the adaptive system). 
 Phagocytes reside in the peripheral tissues searching for antigens (Figure 1.1).  Proteins (or 
any other markers) of an antigen are recognized by the surface of the phagocyte.  The phagocyte 
engulfs the pathogen and breaks it up into its constituent molecules.  Special proteins in the 
phagocyte, called major histocompatibility complexes II (MHC II), bind to subsets of these 
molecules (specifically, peptides) and transport to the outer surface of the phagocyte along with 
the bound antigen peptides (Figure 1.2).  MHC II play a critical role in activating the cell-
mediated response of the adaptive system when the phagocyte migrates from the peripheral 
tissues to the lymph nodes where lymphocytes reside.  B-cells process antigens in a very similar 
way to the phagocytes, except that phagocytes process general, non-specific antigens whereas B-
cells can only process very specific types of antigens.  For this reason, phagocytes are called 
professional antigen presenting cells (APCs).  This communication is so crucial that the adaptive 
response cannot take place without the innate response first. 
 

 
 

Figure 1.1.  Phagocytes in the Peripheral Tissue 
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Figure 1.2.  A Dendritic Cell Processing an Antigen 
 
 After they are developed from stem cells in the bone marrow, DCs move to peripheral 
tissues that are in contact with the environment, such as skin and inner lining of the nose, lungs, 
stomach, intestines, and oral cavities where they are in their initial “immature” state.  They 
become mature and migrate to regions rich in T-cells, primarily the lymph nodes, whether they 
have already captured and processed an antigen or not (steady-state)2.  In the lymph nodes, they 
either present peptides of the processed antigen to the T-cells to activate the adaptive immune 
response or to induce immune tolerance to “harmless” antigens, including those from the body’s 
own tissues, cells, and proteins which prevents the immune response from attacking self cells, a 
disease known as autoimmunity3,4.  
 T-cells, which mature in the thymus, exist in two main types in the lymph nodes: Helper T-
cells (Th) and cytotoxic T-cells (Tc).  Referring to Figure 1.3, when a DC migrates to the lymph 
node carrying MHC II-peptide complexes, it attracts Th-cells to bind to that MHC II-peptide 
complex.  Note that only those Th-cells with receptors “specific” to the MHC II-peptide complex 
of the migrated DC can bind to it.  Once bound, a Th-cell is said to be activated, upon which it 
proliferates and differentiates into “memory” Th-cells and “effector” Th-cells.  Memory Th-cells 
stay in the body for years to provide faster response when the same antigen infects the body once 
again; this is a feature of the adaptive immune system the innate system lacks, where the 
adaptive memory provides stronger and faster response which effectively stops the infection with 
less reliance on the innate system when it occurs the second time.  Effector Th-cells, on the other 
hand, raise the alarm by releasing small cell-signaling protein molecules known as cytokines 
responsible of activating both Tc-cells and B-cells.  It is worth mentioning here that any infected 
cell in the body displays peptides of the infectious antigen on their surface via MHC I (MHC I 
molecules are displayed by any nucleated cell to enable the body to recognize infected cells 
whereas MHC II molecules are displayed by APCs, such as DCs, MΦs, and B-cells to recognize 
epitopes of exogenous antigens and discriminate self from non-self).  The role of the Tc-cells is 
to kill the infected cells by binding its epitopes to that “specific” MHC I-peptide complex and 
releasing special proteins.  These proteins are the perforin, which inserts itself into the infected 
cell membrane and forms a pore and the granzyme, which induces apoptosis (the healthy 
programmed cell death) in the infected cell.  This adaptive immune response from T-cells is 
referred to as cell-mediated response. 
 B-cells, which mature in the bone marrow, carry “specific protein complexes on their 
surfaces known as membrane-bound antibodies formed by shuffling the DNA during the 
maturation of these B-cells.  These antibodies bind to foreign pathogens with the same protein 
combination.  Upon binding, B-cells process the antigen in a similar way to that done by 
phagocytes, as mentioned earlier, and display part of the processed antigen on their surface via 
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the MHC II-peptide complex.  However, B-cells are not activated until they receive the cytokines 
released by the effector Th-cells that are stimulated by the migrated DCs.  When activated, B-
cells proliferate and differentiate into “memory” B-cells and “effector” B-cells.  Like memory 
Th-cells, memory B-cells live for years in the body to provide faster B-cell response in case the 
same pathogen invades the body once again, while “effector” B-cells produce clones of their 
membrane-bound antibodies and release them as free antibodies.  One of the important functions 
of these free antibodies is opsonization, in which the antibodies bind to foreign antigens and 
mark them for attack by phagocytes.  The adaptive immune response from B-cells is called 
humoral response. 
 

 
 

Figure 1.3.  Activation of Th-, B-, and Tc-Cells by the APC 
 
 The negative selection (NS) process, through which important constituents of the immune 
system are generated, produces biological agents that have the capability to detect microbial and 
non-microbial exogenous entities (referred to as non-self) while not reacting to the cells of their 
own organism (referred to as self).  Briefly, the process allows the proliferation of cells that do 
not match the self, but match the non-self.  Therefore, they are only compatible with the non-self 
and will be capable to detect its presence.  The concept is illustrated in Figure 1.4, where the 
term “antibodies” is used in a most generic way. 
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Figure 1.4.  The Negative Selection Process 
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1.2.  Artificial Immune System Paradigm 
 The AIS emerged in recent years as a new computational intelligence paradigm5,6 with a 
variety of applications in areas such as anomaly detection, data mining, computer security, 
adaptive control, and pattern recognition.  All initial efforts were directed towards immunity-
based fault detection7,8, which operates in a similar manner as does the biological immune 
system - according to the principle of self-non-self discrimination - when it detects exogenous 
antigens while not reacting to the self cells.  Prior to this project, an integrated set of 
methodologies9-12 for AIS-based detection and identification of a wide variety of aircraft sub-
system failures/damages has been designed and implemented at WVU by the authors of this 
report.  Integrated high-performance AIS-based failure detection and identification schemes have 
been demonstrated to be capable of handling several categories of sub-system abnormal 
conditions over extended areas of the flight envelope13.  The potential of the AIS paradigm for 
flight envelope reduction assessment at post-failure conditions has also been investigated with 
promising results14.   
 The basic idea supporting the AIS paradigm for sub-system fault detection is that an 
abnormal situation (i.e. failure of one of the aircraft sub-systems, which is considered similar to 
an invasion by antigens) can be declared when a current configuration of “features” does not 
match with any configuration from a pre-determined set known to correspond to normal 
situations.  These “features” – similar to the biological chemical markers – represent the 
encoding of the self.  They can include various sensor outputs, states estimates, statistical 
parameters, or any other information expected to be relevant to the behavior of the system and 
able to capture the signature of abnormal situations.  Extensive experimental data are necessary 
to determine the self or the hyper-space of normal conditions.  Adequate numerical 
representations of the self/non-self must be used and the data processed such that they are 
manageable given the computational and storage limitations of the available hardware.  The 
artificial counterpart of the antibodies - the detectors - must then be generated and optimized.  
This process typically attempts to mimic the variation followed by selection of the T-cells.  The 
mechanisms through which DC acquire, store, process, and transfer information can be used to 
handle the large amounts of data involved in the ACDIEA process.  Handling computationally 
the large feature hyper-space as a whole is impractical if at all possible for a comprehensive 
approach.  Alternatively, lower order projections of the self can be used, but then self/non-self 
discrimination outcomes from a large number of such projections must be handled.  A DC-based 
mechanism was developed for this purpose that will be described in details in following sections.  
A summary of main components of the AIS paradigm and their biological source is presented in 
Table 1.1. 
 The NS process through which main cellular components of the biological immune system 
are generated is mimicked in the generation of detectors.  Evolutionary algorithms can be used 
for optimization in this process11.  As an alternative mechanism, positive selection (PS) has been 
explored for AIS design.  Through the PS strategy, the detectors are generated to coincide with 
the self and the process is equivalent to clustering the self data.  In this case, an abnormal 
situation is declared if the explored current configuration does not match any of the detectors.  
For detection purposes, NS and PS are equivalent; however, using PS within a detection scheme 
is typically more computationally intensive than using NS because it is necessary to test the 
complete set of positive antibodies before classifying a sample as abnormal.  With the NS 
approach, the activation of a single negative antibody is enough to declare the presence of an 
abnormal situation.   
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 A detection logic must be designed for real time operation with a high detection rate and low 
number of false alarms.  The block diagram of the AIS design process for aircraft sub-system 
abnormal condition detection is presented in Figure 1.5. 
 

Table 1.1.  Main Biological Terms and Their AIS Paradigm Representations 

Biological Term AIS Paradigm Representation 
Organic markers 
(proteins and 
other compounds) 

System features or characteristic variables and their values. 

Organism or self 
Data clusters of feature values acquired from development tests under 
normal operating conditions. 

Alien entities or 
non-self  

Set of complementary clusters covering the feature hyper-space outside of 
self clusters. 

Antigen Abnormal condition or set of feature values at abnormal conditions 
Antibody Cluster of the non-self or detector 

Dendritic cell 
A computational unit that processes the outcomes of the self/non-self 
discrimination process. 

 

 

Figure 1.5.  Design of AIS-Based Abnormal Condition Detection Scheme 
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 For the identification and evaluation phases, additional information is needed to structure the 
non-self hyperspace, which can be obtained through a PS-type of mechanism using data under 
failure conditions.  In particular, for the quantitative direct evaluation, the non-self must be 
separated into sub-regions corresponding to the different “identifiable” level of failures and PS 
must be used to assess the distribution of the failure signature within the non-self by labeling the 
antibodies corresponding to different magnitudes of the failure. 
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1.3.  Definitions, Nomenclature, and Notation 
 For a general formulation, it will be assumed that the targeted system is the “aircraft”, 
including the vehicle itself with all its subsystems (such as actuators, sensors, propulsion, etc.), 
the human pilot, and the environment.  However, the proposed methodology is generally 
formulated and can be applied to any system and its components. 
 The generic term of “abnormal conditions” (AC) refers to faults and failures of hardware, 
human pilot-related abnormal situations, operational upset conditions, extreme environmental 
conditions, and any other situations that require specific attention and/or action for safety 
purposes.  It should be noted that for the practical design and implementation of ACDIEA 
schemes, the designer is required to define the nature, type, and severity of the AC targeted. 
 The detection represents the process through which the existence of an AC is assessed or, in 
other words, a failure within at least one of the aircraft sub-systems has been acknowledged.  The 
outcome of the detection process Det  is binary: 
 

     1,0Det , 
conditionsabnormalfor1Det

conditionsnormalfor0Det




          (1.1) 

 
 The identification or isolation process determines which subsystem has failed.  Depending 
on the complexity of the targeted system, the AC identification can be performed in several 
phases.  For example, a first identification phase could distinguish between actuator and sensor 
failures.  If an actuator failure is identified, a second phase could determine whether it is an 
elevator, aileron, or rudder failure.  Finally, a third identification phase could establish that the 
left elevator has failed or the left in-board elevator has failed, if the aircraft is equipped with 
additional redundancy.  The outcome of the identification process, Idt , can be formulated as an 
Ns -dimensional vector with binary components, where Ns  is the total number of sub-systems 
considered: 
 

  Ns21 idididIdt  , 
conditionsabnormalatjsubsystemfor1id

conditionsnormalatjsubsystemfor0id

j

j




     (1.2) 

 
Alternatively, the outcome of the identification process can be formulated as a set of integers 
labeling the failed sub-system: 
 
     Nsf21 idididIdt                (1.3) 

 
where Nsf  is the number of failed sub-systems and jid  represents the label associated to each 

subsystem, typically: 
 
     Ns21id j                 (1.4) 

 
 Once a failure has been detected and correctly identified, the AC evaluation process must 
address three aspects.  One is of a qualitative nature and involves determining the type of the 
failure.  For example, the qualitative evaluation is expected to determine if an actuator failure 
consists of a locked actuator, or a freely moving control surface, or a reduction of control 
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efficiency.  The other two aspects are of a quantitative nature and can be defined as direct and 
indirect.  The direct failure evaluation consists of estimating the magnitude or severity of the 
failure (e.g. left aileron locked at +10deg).  The indirect failure evaluation includes the re-
assessment of the flight envelope and prediction of the limitations and constraints on the 
performance and handling qualities inflicted by the presence of the failure.   
 The outcome of the qualitative evaluation, 1Ev , is an Nsf -dimensional string of integers 

labeling the type of failures for all Nsf  affected sub-systems out of a list of kNft , Ns,2,1k  , 

potential types associated to each sub-system Nsf,2,1j,id j  : 

 
     kNft211Ev                 (1.5) 

 
 Let the set F of all failures considered be expressed as: 
 
     

FN21 fffF                 (1.6) 

 
where FN  is the total number of AC considered and: 

    



SN

1k
kF NftN                   (1.7) 

 The outcome of the direct quantitative evaluation process, 2Ev , can take a numerical value 
that relates to the magnitude or severity of the AC.  For example: 
 
    %402Ev                    (1.8) 
 
where 40% represents, let’s say, the relative area of the left aileron affected by structural 
damage.  While possible in some cases, this level of accuracy is, obviously, difficult to achieve 
in general.  Alternatively, the direct quantitative evaluation could provide a severity estimate 
mapped on a discrete set: 
 
     severityhighseveritymediumseveritylow2Ev          (1.9) 
 
or, it could provide a severity evaluation based on fuzzy logic and expressed as: 
 
     m21 vvv2Ev               (1.10) 

 
where iv  are fuzzy membership values with respect to the m linguistic values associated to the 

severity metric 2Ev  (e.g. low severity, medium severity, and high severity).  2Ev  can also be 
expressed as a scalar by using a defuzzification algorithm: 
 
      m21 vvv2Ev              (1.11) 

 
where   is the defuzzification operator. 
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 The outcome of the indirect quantitative evaluation process, 3Ev , typically represents a set 
of new ranges at post failure conditions of the variables iy  that define the flight envelope, in its 

most general meaning.  Let the number of these variables be Ne .  Then: 
 
          maxNeminNemax2min2max1min1 y,yy,yy,y3Ev      (1.12) 

More specifically, let a directly involved variable (DIV) v  in the AC be a variable whose 

alteration or abnormal variation is directly and significantly the result of the AC.  Typically, DIV 
are used to define/characterize the AC.  They may be part of the feature set or not.  If they are 
not, then a relationship between the DIV and some other variable(s) in the feature set must be 
established.  This process will define equivalent directly involved variables (EDIV), v , which 

are part of the feature set.  For example, consider the case of the left stabilator locked failure.  
The DIV can be defined as the left stab deflection eL .  It obviously defines the failure; however, 

let us assume that it is not part of the feature set that has been established.  A relationship can be 
formulated between the left stab deflection eL  and the longitudinal stick displacement ed  - 

which presumably is a feature – of the form )(fd eLe  .  Therefore, the EDIV is in this case, 

ed .  For each failure considered, a set of variables Ev  must be determined that are affected by 

the failure, that are part of the feature set, and that are relevant from the point of view of aircraft 
operation (they are flight envelope relevant variables).  These variables may be determined 
through analytical means but also through the analysis of the 2-D selves.   
 
 The accommodation process can take two forms: passive accommodation through warnings 
and information displayed in the cockpit and active accommodation through direct compensation 
as integral part of the control laws.  The passive accommodation represents actually the re-
processing of the outcomes of the detection, identification, and evaluation and their delivery to 
the pilot in a form that is easy to perceive and understand.  The direct accommodation involves 
triggering of pre-existing compensating modules within the control laws and/or actual 
computation of commands at post-failure conditions. 
 The feature variables or shortly features are the variables i  that completely define the 

targeted system and are expected to capture the fingerprints of all AC considered, in terms of 
occurrence, presence, and severity.  They can be (sub-)system states, inputs, control system 
variables, estimated values, etc.  The set of all features  : 
 
     N,2,1i|i                (1.13) 

 
defines a feature point P as a set of simultaneous values of all features i  that can be obtained 

through measurements or simulation, at normal or abnormal conditions.  The set   defines an N-
dimensional hyper-space U , which will be referred to as the “Universe”.  An orthogonal 
coordinate system (CS) equally denoted U is associated to this hyper-space.  Its origin is at point 
O with coordinates  000 N21    .  Therefore, the feature point P can be 

represented by the position vector with respect to O, OPr


, whose coordinates with respect to CS 
U  are denoted as: 
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        TNPP2P1
OPr UU  


          (1.14) 

 
 The self S  is defined as the hyper-sub-space of all possible feature points at normal 
conditions.  All other points in U form the non-self S ˆ .  Therefore: 
 

    USS ˆ  and SS ˆ           (1.15) 
 
 For computational tractability and practical reasons, the self points are clustered.  These self 
clusters can be shaped as hyper-spheres, hyper-rectangles, or hyper-ellipsoids.  Clustering of the 
non-self generates what is referred to as detectors.  They may be directly used in the detection 
process.  Structuring the non-self by adding information to the detectors makes them capable to 
be used in the failure identification process.  Such upgraded detectors will be referred to as 
identifiers.  Clusters of the self or non-self that are processed to be used for evaluation or 
accommodation will be referred to as evaluators and compensators, respectively. 
 The threshold between “normal” and “abnormal” (i.e. between self and non-self) is 
represented by an N-dimensional surface: 
 
      0,,, N21             (1.16) 

 
 Lower dimensional projections of the self will be referred to as sub-selves.  Let us assume 
that we consider a 2-dimensional projection (or sub-self) defined by features 1  and 2  and we 
collect all possible feature points at normal conditions.  Area 0 will result as shown in Figure 1.6.  
Note that typically normalized values are used for the features; therefore, a working sub-region 
of the universe U  is used next, which is represented as a hyper-cube of side 1.  The projection 
of   is represented as straight line segments for convenience, without loss of generality.  All 
points outside Area 0 belong to the non-self S ˆ .  That means that whenever a pair of values 

),( 21   is measured that lies outside Area 0, a failure can be declared.  However, whenever a 

pair of values ),( 21   is measured that lies inside Area 0, it cannot be necessarily concluded 
that the conditions are normal.  AC whose dynamic fingerprints depend on one or more other 
features can produce projections inside Area 0.   
 The order of an AC, denoted as Ord(AC), is defined as the minimum number of features 
necessary to completely detect that AC.  A complete detection is said to be possible if all feature 
points produced at AC fall within the non-self.  For example, a first order failure would require 

only one feature   for detection.  In other words, the presence of the failure necessarily 

produces always values of   that are outside a normal range.  In Figure 1.6, if Area 1 is the 

projection of all points under a certain failure, then that failure is first order with 1  .  
Similarly, Area 2 represents an AC of degree 2, and Area 3 a failure of degree 3 or higher.  A 
complete detection of the failure represented by Area 1 can be performed using the 2-
dimensional self defined by 1  and 2 , but also using only the projection, or the 1-dimensional 

sub-self defined by 1 .  The 2-dimensional self is necessary and sufficient to completely detect 

the failure represented by Area 2.  Using the sub-self defined by 1  will never succeed detecting 

this failure, while using the sub-self defined by 2  will allow detection in some instances, but 
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not a complete detection.  Using the 2-dimensional self to detect the third failure will not ensure 
a complete detection.  However, it should be noted that, in practice, the approach could achieve 
very high rates of detection if the feature points that are projected inside the self are reached with 
very low probability. 
 

 
Figure 1.6.  Self/Non-Self 2-Dimensional Projection 
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1.4.  Aircraft Abnormal Condition Management Process 
 The aircraft AC management (ACM) based on the AIS paradigm can be considered to include 
three main components functionally connected in a closed loop as shown in Figure 1.7: 

 off-line ACM system design and implementation 
 on-line AC detection, identification, evaluation, and accommodation 
 post-processing of flight data and ACDIEA outcomes 

 

 
Figure 1.7.  AIS-Based ACM Process 

 
 The off-line ACM system design and implementation has as outcome the development of an 
integrated and comprehensive ACDIEA scheme.  The design depends on a clear definition of the 
aircraft sub-systems that are targeted, the types of AC (including known and unknown failures), 
the failure severity scale, the flight envelope variables, and the nature and level of passive and 
active accommodation.  The development of the ACDIEA scheme requires the availability of 
large amounts of measured data that must be pre-processed for self/non-self generation and 
structuring.  For a comprehensive solution, acquiring and processing these data is considerably 
less difficult and expensive than developing extensive accurate models, as required by alternative 
approaches, still with questionable level of success.  The block diagram of the ACM design 
component is presented in Figure 1.8. 
 The on-line ACDIEA process implies the real time operation of the ACDIEA scheme.  Sets 
of current values of the features measured in flight at a certain sampling rate are compared 
against the detectors, identifiers, evaluators, and compensators and the outcomes of the ACDIEA 
are generated.  These outcomes are transferred to the pilot, the on-board monitoring and 
recording system, and the automatic fault tolerant control laws.  The block diagram of the on-line 
ACDIEA component is presented in Figure 1.9. 
 The post-processing of ACDIEA outcomes and the analysis of false alarms and failed 
detections in conjunction with current measured values of the features can potentially be used to 
modify/extend the sets of detectors, identifiers, evaluators, and compensators and improve the 
overall performance for future operation.  The block diagram of the post-processing component 
is presented in Figure 1.10. 
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Figure 1.8.  AIS-Based ACM System Design 
 

 
Figure 1.9.  On-Line AC Detection, Identification, Evaluation, and Accommodation 
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Figure 1.10.  Post-Processing of Flight Data and ACDIEA Outcomes 
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1.5.  Definition of the Self and Non-Self 
 

1.5.1.  General Algorithm 
 One of the most critical elements of the design of the ACM system is the selection of features.  
They must be relevant to all four processes (ACDIEA).  Their number and nature depend on the 
aircraft sub-systems that are targeted, the types of AC, the failure severity scale, the flight 
envelope variables, and the nature and level of passive and active accommodation.  For a 
comprehensive and integrated approach, all states, inputs, and variable parameters of all 
subsystems considered must be taken into account.  It should also be noted that a complete 
detection of an N-degree failure requires N relevant features, therefore, an N-dimensional self.  If 
the number of subsystems considered is Ns , then the states Xi , inputs Ui , and other relevant 
parameters Pi  corresponding to sub-system i SN,2,1i   can be expressed as, respectively: 

 

     TiNsi2i1i xxxXi              (1.17) 

 

     TiNui2i1i uuuUi              (1.18) 

 

     TiNpi2i1i pppPi              (1.19) 

 
For any sub-system i, the maximum order an AC can have is: 
 
    piuisi NNNNi               (1.20) 

 
Therefore, for a complete detection of all AC from an exhaustive set F, the number of necessary 
features to build the self/non-self is: 
 

     



SN

1i

*
pi

*
ui

*
si NNNN              (1.21) 

 
where the *-variables exclude duplication among the sub-systems.  If all states, inputs, and 
parameters are distinct, then: 
 

    si
*
si NN  , ui

*
ui NN  , and pi

*
pi NN           (1.22) 

 
otherwise, for example: 
 

    








1ifornN

1iforN
N

si

1s*
si              (1.23) 

 
where n is the number of duplicate states for each sub-system, that is the states with the property 
that iij Xx   and 1iij Xx  .  It can be easily noticed that the number of necessary features N 
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and hence the dimensionality of the self/non-self can become excessively large and create 
significant computational problems9.  These problems can be avoided under certain conditions 
by using lower dimensional sub-selves, or projections, within a hierarchical multi-self (HMS) 
strategy10.   
 Let the maximum order of failures in the set F be denoted as: 
 
      Fj

j
max N,,2,1j,)f(OrdmaxN           (1.24) 

 
and    maxm N)f(Ord                (1.25) 

 
 If NNmax  , then a complete detection for mf  can only be obtained, in general, with an N-

dimensional self.  If the self/non-self has particular shapes, then at least on one of the (N-1)-
dimensional projections, the projection of the feature points at AC will fall inside the non-self.  
For example, in Figure 1.11, a 3-dimensional case is presented in which an AC feature point, 
AC1, is projected outside all three 2-dimensional projections.  Feature point AC2 is projected 
outside one of the N-1 dimensional sub-selves.  For specific shapes of the self/non-self, it is 
possible that some AC feature points are projected inside all sub-selves, as illustrated by feature 
point AC3.  

 
Figure 1.11.  Potential of Sub-Selves to Capture the Abnormal Conditions 

 
 If NN max  , then a complete detection for mf  can be obtained by using an maxN -
dimensional sub-self with proper features.  In this situation, the N-dimensional self does not need 
to be considered.  A complete detection for all failures can be obtained by using all possible 
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maxN -dimensional projections or sub-selves.  The approach is conservative and some of the 

projections may be ignored or replaced by lower dimensional projections without loss of 
performance. 
 Determining the order of an AC may be difficult in many cases or even impossible; 
therefore, maxN  may be unknown.  In this situation, a low value for maxN  may be assumed and 

the self/non-self built as the set of all possible maxN -dimensional sub-selves, with the 

observation that the higher the assumed value of maxN , the higher the likelihood of better 

performance.  The total number of possible maxN -dimensional sub-selves for N features is given 

by: 

    
)!NN(!N

!N
CN

maxmax

N
Nss

max


           (1.26) 

 
 The generation of the self/non-self requires large amounts of measured data at normal 
conditions, ideally covering the entire flight envelope.  These N-dimensional feature points are 
clustered and the self S  is represented as a set S of hyper-bodies including these clusters, which 
will be referred to as self clusters.  Similar hyper-bodies are used to represent the non-self S ˆ  as 
well and will be referred to as detectors.  The geometry of these hyper-bodies can potentially 
have an impact on the efficiency of the detector generation process and on the detection itself.  
They determine how well the non-self is covered, how many detectors are necessary, and how 
intensive the computational process is.  The following shapes for the self/non-self representation 
can typically be considered: 
 Hyper-cubes – determined by an N-dimensional center and one value for the side; 
 Hyper-rectangles – determined by an N-dimensional center and N values for the sides; 
 Hyper-spheres – determined by an N-dimensional center and one value for the radius; 
 Hyper-ellipsoid of rotation – determined by an N-dimensional center and two values for the 
axes; 
 Generalized hyper-ellipsoid – determined by an N-dimensional center and N values for the 
axes. 
For all shapes (except hyper-spheres) variable orientation can be considered as determined by an 
additional N-dimensional vector.  For example, for the hyper-spherical representation with Nc 
clusters ic , the self and the self clusters can be expressed as: 

 
   Nc21 cccS  ,    iNii2i1iii RcRcCc       (1.27) 

 
where iC  is the center and iRc  is the radius of the cluster.  For the same hyper-spherical 

representation with Nd detectors jd , the non-self and the detectors can be expressed as: 

 
   Nd21 dddŜ  ,    jNjj2j1jjj RdRdDd      (1.28) 

 
where jD  is the center and iRd  is the radius of the detector. 

 When generating the self and the non-self, the following optimization criteria should be 
considered: 
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 no overlapping among detectors and self clusters; 
 minimum empty space inside the self clusters; 
 minimum un-covered areas inside the non-self; 
 minimum overlapping among self clusters; 
 minimum overlapping among detectors; 
 minimum number of detectors for a desirable resolution. 
 The block diagram of the self/non-self generation process is presented in Figure 1.12.  A set 
of computational tools have been developed at WVU for the generation, optimization, and 
verification of detector sets within the AIS paradigm16-18.  The WVU Immunity-based Failure 
Detector Optimization and Testing tool relies primarily on evolutionary computation providing a 
wide selection of algorithms and options as well as capabilities for testing and tuning11,15.  
 

 
Figure 1.12.  Self/Non-Self Generation Process 

 
 To support the AC identification and evaluation processes, the non-self must be structured to 
provide information regarding the sub-system affected, the type of the failure, and the failure 
severity.  This can be achieved by attaching to each detector jd  a set of structuring tags jdS : 

 
     jjjj dFsdFtdSysdS              (1.29) 

 
where, in general,  Sj N21dSys  ,  Fj N21dFt  , and jdFs  consists of a 

set of failure severity metrics associated to each failure type in jdFt  and 

)dFs(size)dFt(size)dSys(size jjj  .  The implication here is that each sub-system may be 

affected by only one failure at a time.  The case in which a combination of failures occurs can be 
handled within this framework by defining in the set F a distinct AC with such multiplicity 
characteristics.  Alternatively, for each sub-system represented by jdSys , the elements of jdFt  

and jdFs  may be defined as sub-sets of size larger than 1.  In this case, 

)dFs(size)dFt(size)dSys(size jjj  .  The three sub-sets in Eq. (1.29) will each have only 

one element in the ideal situation when the N features have been defined perfectly and 
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completely, one N-dimensional self is used, and the size of the detectors provides perfect 
resolution.  In other words, any given detector can be associated to only one sub-system, one 
failure type, and one level of failure severity. 
 The process of generating the antibodies requires adequate numerical representations of the 
self/non-self and adequate data processing such that they are manageable given the 
computational resources and storage limitations of the hardware.  In this project, 2-dimensional 
projections were used for self/non-self representation for which antibodies were generated using 
two alternative approaches that are described next.  In the first approach, all raw test data 
available are collected in one file before a set of antibodies is generated.  In the second approach, 
the processing of smaller individual sets of data is performed by clustering and then combining 
the clusters in a single set for detector generation.  Using the two approaches, data for each 
combination of features corresponding to a particular projection or sub-self are processed 
separately to produce a set of antibodies by covering the respective 2-dimensionmal non-self.  
The block diagram of the AIS antibody generation methods is presented in Figure 1.13. 
 

 
Figure 1.13.  Two Methods for AIS Antibodies Generation 

 
 

1.5.2.  Raw Data Set Union Method 
 The raw data set union method (RDSUM) processes experimental data at normal conditions 
in four main phases or modules as presented in Figure 1.13.   
 Generation of Single Data File.  Raw data from different flights or simulator tests are 
combined in one single data file.  The data are left intact and no further processing is performed 
here. 
 Data Preprocessing.  Preprocessing of the data includes two steps: normalization and 
duplicate elimination.  The raw data received from the data fusion component are normalized 
between 0 and 1.  Therefore, the feature space becomes a unit hypercube.  The normalization 
factor for each dimension is determined as the span of the flight data plus a percentage margin.  
Duplicate points of the normalized data are then eliminated to reduce the size of the data file.  
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This process decreases the amount of storage and computing resources needed, while preserving 
the information content of the data.  Note that implicit duplicate point elimination may also take 
place during the clustering process, which follows. 
 Self Data Clustering.  The data produced from the previous processing component define 
self points that need to be represented by a definite number of geometric hyper-bodies, referred 
to as clusters.  This can be done by using the “k-means” clustering algorithm.  A modified 
version of this algorithm17 was used to represent the clusters as hyper-spheres, but they could 
also be represented as hyper-rectangles or hyper-ellipsoids.  
 Generation of Antibodies.  Self clusters are used to generate antibodies by covering the 
non-self hyper-space with hyper-bodies similar to the clusters.  An enhanced negative selection 
algorithm for real-valued representation with variable non-self radius17 was used within this 
project.  The algorithm ensures that there is no overlapping with the self and that the non-self is 
covered to a desired predetermined level.  It should be noted that the algorithm requires a 
number of specific parameters that must be carefully selected and correlated.  The antibodies 
generation process can be stopped after a prescribed number of iterations when a preset 
maximum number of acceptable detectors is reached or when a desired coverage of the non-self 
is achieved.   
 Figure 1.14 shows sample 2-dimensional self clusters along with the AIS antibodies 
generated for a projection or sub-self defined by the non-dimensional roll rate neural network 
output feature pNN  and the reference roll rate refp  using the raw data set union method 

described above. 

 
Figure 1.14.  2-D Self Clusters with AIS Antibodies Generated Using the Raw Data Set Union 

Method 
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1.5.3.  Cluster Set Union Method 
 The mechanism to generate antibodies using the cluster set union method (CSUM) is based 
on a 5-phase/modules process that uses an optimized algorithm to fusion different sets of clusters 
generated from single sets of experimental flight or simulation data.  The main components of 
this methodology, according to Figure 1.13, are described next. 
 Preliminary Data Processing.  If the amount of experimental is large enough to exceed the 
available computer memory, within this approach, the data can be split in sub-sets and the 
following steps in the process can be applied to the individual smaller data sets.  Pre-processing 
of the data includes two steps: normalization and data preparation for clustering.  As a result of 
the normalization, the values of each measured feature are scaled to values between 0 and 1 and 
as is the case with the previous approach, the feature space becomes a unit hypercube.  The 
normalization factor for each dimension is determined as the span of the flight data plus a 
percentage margin.  Alternatively, desired maximum and minimum values can be specified in the 
computation of the normalization factor.  Note that when multiple sets of experimental data are 
used for antibodies generation, the same normalization factors must be used for all data. 
 Clustering of Individual Data Sets.  This module is similar to the previous approach; 
however, the clustering algorithms are applied to the individual smaller sets of experimental 
data.  Note that parallel computation may be used to perform this phase. 
 Clusters Set Union.  Once several sets of clusters have been generated, a fusion process is 
performed that consists of set union accompanied by overlapping elimination.  
 Clusters Duplicate Elimination.  The overlapping between clusters is estimated in a similar 
way as between the detectors, where a minimum overlapping threshold of a detector with respect 
to the others is allowed during the process.  Since the radius of each cluster is known, the 
overlapping between a current cluster and the nearest one(s) can be determined.  The distance 
between centers must be greater than or equal to the sum of the radii of the clusters minus the 
permitted overlapping threshold.  This approach favors clusters with bigger radii and will 
preserve for the final self-representation those clusters with more efficient coverage.  The 
approach allows the update of the database when new flight tests are available by clustering only 
the newly acquired data and then putting old and new clusters together and eliminating any 
duplication.   
 Figures 1.15 and 1.16 present an example of the clustering reduction using the fusion 
algorithm.  The 2-dimensional self space in this case is defined by the non-dimensional roll rate 
neural network output feature pNN  and the reference roll rate refp .  Figure 1.15 shows the 

union of different sets of clusters generated from 11 single simulator test data before the fusion 
process is applied.  The union set has a total of 22000 clusters.  Figure 1.16 shows the reduced 
set of 6343 clusters after the complete fusion process.  The fusion algorithm is able to reduce 
down the number of clusters to approximately one third with an acceptable overlapping among 
them.  The allowed overlap value has to be selected in such a way that the balance between the 
holes and the covered space is adequate. 
 Generation of Antibodies.  The same enhanced negative selection algorithm for real-valued 
representation with variable detector radius is applied to the cluster union set generated in the 
previous module.  The algorithm ensures no overlapping between detectors and self clusters and 
minimizes the un-covered areas in the non-self.   
 In Figure 1.17, an example of the clusters and generated antibodies is presented for a 2-
dimensional self projection defined by a non-dimensional roll rate neural network output feature 

pNN  and the reference roll rate refp  using CSUM. 
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Figure 1.15. 2-D Self with 22000 Clusters Figure 1.16.  2-D Self with 6343 Clusters 

 

 
Figure 1.17.  Sample 2-D Self Clusters with AIS Antibodies Generated Using the Cluster Set 

Union Method 
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 An comparative analysis of the two proposed methods has been performed in terms of 
computational time and detection performance of the resulting sets of detectors.  Numerical 
results and additional details are presented in journal paper #1 in Appendix A.   
 

1.5.4.  Comparison of the Proposed Methods for Antibody Generation 
 The computational time needed by RDSUM is consistently lower than the one needed by 
CSUM.  The difference varies quite largely depending on the self.  The fewer the number of 
distinct data is, the lower the computational time RDSUM needs for clustering.  Typically, the 
raw data file reduces size significantly after the elimination of duplicate points.  The clustering 
module is invoked only one time per self for RDSUM.  The CSUM clusters the same number of 
flight data points 11 times (the number of flight tests used for this analysis) without any duplicate 
point removal.  Only then, duplicate clusters are eliminated.  For some of the selves generated 
using RDSUM, the number of unique data was around 60k (which is comparable to the number 
of records in each of the 11 flight files).  It should be noted that the single file including all flight 
data used for detector generation with RDSUM has about 600,000 records.  In most cases, this 
results in a still large data set even after duplicates are eliminated, which cannot be handled by 
the k-means clustering method on computers with less than 8GB RAM. 
 The detection performance in terms of percentage detection rate and false alarms of the two 
sets of detectors obtained with the different methods has been compared for a sub-set of relevant 
2-dimensional projections or sub-selves under several types of failure.  The performance is 
similar and the two methods can be considered equivalent from this point of view.  In Figure 
1.18, typical results in terms of detection rate are presented for a stabilator failure. 
 The RDSUM requires large computer memory, but the total computation time is lower.  The 
CSUM can be implemented on lower memory computers; however, the overall computation time 
increases, unless parallel computation is used.   
 

 
Figure 1.18.  Detection Performance Comparison of Detectors Obtained with CSUM and 

RDSUM for a Stabilator Failure 
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1.6.  Hierarchical Multi-Self Strategy 
 For a comprehensive and integrated solution to the ACDIEA problem using the AIS 
paradigm, the number of system features for any system of aircraft complexity ends up to be 
very large.  Handling the resulting hyper-space as a whole produces critical issues related to 
computational resources and effort and to the characteristics of hyper-spaces relative to distances 
and thresholds.   
 The issues related to computational resources and effort are obvious considering that in 
order to achieve similar high resolution of the feature space – a critical element especially for the 
identification and evaluation phases – exponentially larger computational effort is required with 
unitary increase of the space dimensionality.   
 The implications of the characteristics of hyper-spaces relative to distances and thresholds 
are more subtle.  It should be noted that when the dimensionality of the hyper-space goes to 
infinity the volume of the unit hyper-cube (the “Universe”) remains equal to one, while the 
volume of the inscribed hyper-sphere goes to zero.  This means that our intuition in establishing 
thresholds and assessing distances, which is built in lower dimensional spaces (actually in the 3-
D physical space), becomes in-operational.  This counter-intuitive effect becomes significant 
once the number of features goes beyond 10.   
 To eliminate or at least mitigate these effects, the HMS strategy was proposed10 based on the 
observation that, while the entire set of features is necessary to capture the dynamic fingerprint 
of “all” ACs, only limited subsets may be necessary to capture the dynamic fingerprint of any 
individual AC.  Under certain conditions (as discussed in Section 1.5) and with proper ACDIE 
logic, subsets of features may be used to build projections of the self that eventually yield similar 
ACDIE performance as when considering the entire multi-dimensional self as a whole.  This 
concept is illustrated in the block diagram of Figure 1.19.   
 Simulation results10 have shown that different low-dimensional self configurations can be 
selected and integrated to achieve low number of false alarms and high detection rates for a 
variety of subsystem abnormal conditions.  In other words, the ACDIE performance achieved by 
a complete set of features of dimension Ns may be matched by a collection of sets i, each of 
dimension ni , where ni<<Ns if they are properly integrated.  As a result, the issues with the 
multi-dimensionality of the hyperspace can be mitigated or even eliminated.  This approach 
involves determining the capabilities of different sets of features relative to the detection of 
specific types of ACs.  Careful analysis is needed and the selves with best detection results must 
be identified, organized, and integrated within a hierarchical scheme such that a high detection 
rate, low number of false alarms, and correct identification are achieved for all ACs.  The 
process is performed off-line and can be customized continually until a configuration is obtained, 
which ensures the desirable performance of the AIS scheme.  The outcome of this process 
consists of a reduced-number set of sub-selves (projection) of specific size and feature content. 
 Previous research10 by the authors of this report has demonstrated the merits of the 
approach.  Sets of lower dimensional selves were obtained through analysis and testing that 
yielded excellent ACDIE performance.  However, the approach requires extensive information 
and/or investigation of ACFDIE capabilities of different features (equivalently, sub-selves or 
projections).   
 In this project, special focus was on developing a methodology that could avoid the need for 
significant prior knowledge or investigation of selected feature subsets (projections or sub-
selves) capability for AC fingerprint capture.  In other words, the number of projections, their 
dimension, and feature content is expected to be the result of an automated algorithm that does 



44 
 

not use prior knowledge.  A first target of this investigation was to consider a complete set of 
lower-dimensional projections of uniform size.  Considering Eq. (1.26), it can be seen that the 
number of projections may become very large.  For example, for 32 features we obtain a 
complete set of 2-D projections of 496 elements.  This number of projections becomes 4960 if 3-
D projection are considered fort he same number of features.  Each projection would yield a 
detection outcome and all outcomes must be assessed and integrated properly to obtain a global 
detection outcome.  This need led to the development of the dendritic cell mechanism, which 
will be discussed later. 
 

 
 

Figure 1.19.  The Hierarchical Multi-Self Strategy for ACDIE 
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1.7.  Selection of Development and Demonstration Test Cases 
 

1.7.1.  Aircraft Subsystems 
 Four major aircraft subsystems with components (adding up to 19 individual subsystems) 
were considered for the purpose of this research effort:  

 Actuators: left and right (L-R) stabilator (S), L-R aileron (A), L-R rudder (R), L-R throttle  
 Sensors:  pitch, roll, and yaw gyro 
 Structure: L-R wing (W), L-R horizontal tail (H), L-R vertical tail (V) 
 Propulsion: L-R engine  

Total number of individual subsystems is: 
 
    192638Ns               (1.30) 
 

1.7.2.  Types of Subsystem Abnormal Conditions 
 For each subsystem, a list of targeted ACs must be established.  Each list has 

Ns,2,1k,Nftk  , failures.  The following ACs have been considered within this project:  

81k  , 2Nftk   (actuators)      1712k  , 1Nftk   (structure) 

 locked at current position (trim)      missing structure 
 moving and locking at a non-trim position   

119k  , 2Nftk   (sensors)      1918k  , 1Nftk   (propulsion) 

 sensor bias          reduced effectiveness 
 constant sensor output 
The total number of failures is: 

    3021613282NftN
Ns

1k
kF  


       (1.31) 

 
1.7.3.  Flight Envelope Analysis Parameters 

 In Table 1.2 below, example lists of DIV, EDIV, and envelope relevant variables are 
presented.  The resultant set of all features considered in Table 1.2 for evaluation purposes is: 
 
    F

i
EizyxE N,,2,1ivrqpaaarqpVMH          (1.32) 

 
The total number of features considered for evaluation purposes in Table 1.2 (i.e. flight envelope 
reduction assessment) is 16NE  .  It should be noted that subsets of these variables have been 
considered within the project for methodology development and demonstration. 
 

Table 1.2.  Parameters for AC Indirect Evaluation Analysis 

Fk  k Type of 
Failure 

DIV v  EDIV v  Envelope var. Ev  Notes 

1 1 L S locked L S defl longitudinal stick 
xa , za , H, M, q, p, q ,  ,    

2 1 L S mv/lkd L S defl longitudinal stick 
xa , za , H, M, q, p, q ,  ,    

3 2 R S locked R S defl longitudinal stick 
xa , za , H, M, q, p, q ,  ,    
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4 2 R S mv/lkd R S defl longitudinal stick 
xa , za , H, M, q, p, q ,  ,    

5 3 L A locked L A defl lateral stick 
ya , p, r, p , r ,  ,    

6 3 L A mv/lkd L A defl lateral stick 
ya , p, r, p , r ,  ,    

7 4 R A locked R A defl lateral stick 
ya , p, r, p , r ,  ,    

8 4 R A mv/lkd R A defl lateral stick 
ya , p, r, p , r ,  ,    

9 5 L R locked L R defl pedals 
ya , p, r, p , r ,  ,    

10 5 L R mv/lkd L R defl pedals 
ya , p, r, p , r ,  ,    

11 6 R R locked R R defl pedals 
ya , p, r, p , r ,  ,    

12 6 R R mv/lkd R R defl pedals 
ya , p, r, p , r ,  ,    

13 7 L T locked L T defl pilot throttle 
xa , za , r, H, M, V,  ,    

14 7 L T mv/lkd L T defl pilot throttle 
xa , za , r, H, M, V,  ,    

15 8 R T locked R T defl pilot throttle 
xa , za , r, H, M, V,  ,    

16 8 R T mv/lkd R T defl pilot throttle 
xa , za , r, H, M, V,  ,    

17 9 p bias p meas lateral stick 
ya , p, r, p , r ,  ,    

18 9 p const p meas lateral stick 
ya , p, r, p , r ,  ,    

19 10 q bias q meas longitudinal stick 
xa , za , H, M, q, q ,  ,    

20 10 q const q meas longitudinal stick 
xa , za , H, M, q, q ,  ,    

21 11 r bias r meas pedals 
ya , p, r, p , r ,  ,    

22 11 r const r meas pedals 
ya , p, r, p , r ,  ,    

23 12 L W damage L W lift 
L W pitch 
moment 

longitudinal stick, 
lateral stick, pedals, 
pilot throttle 

xa , ya , za , H, M, p, q, r, p , q , r

, ,  ,  ,   

 

24 13 R W damage R W lift 
R W pitch 
moment 

longitudinal stick, 
lateral stick, pedals, 
pilot throttle 

xa , ya , za , H, M, p, q, r, p , q , r ,

 ,  ,  ,   

 

25 14 L H damage L H lift longitudinal stick, 
lateral stick,  xa , ya , za , H, M, p, q, r, p , q , r ,

 ,  ,  ,   

 

26 15 R H damage R H lift longitudinal stick, 
lateral stick,  xa , ya , za , H, M, p, q, r, p , q , r ,

 ,  ,  ,   

 

27 16 L V damage L V lift lateral stick, pedals, 
pilot throttle xa , ya , za , H, M, p, r, p , r ,    

28 17 R V damage R V lift lateral stick, pedals, 
pilot throttle xa , ya , za , H, M,  p, r, p , r ,    

29 18 L E red eff L E thrst pilot throttle 
xa , za , r, H, M,  ,    

30 19 R E red eff R E thrst pilot throttle 
xa , za , r, H, M,  ,    
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1.7.4.  Features Selection 
 Based on the subsystems considered, the nature of ACs, and the extent of the flight envelope 
prediction attempted, a set of variable were selected to represent features for self/non-self 
definition, including states, states derivatives, inputs, control system variables, and artificial 
neural network (ANN) estimations.  These variables are listed in Table 1.3. 
 

Table 1.3.  Features for Self/Non-self Definition 
H  = altitude 
V  = aircraft ground speed 
M  = Mach number 

xa   = longitudinal acceleration 

ya   = lateral acceleration 

za   = vertical acceleration 
   = angle of attack 
   = sideslip angle 
   = roll attitude angle 
   = pitch attitude angle 
   = yaw attitude angle 
p  = roll rate 
q  = pitch rate 
r  = yaw rate 
p   = roll acceleration 
q   = pitch acceleration 
r   = yaw acceleration 

ed   = longitudinal stick displacement 

ad   = lateral stick displacement 

rd   = pedal displacement 

Td   = pilot throttle 

refp  = roll rate command 

refq  = pitch rate command 

refr   = yaw rate command 

outpNN  = roll acceleration error 

outqNN  = pitch acceleration error 

outrNN  = yaw acceleration error 

MQEE = main quadratic estimation error 
OQEE = output quadratic estimation 
   error 

pDQEE  = decentralized quadratic roll 

   rate estimation error 

qDQEE  = decentralized quadratic pitch 

   rate estimation error 

rDQEE  = decentralized quadratic yaw 
   rate estimation error 
 

 
Note that the parameters based on ANN estimates of angular rates are computed as follows19.  
The main quadratic estimation error (MQEE) is defined as: 
 

       2
MNN

2
MNN

2
MNN )k(r̂)k(r)k(q̂)k(q)k(p̂)k(p

2

1
)k(MQEE     (1.33) 

 
where p(k), q(k), and r(k) are measurements of angular rates at sample k and )k(p̂MNN , 

)k(q̂MNN , and )k(r̂MNN  are neural estimates of the angular rates based on sensor 

measurements including the respective gyro, over a specified time window.  The output 
quadratic estimation error (OQEE) is defined as: 
 

      2
MNNDNN

2
MNNDNN

2
MNNDNN )k(r̂)k(r̂)k(q̂)k(q̂)k(p̂)k(p̂

2

1
)k(OQEE    

                      (1.34) 
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where )k(p̂DNN , )k(q̂DNN , and )k(r̂DNN  are neural estimates of the angular rates based on 

sensor measurements that do NOT include the respective gyro, over a specified time window.  
Finally, the decentralized quadratic angular rate estimation error (DQEE) is defined as: 
 

      r,q,px,)k(x)k(x̂
2

1
)k(DQEE 2

DNNx         (1.35) 
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1.8.  WVU Simulation Environment 
 For the purpose of this project, experimental data were collected from the WVU 6-DOF 
flight simulator system23 shown in Figure 1.20.  The simulator relies on a motion platform driven 
by electrical induction motors to provide adequate 6-DOF translational and rotational motion 
cues.  Laminar research X-Plane flight simulation software is used to provide external visual 
cues through a six-monitor system.  The motion platform is interfaced with an external computer 
on which an aircraft model can run within the Matlab/Simulink environment driving the entire 
simulator system. 
 

 
 

Figure 1.20.  The WVU 6-DOF Motion-based Flight Simulator 
 
 Figure 1.21 shows the top level Simulink diagram of the model interfaced with the WVU 
Flight Simulator.  The model includes the nonlinear dynamics of a supersonic fighter including 
models of failures/damages of actuator, sensors, structural components, and engines.  The three 
large blocks at the bottom of the figure include the computation of specific variables to be 
provided to the flight simulator to drive the generation of visual and aural cues as well as the 
motion of the simulator platform. 
 To define the AIS self/non-self as completely and accurately as possible, adequate coverage 
of the feature space must be achieved.  Different flight scenarios are considered over a wide 
range of the flight envelope, which is first defined based on the nine reference points shown in 
Figure 1.22 for Mach numbers between 0.6 and 0.9 and altitudes between 9,000 ft and 31,000 ft.  
All flight tests start at steady state flight condition at point 1 and continue to cover the nine 
points as described by the arrows.  For example, one flight test starts at point 1, the aircraft is 
accelerated at constant altitude to point 4, descended at constant speed to point 5, and then 
returned to points 4 and 1.  A total of eight such tests are necessary to cover the testing flight 
envelope.  The data collected from flight tests under normal conditions with these points were 
used to build the self/non-self of the aircraft.  Additional intermediate points (A, B, C, and D in 
Figure 1.22) were used to provide validation data.  The set of flight scenarios, lasting between 10 
and 20 minutes each, are designed to include steady-state flight conditions, transitions between 
steady-state conditions, and mild to moderate maneuvers.  These flight scenarios are simulated 
under normal flight conditions.  They are repeated under various failure scenarios for both 
design/development and validation purposes.  Only one failure at a time is considered to 
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capture/isolate the dynamic fingerprint of each type of failure and generate antibodies 
appropriately.  The data acquisition rate from the simulator is 50 Hz. 

 
Figure 1.21.  Simulink Supersonic Fighter Aircraft Model 

 

 
 

Figure 1.22.  Testing Flight Envelope    
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1.9.  WVU Self/Non-self Analysis Tool                          
 Visualizing the 2-dimensional sub-selves is very helpful in analyzing how well the self 
clusters and detectors are generated using one of the methods discussed in the previous sections.  
A simple interactive tool (see Figure 1.23) was developed to analyze all the generated 2-D 
subselves and project a given flight test data on these sub-selves in order to validate them before 
adopting them as a basis to the ACDIE schemes. 

 
Figure 1.23.  The WVU Interactive Tool for Self/Non-self Analysis 

 
 The visualization tool is user friendly and has the following main components referenced in 
Figure 1.23: 
1. “Data folder” textbox to specify the fully-qualified path of the main folder containing all the 
flight tests and the self/nonself data generated. 
2. Two list boxes of features containing the all features considered for self/non-self definition.  
Any feature selected from the left list box represents the abscissa of the 2-D plot and any feature 
selected from the right list box represents the ordinate. 
3. “Flight test” dropdown menu containing all available flight tests. 
4. Three check boxes providing options for plotting flight test data points on the figure, 
plotting self/non-self generated with the CSUM method (use ERAU data checkbox), and plotting 
post- failure flight envelope ranges. 
5. Two optional textboxes to specify the starting and ending time steps used in plotting flight 
test data points.  If these textboxes are empty, all data points in the selected flight test are to be 
plotted. 
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6. An optional drop down menu to quickly plot the selected 2-D projection. 
7. An X-Y plot area onto which the self clusters, non-self shapes, and (optional) flight test data 
are plotted. 
 The zooming feature of the analysis tool facilitates the validation of the self/non-self 
generation process such as how well the detectors cover the non-self space, whether the method 
has generated self clusters within the specified margins or not, whether detectors overlapping is 
reasonable or not, whether there are issues with the self generation method (or its underlying 
processes) or with the flight data, etc.  Figure 1.23 illustrates the zoom feature.   

 
Figure 1.24.  The Zooming Action of the Interactive Tool for Self/Non-self Analysis 
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Chapter 2 
 

Immunity-based Detection of Aircraft Subsystem Abnormal Conditions  
 

2.1.  Detection through Direct Self/Non-self Discrimination 
 

2.1.1.  General Aspects 
 Let the self and non-self be defined as in Eqs. (1.27) and (1.28).  Let the current sample t of 
the measured feature point be: 
 
     Ntt2t1t                 (2.1) 

 
The AC detection can be performed through mechanisms that can be of two types.  The NS-type 
of detection mechanism involves comparing the measured feature point against the detectors, 
while the PS-type of mechanism involves comparing the measured feature point against the self 
clusters.  If one N-dimensional self/non-self is used, then the negative selection-type detection 
can be modeled as: 
 

    




 

otherwise1

Nd,...,2,1jallforRdrrif0
Det j

ODO

t

jt
 

   (2.2) 

 
while the PS-type of mechanism can be expressed as: 

    




 

otherwise0

Nc,...,2,1iallforRcrrif1
Det i

OCO

t
it

 
    (2.3) 

 
If ssN  sub-selves are used, then Eq. (2.2) or (2.3) is applied for each sub-self to obtain sets of 

values iDet , ssN,...,2,1i  .  Then: 

 
    )Det(maxDet ti

N,1i
t

ss
            (2.4) 

 
Note that a more complicated function than max(*) can be considered such as one describing a 
dendritic cell mechanism. 
 To obtain a “normal condition” outcome with the negative selection approach, all detectors 
must be checked at each sample t.  With the positive selection approach, the testing of the current 
feature point is stopped as soon as a matching self cluster is found.  Therefore, at normal 
conditions, the positive selection-based detection is less computationally intensive.  On the other 
hand, an AC will be declared as soon as a matching detector has been found with the negative 
selection approach instead of testing the entire set of self clusters as is required by the positive 
selection approach.  Therefore, an AC may be detected faster with the negative selection 
approach.  Depending on the number of self clusters and detectors in conjunction with the system 
update rate, these differences may be relevant or not.  However, note that building and 
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structuring the detectors is critical for the failure identification process if the structured non-self 
approach is used.   
 At each moment, a detection outcome can be simply obtained as: 
 
    tDetDet                (2.5) 

 
However, in order to prevent excessive false alarms, instead of using Eq. (2.5) directly, an 
additional detection logic must be used to build the detection phase outcome as a function of 
current and past outcomes and/or a composition of sub-selves-based detection outcomes.   
 Within the HMS strategy, sets of 2-dimensional and 3-dimensional projections were 
investigated for the detection through direct self/non-self discrimination. 
 

2.1.2.  Generation of Detectors 
 The process of generating detectors, or antibodies, is an exhaustive and lengthy procedure 
that requires adequate computational data processing capabilities and adequate numerical 
representations of the self/non-self.  However, it should be noted that the process is performed 
off-line and does not affect the real time operation of the on-board detection scheme.   
 CSUM was used to process extensive experimental data necessary to properly define the 
nominal “hyper-space” representation.  For each combination of features corresponding to a 
particular projection, segments of data are processed separately to produce sets of detectors that 
cover the non-self hyperspace.  The CSUM is a 5 phase process (see Figure 2.1) that uses an 
optimized algorithm to fuse different sets of clusters generated from single sets of flight or 
simulation data. This methodology is particularly convenient when the computer characteristics 
used for pre-processing are not powerful enough for an efficient application of the algorithms. 
 

 
Figure 2.1.  Cluster Set Union Based Logic 
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2.1.3.  Analysis of Detection Performance of Individual Selves 
 A total amount of 496 2-D projections of sub-selves were generated.  Out of the 4960 
possibilities for 3-D sub-selves, only 45 were generated.  The performance of each projection or 
sub-self was analyzed and compared based on the detection rate (DR) and false alarm (FA) rate.  
The detection function output is a binary signal that determines if a sub-system failure has been 
detected (output=1) or if the aircraft is flying at nominal conditions (output=0).  The binary 
output can be categorized in four types as follows: 

 True Positive (TP): a failure is detected and declared as failure; 
 True Negative (TN): nominal conditions are declared as nominal; 
 False Positive (FP): nominal conditions are declared as failures; 
 False Negative (FN): failure condition is not detected. 

These categories can be used for a quantitative evaluation of the DR and FA.  The following 
equations can be used to calculate the DR of a specified projection. 
ܴܦ  ൌ ܶܲܶܲ ൅ ܰܨ ൈ 100 

 

  
(2.2)

Similarly, the FA rate can be calculates as follows: 

ܣܨ  ൌ ܰܶܲܨ ൅ ܲܨ ൈ 100 

 

  
(2.3)

 The detection rates and false alarms were calculated for 26 different ACs varying in affected 
subsystem, type, and severity.  Table 2.1 presents a sample set of projections among the 496 
generated sub-selves that were selected as an example of the relevant combination of features 
utilized in this effort. 
 

Table 2.1.  Features of Selected Projections 
Self Features Self Features Self Features Self Features 
Self#3 ݌௥௘௙, ܰ ௣ܰ Self#94 ܰ ௣ܰ, Self#85 ݎ ܰ ௣ܰ, ܰ Self#105 ܧܧܱܳ ௣ܰ, ்݀ 

Self#30 ݍ௥௘௙, ܰ ௣ܰ Self#95 ܰ ௣ܰ, ߰ Self#86 ܰ ௣ܰ, ௣ܧܧܳܦ Self#106 ܰ ௣ܰ,ܯ 

Self#42 ݍ௥௘௙, ܰ Self#96 ݍ ௣ܰ, Self#87 ߠ ܰ ௣ܰ, ௤ܧܧܳܦ Self#224 ܧܧܳܦ௤, ߰ 

Self#53 ݍ௥௘௙, ݀௥ Self#97 ܰ ௣ܰ, ߮ Self#89 ܰ ௣ܰ, ܸ Self#233 ܧܧܳܦ௤, ݀௥
Self#82 ܰ ௣ܰ, ܰ ௤ܰ Self#98 ܰ ௣ܰ, Self#90 ܪ ܰ ௣ܰ, ܰ Self#410 ߙ ௣ܰ,  ሶ݌
Self#83 ܰ ௣ܰ, ܰ ௥ܰ Self#99 ܰ ௣ܰ, ܽ௫ Self#92 ௣ܰ, ܰ Self#441 ݌ ௣ܰ, ሶݍ  
Self#84 ܰ ௣ܰ,ܧܧܳܯ Self#100 ܰ ௣ܰ, ܽ௬ Self#93 ܰ ௣ܰ, ܰ Self#471 ݍ ௣ܰ, ሶݎ  

 
 Table 2.2 presents the performance analysis of those selves under four different failures: left 
aileron locked at 2.5 deg., left stabilator locked at 2 deg., 6% left wing loss, and 5 deg bias in the 
pitch rate sensor output.  A sample set of 20 projections is presented.  The detection rate as well 
as the false alarm rate is shown.  These results demonstrate that certain selves favor the detection 
of certain types of failures while showing poor detection rates for others.  This fact has been used 
in previous research efforts to support the formulation of the HMS startegy.  The presented 
mechanism uses low order projections to build sub-selves using a specific hierarchy of features 
relevance with respect to each type of failure.  Figures 2.2 through 2.5 present the individual 
detection rates obtained for different projections and four different failures.   
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 Figure 2.6 presents the detection rate that a single projection can attain when tested against 
four different failures.  It should be noted how a single projection is able to detect three different 
failures successfully while showing poor performance for a fourth one. This is due to the fact 
that the dynamics of such failure do not have great impact on the features corresponding to Self 
#87. 
 

Table 2.2.  Detection Performance of Selected Individual Selves 

Self 
L Aileron Locked 
at 2 deg 

L Stabilator 
Locked at 2 deg 

6% Loss of Left 
Wing 

Pitch Rate Sensor 
Bias (5 deg/sec) 

DR FA DR FA DR FA DR FA 
S3 82 1 99.3 1.85 99 1.1 2.27 1 
S30 83.5 0.0 99.2 0.0 99.5 0.0 4.16 0.0 
S42 0.0 0.0 8.22 0.0 0.1 0.0 99.9 0.0 
S53 22.9 0.0 24.8 0.0 25.1 0.0 86.7 0.0 
S82 92.3 0.0 99.7 0.0 99.2 0.0 4.63 0.0 
S83 88.1 0.0 99.6 0.0 99 0.0 0.22 0.0 
S84 86.2 0.0 99.5 0.0 99 0.0 0.05 0.0 
S85 88.7 0.0 99.4 0.0 98.9 0.0 26.5 0.0 
S86 84.2 0.0 99.4 0.0 98.9 0.0 24.2 0.0 
S87 80.4 0.0 99.4 0.0 99.1 0.0 46.8 0.0 
S89 90 0.0 99.6 0.0 99.2 0.0 1.46 0.0 
S90 91.1 0.0 99.5 0.0 99.5 0.0 0.68 0.0 
S92 80.8 0.0 99.3 0.0 99 0.0 0.09 0.0 
S93 82.9 1.25 99.4 1.55 99.4 0.0 1.3 0.0 
S94 85.8 2.25 99.5 2.25 99 2.4 0.51 2.25 
S95 90.9 0.0 99.6 0.0 99.1 0.0 0.87 0.0 
S96 89.5 0.0 99.5 0.0 99.3 0.0 3.18 0.0 

S97 86.3 0.0 99.5 0.0 99 0.0 0.08 0.0 

S98 94.6 0.0 99.6 0.0 99.2 0.0 11.2 0.0 

S99 86 0.0 99.4 0.0 99.2 0.0 2.98 0.0 

S100 86.9 0.0 99 0.0 97.7 0.0 0.16 0.0 

S105 91.1 0.0 99.6 0.0 99 0.0 12.2 0.0 

S106 93.1 0.0 99.5 0.0 99.1 0.0 6.76 0.0 

S224 0.36 0.0 1.85 0.0 0.9 0.0 63.7 0.0 

S233 5.51 0.0 8.04 0.0 12.4 0.0 87.8 0.0 

S410 81.4 0.0 99.4 0.0 99.1 0.0 0.06 0.0 

S441 80.9 0.0 99.4 0.0 99.1 0.0 0.64 0.0 

S471 80.5 0.0 99.3 0.0 98.9 0.0 0.05 0.0 
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Figure 2.2.  Detection Rate of Left Aileron Locked at 2.5 deg Failure 

 

 
Figure 2.3.  Detection Rate of Left Stabilator Locked at 2.0 deg Failure 

 

 
Figure 2.4.  Detection Rate of 6% Left Wing Loss Failure 
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Figure 2.5.  Detection Rate of Pitch Sensor Bias of 5 deg/sec Failure 

 

 
Figure 2.6.  Detection Rate of Self 87 for 4 Different Failures 

 
 

2.1.4.  Detection Logic for Direct Self/Non-self Discrimination Scheme 
 Based on the sensitivity analysis that establishes the capability of each projection to capture 
the dynamic fingerprint of the ACs considered, a sub-set of projections of size n is selected for 
detection.  A weight is associated to each projection depending on their detection potential.  
During the detection phase, sets of current values of the features measured in flight at a certain 
sampling rate are compared against the detectors that have been generated for each of the n 2D-
projections selected for detection.  A detection parameter ζ is calculated, which represents the 
number of consecutive points over a time window of size ω that trigger detectors, summed over 
all sub-selves and affected by the weights.  If ζ is within a certain range (less than a threshold 
Thr1), a failure warning is issued, but if ζ exceeds the upper bound of the range (larger than a 
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threshold Thr2), a failure is declared and the identification phase starts.  The flow chart of the 
SNSA detection logic is presented in Figure 2.7. 

 
Figure 2.7.  On-Line Failure Detection Logic with SNSA 

 
2.1.5.  Detection Performance Using Self/Non-self Discrimination  

 The set of aircraft features from Table 1.3 were used to build the AIS self and non-self.  
Several ACs were tested on the WVU 6-DOF motion-based flight simulator, as listed in Table 
2.3.  Different flight scenarios were considered over a wide range of the flight envelope for Mach 
numbers between 0.6 and 0.9 and altitudes between 9,000 ft and 31,000 ft.  Each flight test lasted 
between 15 and 20 minutes.  The data acquisition rate was 50 Hz.  The two performance metrics 
used are the percentage detection rate and the false alarm rate, as defined in section 2.1.3.   
 

Table 2.3.  Aircraft Subsystems Considered for AC Detection 

Category k Subsystem Tests Performed 

Actuators 

1 Left Stabilator Control surface locked at 2° and 8° 
2 Right Stabilator Control surface locked at 2° and 8° 
3 Left Aileron Control surface locked at 2.5° and 8° 
4 Right Aileron Control surface locked at 2.5° and 8° 
5 Left Rudder Control surface locked at 8° 
6 Right Rudder Control surface locked at 8° 

Structure 
7 Left Wing 6% and 15% loss of the wing 
8 Right Wing 6% and 15% loss of the wing 

Sensors 
9 Roll Gyro Sensor 5 deg/sec and 10 deg/sec Fast Drifting Bias  
10 Pitch Gyro Sensor 5deg/sec and 10deg/sec Fast Drifting Bias  
11 Yaw Gyro Sensor 1deg/sec and 3deg/sec Fast Drifting Bias  

Engine 
12 Left Engine 100% efficiency reduction 
13 Right Engine 100% efficiency reduction 
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Table 2.4 presents the average detection performance for the SNSA-based failure detection 
schemes.  As it can be seen from the results, the proposed methods exhibit very good 
performance with high detection rates and practically zero false alarms for the variety of ACs 
considered. 
 

Table 2.4.  Average Detection Performance of the SNSA Scheme 
k Subsystem Affected by AC Detection Rate [%] False Alarms [%] 
1 LeftStabilator 99.78 0.00 
2 RightStabilator 100 0.00 
3 LeftAileron 97.5 0.00 
4 RightAileron 97.48 0.00 
5 LeftRudder 65.86 0.00 
6 RightRudder 75.04 0.00 
9 Left Wing 100 0.00 
10 Right Wing 100 0.00 
15 RollRateSensor 99.98 0.00 
16 PitchRateSensor 99.98 0.00 
17 YawRateSensor 97.19 0.00 
18 LeftEngine 94.77 0.00 
19 Right Engine 72.54 0.00 
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2.2.  Dendritic Cell Mechanism for Abnormal Condition Detection 
 

2.2.1.  The Artificial Dendritic Cell 
 The DC mechanism-based approach for failure detection is inspired by the functionality of 
the biological DCs in the tissue and their interaction with the adaptive immune system.  A 
detection outcome is produced based on the combined discrimination outcomes from all 2-D 
projections (possibly augmented with the outcomes from higher dimensional projections). 
 Let the time sample be denoted as t.  Define the detection matrix tD  as: 
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A moving time window of size w is assumed for detection.  Each column of matrix tD  is a set of 

detection outcomes of a particular sub-self over the entire time window.  Ideally, all elements of 
this matrix are equal to zero under normal conditions and to 1 under abnormal conditions.  In 
practice, tD  usually contains both zeros and ones whether the time window is under normal or 

abnormal conditions due to imperfections in designing and building the sub-selves and/or due to 
the shape of the self that may project abnormal condition feature points into the self area.  This 
situation may lead to false alarms and missed detections if not properly handled.   
 Let the complement of matrix tD  be: 

 
     )Det(nonDet|DetD ijijijt              (2.5) 

 
 Cells from a pool of DCs are randomly selected to process the input matrices tD  and tD .  

For each DC the “triggered features matrix” 1F  and the “non-triggered features matrix” 0F  are 

built.   
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where 1FF qjqj   if q  belongs to the triggered sub-self jS . 
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where 1FF qjqj   if q  belongs to the not-triggered sub-self jS . 

 For each sub-self jS , a “confidence” factor (  1,0w i0  ,   1,0w i1  ) for accurately 

capturing the self and non-self is defined, which is used to define the following weighting 
vectors: 
 

     TN002010 SS
w,,w,wW               (2.8) 

 
represents the level of confidence that an output of “0” is trustworthy. 
 

     TN112111 SS
w,,w,wW               (2.9) 

 
represents the level of confidence that an output of “1” is trustworthy. 
 When a DC processes an input, the concentration of the secreted proteins, known as “co-
stimulatory molecules,” denoted by CSM, on the surface of the cell increases, regardless of 
whether the input is self or non-self (i.e., antigen).  It is important to note that hT -cells cannot be 
activated unless both the antigen and the CSM coexist.  If the input is an antigen, the cell 
produces a special cytokine called “interleukin-12,” denoted by 12IL .  Otherwise, it produces 
another type of cytokine called “interleukin-10,” denoted by 10IL .  Thus, the presence of 12IL  is 
an indication of abnormal condition and that of 10IL  is a normal one.  Any DC cannot migrate to 
the lymph node until its CSM reaches a predefined threshold,  , which is randomly assigned to 
each cell C    during initialization.  Like any other cells, some DCs experience “apoptosis,” 
the healthy programmed cell death.  This is expressed by assigning a random life, L, to each 
artificial cell C    during initialization. 
 Some cells migrate to the lymph node (the adaptive immune system) with an indication of 
abnormal conditions and stimulate the adaptive immune system to generate cytotoxic T-cells 
while other cells migrate with an indication of normal conditions and stimulate the adaptive 
immune system to generate suppressor T-cells to regulate the generated cytotoxic T-cells.  This 
stimulation/suppression of the cytotoxic T-cells determines the resultant response of the adaptive 
immune system which indicates whether the system is under normal or abnormal conditions. 
 At each time sample, the selected DCs update their internal parameters based on detection 
outcome from all projections according to the following relationships: 
 
    0tN1tt WDI10IL10IL

SS
             (2.10) 

where  1,,1,1I
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    1tN1tt WDI12IL12IL
SS

             (2.11) 

 
    1CSMCSM 1tt                 (2.12) 

 
    1LL 1tt                  (2.13) 

 
 If 0L  , a cell is considered dead and it is replaced by a new cell.  This can be done by 
reinitializing the dead cell with the default properties.  Any cell with CSM   should migrate 
from the tissue to the lymph node to present the processed input and must be replaced by a new 
cell with default properties.  If these two conditions are not met, the cell continues processing the 
next element of tD  and tD , if the cell belongs to the randomly selected subset.  Any migrated 

DC with 12 10IL IL  is called “stimulatory” since it activates cytotoxic T-cells; otherwise it is 
called “regulatory” since it activates suppressor (regulatory) T-cells. 
 Let the mature DC be denoted by DCk N,,2,1k,DC  , where DCN  is the total number 

of mature DCs.  Let the set of activated cytotoxic T-cells be  N,,2,1q|KK q  , where 

qK  is the number of activated cytotoxic T-cells corresponding to feature q , then: 
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Let the set of activated suppressor T-cells be: 
 
     N,,2,1q|RR q              (2.15) 

 
where qR  is the number of activated suppressor T-cells corresponding to feature q , then: 
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 The role of the suppressor T-cells is to regulate the adaptive immune response by 
suppressing a corresponding number of activated cytotoxic T-cells.  This results in a set of 
residual cytotoxic T-cells given by: 
 
     N,,2,1q|RKK

~
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qqq            (2.17) 

 
The detection outcome at sample time t is finally defined as: 
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 The block diagram of the proposed algorithm is illustrated in Figure 2.8.  A set   of DCN  
dendritic cells is initialized with each cell C    ( 1, 2, , DCN  ) having the data structure 
shown in Figure 2.9. 

 
Figure 2.8.  Block Diagram of the DC Algorithm for Failure Detection 

 

 
 

Figure 2.9.  Data Structure of an Artificial Dendritic Cell 
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2.2.2.  Detection Performance Using the DC Mechanism 
 The artificial DC mechanism for detection was implemented in C# for computational speed 
considerations.  The code was compiled with Microsoft® .NET™ Framework version 4.5 and 
integrated with the WVU simulation environment for the fighter aircraft.  Validation tests, along 
with the information of the generated sub-selves, were used as input data to the DC algorithm.  
The algorithm was initialized with a pool of 100 DCs and a moving time window of 50 time 

steps (i.e., 1 s).  The sum of the residual cytotoxic T-cells 1

N

ii
k

 
 in Eq. 2.18 versus time is 

shown in Figures 2.10 - 2.13 for different tests.  These figures show that the sum of the residual 
cytotoxic T-cells produced by the DC mechanism is negative and remains in a narrow band for 
normal conditions.  When an AC occurs, this parameter experiences an abrupt increase and 
remains positive, capturing the occurrence of the AC and providing a reliable detection criterion. 

 
Figure 2.10.  Sum of Residual Cytotoxic T-
cells vs. Time of a Nominal Flight Test 
 
 
 

 
Figure 2.11.  Sum of Residual Cytotoxic T-
cells vs. Time of an AC Flight Test: Right 
Aileron Locked at 8°. Actual Failure Time = 
40 s; Detection Time = 40.76 s 
 

 
Figure 2.12.  Sum of Residual Cytotoxic T-
cells vs. Time of an AC Flight Test: 3° LFDB 
in Yaw Rate Sensor. Actual Failure Time = 40 
s; Detection Time = 43.38 s 

 
Figure 2.13.  Sum of Residual Cytotoxic T-
cells vs. Time of an AC Flight Test: 15% Loss 
of the Left Wing. Actual Failure Time = 40 s; 
Detection Time = 40.52 s 
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 Table 2.5. summarizes the detection rate for different subsystems.  The percentage detection 
rate is computed based on the ratio between the number of samples detected as AC and total 
number of samples under AC.  Note that these rates are the averages of detection rates of the 
corresponding number of different tests with different failure magnitudes and/or flight paths in 
the third column of the table.  Also note that each flight test lasts for about 20 min. on average 
and that all failures were introduced at 40 s.  Failures can be introduced at any time during the 
flight test without affecting the performance of the algorithm.  Samples during the first 40 s were 
used to determine the false alarm rate as the ratio between the number of samples detected as 
failure and the total number of samples under normal conditions.  In all tests, the false alarm rate 
was zero.  Without specific tuning of the parameters, the average detection time of the algorithm 
for the failures considered was 2 s, with a standard deviation of 2.8 s. 
 

Table 2.5.  Average DC-based Detection Rate for Different Subsystems 
k Subsystem Detection Rate,% No.Tests 
1 Left Stabilator 99.93 3 
2 Right Stabilator 99.93 3 
3 Left Aileron 99.46 4 
4 Right Aileron 98.94 3 
5 Left Rudder 93.09 3 
6 Right Rudder 80.47 2 
7 Left Throttle 54.76 2 
8 Right Throttle 54.72 2 
9 Left Wing 99.93 4 
10 Right Wing 99.94 4 
11 Left Horizontal Tail 99.82 2 
12 Right Horizontal Tail 99.91 2 
13 Left Vertical Tail 24.95 3 
14 Right Vertical Tail 16.66 1 
15 Roll Rate Sensor 96.46 6 
16 Pitch Rate Sensor 99.86 5 
17 Yaw Rate Sensor 99.78 5 
18 Left Engine 59.72 4 
19 Right Engine 59.22 4 
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Chapter 3 
 

Immunity-based Identification of Aircraft Subsystem Abnormal Conditions  
 

3.1.  Structured Non-self Approach for Abnormal Condition Identification 
 

3.1.1.  Principles of AC Identification Using the Structured Non-self Approach 
 Structuring the non-self for AC identification and converting the detectors into identifiers by 
attaching the jdSys  tags involves the identification of detector sub-sets that correspond to AC 

that affect specific sub-systems.  This implies the prior generation of the non-self with adequate 
resolution and knowledge of AC characteristics.  Such information can be obtained from tests, 
simulation, or analysis.  The concept is illustrated in Figure 3.1 for the 2-dimensional case with 
the assumption that the sub-sets jdSys  have only one element each. 

 

 
Figure 3.1.  Failed Subsystem Identification Using the Structured Non-self Approach 

 
 If 1Dett  , then the triggering detector is checked for structural parameters and a current 

identification outcome is defined using Eq. (1.2), for example, as: 
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If Eq. (1.3) is used then the current identification outcome is defined as: 
 
    Nsf21t idididIdt  ,  jî dSysiforiid          (3.2) 

 
 If one N-dimensional non-self is used with perfect feature definition, then the identification 
process outcome can be defined as: 
 
    tIdtIdt                    (3.3) 

 
 If the HMS strategy is used, then Eq. (3.1) or (3.2) is applied to each sub-self and a 
composition logic C  must be designed to obtain the current identification outcome as: 
 
    )Idt(Idt tit C ,  ssN,...,2,1i              (3.4) 

 
then Eq. (3.3) can be applied.  However, as was the case with the detection process, using Eq. 
(3.3) directly may produce a large number of incorrect identifications.  This can be mitigated by 
reprocessing the current outcomes tIdt  over a moving time window.  The composition logic C  

can also rely on the DC mechanism.  
 

3.1.2.  Identification Algorithm Using the Structured Non-self Approach 
 The identification algorithm is only activated when the detection algorithm declares that an 
abnormal condition is present.  The identification phase assumes that the output of the detection 
phase is correct. 
  In this research effort a novel structured non-self approach (SNSA) has been developed 
within a HMS strategy.  This approach is based on a structuring process, or arrangement, of non-
self projections and intends to reduce the computational effort required and facilitate the real-
time application of the AIS approach without compromising the ACFDIE performance.  The 
SNSA consists of a dual- phase algorithm where 2-dimensional self/non-self projections, 
previously generated using a negative selection mechanism and tested in simulation under 
several abnormal conditions, are selected according to the ability to detect failures at a 
predefined detection rate percentage.  Then, by using a positive selection-type mechanism, the 
resulting projections are processed in order to generate identifiers capable of differentiating 
similar dynamic prints among several abnormal conditions and declaring correct failure types, 
and magnitudes.  For example, within a first phase of the SNSA, a total of 496 self/non-self 
projections were generated based on the availability of 32 features to capture the dynamic print 
of abnormal conditions.  After extensive experimentation it was possible to reduce the number of 
self/non-self projections to 183 possible candidates with a DR equal or larger than 70%.  These 
projections are considered to possess the ability to capture the dynamic print of several sub-
system failures and, more importantly, facilitate the process of characterizing the projections that 
perform better during the identification of specific failures.  Table 3.1 presents a sample set of 2-
dimensional projections investigated within the identification phase. 
 It is important to note that the dynamic fingerprint of several failures may produce a very 
similar effect on the features of self/non-self projections.  This characteristic presents a more 
complex problem in which incorrect identification may be produced if the identification problem 
is not defined appropriately.  For example, let us assume that an identification algorithm, only 
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consisting of Self#3 (݌௥௘௙, ܰ ௣ܰ), is tested for two sub-system failures (i.e. right wing structural 
failure and left aileron stuck failure).  This particular pair of failures will produce an undesired 
roll rate that can be successfully perceived and detected by Self#3.  The dynamic fingerprint 
produced by both abnormal conditions in the selected projection may look very similar, 
increasing the complexity of the identification problem.  Now, let us assume that the same 
identification algorithm is augmented with Self#30 (ݍ௥௘௙, ܰ ௣ܰ), which can also capture the 
abnormal condition dynamic print of the mentioned failures.  Due to the fact that Self#30 also 
captures dynamic changes in pitch rate, it is possible to identify and distinguish between the two 
mentioned failures.  Within a second phase of the SNSA, positive selection applied to the 183 
self/non-self projections is performed in order to address the mentioned identification problem.  
For illustration, Figures 3.2 and 3.3 present the similarity of the dynamic print of two different 
failures in a 2-dimensional projection.  
 

Table 3.1.  Self/Non-self 2-D Projections for SNSA Approach 
Self Features Self Features 
Self#3 ݌௥௘௙, ܰ ௣ܰ Self#56 ݎ௥௘௙, ܰ ௣ܰ 
Self#4 ݌௥௘௙, ܰ ௤ܰ Self#57 ݎ௥௘௙, ܰ ௤ܰ 
Self#7 ݌௥௘௙, ,௥௘௙ݎ Self#60 ܧܧܱܳ  ܧܧܱܳ
Self#8 ݌௥௘௙, ,௥௘௙ݎ ௣ Self#61ܧܧܳܦ  ௣ܧܧܳܦ
Self#9 ݌௥௘௙, ,௥௘௙ݎ ௤ Self#62ܧܧܳܦ  ௤ܧܧܳܦ
Self#30 ݍ௥௘௙, ܰ ௣ܰ Self#69 ݎ௥௘௙,  ݎ
Self#31 ݍ௥௘௙, ܰ ௤ܰ Self#82 ܰ ௣ܰ, ܰ ௤ܰ 
Self#34 ݍ௥௘௙, ܰ ௣ܰ Self#83 ܰ ௣ܰ, ܰ ௥ܰ 
Self#35 ݍ௥௘௙, ܰ ௣ Self#84ܧܧܳܦ ௣ܰ,ܧܧܳܯ 
Self#36 ݍ௥௘௙, ܰ ௤ Self#85ܧܧܳܦ ௣ܰ,  ܧܧܱܳ
Self#42 ݌௥௘௙, ܰ ௣ܰ Self#86 ܰ ௣ܰ,  ௣ܧܧܳܦ
Self#52 ݍ௥௘௙, ݀௘ Self#87 ܰ ௣ܰ,  ௤ܧܧܳܦ
Self#53 ݍ௥௘௙, ݀௥ Self#88 ܰ ௣ܰ,  ௥ܧܧܳܦ

 
 The combined identification capabilities of the projections utilized within the two phases of 
the SNSA (see Figure 3.4) provides a more robust system capable of not only correctly 
identifying the detected failure but also providing information regarding the magnitude of the 
investigated failures.  With the correct combination of projections and their corresponding 
identifiers, it is possible to discard incorrect identifications and ultimately determine which 
abnormal condition is affecting the system.  
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      (a)          (b) 
Figure 3.2.  (a) Self#3 with Left Aileron Failure; b) Self#3 with Right Wing Structural Damage 

       
      (a)          (b) 
                                                                                b) 
Figure 3.3.  (a) Self#30 with L Aileron Failure; (b) Self#30 with R Wing Structural Damage 
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Figure 3.4.  Structured Non-Self Approach Logic 

 
3.1.3.  Generation of Identifiers 

 The process of generating identifiers is very similar to the detector generation.  However, 
the generation of identifiers is based on a positive selection-type of algorithm, in which failure 
flight test data are used to expose the dynamic fingerprint of a failure throughout the entire flight 
envelope.  The generation of identifiers consists of a multi-step process that optimizes the set .  
The radii of the identifiers depend mostly on their distance to the self.  The flow chart of the 
identifier generation is presented in Figure 3.5.  The main components of the process are 
described next. 
 Abnormal Flight Tests.  Flight tests at different abnormal conditions throughout the entire 
flight envelope must be performed.  Previously selected features corresponding to the self/non-
self definition as shown in Table 3.1 must be recorded for future processing and identifier 
definition.   
 Normalization.  The sets of raw data received from the flight tests are recorded and their 
values are normalized between 0 and 1.  The normalization factor of each projection is 
determined by the range of the flight data plus a percent margin.  The normalization factor is the 
same used for the self/non-self projections during the antibodies generation.  Therefore, the 
normalized data points of failure data correspond to the correct hypercube projection of each 
specific feature combination. 
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Figure 3.5.  Flowchart of the Identifier Generation Process 
 
 Offset Hypercubes.  The unit hypercube determined during the normalization process 
delimits the hyperspace of the nominal conditions.  High magnitude failures may contain data 
points that lay far away from the unit hypercube of the self/non-self projection.  Therefore, 
outward concentric hypercubes are defined in order to determine the distance of the abnormal 
condition point from the self (see Figure 3.6), which subsequently allows the algorithm to 
determine the magnitude of the corresponding failure as part of the direct quantitative evaluation.  
Note that these phases defined, in general, subsequently may be performed simultaneously.  
 

 
 

Figure 3.6.  Concentric Hypercubes and Radii Variation With Respect to Distance from the Self 
 
 Radii Assignment.  The radius of any identifier is predetermined and it is assigned 
depending on the location of its center with respect to the offset hypercubes.  The radius of an 
identifier increases as the position of its center lies within an outward hybercube.  In other words, 
the radii of all identifiers increase as their distance to the self increases as illustrated in Figure 
3.6.   
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 Identifiers Elimination/Fusion.  The amount of initial identifiers depends on the number of 
data points obtained from the flight tests.  This may yield an enormous number of identifiers 
which will produce a degradation of the computer processing capability.  A simple elimination 
algorithm is implemented in order to reduce the number of identifiers.  Identifiers that lay inside 
the radius of another identifier plus a tolerance are eliminated.  Finally, a fusion process is 
performed.  The fusion process consists of a set union accompanied with overlapping 
elimination.  After this step is concluded, the final number of identifiers is reduced considerably.   
 

3.1.4.  The Two Phases of the SNSA Approach 
 The first phase of the SNSA is the result of the failure detection testing within the HMS 
strategy and consists in the selection of lower dimensional projections.  Only 2-D projection 
have been considered in the phase of the project.  As mentioned previously, 496 2-dimensional 
self/non-self projections were generated for failure detection algorithm experimentation.  These 
projections were then tested against over 20 different failures.  Different magnitudes/severities of 
the ACs were also considered.  Extensive experimentation was required in order to determine 
which projections could substantially detect a failure with good detection rates and minimum 
false alarms within a NS approach.  It was determined that a total of 183 projections were able to 
fulfill the objectives of a DR equal or higher than 70%.  This process is referred to as the Phase I 
Non-Self Structuring.  The selected projections were chosen as potential candidates for 
identification included sensor outputs, state estimates, and statistical parameters among other 
features.  The set of abnormal conditions involved sensor failures, structural damage on the 
wings, engine failures, and control surface failures.  Table 3.2 presents a list of the failures 
investigated in this research effort. 
 

Table 3.2.  Phase I SNSA Subsystem Failures 
Failure # Failure Type Failure # Failure Type 
1 Left Aileron 2deg 9 Left Wing Loss 6% 
2 Right Aileron 2deg 10 Right Wing Loss 6% 
3 Left Aileron 8deg 11 Left Wing Loss 15% 
4 Right Aileron 8deg 12 Right Wing Loss 15% 
5 Left Stabilator 2deg 13 Left Engine Out 
6 Right Stabilator 2deg 14 Right Engine Out 
7 Left Stabilator 8deg 15 Roll Sensor Bias 5deg/sec 
8 Right Stabilator 8deg 16 Roll Sensor Bias 10deg/sec 

 
 Several failures presented similar dynamic prints on several 2D-projections, which 
subsequently led to the repetition of several projections with the ability to detect multiple 
failures.  On the other hand, certain failures that are difficult to detect, such as rudder failure, 
only resulted in the activation of a small number of projections.  The negative selection logic 
behind the Phase I Structuring resulted in the reduction of the number of the original projections 
into a smaller set, reducing the complexity and the hardware requirements for its 
implementation.  Table 3.3 presents a sample of the projections that are considered to be 
adequate for abnormal condition identification based on a detection performance equal or higher 
than 70%.  The detection capability of this sample set of projections is presented for five types of 
failures.  Various projections present the ability to capture the dynamic fingerprint of several 
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abnormal conditions while others can only capture the dynamics of a small set or just a single 
abnormal condition.  For example, Self#3 demonstrated its ability to capture the dynamic 
fingerprint of a left aileron locked, a right wing structural damage and a left stabilator locked 
failure.  On the other hand, Self#4 only demonstrated the ability to capture the dynamic 
fingerprint of a left stabilator locked type of failure.   
 

Table 3.3.  Detection Sensitivity of a Sample Set of Projections (%DR) 

         Failure 
 
Self 

Left 
Aileron 
stuck at 
2.5 deg 

Right Wing 
6% 
Structural 
Damage 

Left 
Stabilator 
Stuck at 8 deg. 

Right Engine 
Out 

Pitch 
Sensor 
10deg/sec 
Bias 

Self# 3 82.02 99.84 99.96 10.51 3.42 
Self# 4 1.45 3.87 99.85 1.42 4.08 
Self# 30 83.49 99.83 99.96 10.57 30.02 
Self# 31 0.85 1.94 99.82 0.52 60.68 
Self# 52 0.99 0.76 1.56 1.10 71.52 
Self# 56 86.85 99.94 99.88 12.94 0.59 
Self# 82 92.33 99.96 99.97 21.32 15.01 
Self# 83 88.06 99.93 99.97 14.13 0.74 
Self# 84 86.23 99.94 99.98 12.05 0.30 
Self# 85 88.76 99.91 99.96 12.80 37.42 
Self# 100 86.92 99.45 99.25 15.20 0.46 
Self# 142 0.06 29.35 56.08 72.42 0.99 
Self# 233 5.51 7.47 7.02 5.49 92.07 
Self# 259 13.44 54.05 77.33 72.54 9.41 
Self# 350 15.39 33.10 60.70 72.47 22.27 
Self# 351 26.07 50.30 67.13 71.49 14.23 
Self# 433 1.39 1.44 6.76 2.33 77.7 

 
 Within this analysis it was possible to isolate the projections that can be used for 
identification purposes.  From the Phase I analysis, it was possible to determine which specific 
projections correspond to every specific failure investigated.  Furthermore, it is also possible to 
determine how many projections capture the dynamic fingerprint of an abnormal condition.  
Table 3.4 below presents the number of projections from the 183 total initially selected that have 
the potential to be used for successful identification purposes.  
 The outcome of the Phase I self/non-self structuring reduces the total amount of projections 
needed to perform ACFDIE.  Its outcomes also allow for adequate design of the mapped-based 
positive selection algorithm utilized in the second phase of the SNSA by reducing the number of 
possible projections for the generation of identifiers as well as the reduction of identifiers 
required in the identification algorithm for each individual projection. 
 Phase II of SNSA includes a positive selection process where flight failure test data are used 
to generate higher resolution non-self detectors called identifiers.  Resulting projections from 
Phase I are processed in order to generate identifiers capable of differentiating similar dynamic 
fingerprints among several abnormal conditions and declaring correct failure types, and 
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magnitudes.  In order to obtain correct identification results, the identification logic must be 
carefully formulated and the generation and selection of identifiers must be adequate.  Subsets of 
antibodies or identifiers must be generated with sufficient resolution to avoid incorrect outputs.   
 

Table 3.4.  Total Number of Projections Activated per Failure 
Actuator Engine Structural 
Aileron 
Stuck (8 deg) 

Stabilator 
Stuck (8 deg) 

Rudder 
Stuck (8 deg) 

Engine Out 
Wing Damage
(15%) 

L R L R L R L R L R 

31 31 72 62 9 11 31 4 31 31 

 
 The identifiers generated during Phase I and II are loaded into an identification function and 
organized in a single array such that the index of each identifier corresponds to a failure type and 
magnitude.  The arrangement of the identifiers is inspired by a mapping-based algorithm, which 
simplifies the selection scheme.  The positive selection process is performed in parallel by all the 
projections included in the identification algorithm.  Each projection outputs a single index that 
corresponds to a type and magnitude of failure.  The outputs of all projections are compared 
among each other and the most frequent value is determined.  If a specific failure index is 
constant throughout the majority of the projections’ outputs, its value is selected and a proper 
identification is declared.  
 

3.1.5.  AC Identification Performance Using Self/Non-self Discrimination 
 Since the SNSA covers not only general identification logic, but also a qualitative and 
quantitative evaluation logic integrated into a single less complex algorithm, the identification 
results are presented in Section 4.1 integrated with classification results of magnitude and 
category of failure.  This novel approach intends to reduce the computational processing for real 
time application of the solution to the ACDIE problem.  The proposed mapping-based positive 
selection logic targets a multi-dimensional problem by means of a simpler but effective logic that 
can result in a more efficient real time algorithm. 
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3.2.  Dendritic Cell Mechanism for Abnormal Condition Identification 
 

3.2.1.  Dendritic Cell Mechanism for AC Identification  
 The DC mechanism-based approach for AC identification infers the subsystem affected 
based on the topography of the detection outcomes from self/non-self projections, within the 
HMS strategy.  Therefore, with the DC approach, the AC identification is formulated as a pattern 
recognition problem.  The AC identification consists of determining which one of the SN  sub-

systems has been affected by the AC and it starts once an AC has been detected.  Patterns for AC 
identification purposes may be defined based on the 1F  matrix.  Note that the 0F  matrix may 

also be introduced into the process.  SN  different patterns must be established, one associated to 

each subsystem.  The process of establishing the library of pattern is presented in Figure 3.7.  
There are three possible alternatives for defining the patterns: 
  Feature-pattern (F-P) approach 
  Projection-pattern (P-P) approach  
  Matrix-pattern (M-P) approach 
 
 A).  Feature-pattern (F-P) approach for AC identification 
 For each AC, define the vector of membership values of each feature to the set of equivalent 
directly involved variables: 
 

     TN21ACj mmmFP  ,   1,0mi            (3.5) 

 
For each subsystem k, define the FP vector as: 
 

     TN21

N

1j
ACjN

1j
ACj

i

k mmmFP

)FP(max

1
FP

ftk

ftk
 






       (3.6) 

where      1,0mi  ,  SN,,2,1k                (3.7) 

 
All these membership values can be determined based on tests and heuristics.  Note that binary 
logic can be used instead of fuzzy logic.  In this case:  10mi   and  10mi  . 

 At each sample time, after an AC is detected, use the 1F  matrices of the mature DCs to 
compute the current AC FP as: 

    
SS

DC

N

N

1q
q11 IFF 











 


 ,    1N

N
SS

SS
1I             (3.8) 

 Use a matching algorithm to determine which one of the SN  FP vectors best matches 1F .   

 
 B).  Projection-pattern (P-P) approach for AC identification 
 For each AC, define the vector of membership values of each projection to the set of AC-
relevant projections (projections that can capture the dynamic fingerprint of the AC): 
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     TN21ACj SS
nnnPP  ,   1,0ni            (3.9) 

 
For each sub-system k, define the P-P vector as: 
 

     TN21

N

1j
ACjN

1j
ACj

i

k SS

ftk

ftk
nnnPP

)PP(max

1
PP  






     (3.10) 

where     1,0ni  ,  SN,,2,1k              (3.11) 

 
All these membership values can be determined based on tests and heuristics.  Note that binary 
logic can be used here as well. 
 At each sample time, after an AC is detected, use the 1F  matrices of the mature DCs to 
compute the current AC PP as: 
 

    











 



DCN

1q
q1NP1 FIF ,    SSN1

N 1I            (3.12) 

 
 Use a matching algorithm to determine which one of the SN  PP vectors best matches P1F .   

 
 C).  Matrix-pattern (M-P) approach for AC identification 
 For each sub-system k, define the FP vector kFP  and the PP vector kPP  as described 

above.  Use them to build the MP matrix kMP . 
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

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,   1,0m*
ij  ,  N,,2,1i  ,  SSN,,2,1j      (3.13) 

where    





otherwise0

Stobelongsif)n,mmax(
m jiji*

ij


         (3.14) 

 
At each sample time, after the AC is detected, compute the sum of all mature DC 1F  matrices as: 
 

    



DCN

1q
q1M1 FF ,  DCN,,2,1q           (3.15) 

 
 Finally, use a matching algorithm to determine which one of the SN  M-P matrices best 

matches M1F .   



78 
 

 
Figure 3.7.  Generation of Library of Reference Patterns for Identification Using the DC 

Mechanism for Identification and the Naïve Bayes Classifier 
 
 

3.2.2.  Performance of AC Identification Using a Dendritic Cell Mechanism  
 Among the three pattern approaches, the F-P approach was selected since it requires less 
computational resources as compared to the P-P and M-P approaches.  The artificial DC 
mechanism for identification with the F-P approach was implemented in C#.  The naïve Bayes 
classifier was trained with the current F-P vectors 1F   from a set of training failure tests for each 

subsystem k to implicitly define the reference features-pattern kFP  of that subsystem in terms of 

the corresponding mean vector and covariance matrix.  Figure 3.8 illustrates the variation of the 
current F-P vectors 1F   over the entire test time of a failed right wing subsystem (k = 13) in one 

of these tests.  Figures 3.9 through 3.11 depict the reference kFP  vectors of the right wing (k = 

13), left aileron (k = 3), and the yaw rate sensor (k = 11), respectively.  Once a failure is declared 
by the DC mechanism, the current 1F   vector is passed to the naïve Bayes classifier to select the 

closest kFP  to the current 1F   vector, and thus identify the failed subsystem.  A sample current 

1F   is shown in Figure 3.12 for a validation failure test with right wing damage. 

 Listed in Table 3.5 are the average identification rates for different subsystems.  These 
results show the capability of the proposed AC identification scheme in isolating the failed 
subsystem with very high identification rates.  Note that the first column in Table 3.4 represents 
the subsystem affected by the failure and the first row represents the subsystem identified as the 
failed one.  The off-diagonal numbers in the table represent the incorrect identification 
(misclassification) rates.  For example, 99.13% of the samples under failure of the right stabilator 
were correctly identified, whereas for 0.81% of these samples, the failed subsystem was 
incorrectly identified as the left stabilator; for 0.05% of these samples, the failed subsystem was 
incorrectly identified as the left rudder; and for 0.01% of these samples, the failed subsystem was 

 

Failed 
Sub-system k  

DC Mechanism 
for Detection 

Failure 
Detected?

AC Flight Test 

End of 
Test? 

Set 1k kN N   

and Compute Pattern 
Vector from 1F  Matrices 

of All Migrated DCs 

Yes 

No 

Compute Mean Vector 

k  and Sample 

Covariance Matrix k
for all Pattern Vectors

Yes 

Save kN , k , and k  

(Library of Reference Patterns) 

No 
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incorrectly identified as the pitch rate sensor.  The small variations in performance between 
subsystems may be typically attributed to imperfect coverage of the self, imperfect detector 
generation, errors introduced by the projections, and variations of the classification algorithm 
used in conjunction with the DC mechanism. 
 

 
Figure 3.8.  Variation of the Feature-Pattern Vector with Time of a Failed Right Wing 

Subsystem 
 

        
Figure 3.9.  Reference Features-Pattern of a     Figure 3.10.  Reference Features-Pattern of a  
   Failed Right Wing        Failed Left Aileron 
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Figure 3.11.  Reference Features-Pattern of a    Figure 3.12.  Sample Current Feature-Pattern 
   Failed Yaw Rate Sensor      of a Failed Right Wing 
 

Table 3.5.  Average Identification Rates Using the DCMechanism 
Sub- 
system 

Left 
Stab. 

Right 
Stab. 

Left 
Aileron 

Right 
Aileron 

Left 
Rudder 

Right 
Rudder 

Left 
Wing 

Right 
Wing 

Roll 
Rate 

Pitch 
Rate 

Yaw 
Rate 

Left 
Stab. 

 
100.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

Right 
Stab. 

 
0.81 

 
99.13 

 
0.00 

 
0.00 

 
0.05 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.01 

 
0.00 

Left 
Aileron 

 
0.00 

 
0.00 

 
99.78 

 
0.14 

 
0.01 

 
0.00 

 
0.04 

 
0.00 

 
0.03 

 
0.00 

 
0.00 

Right 
Aileron 

 
0.00 

 
0.00 

 
0.00 

 
99.89 

 
0.08 

 
0.00 

 
0.00 

 
0.00 

 
0.01 

 
0.00 

 
0.02 

Left 
Rudder 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
99.95 

 
0.05 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

Right 
Rudder 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.04 

 
99.96 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

Left 
Wing 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
99.95 

 
0.05 

 
0.00 

 
0.00 

 
0.00 

Right 
Wing 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.02 

 
99.98 

 
0.00 

 
0.00 

 
0.00 

Roll 
Rate 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.01 

 
0.00 

 
0.00 

 
0.00 

 
99.99 

 
0.00 

 
0.00 

Pitch 
Rate 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
100.00 

 
0.00 

Yaw 
Rate 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.01 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
0.00 

 
99.99 
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Chapter 4 
 

Immunity-based Direct Evaluation of Aircraft Subsystem Abnormal 
Conditions  

 
 AC direct evaluation consists of two parts: qualitative direct evaluation and quantitative 
direct evaluation.  The qualitative evaluation refers to determining the nature or the type of the 
AC, while the quantitative direct evaluation refers to determining the severity of the AC or the 
actual values of parameters that are a direct consequence of the AC.  The AC direct evaluation 
within the AIS paradigm can be approached in a similar way as the identification phase. 
 

4.1.  Structured Non-self Approach for Abnormal Condition Direct Evaluation 
 The Structured Non-self approach can be used not only to perform general AC 
identification, but also a qualitative and quantitative AC evaluation within an integrated logical 
framework, such that the overall algorithm is less complex.  This novel approach intends to 
reduce the computational processing for real time application of the solution to the ACFDIE 
problem.  The proposed mapping-based positive selection-type of approach targets a multi-
dimensional problem by means of a simpler but effective logic that can result in a more efficient 
real time algorithm.  Within this method, the determination of the type and severity of an AC, 
also known as direct evaluation, is performed simultaneously with the identification stage as a 
single process, leaving the indirect evaluation as an individual stage in the SNSA.  This 
architecture is presented in Figure 4.1. 
 

4.1.1.  Structured Non-self Approach for Qualitative Direct Evaluation  
 The qualitative evaluation can be performed in a manner similar to the identification by 
structuring the non-self and attaching to each detector jd  the tags jdFt .  This process involves 

the identification of detector sub-subsets within each subset corresponding to one single 
subsystem.  As was the case with the identification process, prior generation of the non-self with 
adequate resolution and knowledge of AC characteristics is required.  This concept is illustrated 
in Figure 4.2 for the 2-dimensional case with the assumption that the sub-sets jdFt  have only 

one element each. 
 If 1Dett  , then the triggering detector is checked for structural parameters and a current 

qualitative evaluation outcome for the case when only one sub-system is affected can be defined 
as: 
 

  Nft21t 1ev1ev1ev1Ev  , with 
jdSysNftNft   and 

ji

ji

Ftifor11ev

Ftifor01ev




     (4.1) 

 
Note that t1Ev  can be formulated to consist of non-zero elements only, case in which: 

    jt dFt1Ev                    (4.2) 
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If several subsystems may be affected (that is 1)dSys(size j  ), then t1Ev  from Eq. (4.1) 

becomes a matrix with )dSys(size j  rows and )Nft(max k
N,...1k s

 columns.  Note that some rows of 

this matrix must be completed with zeros to account for the different values of kNft .    

 

 
 

Figure 4.1.  Integration of Direct Evaluation and Identification Within SNSA 
 
 If one N-dimensional non-self is used with perfect feature definition, then the qualitative 
evaluation outcome can be defined as: 
 
    t1Ev1Ev                (4.3) 

 
 If the HMS strategy is used, then Eq. (4.1) or (4.2) is applied to each sub-self and a 
composition logic C  must be designed to obtain the current qualitative evaluation outcome as: 
 
    )1Ev(1Ev tit C ,  ssN,...,2,1i         (4.4) 
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then Eq. (4.3) can be applied.  However, the current qualitative evaluation outcomes t1Ev  can be 

further processed over a moving time window to improve performance.  As was the case with the 
identification process, structuring of the non-self can be avoided within the HMS strategy if an 
adequate composition logic C  can be formulated.   
 

 
Figure 4.2.  Failure Qualitative Evaluation Using the Structured Non-Self Approach 

 
 

4.1.2.  Structured Non-self Approach for Quantitative Direct Evaluation  
 The direct quantitative evaluation relies on correct qualitative evaluation and must be 
approached in different ways depending on the specific definition of the process outcome.  If a 
definition of 2Ev  as illustrated by Eq. (1.8) is used, then the jdFs  tags in Eq. (1.29) must 

represent the values of some ad-hoc defined metric that can capture the severity of the failure.  
For example, for many types of failure, the minimum distance from the center of the detector to 
the nearest self cluster can be used as illustrated in Figure 4.3.  If a definition illustrated by Eq. 
(1.9) or (1.10) is used instead, then the jdFs  tags represent quantitative attributes (for Eq. (1.9)) 

or membership function values associated to a set of quantitative attributes (for Eq. (1.10)), as 
illustrated in Figure 4.4.  In any case, the quantitative evaluation outcome Ev2 must correspond 
to Ev1, that is for each scalar element of Ev1 there will be a scalar element of Ev2 if Eq. (1.8) or 
(1.9) are used, or a vector element if Eq. (1.10) is used.  Therefore, at each sampling time t: 
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    jt dFs2Ev                (4.5) 

 

 
Figure 4.3.  Failure Direct Quantitative Evaluation Based on Distance to Self 

 
 If one N-dimensional non-self is used with perfect feature definition, then the overall direct 
quantitative evaluation outcome can be defined as: 
 
    t2Ev2Ev                (4.6) 

 
 If the HMS strategy is used, then Eq. (4.6) is applied to each sub-self and a composition 
logic C

~
 must be designed to obtain the current qualitative evaluation outcome as: 

 

    )2Ev(
~

2Ev tit C ,  ssN,...,2,1i         (4.7) 

 
then Eq. (4.6) can be applied.  As in the previous phases, the current outcomes t2Ev  can be 

further processed over a moving time window to improve performance.   
 It should be noted that associating type and/or severities of ACs to regions of the non-self, 
that is to specific detectors (they become thus “evaluators”) requires tests at abnormal conditions 
of different types and severities and identification of the corresponding areas in the non-self 
(detectors/identifiers).  The approach may prove resource prohibitive for a comprehensive 
solution.  The distance-to-self approach for severity assessment, on the other hand, does not 
require extensive specific tests for development; however, distance thresholds must be 
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established for the discrete set of linguistic values typically used for direct quantitative 
evaluation.   
 

 
Figure 4.4.  Failure Direct Quantitative Evaluation Using the Structured Non-Self Approach 

 
 

4.1.3.  Performance of Direct Evaluation Using the Structured Non-self Approach  
 The identification of the affected system, the determination of the type of AC, and its 
severity have been performed simultaneously using the SNSA.  The performance evaluation was 
performed using similar metrics as for the detection phase.  A correct identification percentage 
and a miss-identification percentage are calculated depending on an accurate declaration of 
subsystem failure for every time step in which an upset condition is present.  The identifier 
generation algorithm proposed in this research effort was implemented for 9 different failures 
considered to be high magnitude using the 183 selected projections.  Based on the assumption 
that lower magnitude failures of the same type of failure generate similar dynamic fingerprints 
with a close proximity to the self, the set of identifiers was subdivided into two groups.  The first 
set corresponds to high magnitude and the second set to low magnitude failures (i.e. closer to the 
self).  This approach increases the total amount of equivalent AC that can be identified to 18 
instead of the original 9.  A total of 1647 different cases for identifier generation were 
implemented in order to cover all the possible failure outputs investigated. 
 Each set of identifiers generated per failure contains on average 36 identifiers. Considering 
that every set of identifiers for all failures is integrated into each projection, an approximate total 
of 324 identifiers per projection are used for the identification through this positive selection-
type of  process.   After an initial analysis, the algorithm was optimized and it was determined 
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that out of the 183 projections, a total of 93 projections were enough to correctly identify the 
investigated failures.  The reduction of the total number of projections required for identification 
has reduced the computational complexity of the algorithm considerably.  Table 4.1 presents a 
sample set of projections used for AC identification and direct evaluation. 
 

Table 4.1.  Projections Used for Simultaneous Identification and Direct Evaluation 
Self# Features Self# Features Self# Features Self# Features 
ܰ ௥௘௙݌ 3 ௣ܰ 57 ݎ௥௘௙ ܰ ௤ܰ 110 ܰ ௤ܰ ܰ 121 ݌ܧܧܳܦ ௤ܰ ߮ 
ܰ ௥௘௙݌ 4 ௤ܰ 60 ݎ௥௘௙ ܱܳ111 ܧܧ ܰ ௤ܰ ܰ 123 ݍܧܧܳܦ ௤ܰ ݔܽ
ܰ 82 ܧܧܱܳ ௥௘௙݌ 7 ௣ܰ ܰ ௤ܰ 113 ܰ ௤ܰ ݒ 124 ܰ ௤ܰ ݕܽ
ܰ 83 ݍܧܧܳܦ ௥௘௙݌ 9 ௣ܰ ܰ ௥ܰ 114 ܰ ௤ܰ ߙ 125 ܰ ௤ܰ ݖܽ
ܰ ௥௘௙ݍ 31 ௤ܰ 84 ܰ ௣ܰ ܰ 115 ܧܧܳܯ ௤ܰ ܰ 126 ߚ ௤ܰ ݀௔
ܰ 86 ܧܧܱܳ ௥௘௙ݍ 34 ௣ܰ ݌ܧܧܳܦ 116 ܰ ௤ܰ ܰ 127 ݌ ௤ܰ ݀௘
ܰ 87 ݌ܧܧܳܦ ௥௘௙ݍ 35 ௣ܰ ݍܧܧܳܦ 117 ܰ ௤ܰ ݍ 128 ܰ ௤ܰ ݀௥
ܰ 88 ݍ ௥௘௙ݍ 42 ௣ܰ ݎܧܧܳܦ 118 ܰ ௤ܰ ݎ 129 ܰ ௤ܰ ்݀
ܰ ௥௘௙ݎ 56 ௣ܰ 107 ܰ ௤ܰ ܰ ௥ܰ 120 ܰ ௤ܰ ܰ 130 ߠ ௤ܰ  ܯ

 
 Further analysis was carried out to reduce the number of projections required to produce 
desirable identification outputs.  In some cases, the use of a single projection was enough to 
obtain favorable identification rates.  On the other hand, other failures require more projections 
in order to obtain desirable identification results and also to reduce misidentification rates.  Table 
4.2 presents the number of projections required for a correct failure identification output. 
 

Table 4.2.  Total Number of Projections Used for Simultaneous Identification and Direct 
Evaluation 

Failure 
# 

Failure Type 
Projections
Used 

Failure 
# 

Failure Type 
Proj. 
Used 

1 Left Aileron Stuck at 2deg 14 9 
Left Wing Loss 
of 6% 

2 

2 Right Aileron Stuck at 2deg 7 10 
Right Wing Loss 
of 6% 

1 

3 Left Aileron Stuck at 8deg 8 11 
Left Wing Loss 
of 15% 

1 

4 Right Aileron Stuck at 8deg 8 12 
Right Wing Loss 
of 15% 

2 

5 Left Stabilator Stuck at 2deg 18 13 Left Engine Out 1 

6 Right Stabilator Stuck at 2deg 2 14 
Right Engine 
Out 

18 

7 Left Stabilator Stuck at 8deg 9 15 
Roll Sensor Bias 
of 5deg/sec 

1 

8 Right Stabilator Stuck at 8deg 31 16 
Roll Sensor Bias 
of 10deg/sec 

7 

 
 The identification and direct evaluation algorithm was tested under 16 different failures 
(refer to Table 4.2).  Table 4.3 shown below presents the results for the performance rate 
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analysis.  Note that in Table 4.3 the first column represents the actual failure and the 
corresponding row represents how it was identified/evaluated.  For example, failure #1 is 
identified correctly 99.7% of the time but presents confusion with failures 3, 4 and 14 for 0.1% 
of the time, respectively. 
 

Table 4.3.  Performance of AC Identification and Direct Evaluation 
 Identified Failure # 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

A
ct

u
al

 F
ai

lu
re

 #
 

1 99.7 0 0.1 0.1 0 0 0 0 0 0 0 0 0 0.1 0 0 

2 9.9 87.3 0 0 0 0 0 0 0 0 0 0 0 2.8 0 0 

3 0.4 0 95.6 0.6 0 0 0 0 0 0 0 0 0 3.4 0 0 

4 0 0 0.1 97.2 0 0 0 0 0 0 0 0 0.3 2.4 0 0 

5 0.5 1.7 1.5 0 92.5 1.5 1.1 0 0 0 0 0 0 0 1.2 0 

6 9.9 0 1.2 0 0 86.8 0 2.1 0 0 0 0 0 0 0 0 

7 0.2 1 0 0 0 0 96.1 1.5 0 0 0 1.2 0 0 0 0 

8 0.5 0 0 0 0 0 4.8 93.8 0.9 0 0 0 0 0 0 0 

9 1.2 2 0.2 0 0 0.1 0 0.9 95.6 0 0 0 0 0 0 0 

10 0 0 2.1 0 0 0 0 0 1.1 94.5 0 0 0 1.1 0 1.2 

11 0 0 0 0 0 0 0 0.1 7.6 0.1 92.2 0 0 0 0 0 

12 0 0 0 0 0 0 1.1 0 0 1.1 0 97.5 0.3 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 92.6 7.4 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0.1 99.9 0 0 

15 0 0 0 0 0 0.3 0 0.2 0.3 0 0.2 0 2.1 1.3 95.6 0 

16 0 0 0 0.3 0 0 0 0 0 0 2.7 0 0 2.1 0 94.9
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4.2.  Dendritic Cell Mechanism for Abnormal Condition Direct Evaluation 
 

4.2.1.  Dendritic Cell Approach for Qualitative Direct Evaluation  
 The AC qualitative evaluation assumes that correct detection and identification have been 
performed.  At this point it is known that a failure is affecting at least one sub-system k, 

SN,,2,1k  .  With the DC approach, the AC qualitative evaluation is approached as a specific 

identification problem, using the same algorithms.  While the AC identification presented 
previously is a pattern recognition problem, where one must distinguish between SN  different 

patterns each corresponding to one of the SN  sub-systems considered, the AC qualitative 

evaluation is equally a pattern recognition problem, where one must distinguish between tfkN  

different types of failures corresponding to sub-system k.  In a similar manner to the SNSA, the 
AC qualitative evaluation based on the DC mechanism may be viewed as an identification 
process where the target is the “AC”, which has the type of the failure as defining element in 
association with the affected sub-system.  Patterns for qualitative evaluation are similar to the 
ones defined for identification and rely on the 1F  matrix.  Note that the 0F  matrix may also be 

introduced into the process.  The flowchart of the process of establishing qualitative evaluation 
patterns is presented in Figure 4.5. 
 For each sub-system, tfkN  different patterns must be established, one associated to each of 

the AC considered. 
 As is the case with AC identification, three possible alternatives exist for the definition of 
the patterns: 
  Feature-pattern (FP) approach 
  Projection-pattern (PP) approach  
  Matrix-pattern (MP) approach 

 
Figure 4.5.  Generation of Library of Reference Patterns for Qualitative Evaluation Using the 

DC Mechanism and the Naïve Bayes Classifier 
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 A).  Feature-pattern (FP) approach for AC qualitative evaluation 
 For each sub-system k, define for all ftkN  ACs the vector of membership values of each 

feature to the set of equivalent directly involved variables (this is the same AC FP vector as 
described earlier): 
 

     TN21ACj mmmFP  ,   1,0mi  ,  tfkN,,2,1j        (4.8) 

 
All these membership values can be determined based on tests and heuristics.  Note that binary 
logic can be used instead of fuzzy logic.  In this case:  10mi  .  The tfkN  AC FP vectors 

form a library of patterns against which the current AC FP vector is compared to determine the 
AC type.  The current AC FP vector is computed at each sample time, after an AC is detected, 
using the 1F  matrices of the mature DCs, as part of the identification process: 
 

    
SS

DC

N

N

1q
q11 IFF 











 


 ,    1N

N
SS

SS
1I             (4.9) 

 
 A matching algorithm must be used to determine which one of the tfkN  AC FP vectors best 

matches 1F .  Note that AC qualitative can be performed before identification, with possibly 

some benefits (to be investigated). 
 
 B).  Projection-pattern (PP) approach for AC qualitative evaluation 
 For each sub-system k, define for all tfkN  ACs the vector of membership values of each 

projection to the set of AC-relevant projections (projections that can capture the dynamic 
fingerprint of the AC, that are the projections that get triggered under AC): 
 

     TN21ACj SS
nnnPP  ,   1,0ni          (4.10) 

 
This is the same AC PP vector as for the previous method.  All these membership values can be 
determined based on tests and heuristics.  Binary logic may also be used here.  At each sample 
time, after an AC is detected, use the 1F  matrices of the mature DCs to compute the current 
ACPP vector as: 
 

    











 



DCN

1q
q1NP1 FIF ,    SSN1

N 1I            (4.11) 

 
 A matching algorithm must be used to determine which one of the tfkN  AC PP vectors from 

the library best matches P1F .   
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 C).  Matrix-pattern (MP) approach for AC qualitative evaluation 
 For each subsystem k, define for all tfkN  ACs the AC FP and the AC PP vectors as 

described previously.  Build then the MP matrix as: 
 

    























*
NN

*
2N

*
1N

*
N2

*
22

*
21

*
N1

*
12

*
11

k

SS

SS

SS

mmm

mmm

mmm

MP









,            (4.12) 

 

where    1,0m*
ij  ,  N,,2,1i  ,  SSN,,2,1j  , ftkN,,2,1k         (4.13) 

 

and      





otherwise0

Stobelongsif)n,mmax(
m jiji*

ij


         (4.14) 

 
At each sample time, after the AC is detected, compute the sum of all mature DC 1F  matrices as: 

    



DCN

1q
q1M1 FF ,  DCN,,2,1q             (4.15) 

 
 Use a matching algorithm to determine which one of the tfkN  MP matrices in the library 

best matches M1F .   
 Similarly to the SNSA, the AC identification and qualitative evaluation can be performed 
simultaneously by redefining ACs to include both affected subsystem and AC type as category 
designations.  The pattern generation process for the joint approach is summarized in Figure 4.6. 

 
Figure 4.6.  DC Mechanism for Simultaneous AC Identification and Qualitative Evaluation 
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4.2.2.  Dendritic Cell Approach for Quantitative Direct Evaluation  
 Similar to the AC qualitative evaluation, patterns for each failure severity can be defined 
based on the detection outcome of all subselves based on the F1 matrices of the migrated DCs.  
If the number of severity scales of failure ACj is Nfs, then Nfs different reference patterns must 
be established: one associated to each severity scale.  The reference F-P vector corresponding to 
the failure severity jAC   can be expressed as: 

 

     1 2 ,
j

T

NACFP m m m

                (4.16) 

 

where  0,1im   are fuzzy membership values of each feature with respect to the set of directly 

involved variables.  The reference F-P of Eq. (4.16) can be determined through a training process 
with experimental or simulation data under failure exposed to the artificial DC mechanism.  The 
naïve Bayes classifier described previously can be used to construct these reference patterns by 
training the classifier offline against samples from a set of training tests of known failure severity 
scales.  Training the classifier for simultaneous detection and qualitative evaluation is very 
similar to training it for AC qualitative evaluation as shown in the schematic diagram of Figure 
4.7.   
 

 
Figure 4.7.  Training the Naïve Bayes Classifier for AC Detection and Qualitative Evaluation 

 
The current features-pattern 1F   is computed and compared to the library of reference patterns to 

determine the discriminant jAC   for each severity scale from: 

 

         11 1
ln ln ,

2 2fs fs fs f

T

s fs fsN     x Σ x μ Σ x μ        (4.17) 

 
where fsN  is the number of samples in tests with failure severity fs, 1F x , and fsμ and fsΣ  are 

the mean vector and sample covariance matrix given by: 
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( )

1

1
,

fsN
m

fs fs
mfsN 

 μ x                (4.18) 

 

and      ( ) ( )

1

1
,

1

fsN
Tm m

fs fs fs fs fs
mfsN 

  
 Σ x μ x μ          (4.19) 

 
respectively.  The block diagram of AC detection and qualitative evaluation scheme is presented 
in Figure 4.8.   
 

 
Figure 4.8.  AC detection and Qualitative Evaluation Scheme Using the DC Mechanism 

 
4.2.3.  Performance of Direct Evaluation Using the Dendritic Cell Approach 

 The F-P approach was also used to implement the AC detection and qualitative evaluation 
scheme with the DC mechanism.  The naïve Bayes classifier was trained using two sets of 
training tests under failure.  The first training set provides the reference features-pattern fsFP for 

each failure severity fs .  Figures 4.9 through 4.14 illustrate the reference features patterns for 

subsystems under different levels of failure severity. 
 Table 4.4 presents the AC detection and qualitative evaluation rates for the four main 
subsystems considered in this study.  The rate is defined as the number of time steps for which 
the failure severity is correctly evaluated divided by the total number of time steps after failure.  
The second column in this table represents the “known” failure severity of the corresponding 
subsystem, whereas the first row represents the evaluated failure severity.  Note that only “low” 
and “high” severity levels were simulated for the sensors and engine failures.  These results show 
the capability of the proposed scheme in isolating the failure severity with very high rates. 
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Figure 4.9.  Reference Feature Patterns for a    Figure 4.10.  Reference Features-Pattern for a 
 Stabilator Under Low Severity Failure   Stabilator Under High Severity Failure 
 

        
Figure 4.11.  Reference Features-Pattern for a   Figure 4.12.  Reference Features-Pattern for a  
    Wing Under Low Severity Failure         Wing Under High Severity Failure 
 

        
Figure 4.13.  Reference Features-Pattern for a   Figure 4.14.  Reference Features-Pattern for a  
Roll Rate Sensor Under Low Severity Failure   Roll Rate Sensor Under High Severity Failure 
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Table 4.4.  AC Detection and Qualitative Evaluation Rates of the DC Mechanism Scheme 
 

 
Subsystem 

Failure 
Severity

 
Low

 
Medium

 
High

 
 
Stabilator 

Low 98.72 1.28 0.00 

Medium 0.04 99.96 0.00 

High 0.05 0.00 99.95 

 
 
Aileron 

Low 100.00 0.00 0.00 

Medium 3.10 95.47 1.43 

High 0.11 0.00 99.89 

 
 
Rudder 

Low 100.00 0.00 0.00 

Medium 0.01 99.99 0.00 

High 0.00 0.00 100.00 

 
 
Wing 

Low 100.00 0.00 0.00 

Medium 0.01 99.99 0.00 

High 0.06 0.00 99.94 

 
 
HorizontalTai
l

Low 100.00 0.00 0.00 

Medium 0.00 99.99 0.01 

High 0.01 0.00 99.99 

 
 
VerticalTail 

Low 100.00 0.00 0.00 

Medium 0.01 99.99 0.00 

High 0.00 0.00 100.00 

Roll Rate 
Sensor 

Low 99.99 — 0.01 

High 0.00 — 100.00 

Pitch Rate 
Sensor 

Low 100.00 — 0.00 

High 0.00 — 100.00 

Yaw Rate 
Sensor 

Low 100.00 — 0.00 

High 0.01 — 99.99 
 
Engine 

Low 100.00 — 0.00 

High 0.00 — 100.00 
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Chapter 5 
 

Flight Envelope Estimation Under Abnormal Conditions Using Artificial 
Immune System 

 
5.1.  Problem Formulation 

 The AC indirect quantitative evaluation requires that the direct evaluation is successful.  
While for detection, identification, qualitative evaluation, and direct quantitative evaluation 
consistent general design algorithms can be applied as presented so far that are valid for a variety 
of systems and AC types without significant changes, the indirect quantitative failure evaluation 
process or altered flight envelope evaluation requires specific customization depending on the 
subsystem, nature of the AC, and the affected parameter of the flight envelope addressed by the 
evaluation.  However, a general framework can be still formulated up to a point.  A 
comprehensive indirect evaluation or altered flight envelope prediction must rely on a combined 
strategy based on analytical flight envelope assessment and AIS-based approaches for parameter 
space alteration assessment.  The analytical methods require accurate modeling of the failures 
and significant on-line computational capabilities.  The AIS method implies that all pertinent 
parameters to the flight envelope – considering its generalized meaning – are part of the feature 
sets that define the “self”.   
 Let us assume that the self S and non-self Ŝ are defined as sets of N-dimensional hyper-
spheres according to Eq. (1.27) and (1.28).  Some main concepts previously defined for the AC 
evaluation process will be repeated here for completeness.  A directly involved variable (DIV) in 
the AC is a variable whose alteration or abnormal variation is directly and significantly the result 
of the AC.  Typically, DIV are used to define/characterize the AC.  They may be part of the 
feature set or not.  If they are not, then a relationship between the DIV and some other variable(s) 
in the feature set must be established.  This process will define equivalent directly involved 
variables (EDIV), which must be part of the feature set.  For example, consider the case of the 
left stabilator locked failure.  The DIV can be defined as the left stab deflection eL .  It 

obviously defines the failure, but let us assume that it is not part of the feature set.  A relationship 
between the left stab deflection eL  and the longitudinal stick displacement ed , which is a 

feature, can be established: 
    )(fd eLe                   (5.1) 

 
Therefore, the EDIV is in this case ed .  The self can be viewed as a generalized flight envelope 

based on features i .  Assume that each failure Ffi  , FN,,2,1i  , produces a set of iN  

constraints i  on a set of known variables iX , where: 

 
     

iiN2i1ii 
                (5.2) 

 
    0)X( iijij   , FN,,2,1i   and iN,,2,1j          (5.3) 

 
The variables iX  must be part of the feature set, that is: 
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      
XiN2i1ii xxxX               (5.4) 

 
Let us assume that the alteration of the flight envelope is assessed in terms of a set Y  of YN  

variables iy , that is: 

 
      

YN21 yyyY                (5.5) 

 
Typically the constraints i  are not completely known, otherwise they would specify any 

alteration of the variables iy  and the problem would be solved.  The solution is equivalent to 

determining a new self at post-failure conditions based on a set of features Y.  If Y  then a 
solution is found if perfect structuring of the non-self is possible, which in the most general case 
is not.  If NNY  , then the flight envelope alteration assessment is equivalent to obtaining the 

YN -dimensional projection of the N-dimensional non-self region corresponding to the targeted 

failure if .  Again, if structuring of the non-self for if  is available, then the problem is solved.  If 

not, we can still obtain the YN -dimensional projection of the self.  In many cases, depending on 

the failure, the constraints i , and the set Y we can infer the relative position of the YN -

dimensional projections of the non-self and the self.  For example, let us consider a stuck 
elevator failure (the left or right elevator is locked at a constant deflection 0e ).  The effects on 

aircraft pitch rate q must be assessed.  Therefore, e1x  , qy1  , and 00ee1   .  Due 

to the nature of this failure, it can be inferred that the values of the pitch rate at post failure 
conditions will be in the range of normal conditions corresponding to 0e .  In other words, the 

projection of the non-self on the 2-dimensional plane )y,x( 11  falls inside the projection of the 

self.  For such situations, a “new” self S  or reduced envelope at post failure conditions can then 
be defined as: 
 
     iii sconstraintsatisfiesc|cS               (5.6) 

 
The concept is illustrated in Figure 5.1 for the 2-dimensional case.   
 The development of schemes for indirect quantitative failure evaluation (IQE) is based on 
Table 1.2.  Specific algorithms must be developed for all targeted variables ( 16NE  ) in 
conjunction with the nature and type of the failure. 
 It is assumed that failure detection, identification, and direct evaluation are successfully 
completed at this point.  Therefore, the sets of DIV ( v ), EDIV ( v ), and envelope relevant 

variables ( Ev ) are determined.  Note that, in general: 
 
     

 N21 vvvv         

        
v,vvvv N21              (5.7) 

       EEEN2E1EE v,vvvv
E

       
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 For IQE, a relationship between v  and v  must be known: 

 
    )v(fv                    (5.8) 

 
where     

 N21 ffff               (5.9) 

 
such that     N,,2,1i),v(fv ii             (5.10) 

 

 
Figure 5.1.  Post-Failure Flight Envelope Estimation Using the AIS Paradigm 
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5.2.  Estimation Algorithms for Actuator AC 
 

5.2.1.  Stabilator Failure   
 This discussion covers failures 1kF   through 4kF   of Table 1.2, since, from the point of 
view of the IQE, they are equivalent.  The discussion will continue with reference to the left stab; 
however, everything applies similarly to the right surface failure as well.  For 4÷1kF  , the 
following parameters can be specified: 
 
       eL1vv   ,  left (or right) stab deflection, positive downwards  

       e1 dvv   ,  longitudinal stick           (5.11) 

     qpqVMHaav zxE    

 
The relationship between DIV and EDIV is: 
 
    )(fd eL1e                 (5.12) 

 

where   
2

kkd eReL
eeee





              (5.13) 

 
If the left stab is locked, then: 
 
    eLFeL )t(                  (5.14) 

 
where eLF  is a value determined through direct quantitative evaluation.  The nominal range for 

ed  is (typically minemaxe dd  ): 

 

    
2

kd maxeRmaxeL
emaxe

 
             (5.15) 

 

    
2

kd mineRmineL
emine

 
             (5.16) 

 
After failure, the range for ed  becomes: 

 

   
2

kd maxeReLF
eFmaxe

 
              (5.17) 

 

   
2

kd mineReLF
eFmine

 
              (5.18) 

 
Note that this is a rather virtual or equivalent range, since the stick in the cockpit is assumed to 
still be capable of moving within the nominal range, only the effects are different.  Note also that 
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the range at post failure conditions (  FmaxeFmine d,d ) is invariable with respect to the surface 

failed (L or R) and that    maxemineFmaxeFmine d,dd,d  .  With the new range after failure, 

new ranges for all Ev  may be obtained from the 2-D projections, if there is a mutual constraint 
(cause/effect relationship) between the two features involved in the projection.  If there is not, it 
means that one variable will reach all its values in the nominal range irrespective of the other 
variable values and the self projection will be a square.  In this cases, if it is known that the 
variable involved is part of Ev , special consideration must be given.  For example, a locked stab 
failure will have an effect on the capability to produce rolling rate.  The asymmetry induced by a 
locked stab failure produces undesired roll moments and rates that must be typically 
compensated by aileron deflections.  These deflections affect the control authority on the roll 
channel and thus the production of roll rate.  This effect is rather indirect as the self projection 
defined by ed  and p is a square.  To determine the effects on p produced by a locked stab failure, 

it will be stipulated that the locked stab failure induces an aileron pseudo-failure, from the point 
of view of producing roll rate.  This pseudo-failure involves a non-zero aileron trim deflection at 
a position aPF  necessary to compensate for the rolling effect of the locked stab failure.  The 

compensating aileron deflection can be approximated using the balance of the rolling moment: 
 
    aPFleRleLFl aeReL

CCC             (5.19) 

 
    aPFleReLFl aeL

C)(C               (5.20) 

 

    )(
C

C
eReLF

l

l
aPF

a

eL 



             (5.21) 

 
The following convention for the definition of the generic aileron deflection will be assumed, 
which is the one used for the aerodynamic model of the aircraft within the simulation 
environment: 
 
    aRaLa                  (5.22) 

 
With linearity assumption, the relationship with the EDIV is: 
 
    aaa kd                  (5.23) 

 
The nominal lateral control range is: 
 
    maxaamaxa kd                (5.24) 

 
    minaamina kd                (5.25) 

 
Under stab failure, the new range for the lateral control is: 
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    )(kd aPFmaxaaFmaxa            ..(5.26) 

 
    )(kd aPFminaaFmina               (5.27) 

 
Note that this is equivalent to shifting the range of ad  in one direction or the other (depending 

on the sign of the stab failure), while maintaining the same span: 
 
       maxaminaFmaxaFmina d,dd,d            (5.28) 

 
    minamaxaFminaFmaxa dddd            (5.29) 

 
Now the new range of ad  can be used with the ( ad , p) projection to determine the effects on p 

of the stab failure.  Note that extrapolation on the projection is needed, since the new range ends 
up outside the old one.  This range can be expressed in terms of the failed surface as follows: 
 

    )](
C

C
[kd eReLF

l

l
maxaaFmaxa

a

eL 



         (5.30) 

 

    )](
C

C
[kd eReLF

l

l
minaaFmina

a

eL 



         (5.31) 

 
If the right stab fails, then the range can be expressed as: 
 

    )](
C

C
[kd eLeRF

l

l
maxaaFmaxa

a

eR 



         (5.32) 

 

    )](
C

C
[kd eLeRF

l

l
minaaFmina

a

eR 



         (5.33) 

 
Note that 

eReL ll CC   .  Therefore, the aileron pseudo-failure range is the same if the 

opposite stab is locked in the opposite direction relative to the trim.  Span is preserved. 
 
 

5.2.2.  Aileron Failure   
 This discussion covers failures 5kF   through 8kF   of Table 1.2, since, from the point of 
view of the indirect quantitative evaluation, they are equivalent.  The discussion will continue 
with reference to the left aileron; however, everything applies similarly to the right surface 
failure as well, unless otherwise noted.  For 8÷5kF  , one can specify: 
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      aL1vv   ,  left (or right) aileron deflection, positive downwards   

      a1 dvv   ,  lateral stick             (5.34) 

    rprpav yE        

 
The relationship between DIV and EDIV is: 
 
    )(fd aL1a                 (5.35) 

 
    )(kd aRaLaa                 (5.36) 

 
If the left aileron is locked, then: 
 
    aLFaL )t(                  (5.37) 

 
where aLF  is a value determined through direct quantitative evaluation.  The nominal range for 

ad  is (typically minamaxa dd  ): 

 
    )(kd minaRmaxaLamaxa               (5.38) 

 
    )(kd maxaRminaLamina               (5.39) 

 
After failure, the range for ad  becomes: 

 
    )(kd minaRaLFaFmaxa               (5.40) 

 
    )(kd maxaRaLFaFmina               (5.41) 

 
The same observation must be made as in the case of the stab, that is that this is a rather virtual 
or equivalent range, since the stick in the cockpit is assumed to still be capable of moving within 
the nominal range, only the effects are different.  Note also that the span of the range at post 
failure conditions is reduced (    maxaminaFmaxaFmina d,dd,d  ); however, the post failure 

range is not invariable with respect to the surface failed (L or R).  Assume that the range of the 
generic aileron deflection at normal conditions is ±30 deg.  The ranges for left and right aileron 
deflections are ±15.  If the left aileron is locked at 5 deg, then the post failure range is: 
 
    aaFmaxa k20)]15(5[kd             (5.42) 

 
    aaFmina k10)155(kd              (5.43) 

 
If the right aileron is locked at 5 deg, then the post failure range is: 
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    aaFmaxa k10)515(kd              (5.44) 

 
    aaFmina k20)515(kd             (5.45) 

 
Note that this range will be the same if the opposite surface is locked in the opposite direction.  
With the new range after failure, new ranges for all Ev  may be obtained from the 2-D 
projections.  
 

5.2.3.  Rudder Failure   
 This discussion covers failures 9kF   through 12kF   of Table 1.2, since, from the point 
of view of the indirect quantitative evaluation, they are equivalent.  The discussion will continue 
with reference to the left rudder; however, everything applies similarly to the right surface failure 
as well, unless otherwise noted.  For 21÷9kF  , the following parameters can be specified: 
 
       rL1vv   ,  left (or right) rudder deflection, positive to left of pilot such 

that it produces positive lift on the vertical tail in body axes   
       r1 dvv   ,  pedals             (5.46) 

     rprpav yE        

 
The relationship between DIV and EDIV is: 
 
    )(fd rL1r                 (5.47) 

 

    
2

kd rRrL
rr

 
               (5.48) 

 
If the left rudder is locked, then: 
 
    rLFrL )t(                  (5.49) 
 
where rLF  is a value determined through direct quantitative evaluation.  The nominal range for 

rd  is (typically minrmaxr dd  ): 

 

    
2

kd maxrRmaxrL
rmaxr

 
             (5.50) 

 

   
2

kd minrRminrL
aminr

 
              (5.51) 

 
 After failure, the range for rd  becomes: 
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2

kd maxrRrLF
rFmaxr

 
             (5.52) 

 

    
2

kd minrRrLF
rFminr

 
             (5.53) 

 
As was the case with the other control channels, this is a rather virtual or equivalent range, since 
the pedals in the cockpit are assumed to still be capable of moving within the nominal range, 
only the effects are different.  Note also that the range at post failure conditions (
 FmaxrFminr d,d ) is invariable with respect to the surface failed (L or R) and that 

   maxrminrFmaxrFminr d,dd,d  .  The span of the range at post failure conditions is 

reduced (    maxrminrFmaxrFminr d,dd,d  ).  Because of its collective deflection, the case 

of the rudder is similar, in many respects, to the stabilator, if the aircraft is equipped with dual 
rudder, as is the case with the aircraft used for demonstration in this project.  With the new range 
after failure, new ranges for all Ev  may be obtained from the 2-D projections. 
 
 

5.2.4.  Throttle Failure   
 This discussion covers failures 13kF   through 16kF   of Table 1.2, since, from the point 
of view of the indirect quantitative evaluation, they are equivalent.  The discussion will continue 
with reference to the left (engine) throttle; however, everything applies similarly to the right 
actuator failure as well.  For 61÷13kF  , the following key parameters can be specified: 
 
       TL1vv   ,  left (or right) throttle/fuel valve, positive = open   

       T1 dvv   ,  collective throttle (is assumed)       (5.54) 

     VMHraav zxE        

 
The relationship between DIV and EDIV is: 
 
    )(fd TL1T                 (5.55) 

 

    
2

kkd TRTL
TTTT





             (5.56) 

 
If the left throttle is locked, then: 
 
    TLFTL )t(                  (5.57) 
 
where TLF  is a value determined through direct quantitative evaluation.  The nominal range for 

Td  is typically  %100,0dT   with: 
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    %100
2

kd maxTRmaxTL
TmaxT 





          (5.58) 

 

and    %0
2

kd minTRminTL
TminT 





           (5.59) 

 
After failure, the range for Td  becomes: 
 

    
2

100
k

2
kd TLF

T
maxTRTLF

TFmaxT








        (5.60) 

 

    
2

k
2

kd TLF
T

minTRTLF
TFminT





          (5.61) 

 
The throttle lever in the cockpit is assumed to still be capable of moving within the nominal 
range, only the effects are different; therefore, the range in Eq (5.60) and (5.61) is a rather virtual 
or equivalent range.  Note also that the range at post failure conditions (  FmaxTFminT d,d ) is 

invariable with respect to the surface failed (L or R) and that    100,0d,d FmaxTFminT  .  

With the new range after failure, new ranges for all Ev  may be obtained from the 2-D 
projections, if there is a direct mutual constraint (direct cause/effect relationship) between the 
two features involved in the projection.  It seems that this is the case for some of the envelope 
relevant variables not for others.  For instance, r appears to need some special attention since it is 
clear that the effects on r are different whether the L or R engine fails and the difference in L or 
R failure is not captured by the virtual control range after the failure.  Due to asymmetry, a 
throttle failure will create an undesired yawing moment (depending on the distance of the 
engines with respect to the aircraft centerline), which needs to be compensated for by using 
rudder deflection.  This will reduce the overall control authority on the yaw channel.  A similar 
approach as in the case of the rolling moment compensated using ailerons, in the case of a stab 
failure, will be applied next.  To determine the effects on r produced by a locked throttle failure, 
it will be stipulated that the locked throttle failure induces a rudder pseudo-failure, from the point 
of view of producing yawing rate.  This pseudo-failure consists of a shift of the trim position of 
the rudder at rPF  necessary to compensate for the yawing effect of the locked throttle.  The 
compensating rudder deflection can be approximated using the balance of the yawing moment: 
 
    rPFnTRTLFn rTL

C)(C              (5.62) 

 

   )(
C

C
TRTLF

n

n
rPF

r

TL 



             (5.63) 

 
Note that 0C

TLn   and 0C
rn  .  Considering that ]100,0[TLF   then: 
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   )]100(
C

C
,

C

C
[ TR

n

n
TR

n

n
rPF

r

TL

r

TL 







          (5.64) 

 
For full range of TR  we get: 
 

   ]100
C

C
,100

C

C
[

r

TL

r

TL

n

n

n

n
rPF







             (5.65) 

 

Note that 0100
C

C

r

TL

n

n





.  If the right engine fails, then: 

    )(
C

C
TRFTL

n

n
rPF

r

TL 



             (5.66) 

 
Note that 0C

TRn   and 0C
rn  .  Considering that ]100,0[TLR  then: 

 

    )]100(
C

C
,

C

C
[ TL

n

n
TL

n

n
rPF

r

TR

r

TR  







         (5.67) 

 
For full range of TL  we get: 
 

    ]100
C

C
,100

C

C
[

r

TR

r

TR

n

n

n

n
rPF







            (5.68) 

 

Note that 0100
C

C

r

TR

n

n





.  The generic rudder deflection is (for dual rudder aircraft), of course: 

    
2

rRrL
r





                (5.69) 

 
and the relationship with the EDIV is: 
 
    rrr kd                  (5.69) 
 
The nominal directional control range is: 
 
    maxrrmaxr kd                (5.70) 

 
    minrrminr kd                 (5.71) 

 
Under throttle failure, the new range for the directional control is: 
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    )(kd rPFmaxrrFmaxr               (5.72) 

 
    )(kd rPFminrrFminr               (5.73) 

 
Note that this is equivalent to shifting the range of rd  in one direction or the other (depending on 
the side of the failed engine and the throttle of the healthy engine), while maintaining the same 
span: 
       maxrminrFmaxrFminr d,dd,d            (5.74) 

 
    minrmaxrFminrFmaxr dddd             (5.75) 

 
Now the new range of rd  can be used with the ( rd , r) projection to determine the effects on r of 
the throttle failure.  This range can be expressed in terms of the failed surface and the throttle of 
the healthy engine as follows: 
 

    )](
C

C
[kd TRTLF

n

n
maxrrFmaxr

r

TL 



         (5.76) 

 

    )](
C

C
[kd TRTLF

n

n
minrrFminr

r

TL 



         (5.77) 

 
Therefore, for 100TR      
 

    )]100(
C

C
[k)dmax( TLF

n

n
maxrrFmaxr

r

TL  



       (5.78) 

 
and for 0TR      
 

    )
C

C
(k)dmin( TLF

n

n
minrrFminr

r

TL 



          (5.79) 

 
If the right engine fails, then the range can be expressed as: 
 

    )](
C

C
[kd TRFTL

n

n
maxrrFmaxr

r

TR 



         (5.80) 

 

    )](
C

C
[kd TRFTL

n

n
minrrFminr

r

TR 



         (5.81) 

 



107 
 

Therefore, for 0TL      
 

    )
C

C
(k)dmax( TRF

n

n
maxrrFmaxr

r

TL 



          

(5.82) 
 
and for 100TL      
 

    )]100(
C

C
[k)dmin( TRF

n

n
minrrFminr

r

TL  



       (5.83) 

 
Note that 

TRTL nn CC   .  Therefore, the rudder pseudo-failure range shifts towards positive 

deflections for a left engine failure, and towards negative deflections for a right engine failure.  
The span remains the same. 
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5.3.  Estimation Algorithms for Sensor AC 
 

5.3.1.  Roll Rate Sensor Bias   
 The analysis of the sensor failures relies on the specifics of the control system that uses the 
sensor information.  Based on stick displacement, the control laws determine first a “desired” 
angular rate response as determined by reference models (established using handling qualities 
criteria).  Then, they track the desired angular rate response.  For 17kF  , one can specify: 
 
       meas1 pvv   ,  measured roll rate    

       a1 dvv   ,  lateral stick          ..(5.84) 

     rprpav yE        

 
At nominal conditions, the desired or reference roll rate is: 
 
    )d(Fp a1ref                 (5.85) 

 
where 1F  represents the roll channel reference model, a first order transfer function.  If the roll 
rate measurement is assumed to be perfect: 
 
    actmeas pp                  (5.86) 

 
and the commanded roll rate is given by a control law of the form: 
 
   )pp(Fp actref2cmd                (5.87) 

 
At failure condition, the reference is unchanged; however: 
 
    biasactmeasF ppp                (5.88) 

 
    )ppp(Fp biasactref2cmdF             (5.89) 

 
As a result of the failure, an undesired additional roll rate command is produced, which can be 
expressed with some simplifying assumptions at steady state as: 
 
    biascmdcmdFcmd pppp             (5.90) 

 
In other words, the control laws will rotate the aircraft in the opposite direction of the sensor 
bias.  This effect must be compensated using aileron command; therefore, the control authority 
on the roll channel will be affected by restricting the excursion of the cockpit controls by the 
amount aFd  equal to what is necessary to command a roll rate equal to the bias: 

 

    )p(Fd bias
1

1aF
               (5.91) 
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The new equivalent range of ad  is: 

 
    aFmaxaFmaxa ddd               (5.92) 

 
    aFminaFmina ddd               (5.93) 

 
With the new range of lateral stick after failure, corresponding new ranges for all Ev  may be 
obtained from the 2-D projections. 
 
 

5.3.2.  Pitch Rate Sensor Bias   
 For 19kF  , one can specify: 
 
      meas1 qvv   ,  measured pitch rate    

      e1 dvv   ,  longitudinal stick            

(5.94) 
    qqVMHaav zxE        

 
The analysis of the pitch sensor failures follows the same approach as the roll sensor failures.  At 
nominal conditions, the desired or reference pitch rate is: 
 
    )d(Fq e1ref                 (5.95) 

 
where 1F  represents the pitch channel reference model, a second order transfer function.  The 
pitch rate measurement is assumed to be perfect: 
 
    actmeas qq                  (5.96) 

 
and the commanded pitch rate is given by a control law of the form: 
    )qq(Fq actref2cmd               (5.97) 

 
At failure condition, the reference is unchanged; however: 
 
    biasactmeasF qqq                (5.98) 

 
    )qqq(Fq biasactref2cmdF             (5.99) 

 
As a result of the failure, an undesired additional pitch rate command is produced, which can be 
expressed with some assumptions, at steady state, as: 
 
    biascmdcmdFcmd qqqq           (5.100) 



110 
 

In other words, the control laws will rotate the aircraft in the opposite direction of the sensor 
bias.  This effect must be compensated using stabilator/elevator command; therefore, the control 
authority on the pitch channel will be affected by restricting the excursion of the cockpit controls 
by the amount eFd  equal to what is necessary to command a pitch rate equal to the bias: 

 

    )q(Fd bias
1

1eF
             (5.101) 

 
The new equivalent range of ed  is: 

 
    eFmaxeFmaxe ddd             (5.102) 

 
    eFmineFmine ddd             (5.103) 

 
With the new range of longitudinal stick after failure, corresponding new ranges for all Ev  may 
be obtained from the 2-D projections. 
 
 

5.3.3.  Yaw Rate Sensor Bias   
 For 21kF  , the following parameters can be specified: 
 
       meas1 rvv   ,  measured yaw rate    

       r1 dvv   ,  pedals           (5.104) 

     rprpav yE        

 
At nominal conditions, the desired or reference yaw rate is: 
 
    )d(Fr r1ref               (5.105) 

 
where 1F  represents the yaw channel reference model, a second order transfer function.  The 
yaw rate measurement is assumed to be perfect: 
 
    actmeas rr                (5.106) 

 
and the commanded yaw rate is given by a control law of the form: 
 
    )rr(Fr actref2cmd              (5.107) 

 
At failure condition, the reference is unchanged; however: 
 
    biasactmeasF rrr              (5.108) 
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    )rrr(Fr biasactref2cmdF            (5.109) 

 
As a result of the failure, an undesired additional yaw rate command is produced, which can be 
expressed with some assumptions, at steady state, as: 
 
    biascmdcmdFcmd rrrr            (5.110) 

 
In other words, the control laws will rotate the aircraft in the opposite direction of the sensor 
bias.  This effect must be compensated using rudder command; therefore, the control authority 
on the yaw channel will be affected by restricting the excursion of the cockpit controls by the 
amount rFd  equal to what is necessary to command a yaw rate equal to the bias: 
 

    )r(Fd bias
1

1rF
              (5.111) 

 
The new equivalent range of rd  is: 
 
    rFmaxrFmaxr ddd             (5.112) 

 
    rFminrFminr ddd             (5.113) 

 
With the new range of pedals after failure, corresponding new ranges for all Ev  may be obtained 
from the 2-D projections. 
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5.4.  Estimation Algorithms for Structural Damage 
 

5.4.1.  Wing Damage   
 For 24÷23kF  , the key parameters for AC indirect evaluation can be specified as: 
 

][][
WLWL mL21 CCvvv   ,  lift and pitching moment alteration due to left wing failure 

 Trea4321 ddddvvvvv  ][  ,  lateral stick, longitudinal stick, pedals, throttle lever 

 rqpaaarqpVMHv zyxE             (5.114) 

 
At normal trim conditions, the external forces acting on the aircraft are presented in Figure 5.2. 
 

 
Figure 5.2.  Aircraft Forces in the Plane of Symmetry at Trim 

 
The balance equation can be expressed as: 
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 (5.116) 

 
Note that WF stands for “wing and fuselage” and HT for “horizontal tail”.  Assuming that at post 
failure conditions the same flight condition is maintained, then: 
 
    MM F  , HH F  ,  F           (5.117) 
 
The effect of the failure will consist of producing variations  ’s of all other variables.  
Therefore: 
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  (5.118) 

 
where ALl  is the distance to the plane of symmetry of the left wing aerodynamic center at post-

failure conditions.  Note that 0lAL  , while 0lAR  .  The non-zero rolling moment must be 
compensated using aileron deflection, thus reducing the authority of the aileron command.  The 
same concept of aileron “pseudo-failure” may be considered here as in the case of the stabilator 
failure.  This pseudo-failure involves a non-zero aileron trim deflection at a position aPF  

necessary to compensate for the rolling effect of the damaged wing.  This compensating aileron 
deflection can be approximated using the balance of the rolling moment: 
 
    aPFlaALLWL a

bClC             (5.119) 

 

    
ala

ALLWL
aPF bC

lC







             (5.120) 

 
where b is the wingspan and a  is an alteration factor depending on how the left aileron is 

affected by the wing failure ( 1a   if the aileron is not affected by the wing failure and 

5.0a   if the aileron is completely out of work).  For a linear relationship with the EDIV is: 

 
    aaa kd                (5.121) 

 
then the nominal lateral control range is: 
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    maxaamaxa kd              (5.122) 

 
    minaamina kd              (5.123) 

 
With the damaged wing, the new range for the lateral control can be assumed to be: 
 
    )(kd aPFmaxaaFmaxa            (5.124) 

 
    )(kd aPFminaaFmina             (5.125) 

 
Note that this is equivalent to shifting the range of ad  in one direction or the other, while 

maintaining the same span: 
 
       maxaminaFmaxaFmina d,dd,d          (5.126) 

 
    minamaxaFminaFmaxa dddd          (5.127) 

 
The direction of the shift depends on the failed wing side and the sign of the lift alteration.  
However, it is reasonable to assume that 0CLWL   since one would expect that wing damage 

would decrease the lift produced.  Now the new range of ad  can be used with the respective 

projections to determine the effects of the wing failure on lateral-directional variables.  This 
range can be expressed in terms of the failed surface as follows: 
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Note that LWLC , ALl , and a  must be known.  How to adequately determine them must be 

further investigated.  LWLC  could be a measure of wing failure severity and determined as an 

outcome of the quantitative direct failure evaluation.  The same observation applies to mWLC  

as well.  If this alteration is known, then the reduction of longitudinal control authority can be 
determined using the pitching moment balance, as follows: 
 
    HTWF MM               (5.130) 

 
    ePFmmWL e

CC               (5.131) 
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              (5.132) 

 
With the same previous assumptions, the new equivalent range for ed  is: 

 
    )(kdd etrimePFemaxeFmaxe           (5.133) 

 
    )(kdd etrimePFemineFmine           (5.134) 

 
The new equivalent range for ed  can be used to obtain, from the respective projections, the new 

ranges for longitudinal variables.  To determine effects on H, M, and V, we can consider the 
equations for the longitudinal force, the vertical force, and the polar: 
 

   





























 )L(CD

0)sin()sin(G)cos()cos(G

)sin()cos()DD()cos()sin()DD(

)sin()sin()LL()cos()cos()LL(

0)sin()cos(G)cos()sin(G

)sin()sin()DD()cos()cos()DD(

)sin()cos()LL()cos()sin()LL(TT

1
LF 










   (5.135) 

 
For keeping the same trajectory slope  , then   .  L  is known.  If the polar )C(C DLF  
is known, then a system of 3 equations and 3 unknowns T , D , and   is obtained.  Solving 
for T , allows determining new virtual ranges for Td .  From respective projections, new ranges 
for M, H, and V can then be obtained.  Note that the method derived here relies on several strong 
assumption.  Therefore, the method applies for classes of ACs that satisfy these assumptions. 
 
 

5.4.2.  Horizontal Tail Damage   
 For 26÷25kF  , one can specify: 
 
   ][][

HLL1 Cvv   ,  lift alteration due to left horizontal tail damage 

   ][][ ea21 ddvvv   ,  lateral stick and longitudinal stick    (5.136) 

   ][ rqpaaarqpVMHv zyxE      

 
The assumption is made that the left elevator (stabilator) can be still deflected; however, the 
respective control derivative may be affected, such that: 
 
    eLLL e0HLHL

CCC             (5.137) 
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It is assumed that both 
0HLLC  and 

eLC   are negative representing a reduction of the 

horizontal tail capability to produce lift.  For longitudinal balance, this lift variation must be 
compensated by an additional elevator deflection 0e   such that: 
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For lateral balance, a compensatory rolling moment must be produced using aileron, such that: 
 

    al
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L aHL
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b

l
C              (5.141) 

 
where 0lLHT   is the distance from the left horizontal tail aerodynamic center to the plane of 

symmetry.  Note that 0lRHT  .  Then: 
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To estimate 

HLLC  consider that: 
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Therefore: 
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The value of LHTl  can be approximated as: 
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The relationships between DIV and EDIV are: 
 
    )(fd e1e   and  )(fd a2a        (5.146) 

 
or    eee kd    and  aaa kd         (5.147) 

 
After failure, the ranges for ed  and ad  become: 

 
   eemaxeFmaxe kdd   and  eemineFmine kdd     (5.148) 

 
   aamaxaFmaxa kdd   and  aaminaFmina kdd     (5.149) 

 
It is postulated that new ranges for longitudinal variables may be obtained from corresponding 2-
D projections of ed .  Similarly, new ranges for lateral-directional variables may be obtained 

from corresponding 2-D projections of ad .   

 
 

5.4.3.  Vertical Tail Damage   
 For 28÷27kF  , the key parameters can be specified as: 
 
   ][][

VLY1 Cvv   ,  lift (lateral force) alteration due to left vertical tail damage 

   ][][ ra21 ddvvv   ,  lateral stick and pedals       (5.150) 

   ][ rparpv yE      

 
It is assumed that the left rudder can be still deflected; however, the respective control derivative 
may be affected, such that: 
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    rYYY r0VLVL
CCC             (5.151) 

 
For directional balance, this lift variation must be compensated by an additional rudder 
deflection r  such that: 
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For roll balance, a compensatory rolling moment must be produced using aileron, such that: 
 

    al
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h
C              (5.155) 

 
where 0hVT   is the distance from the vertical tail aerodynamic center to the body horizontal 

plane.  Note that VTh  is normally the same for L and R.  Then: 
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The relationships between DIV and EDIV are: 
 
    )(fd a1a   and  )(fd r2r         (5.157) 

 
or    aaa kd   and  rrr kd           (5.158) 

 
After failure, the ranges for rd  and ad  become: 

 
    rrmaxrFmaxr kdd   and  rrminrFminr kdd     (5.159) 

 
    aamaxaFmaxa kdd   and  aaminaFmina kdd     (5.160) 

 
It is postulated that new ranges for directional channel variables may be obtained from 
corresponding 2-D projections of rd .  Similarly, new ranges for lateral channel variables may be 

obtained from corresponding 2-D projections of ad .  This hypothesis requires further 

investigation given the typical coupling between the two dynamic channels.  
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5.5.  Estimation Algorithms for Propulsion AC 
 This discussion covers failure 29kF   and 30kF   of Table 1.2.  It makes reference to the 

left engine; however, everything applies similarly to the right engine failure.  For 03÷29kF  , it 
can be specify that: 
       L1 Tvv   ,  left (or right) engine thrust    

       T1 dvv   ,  collective throttle (is assumed)      (5.161) 

       VMHraavv zx1EE        

 
The relationship between DIV and EDIV is: 
 
    )TT(fd RL1T               (5.162) 

 
The nominal range for Td  is typically  %100,0dT  , with: 

    %100)T2(f)TT(fd max1maxRmaxL1maxT       (5.163) 

 
and    %0)T2(f)TT(fd min1minRminL1minT        (5.164) 

 
The failure consists of changing the range of LT  to FminLT  and FmaxLT  and changing the 

function 1f  accordingly.  After failure, the equivalent range of Td  can be defined as: 

 
    )TT(fd maxRFmaxL1FmaxT            (5.165) 

 
    )TT(fd minRFminL1FminT            (5.166) 

 
Most often, 0T FminL   and )TT maxFmaxL  .  The values of FminLT  and FmaxLT  must be 

determine through direct quantitative evaluation.  Also, 1f  is assumed known; it can be 

approximated as a linear relationship.  Note also that the equivalent range at post failure 
conditions (  FmaxTFminT d,d ) is invariable with respect to the surface failed (L or R) and that 

   100,0d,d FmaxTFminT  .  With the new range after failure, new ranges for all Ev  may be 

obtained from the 2-D projections, except for r (see discussion for throttle failure).  An undesired 
yawing moment (depending on the distance of the engines with respect to the aircraft centerline) 
may be produced, which needs to be compensated for by using rudder deflection.  This will 
reduce the overall control authority on the yaw channel.  A similar approach as in the case of the 
locked throttle can be applied to handle this case.  However, this time, the pseudo-failure of the 
rudder consists of a variable trim deflection depending on Td . 
 Let us assume linear relationships at normal conditions between pilot throttle input and total 
thrust as well as between pilot throttle input and fuel valve deflection.  Therefore, the total 
yawing moment is: 
 
    0CC TRnTLn TRTL

             (5.167) 
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or     0d)CC( Tnn TRTL
             (5.168) 

 
where, of course, 0CC

TRTL nn   .  At post failure conditions, the healthy engine control 

derivative remains unchanged, while the failed engine control derivative is affected: 
 
    0d)CC( Tnn TRTLF

             (5.169) 

 
For eReL ll  : 
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Assuming a linear relationship and 0T FminL  : 
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where eLl  is the distance from the aircraft center of gravity to the axis of the left engine 

(negative for L, positive for R).  The yawing moment is compensated by the rudder such that: 
 
    rPFnTnn rTRTLF

Cd)CC(           (5.173) 
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The relationship with the EDIV for this pseudo-failure is: 
 
    rrr kd                (5.175) 
 
The nominal directional control range is: 
 
    maxrrmaxr kd              (5.176) 

 
    minrrminr kd               (5.177) 
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Under the loss of efficiency failure, the new range for the directional control is: 
 
    ))d((k)d(d TrPFmaxrrTFmaxr          (5.178) 

 
    ))d((k)d(d TrPFminrrTFminr           (5.179) 

 
Note that this effect is similar to the throttle failure.  The new range of rd  can be used with the (

rd , r) projection to determine the effects on r of the engine loss of efficiency failure.   
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5.6.  Performance of Flight Envelope Assessment Under AC 
 

5.6.1.  Evaluation Metrics for Flight Envelope Assessment 
 Assumed nominal ranges for flight envelope relevant variables (ERV) have been determined 
based on simulator tests.  Verification tests under AC have been performed for each specific 
subsystem failure attempting to achieve the same tasks and level of maneuverability as in the 
nominal tests.   
 To achieve desirable performance of the post-failure envelope prediction methodology, data 
points acquired through properly designed verification tests under abnormal conditions must stay 
within the predicted range and be close to the predicted limits.  Therefore, for performance 
evaluation, three metrics have been defined attempting to capture the level of prediction 
confidence, the level of possible range exceedance, and the level of predicted range 
conservativeness.  The first evaluation criterion is expressed by a prediction rate (PR) calculated 
as the percentage of all verification data points valERV  that fall inside the predicted range.  If the 

predicted range of any ERV is denoted as ]ERV,ERV[R maxminERV  , then the total number 

of validation points VN  is the sum of points inside ( RN ) and outside ( RN ) the predicted range: 

 
    RRV NNN               (5.180) 

 
The prediction rate is then calculated as: 
 

    100
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N
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R               (5.181) 

 
The level of possible range exceedance is assessed as the relative maximum amount by which 
points in the verification data set exceed the predicted range.  The predicted range exceedance 
index (REI) is defined as: 
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     (5.182) 

 
Obviously, it is desirable to have large values of PR and low values of REI.  However, it should 
be noted that, if the predicted range is exceedingly/unrealistically large, then PR = 100% and 
REI = 0% without representing good performance.  Therefore, the values of the previous two 
evaluation metrics must be considered in conjunction with a margin index (MI) that is expected 
to capture the level of predicted range conservativeness.  MI is defined as: 
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It should be also noted that, if the verification test does not cover the nominal range of the tests 
used for self generation, then high values of MI do not necessarily indicate a flaw in the post-
failure range prediction.   
 
 

5.6.2.  Flight Envelope Assessment Under Actuator Failure 
 Table 5.1 presents the predicted post-failure flight envelope ranges under an elevator failure 
along with the corresponding nominal ranges and the performance metrics defined above.  Figure 
5.3 shows an example of a 2-D projection in the AIS WVU Self Viewer (the 2-D analysis tool 
developed for the purpose of this project) with the verification test points and the corresponding 
predicted post-failure ranges represented by the vertical and horizontal lines.  The failure 
considered consists of left stab locked at 8 degrees.  Two different verification tests have been 
performed covering the altitude range of the nominal tests for Mach between 0.7 and 0.9.  The 
results show alterations of the ranges of pitch rate, pitch acceleration, and roll rate as expected.  
Note that the reduced range of Mach and altitude considered when building the self is not 
affected by this elevator failure.  The verification points are well within predicted ranges for all 
variables considered.  Only very few points exceed the predicted ranges by small relative 
amounts, as captured by REI, except for pitch acceleration.  The variation of this variable 
experiences a short-duration sudden peak at the failure occurrence moment.  The duration of the 
peak is very short as shown by the values of the pitch rate, which remain practically within 
predicted range.  The low values of MI show that the predicted limits of the respective variables 
are not unrealistically large.  It should be noted that the large MI value recorded for Mach 
number is due to the fact that the verification tests do not cover the range between 0.5 and 0.7, 
which was included in the self.  This is one example of a situation when large values of MI 
reflect the incompleteness of the verification tests rather than flaws in the range prediction 
process. 
 

Table 5.1.  Performance of Flight Envelope Prediction Under Stabilator Failure 
ERV Nominal Range Post-Failure Range PR,% REI,% MI,% 
H [2012,9929] [2012,9929] 100.0 0.0 8.0 
M [0.526,0.95] [0.526,0.95] 99.9 1.6 32.9 
q [–0.225,0.183] [–0.141,0.105] 100.0 2.6 0.0 
q [–0.383,0.386] [–0.23,0.32] 99.7 24.6 0.0 
p [–0.94,1.08] [–0.90,0.79] 100.0 0.0 1.0 

 
 The predicted post-failure flight envelope ranges under the aileron failure are presented in 
Table 5.2.  Corresponding nominal ranges and values of the three performance metrics are 
included.  The failure consists of a right aileron locked at 8°.  Two different verification tests 
have been performed covering an altitude range between 2,000 m and 10,000 m and a Mach 
number range between 0.7 and 0.9.  The results show alterations of the ranges of roll rate and roll 
acceleration, as expected.  The verification points are all within predicted ranges for both 
variables considered with only insignificant exceedence as indicated by REI.  The low values of 
REI and MI indicate that the predicted ranges are not unrealistically large. 
 The predicted post-failure flight envelope ranges under the rudder failure are presented in 
Table 5.3.  The failure consists of a right rudder locked at 8°.  Two different verification tests 
have been performed covering the altitude and Mach ranges of the nominal tests.  The results 
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show alterations of the ranges of yaw rate and yaw acceleration, as expected.  The verification 
points are all within predicted ranges for both variables considered.  The relatively low values of 
MI lead to the conclusion that the predicted limits of the respective variables are not 
unrealistically large. 

 
Figure 5.3.  Post-Failure Range of the Pitch Rate Under Stabilator Failure 

 
Table 5.2.  Performance of Flight Envelope Prediction Under Aileron Failure 

ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
p  [–0.94, 1.08] [–0.77, 1.01] 99.94 5.6 1.2 
p [–2.95, 3.1] [–2.98, 2.94] 99.98 1.5 0.0 

 
Table 5.3.  Performance of Flight Envelope Prediction Under Rudder Failure 

ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
r  [–0.064, 0.062] [–0.047, 0.047] 100.0 0.0 7.8 
r P [–0.117, 0.126] [–0.114, 0.104] 100.0 0.0 10.4 

 
 

5.6.3.  Flight Envelope Assessment Under Sensor Failure 
 Table 5.4 presents the predicted post-failure flight envelope ranges under the roll rate sensor 
failure.  The failure consists of a 5°/sec bias in the roll rate sensor output.  Two different 
verification tests have been performed covering the entire altitude and Mach ranges of the 
nominal tests.  The results show alterations of the ranges of roll rate and roll acceleration, as 
expected.  The verification points are all within predicted ranges for all variables considered with 
only insignificant exceedance in the roll attitude angle, as reflected by the corresponding REI 
value.  The relatively low values of MI show that the predicted limits of the respective variables 
are not unrealistically large. 
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Table 5.4.  Performance of Flight Envelope Prediction Under Roll Rate Sensor Failure 
ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
p [–0.94, 1.08] [–0.82, 1.1] 100.0 0.0 15.3 
p P [–2.95, 3.1] [–1.8, 3.13] 100.0 0.0 15.5 

 
 Listed in Table 5.5 are the predicted post-failure flight envelope ranges under the pitch rate 
sensor failure.  The failure consists of a 5°/sec bias in the pitch rate sensor output.  Four different 
verification tests have been performed covering the entire altitude and Mach ranges of the 
nominal tests.  The results show alterations of the ranges of pitch rate and pitch acceleration, as 
expected.  The high values of PR show that the majority of the verification points are within the 
predicted ranges for all variables considered.  Although the values of REI for the pitch 
acceleration and pitch attitude angle are relatively high, very few verification points exceed the 
corresponding predicted limits, as indicated by the corresponding PR values.  The relatively low 
values of MI lead to the conclusion that the predicted limits of the respective variables are not 
unrealistically large. 
 

Table 5.5.  Performance of Flight Envelope Prediction Under Pitch Rate Sensor Failure 
ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
q [–0.225, 0.183] [–0.364, 0.153] 99.8 8.7 13.0 
q P [–0.383, 0.386] [–0.417, 0.32] 99.9 30.9 6.0 

 
 The predicted post-failure flight envelope ranges under the yaw rate sensor failure are listed 
in Table 5.6.  The failure consists of a 5°/sec bias in the yaw rate sensor output.  Four different 
verification tests have been performed covering the entire altitude and Mach ranges of the 
nominal tests.  The results show alterations of the ranges of yaw rate and yaw acceleration, as 
expected.  Although a rudder failure would be expected to affect sideslip capability, this effect is 
not captured because the sideslip range considered for normal operation was already limited 
within the capability under failure of such low severity.  The verification points are all within 
predicted ranges for all variables considered with only insignificant exceedance as reflected by 
REI.  The simultaneous occurrence of non-zero values of REI and MI reflect the situation when 
one limit of the predicted range is exceeded and the other is not reached during the verification 
tests.  The relatively low values of MI lead to the conclusion that the predicted limits of the 
respective variables are not unrealistically large. 
 

Table 5.6.  Performance of Flight Envelope Prediction Under Yaw Rate Sensor Failure 
ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
r  [–0.064, 0.062] [–0.08, 0.0477] 100.0 1.0 10.7 
r P [–0.117, 0.126] [–0.093, 0.128] 100.0 4.8 5.8 
 [–9.6, 9.8] [–9.6, 9.8] 100.0 0.7 16.9 

 
 

5.6.4.  Flight Envelope Assessment Under Structural Damage 
 The predicted post-failure flight envelope ranges under a wing damage affecting 15% of the 
left surface are listed in Table 5.7.  Two verification tests have been performed covering the 
altitude and Mach number ranges of the nominal tests.  The results show alterations of the ranges 
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of pitch rate, pitch acceleration, roll rate, and roll acceleration, as expected.  Note that the 
reduced range of Mach and altitude considered when building the self is not affected by this 
failure.  The verification points are well within the predicted ranges for all variables considered.  
Only very few points exceed the predicted ranges by small relative amounts, as captured by REI.  
The relatively low values of MI lead to the conclusion that the predicted limits of the respective 
variables are not unrealistically large. 
 

Table 5.7.  Performance of Flight Envelope Prediction Under Wing Damage 
ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
H [2012, 9929] [2012, 9929] 99.7 1.8 9.0 
M [0.526, 0.95] [0.526, 0.95] 99.9 2.2 10.3 
p [–0.94, 1.08] [–1.12, 0.51] 99.9 4.3 7.6 
p P [–2.95, 3.1] [–2.97, 2.5] 99.9 2.5 0.0 

q [–0.225, 0.183] [–0.05, 0.064] 100.0 0.0 1.2 
q P [–0.383, 0.386] [–0.091, 0.072] 99.8 9.7 3.7 

 
 Table 5.8. presents the predicted post-failure flight envelope ranges under a horizontal tail 
damage affecting 60% of the left surface.  One verification test has been performed covering an 
altitude range between 6,000 m and 10,000 m and a Mach number range between 0.7 and 0.9.  
The results show alterations of the ranges of pitch rate, pitch acceleration, roll rate, and roll 
acceleration, as expected.  Note that the reduced range of Mach and altitude considered when 
building the self is not affected by this horizontal tail damage.  The verification points are well 
within the predicted ranges for all variables considered.  Only very few points exceed the 
predicted ranges by small relative amounts, as captured by REI. Relatively large values of MI are 
recorded, which seem to indicate that the maneuvers performed were not as aggressive as for the 
nominal conditions.  Note that the ranges of Mach and altitude for the verification test were 
limited, explaining the large values of MI for these two variables. 
 

Table 5.8.  Performance of Flight Envelope Prediction Under Horizontal Tail Damage 
ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
H [2012, 9929] [2012, 9929] 99.0 2.0 40.3 
M [0.526, 0.95] [0.526, 0.95] 98.5 0.8 35.5 
q [–0.225, 0.183] [–0.327, 0.165] 100.0 0.0 38.2 
q P [–0.383, 0.386] [–0.37, 0.355] 100.0 0.0 9.1 
p [–0.94, 1.08] [–0.925, 1.09] 100.0 0.0 18.1 
p P [–2.95, 3.1] [–2, 3.13] 100.0 0.0 24.5 

 
 

5.6.5.  Flight Envelope Assessment Under Propulsion System Failure 
 Table 5.9 presents the predicted post-failure ranges of relevant variables with left engine 
throttle locked at idle.  Corresponding nominal ranges and the three performance metrics are also 
included.  One verification test has been performed covering an altitude range between 6,000 m 
and 10,000 m for Mach numbers between 0.7 and 0.9.  The results show alterations of the ranges 
of the longitudinal and vertical acceleration, and roll rate, as expected.  Note that the reduced 
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range of Mach and altitude considered when building the self is not affected by this failure.  The 
verification points are well within predicted ranges for all variables considered.  Only few points 
exceed the predicted ranges by small relative amounts, as captured by REI.  The relatively large 
values of MI are the result of the verification test not completely covering the maneuver range of 
the self-generating data.  In particular, the verification test does not include maneuvers between 
2,000 m and 6,000 m or for Mach numbers between 0.5 and 0.7. 
 

Table 5.9.  Performance of Flight Envelope Prediction Under Engine Failure 
ERV Nominal Range Post-Failure Range PR, % REI, % MI, % 
ax [–0.344, 0.597] [–0.344, 0.353] 99.9 4.8 20.4 
az [–2.46, 3.05] [–2.46, 2.16] 99.6 10.3 10.4 
r [–0.0637, 0.0621] [–0.0637, 0.0393] 99.9 5.3 21.5 
H [2012, 9929] [2012, 9929] 95.0 3.4 50.0 
M [0.526, 0.95] [0.526, 0.95] 100.0 0.0 54.1 

 
 
 
 
  



128 
 

Chapter 6 
 

Investigation of Immunity-based Accommodation of Aircraft Subsystem 
Abnormal Conditions  

 
6.1.  Immunity Approaches for AC Accommodation 

 The immunity-based AC accommodation can be approached based on two concepts.  First, 
the biological feedback that establishes a balance between the activation and suppression of the 
antibodies generation can be converted into an adaptive mechanism augmenting a baseline 
controller20,21.  For the biological system, it can be considered that the activation aTh of the 
helper T-cells is governed by the balance between the amount of antigens a(t) and the action of 
antibodies u generated previously at t  and whose antiseptic action is modeled by a function 

1F ; therefore: 
 
    ))t(u(F)t(a)t(aTh 1                (6.1) 
 
The delay   models the time needed for the antibodies to mature and function.  The generation 
of the helper T-cells ( hT ) depends on the activation aTh: 

 

    ))t(aTh(F)t(T 2h  ,  0
daTh

dF2               (6.2) 

 
The production of the B-cells is the result of the combined effects of helper T-cells and 
suppressor T-cells: 
 
    )))t(T)t(T(F)t(B sh3                 (6.3) 

 
The suppressor T-cell generation depends on the balance between the amount of antigens and 
antibodies and the rate at which the currently matured antibodies were generated )t(u  : 
 
    )t(aTh))t(u(FK)t(T 4ss                (6.4) 

 
Finally, the antibodies are generated by activated B-cell; therefore: 
 
    ))t(B(F)t(u 5                  (6.5) 

 
The immune system mechanisms are not completely understood; therefore, the parameters of this 
model, the functions 1F  through 5F ,   and sK  must be determined heuristically, which is not 

trivial.  The block diagram of the immune system feedback model is presented in Figure 6.1. 
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Figure 6.1.  Block Diagram of the Immune System Feedback Model 

 
 The second conceptual approach for using the AIS paradigm for control purposes relies on 
the assumption that the classification capabilities of the AIS can be extended22 and used not only 
to detect the problem (AC) but also to select or find the solution, which is mitigating the AC 
effects.  The control action is considered as a mapping between control variables and controlled 
variables under specific performance requirements or constraints.  Therefore, if the AIS is to be 
used for control purposes, both control and controlled variables must be part of the feature set.  If 
that is the case, the AIS framework provides the relationship between the control and controlled 
variables for the normal conditions and for those AC for which detailed structuring of the non-
self is available.  Alternatively, the control variables associated with the adaptive immune 
feedback system and with the best compensation performance under specific upset conditions 
may be differentiated into memory cells, which can mount a faster and more aggressive 
secondary response in future encounters with the same AC.  
 Let us assume that we try to control variable y using the control variable x, which are both 
part of the feature set.  Let us also assume that structuring of the non-self is available such that a 
mapping between x and y is established under AC.  For any desired value of the controlled 
variable yd, corresponding clusters ck can be determined/extracted from the structured non-self as 
illustrated in Figure 6.2.  Further processing of the clusters ck is necessary to produce 
compensatory commands xcmd.  These commands can be typically obtained by considering 
additional dimensions of the feature hyper-space, which may eventually result in one command 
detector, let us say cK.  An operator may still be needed to convert the command detector/cluster 
into a numerical value xcmd, which can be formulated as: 
 
    )c(Ox Kcmd                   (6.6) 

 
 Depending on the resolution of the non-self (in other words, the size of the 
detectors/compensators) the operator (*)O  can simply represent the center of the compensator or 
a more involved computation providing values inside the compensator. 
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Figure 6.2.  Failure Accommodation Based on Structured Non-Self 
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6.2.  The Humoral Immune Mechanism for Abnormal Condition Accommodation 
 

6.2.1.  General Control Architecture 
 A novel approach for direct adaptive control laws was investigated based on the humoral 
immune mechanism.  Specifically, the proposed adaptive element is used to augment a baseline 
controller providing improved capabilities for handling subsystem ACs.  The general block 
diagram of the humoral immune mechanism is presented in Figure 6.3.  Three control 
architectures have been considered and compared in this study: a baseline controller (without 
adaptation), baseline controller augmented with ANN, and the baseline controller augmented 
with the artificial immune system-based mechanism. 
 

 
Figure 6.3.  Humoral Immune System Representation 

 
 The baseline controller relies primarily on a model reference architecture that uses the pilot 
stick inputs to generate desired angular rate and angular acceleration commands that are then 
used to produce compensating commands based on a proportional-integral-derivative (PID) 
approach in conjunction with approximate non-linear dynamic inversion (NLDI).  The structure 
of the baseline control architecture24 is presented in Figure 6.4. 
 A second architecture considered here consists of the baseline control laws augmented with 
ANN.  The neural networks are used in conjunction with the output from the PID compensation, 
the states of the aircraft and the reference angular rates and accelerations24, as shown in the 

control architecture of Figure 6.5.  The input to the ANN is  Tref UHVx  , where V is 
the aircraft velocity, H is the altitude,   is the angle of attack, and   is the sideslip angle.  These 
four inputs are the same on all three channels.  For the longitudinal channel, q  , while for the 

lateral and directional channels, [ ]p r  .  Only on-channel variables are considered for ref  and

U .  Finally, U is defined as 
)Uŷ(

)Uŷ(

e1

e1
U





 






 , with ŷ , the previous output of the ANN. 
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 Finally, the AIS is used to augment the PID part of the control laws.  The augmented form 
of the controller using the AIS paradigm leads to the following expression in its discrete version: 
 

     1
( ) 1 1 ( ( )) ( )

1
i

p d
k z

u k k k f u k e k
z z

       
           (6.7) 

 
The function that expresses the change in concentration of the B cells will be given by: 
 

    2 2[ ( ) ] [ ( ) ]

2
( ( )) 1

u k a u k a
f u k

e e  
  


             (6.8) 

 
where a is another parameter that will modulate the adequate response of the system under 
abnormal conditions.  

 
Figure 6.4.  General Block Diagram of the Baseline Controller 

 

 
Figure 6.5  General Block Diagram of the Baseline controller (PID+NLDI) Augmented with 

ANN 
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 The following relationships are satisfied by definition for the parameters kp, ki, and kd and η: 
 
    (kp, ki, kd) > 0, and η ≥ 0               (6.9) 
 
Since the control laws perform negative feedback control action if 0 <ηf[Δu(k)] ≤ 1, and positive 
feedback control action if 1 <ηf[Δu(k)], an upper limit of the factor η keeps the control system 
stable.  Assuming the existence of parameters kp0, ki0, and kd0, which ensure the stability of the 
control system with the conventional PID controller, the stability condition of the immune 
control algorithm is given by: 
 

    000 0,0,0 pppppp kkkkkk            (6.10) 

 

and    
)]([sup

1
0

kuf 
  for all k            (6.11) 

 
Consequently, if the parameter η satisfies Eq. (6.11), the control system is guaranteed within the 
stable state of the conventional PID controller.  The inner loop controller scheme based on the 
immune augmentation is shown in the Figure 6.6. 

 
Figure 6.6.  Block Diagram of the PID-AIS-based Adaptive Mechanism 

 
 Parameters in red in Figure 6.6 must be tuned to modulate a proper response of the AIS on 
each channel.  There will be a total of nine tunable parameters for the AIS for the roll, pitch, and 
yaw angular rates channels: 
 
    [ , , ]AISp p p pK K a  

    [ , , ]AISq q q qK K a                (6.12) 

    [ , , ]AISr r r rK K a   

 
Figure 6.7 illustrates the control scheme architecture of the baseline controller extended with the 
AIS. 
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Figure 6.7.  Baseline Controller Augmented with AIS-based Mechanism 

 
 

6.2.2.  Analysis of AIS Compensation Performance 
 In order to obtain quantitative assessments of the performance of the different control 
architectures, specific performance metrics were defined in terms of the total pilot input activity, 
angular rate tracking errors, and the total amount of work required by each of the control 
surfaces.  Extensive simulation tests were performed using both a desktop setup as well as the 
motion-based flight simulator.  The nine parameters of the AIS augmentation have been 
optimized using an evolutionary algorithm. 
 The comparison between the different control configurations shows that, in general, the 
baseline controller augmented with the AIS has better failure rejection capabilities than the 
baseline + ANN.  Both augmented sets of control laws perform better than the baseline (see 
Figure 6.8).   

 
Figure 6.8.  Results of Average PI for Different ACs 
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 The level of performance improvement is illustrated in Figure 6.9 and 6.10 showing attitude 
responses in roll and pitch, respectively, when attempting to keep constant wing level and 
constant heading after a left stabilator high magnitude failure is injected at 2 seconds.  These 
results are also supported by Figure 6.11 where the pilot activity history is plotted against time 
for the different control architectures considered.  It can be seen that the pilot is required to 
exercise less activity controlling the aircraft when the AIS is part of the control architecture. 
 

    
Figure 6.9.  Roll Response Under High Magnitude Figure 6.10.  Pitch Response Under High 
    Stabilator Failure          Magnitude Stabilator Failure 
 

 
Figure 6.11.  Total Pilot Activity Under High Magnitude Stabilator Failure 

 
 On the average, the AIS augmentation achieves better tracking errors with similar level of 
control activity.  Figure 6.12 shows the average PI for angular rate tracking errors over all 
failures for the three control architectures. 
 It should be noted that the design complexity and processing requirements of the ANN 
makes the AIS more desirable from the point of view of implementation and efficiency in terms 
of hardware task execution time, as well.  A simple test was designed and executed in order to 
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compare the required hardware time for each of the approaches.  The test was repeated for a 
thousand simulations on a computer with characteristics listed in Table 6.1.  The average results 
are presented in Table 6.2.  Figures 6.13 presents the histogram of the task execution time and 
Figure 6.14 presents the time per simulation versus for all simulation performed.  The 
computational efficiency of the AIS version of the control laws can be easily inferred from these 
results.  

 
Figure 6.12.  Average Performance Index for Tracking Error 

 
Table 6.1.  Computer Characteristics for Execution Time Assessment 

Computer Specifications Simulation setting 

Model Dell XPS L501X 
N of 

simulations 1000 

Processor 
Intel Core i5 @ 

2.67GHz Solver 
Discrete, fixed 

step 
Ram 
memory 6 GB 

Sampling 
time 0.02 seconds 

 
Table 6.2.  Task Execution Time Assessment 

Time to run a hundred seconds 
simulation

T mean AIS 0.1652 seconds 
T mean NN 0.3463 seconds 

Ratio AIS:NN 2.09 
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Figure 6.13.  Task Execution Time Histogram  Figure 6.14.  Time per Simulation vs  
              Simulation Count 
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6.3.  Structured Self/Non-self for Control 
 The SNSA for control attempts to use the AIS already built for ACDIE purposes.  It should 
be noted that two scenarios can be envisioned within the AIS paradigm for control.  The first 
scenario, assumes that substantial information about the failure and its compensation is available 
and already stored in the AIS.  This can be achieved by memorizing the dynamic fingerprint of 
the AC during first encounter situations, by generating and recording pilot compensation during 
actual or simulated failures.  The second scenario involves an unknown failure that requires a 
specific new compensation.  It is expected that compensation can be produced by properly 
composing bits of information within the self and non-self.   
 Within this project, a preliminary investigation has been performed with the objective of 
assessing the possibility of extracting useful control/compensation information out of properly 
structured AIS.  This general feasibility study was performed using data collected from the 
motion-based flight simulator at normal and failure conditions for two simple maneuvers: 
uniform symmetric climb/descent and coordinated turn.  The failures considered were actuator 
locked (stab, aileron, and rudder) and pitch rate sensor bias.  Several simplifying assumptions 
were made for this first step.  The information about which subsystem failed, what part of 
subsystem is affected, and what is the nature and magnitude of the failure must be available.  
Figure 6.15 illustrates the concept of extracting pilot compensatory commands followed by 
implementing those commands to the same aircraft, which will be referred to as accommodation.  
In order to solve the accommodation problem, a set of specific steps must be accomplished as 
illustrated in Figure 6.16.   
 

 
Figure 6.15.  Failure Accommodation Definition 

 
6.3.1.  Formulation of Mathematical Model 

 A set FF of flight features must be selected such that the dynamic fingerprint of the aircraft 
operation is accurately captured at normal and abnormal conditions.  FF can be defined as a 
vector with Nf components: 
 
ܨܨ     = ,		ଵݐ݂ܽ݁	} ,		ଶݐ݂ܽ݁ … ,  ே೑}           (6.13)ݐ݂ܽ݁
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where featj  (j=1,2, …, Nf) represents the feature (e.g. roll rate, velocity).  An input to the pilot 
(or mission objectives) can be defined as a matrix REF whose rows are represented by vectors 
REFv of length Nf: 
 
௩ܨܧܴ     = [݀ ଵ݂, ݀ ଶ݂, … , ݀ ே݂௙]            (6.14) 
 
Each element dfj of the vector REFv represents a desirable value of the corresponding feature in 
set FF.  Duration of the flight is defined by the number of time samples ts.  Consequently, matrix 
REF consists of ts rows. 
 

 
Figure 6.16.  Accommodation Problem Main Components 

 
An outcome of pilot's performance is a matrix PF.  Every row in this matrix is represented by a 
vector PFv of length Nf: 
 
௩ܨܲ     = ݌] ଵ݂, ݌ ଶ݂, … , ݌ ே݂೑]	             (6.15) 

 
where each element pfj of the vector PFv represents a value of the corresponding feature of set 
FF obtained from pilot performance.  Matrix PF consists of ts rows as well.  Pilot generated 
control commands are defined by matrix PC.  Every row in this matrix is represented by a vector 
PCv of length Ncc, where Ncc is the number of control commands: 
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௩ܥܲ     = ,ଵ݈ݎݐܿ] ,ଶ݈ݎݐܿ … ,             (6.16)	ே೎೎]݈ݎݐܿ
 
where element ctrlj of the vector PCv represents a control command provided by pilot at each 
time sample during flight. Matrix PC consists of ts rows.  The vector of measured in-coming 
values of features at every time sample is defined as INCv.  The length of the vector is Nf. 
 
௩ܥܰܫ     = [݅ ଵ݂, ݅ ଶ݂, … , ݅ ே݂೑]             (6.17) 

 
Each element ifj of the vector INCv represents an in-coming value of the corresponding feature of 
set FF. 
 

6.3.2.  Generating AIS Memory 
 There is a certain flight path that the aircraft should follow.  There are also specific flight 
conditions that the aircraft should maintain during the flight (e.g. constant altitude, constant 
velocity).  These parameters define the task and are considered as the input to the pilot+aircraft 
system.  After being informed or making the decision about this flight path and about the specific 
flight conditions, an experienced pilot intends to execute the task as accurate as possible.  An 
aircraft following the desirable flight path under the commanded flight conditions will be 
assimilated to a healthy organism.  Every value of in-coming flight variable that alters from the 
desirable value during the pilot performance will be defined as invading entity/antigen.  The 
control commands provided by the pilot that are trying to bring the aircraft to the desirable state 
will be defined as immune system antibodies.  This process is an analogy to the immune system 
being affected by a disease for the first time.  The adaptive immune system fights back and 
generates antibodies, which eventually eliminate the disease.  The recorded and saved flight data 
will define a set of created artificial memory cells (B-cells, T-cells, and antibodies) and antigens. 
 The set of antigens is defined as the difference between in-coming data and reference input 
(pilot mission at each time sample tsc.  
 
௩ܩܣ     = ௩ܨܧܴ −  ௩              (6.18)ܥܰܫ
 
௩ܩܣ     = [݀ ଵ݂ − ݅ ଵ݂, ݀ ଶ݂ − ݅ ଶ݂, …	, ݀ ே݂௙ − ݅ ே݂௙]	        (6.19) 
 
Depending on flight scenarios, the content of the antigen cell might be extended to include not 
only values of differences but actual values of incoming features as well: 
 
௩ܩܣ     = [݀ ଵ݂ − ݅ ଵ݂, …	, ݀ ே݂௙ − ݅ ே݂௙, ݅ ଵ݂, … , ݅ ே݂௙]	        (6.20) 
 
These additional features are selected depending on the specific task and prescribed maneuver.  
The collection of AGv vectors over the entire flight time defines the matrix AG.  The overall 
number of time samples during the flight is ts, consequently matrix AG has ts rows. 
 The immune system memory has information about the T-cells and B-cells produced during 
the prior infection encounters, and antibodies that were used to suppress these antigens.  Within 
the AIS paradigm, T-cells together with B-cells will be assimilated to a difference between pilot 
features data and reference input data.  The set of T-cells and B-cells for a specific time sample 
tsc is a vector TBv defined by subtraction of elements of vector PFv from corresponding elements 
of vector REFv. 
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௩ܤܶ     = ௩ܨܧܴ −  ௩              (6.21)ܨܲ
 
௩ܤܶ     = [݀ ଵ݂ − ݌ ଵ݂, ݀ ଶ݂ − ݌ ଶ݂, …	, ݀ ே݂௙ − ݌ ே݂௙]        (6.22) 
 
Similarly to AGv vector, a TBv vector might need an extension and include some actual values of 
features obtained from pilot performance: 
 
௩ܤܶ     = [݀ ଵ݂ − ݌ ଵ݂, … , ݀ ே݂௙ − ݌ ே݂௙, ݌ ଵ݂, … , ݌ ே݂௙]       (6.23) 
 
The additional features for TBv should be the same as for AGv. The collection of TBv vectors over 
the entire flight time defines the matrix TB.  The overall number of time samples during the 
flight is ts, consequently, matrix TB has ts rows. 
 The set of antibodies for a specific time sample tsc is a vector ABv defined by the 
corresponding vector from matrix PC. 
 
௩ܤܣ     =  ௩                (6.24)ܥܲ
 
The collection of ABv vectors over the entire flight time defines matrix AB.  Considering all 
definitions and notations in this section, the generic structure of the AIS memory is presented in 
Figure 6.17. 
 

 
Figure 6.17.  AIS Memory Structure 
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6.3.3.  Matching Algorithm 
 At each time sample, an in-coming antigen AGv is compared to the sets of T-cells and B-
cells from matrix TB.  Once the “best match” is found, a corresponding set of antibodies ABv is 
retrieved from matrix AB.  As a result, control commands are obtained dictating the behavior of 
the aircraft.  The “best match" is a row vector TBv (from matrix TB) which is most similar to an 
in-coming antigen vector AGv.  Let vector ERR be the difference between AGv and TBv: 
 
ܴܴܧ     = ௩ܩܣ −  ௩              (6.25)ܤܶ
 
Then sum S can be defined as follows: 
 

    ܵ = ∑ ே೑௜ୀଵ((݅)ܴܴܧ)ݏܾܽ              (6.26) 
 
where ERR(i) is an element of vector ERR.  Therefore, a row vector TBv that leads to the lowest 
value of S is defined as the “best match”.  It should be noted that more sophisticated matching 
algorithm may be used to improve performance.  For higher performance, one should take into 
consideration the current state and the state in which aircraft had been before (i.e. several time 
samples before).  Once the number of the states prior to current is defined, the sum will be 
calculated accordingly:  
 

    ܵ = ∑ ∑ ே೑௜ୀଵ((݅)ܴܴܧ)ݏܾܽ ݆௧௦௖௝ୀ௧௦௖ିே௧            (6.27) 
 
where tsc is the current time sample, and Nt is the size of the floating time window over which 
matching is investigated. 
 
 

6.3.4. Example Results Using the Structured Self/Non-self for Control  
 A).  Simulation Scenarios 
 The flight scenarios, lasting between 2 and 4 minutes, were designed to include steady state 
flight conditions and moderate maneuvers.  These flight scenarios were first simulated under 
nominal flight conditions.  They were repeated under various failure conditions for both 
design/development and validation purposes.  Only one failure at a time is injected.  Two 
simplified maneuvers were considered, one in the vertical plane of symmetry (climb) and one on 
the lateral-directional channel with longitudinal coupling (coordinated turn). 
 The symmetric climb maneuver (Figure 6.18) consists of steady state symmetric flight at 
6050 m and Mach 0.75 for 30 seconds, uniform climb to 6900 m at Mach 0.75, and steady state 
symmetric horizontal flight for 1 minute at the destination altitude (6900 m) and Mach 0.75.  The 
coordinated half turn maneuver (Figure 6.19) consists of steady state symmetric flight at 6050 m 
and Mach 0.75 for 30 seconds and coordinated half turn at constant bank angle while 
maintaining altitude and velocity. 
 Two types of failures were considered: left actuator locked at +4 degrees and roll rate sensor 
step bias. Failure injection time for all the tests is Tf=15 s.  Sensor noise and mild atmospheric 
turbulence are included in the simulation. 
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       Figure 6.18.  Symmetric Uniform Climb      Figure 6.19.  Coordinated Half Turn 
 
 B).  System Implementation 
 For the climbing flight scenario, the following set of flight features FF was selected: aircraft 
velocity V, roll rate p, pitch rate q, yaw rate r, altitude H, and pitch angle θ. 
 
ܨܨ     = {ܸ, ,݌ ,ݍ ,ݎ ,ܪ  (6.28)              {ߠ
The pilot generated commands are the following: longitudinal channel stick displacement de, 
lateral channel stick displacement da, directional channel pedals displacement dr, and throttle 
displacement dt.  Therefore: 
 
ܥܲ     = {݀݁, ݀ܽ, ,ݎ݀  (6.29)              {ݐ݀
 
 The antigen vector AGv will consist of elements that represent the differences between the 
desired and actual values of corresponding feature.  However, antigen vector has to be extended 
by including additional elements that represent the actual values of certain features.  The 
additional features for the extension of antigen vector are: bank angle φ, pitch angle θ, yaw angle 
ψ, pitch rate q, and altitude H. The flight duration time is T=130s, consequently, the overall 
number of time samples is ts=6500.  The number of time samples used prior to the current 
moment in the matching algorithm is selected to be Nt=4. 
 For the coordinated half turn maneuver, the following set of flight features FF was selected: 
aircraft velocity V, roll rate p, pitch rate q, yaw rate r, altitude H, and bank angle φ.  Therefore: 
 
ܨܨ     = {ܸ, ,݌ ,ݍ ,ݎ ,ܪ ߮}              (6.30) 
 
The pilot generated commands are the same as in the climb maneuver.  The additional features 
for the extension of antigen vector are: bank angle φ, pitch angle θ, yaw angle ψ, and roll rate p.  
The flight duration time is T=215s, consequently, the overall number of time samples is 
ts=10750.  The number of time samples used prior to the current moment in the matching 
algorithm is selected to be Nt=4. 
 
 C).  Simulation Results for Symmetric Climb 
 Figure 6.20 presents the variation of aircraft altitude during the symmetric flight under 
nominal conditions.  The generated altitude was very accurately reproduced and is very close to 
the altitude of pilot performance.  There is a little deviation at the end of the flight; however, the 
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drifting down trend is preserved.  Figure 6.21 presents the longitudinal channel control 
commands.  The outcomes of the failure accommodation system almost coincide with the pilot 
performance. 

    
Figure 6.20.  Aircraft Altitude at Nominal   Figure 6.21.  Longitudinal Channel Commands 
 
 Figure 6.22 presents the aircraft altitude variation under locked stabilator.  A small decrease 
of altitude can be noticed at around T=20s due to the stabilator failure.   Figure 6.23 illustrates 
the longitudinal channel commands.  Notice that the pilot workload on the longitudinal channel 
has significantly increased, in comparison with nominal conditions flight.  Small insignificant 
inaccuracies can be observed. 

         
            Figure 6.22.  Aircraft Altitude   Figure 6.23.  Longitudinal Channel Commands 
 
 Figure 6.24 illustrates the lateral channel commands.  Although the failure affects mostly the 
longitudinal channel, pilot workload on the lateral channel is larger.  The generated commands 
almost coincide with the pilot input.  Figure 6.25 presents the variation of the lateral position in 
Earth axes.  Although the stabilator failure mostly affects the longitudinal channel, a coupling 
with lateral channel takes place.  Therefore, because of the bank angle φ alteration (see Figure 
6.26), the aircraft slightly deviates from the straight forward trajectory. 
 Figure 6.27 illustrates the trajectory of symmetric climb under a roll rate sensor failure.  
Trajectory has been accurately simulated and followed the pilot's outcome.  A small delay in 
climbing process can be noticed.  Also, the altitude deviates from the desired value in the final 
stage of the flight.  Longitudinal channel commands have been generated accurately during the 
sensor failure flight as presented in Figure 6.28. The generated commands followed the pilot 
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trend, including the beginning of the flight when the failure was injected.  Several inaccuracies 
can be observed during the climb maneuver; however, they did not have a significant effect on 
aircraft altitude variation. 

 
       Figure 6.24.  Lateral Channel Commands  Figure 6.25.  Lateral Aircraft Position  
               Coordinate 

    
Figure 6.26.  Aircraft Bank Angle   Figure 6.27. Aircraft Altitude Under Sensor Failure 
 

     
Figure 6.28.  Longitudinal Channel Commands  Figure 6.29.  Lateral Channel Commands 
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 Lateral channel commands extraction was not as successful as the one for the longitudinal 
channel (see Figure 6.29).  Generally, the plot exhibits visual inaccuracies in the command 
extraction.  However, it can be noted that at the initial stage of the flight, the commands that 
were dedicated to overcome the injected failure have been generated very accurately.  A bank 
angle offset results, as presented in Figure 6.30, with an integral effect eventually producing a 
lateral deviation from the straight flight. 

 
Figure 6.30.  Aircraft Bank Angle 

 
 D).  Simulation Results for Coordinated Half-Turn 
 Figure 6.31 presents the trajectory of the coordinated half turn in the horizontal plane under 
nominal conditions.  The entire maneuver was generated successfully without any significant 
differences from the pilot performance outcome.  

 
Figure 6.31.  Coordinated Turn Flight Trajectory Under Nominal Conditions 

 
 Figure 6.32 presents the lateral channel commands.  A short command at the beginning of 
the flight was produced to reach the desirable bank angle φ (see Figure 6.33).  Since it is a 
nominal conditions flight, for the rest of the flight, no commands on this channel were needed. 
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    a).  Entire Flight Time      b).  Bank Command 

Figure 6.32.  Lateral Channel Commands for Coordinated Turn at Nominal Conditions 
 
 Figure 6.34 presents the longitudinal channel commands.  When the aircraft is banked at a 
constant angle it tends to lose altitude; that is why the pilot must provide certain longitudinal 
commands to maintain the vertical position.  This task is slightly more demanding because 
constant lateral input has to be preserved as well.  Longitudinal command reproduction is not as 
neat and accurate; however, it follows the pilot trend. 

 
            Figure 6.33.  Aircraft Bank Angle  Figure 6.34.  Longitudinal Channel Commands 
 
 Figure 6.35 illustrates the aircraft altitude variation.  Although the generated longitudinal 
commands were slightly inaccurate, the aircraft altitude is well maintained and does not differ a 
lot from the pilot performance outcome. 
 Figure 6.36 presents the flight trajectory in the horizontal plane under stabilator failure when 
performing a coordinated turn.  An excellent duplication of pilot performance can be observed.  
Longitudinal channel commands are presented in Figure 6.37.  There is a considerable input 
signal at the beginning of the flight that has been provided to mitigate the failure.  The generated 
simulation provided that signal as well.  During the rest of the time, the commands are extracted 
very accurately, with several inaccuracies at the end. 
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Figure 6.35: Aircraft Altitude - Nominal Conditions Coordinated Half Turn 

  
Figure 6.36.  Coordinated Turn Trajectory   Figure 6.37.  Longitudinal Channel Commands 
   Under Stab Failure        Under Stab Failure 
 
 Lateral channel control commands are presented in Figure 6.38.  Because of the coupling, 
the pilot had to provide some commands on the lateral channel as well right after the failure was 
injected.  Over the entire flight, the commands have been extracted precisely: the lines almost 
coincide.  Generated bank angle φ dictated by the lateral commands also follows the pilot 
performance outcome accurately (Figure 6.39).   little peak is observed at the beginning of the 
flight due to the failure; however, the value has been brought back close to zero by pilot 
compensation. 
 Figure 6.40 illustrates the flight trajectory in the horizontal plane for a coordinated turn 
executed under roll rate sensor bias.  Generated trajectory follows the pilot trend; however, the 
generated curve has a smaller radius of turn as compared to the one from the pilot performance 
outcome due to the inaccuracies in reproducing lateral channel commands.  Figure 6.41 presents 
the lateral channel commands provided during the flight simulation.  The commands have not 
been extracted as accurately as for actuator failures; however, they behave similarly to pilot 
generated commands with a small delay and several inaccuracies of small magnitude.  Figure 
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6.42 illustrates the commands on the longitudinal channel.  Similarly to the lateral channel, the 
command extraction is not as accurate as for actuator failure; however, the similar trend can be 
observed in the behavior.  These inaccuracies on longitudinal and lateral channels can be 
explained by excessive amount of the pilot workload and rapid change of stick displacement 
during the flight.  For the flight with a large pilot workload and very intensive stick commands, a 
more advanced matching algorithm might be needed for obtaining higher performance results.  
Also, there is a delay between pilot input and aircraft response which becomes more critical 
when abrupt maneuvers are involved.  Under such conditions, this delay should be better taken 
into account.  One possible solution could be to increase the time window over which the 
matching algorithm is applied. 

  
        Figure 6.38.  Lateral Channel Commands   Figure 6.39.  Aircraft Bank Angle 
    Under Stab Failure       Under Stab Failure 

  
Figure 6.40.  Flight Trajectory for Coordinated     Figure 6.41.  Lateral Channel Commands 
    Turn Under Roll Rate Sensor Failure    Under Roll Rate Sensor Failure 
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Figure 6.42.  Longitudinal Channel Commands for Coordinated Turn Under Roll Rate Sensor 

Failure 
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Chapter 7 
 

Integrated Scheme for Aircraft Subsystem Abnormal Conditions Detection, 
Identification, and Evaluation 

 
7.1.  Integrated ACDIE Scheme Using the Structured Self/Non-self Approach 

 Based on the AIS paradigm and a HMS strategy, the SNSA was developed and implemented 
for aircraft subsystems ACDIE.  All phases of the ACDIE process have been integrated in one 
single architecture, that starts with the generation of antibodies (detectors) and continues with 
structuring of the non-self for identification and evaluation purposes, as well as providing the 
necessary information for AC accommodation.  Flight data from the WVU 6-DOF flight 
simulator were initially used to define a large set of 2-dimensional self/non-self projections as 
well as for the generation of antibodies and identifiers designated for health assessment of an 
aircraft under upset conditions.  As shown in Figure 7.1, this represents the first step in the 
complex ACDIE process.  Selecting the predefined set of features or characteristic variables for 
the definition of the self/non-self is a critical component of the AIS-based methodology.   
 During “detection” phase, the process of declaring a generic failure in one or more of the 
aircraft sub-systems is performed.  A detection logic is also designed for real time operation to 
ensure that high detection rates and low false alarm rates are achieved.  Once a failure has been 
detected, the “identification” phase starts.  The identification phase determines which sub-system 
has failed by analyzing which of the detectors has been activated through a positive selection-
type scheme.  In this phase, all the detectors are labeled in a previous offline process (SNSA) in 
order to assign specific detectors to particular categories of failures.  This off-line process or 
“structuring” consists of outlining which non-selves are activated under a specific failure.  
Depending on the complexity of the targeted systems, the identification process can determine 
which subsystems have failed (i.e. actuator, sensor, structural, etc.).  The evaluation phase can be 
divided into two steps, namely direct evaluation and indirect evaluation.  Furthermore, the direct 
evaluation phase can be classified into qualitative and quantitative evaluation.  The direct 
qualitative evaluation phase isolates and determines the specific subsystem that has failed.  The 
quantitative evaluation phase determines the severity or magnitude of a failed subsystem.  The 
indirect evaluation phase determines the effect on the flight envelope maneuverability and 
performance of the system after a failure has affected the system.  Finally, once the failure has 
been detected and properly identified, the best solution to compensate such failure is executed 
using active or passive accommodation tasks that have been previously stored in the immune 
memory. 
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Figure 7.1.  ACDIE with the Structured Non-Self Approach 
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7.2.  Integrated ACDIE Scheme Using the DC Mechanism-based Approach 
 Figure 7.2 shows a top-level block diagram of the online ACDIEA scheme using the 
artificial DC mechanism.  The measured data (i.e., feature values) are first normalized over a 
moving time window using the same normalization used in generating the self and non-self.  The 
normalized data are then projected on the corresponding projections (sub-selves) to generate the 
discrimination matrices that are used as input to the artificial DC mechanism for detection.  Once 
a failure is detected, the features-pattern vector is computed based from the 1F  matrices of all 

migrated DCs (stimulatory and regulatory DCs) and compared with the libraries of reference 
patterns to identify the failed subsystem and evaluate the type of the failure and its severity 
simultaneously. 

 
 

Figure 7.2.  ACDIE with the DC Mechanism Approach 
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Chapter 8 
 

Demonstration of the Integrated Scheme for Aircraft Subsystem Abnormal 
Conditions Detection, Identification, and Evaluation 

 
8.1.  Implementation of the Integrated Scheme for Aircraft Subsystem Abnormal 

Conditions Detection, Identification, and Evaluation 
 The integrated aircraft subsystem ACDIE scheme was implemented and tested with 
Matlab/Simulink 2010a (32-bit).  Figure 8.1 shows the top level Simulink model using the 
SNSA, where the “immunity-HMS” block detail is shown in Figure 8.2.  The top level Simulink 
model of the integrated scheme using the DC mechanism is illustrated in Figure 8.3 and the DC 
mechanism block detail is shown in Figure 8.4. 

 
Figure 8.1.  Top-level Simulink Model of the Integrated Aircraft ACDIE Using the Structured 

Non-Self Approach 
 

 
Figure 8.2.  Simulink Block Diagram of the Structured Non-Self Approach 
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Figure 8.3.  Top-level Simulink Model of the Integrated Aircraft ACDIE Scheme Using the DC 

Mechanism 
 

 
Figure 8.4.  Simulink Block Diagram of the DC Mechanism 
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 Both of the models deliver their outcome to a GUI at each time step.  Figure 8.5 shows the 
interface displaying the current ACDIE outcome for a flight test under failure of the left wing.  
The implementation of the integrated scheme has two components.  One allows the scheme to 
run in conjunction with the aircraft simulation.  The other allows feeding previously obtained 
simulation data into the ACDIE scheme for faster testing and analysis. 
 

 
Figure 8.5.  ACDIE Outcome Visualization Interface 

 
 The ACDIE outcome visualization interface has four components: 

1. A header displaying the current flight condition and the current sample time.  If the 
current flight condition is normal, the header will be “Normal Flight Conditions” in 
green.  If the current flight condition is abnormal, the header will be “Abnormal Flight 
Conditions” in red. 

2. Four-line text on the left of the interface showing brief information about the failure 
(failed subsystem, its severity, detection time, and detection rate). 

3. An aircraft image displaying the current status of aircraft’s flight condition.  When the 
ACDIE outcome carries information about the failed subsystem, the image dynamically 
highlights the failed subsystem. 

4. A table displaying the percentage rates of the identified subsystems, types of the failure, 
and severity of the failure. 

 The interface computes the detection, identification, and evaluation rates for all received 
ACDIE outcomes.  However, the interface cannot update its contents when it receives two 
successive outcomes in a short time interval.  Therefore, a predefined “update rate” representing 
the number of graphical update milliseconds was introduced in the configuration of the interface.  
For example, when the interface is configured with an “update rate” of 100, it will only update 
its graphical contents every 100 millisecond, while it keeps computing the ACDIE rates for any 
ACDIE outcome it receives. 
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8.2.  Demonstration of the Integrated Scheme for Aircraft Subsystem Abnormal Conditions 
Detection, Identification, and Evaluation Through Simulation 

 The integrated ACDIE scheme was tested for 10 additional demonstration flight tests with 
different failed subsystems, failure types, and failure magnitudes.  In these tests, the both the DC 
mechanism approach and the SNSA were used.  Table 8.1 lists the detection rates as well as the 
path of the flight test (points in the test envelope of Figure 1.22) and the detection time.  The 
failure was introduced at 40 s.  The false alarm rate was zero for all tests.  These example results 
were obtained through direct recorded data input and through on-line simulation input. 
 

Table 8.1.  Detection Results for a Set of Demonstration Tests 

Subsystem 
Affected by AC 

Failure 
Type 

Failure 
Magnitude

Path 
Detection 
Time 

Detection 
Rate (%) 

Left Stabilator locked 8° 145 40.68 99.9 
Left Wing damaged 15% 167 40.62 99.9 
Pitch Sensor bias 10°  189 40.72 99.9 
Right Aileron locked 8° 165 40.72 99.9 
Right Wing damaged 6% 189 40.88 99.9 
Roll Sensor bias 10°  145 41.68 98.9 
Yaw Sensor bias 3°  167 41.12 99.9 
Left Stabilator locked 6° 1B 40.28 100.0 
Left Wing damaged 10% 1B 40.28 100.0 
Roll Sensor bias 10°  1B 45.58 100.0 

 
 Table 8.2 presents the identification rates for the same tests listed in Table 8.1, whereas the 
corresponding failure type and severity evaluation rates are presented in Tables 8.3 and 8.4, 
respectively.  Note that the evaluation rates are computed with respect to the number of points 
for which correct identification was obtained. 
 

Table 8.2.  Identification Results for the Demonstration Tests  
 Identified Subsystem 

Test # 
Left 
Stab 

Right 
Stab 

Left 
Aileron

Right 
Aileron

Left 
Rudder

Right 
Rudder

Left 
Throttle 

Right 
Throttle

Left 
Wing

Right 
Wing 

Left Stabilator 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Left Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.7 1.3 
Pitch Sensor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Right Aileron 0.0 0.0 0.0 98.8 0.0 0.0 0.0 0.0 0.0 0.0 
Right Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.9 
Roll Sensor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Yaw Sensor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Left Stabilator 99.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Left Wing 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 99.8 0.0 
Roll Sensor 0.0 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0 
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Table 8.2. - Cont’d 
 Identified Subsystem 

Test 
Left 
V Tail 

Right 
V Tail

Left 
H 
Tail 

Right 
H 
Tail 

Roll 
Sensor

Pitch 
Sensor

Yaw 
Sensor 

Left 
Engine

Right 
Engine

Left Stabilator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Left Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Pitch Sensor 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 
Right Aileron 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 
Right Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Roll Sensor 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 
Yaw Sensor 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 
Left Stabilator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 
Left Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Roll Sensor 0.0 0.0 0.0 0.0 87.0 0.3 0.0 0.0 0.0 

 

Table 8.3.  Failure Type Evaluation Results for the Demonstration Tests 
 Evaluated Type 

Test Type 1 Type 2 
Left Stabilator 100.0 0.0 
Left Wing 100.0 0.0 
Pitch Sensor 100.0 0.0 
Right Aileron 100.0 0.0 
Right Wing 100.0 0.0 
Roll Sensor 100.0 0.0 
Yaw Sensor 100.0 0.0 
Left Stabilator 100.0 0.0 
Left Wing 100.0 0.0 
Roll Sensor 100.0 0.0 

 

Table 8.4.  Failure Severity Evaluation Results for the Demonstration Tests 
 Evaluated Severity 

Test Low Medium High 
Left Stabilator 0.0 0.0 100.0 
Left Wing 0.0 100.0 0.0 
Pitch Sensor 0.0 0.0 100.0 
Right Aileron 1.2 0.0 98.8 
Right Wing 99.9 0.0 0.1 
Roll Sensor 0.0 0.0 100.0 
Yaw Sensor 0.0 0.0 100.0 
Left Stabilator 0.0 100.0 0.0 
Left Wing 0.0 100.0 0.0 
Roll Sensor 0.0 0.0 100.0 
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 Figures 8.6 and 8.7 show the ACDIE outcome visualization window for demo tests under 
normal flight conditions and a 15% damage of the left wing, respectively. 
 

 
Figure 8.6.  Demonstration Results for a Nominal Flight 

 

 
Figure 8.7.  Demonstration Results for a 15% Damage of the Left Wing 
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8.3.  Demonstration of the AIS AC Detection Through Flight Testing Using a UAV 
Research Platform 

 
8.3.1.  Flight Test Scenario 

 An initial performance analysis of the proposed ACDIE solution has been assessed through 
flight tests.  A set of two nominal flights that included figure-8-maneuvers as well as control 
surface doublets in all three axes were performed in order to capture the dynamics of the test 
aircraft.  The platform used for this experimentation was the Skywalker RC aircraft instrumented 
with an APM 2.5 micro controller.  The RC aircraft was flown manually by a pilot on the ground 
and the maneuvers were implemented in a sequential order.  The nominal flight tests consisted of 
the following stages: 

1. Manual flight until an altitude of 80 meters 
2. Trim flight at constant speed 
3. Figure 8 maneuver 
4. Elevator Doublet 
5. Figure 8 maneuver 
6. Aileron Doublet 
7. Figure 8 maneuver 
8. Rudder Doublet  
9. Figure 8 maneuver 

The flight test sequence was performed twice and the data were saved into a flash memory for 
later processing.  The data was recorded at a rate of 50Hz and included angular rates, linear 
accelerations, neural network angular rate estimations, reference model commands, Euler angles, 
altitude, stick inputs and velocity.  A total of 21 features were recorded, which generate a total of 
210 self/non-self 2-D projections.  The reduced flight envelope limits of the Skywalker as well as 
the length of the flights yield a reduced amount of data points.  This should be taken into 
consideration during the generation of projections in order to obtain proper coverage of the self.  
 For validation purposes, four different types of failures were injected into the system at later 
flights in order to capture the dynamic fingerprint of abnormal conditions on the test platform.  
The failures investigated included low and high magnitude aileron failures.  The failures were 
injected manually by the pilot through a PWM signal sent from an RC transmitter.  Once a 
failure was injected, the sequence of maneuvers presented above was attempted by the pilot.  
Table 8.5 presents the injected failures in the system.  
 

Table 8.5.  Failures Injected in Flight Tests 
Failure #1 Left Aileron Locked at Wings Level Trim 
Failure #2 Right Aileron Locked at Wings Level Trim 
Failure #3 Left Aileron Locked at Trim during Bank Turn 
Failure #4 Right Aileron Locked at Trim during Bank Turn 

 
8.3.2.  Test Platform 

 The RC airplane chosen for experimentation was the “New Skywalker 1880”.  This platform 
offers a stable and low-cost system that is able to satisfy the needs of the flight tests.  Figure 8.8 
shows the actual system used for the flight tests.  This platform was used in previous projects for 
which system identification techniques were performed.  The physical characteristics of the 
system are presented in Table 8.6. 
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Figure 8.8.  Skywalker 1880 RC 

 
Table 8.6.  Skywalker Dimensions and Mass Properties 

Wing Area (m2) 0.41143
Wing MAC (m) 0.22647
Wingspan (m) 1.88 
Horizontal Tail Span (m) 0.5626 
Horizontal Tail MAC (m) 17.1 
Vertical Tail Span (m) 0.244 
Vertical Tail MAC (m) 19.5 
Total Length (m) 1.183 
Weight (Kg) 0.9525 

 
 The Skywalker 1880 was equipped with a set of analog and digital sensors that provide 
essential variables for the generation of Selves and Non-selves.  Primarily, the onboard 
microcontroller is an APM 2.5 with an “Atmel ATMEGA 2560” processor.  The APM 2.5 board 
includes embedded sensors such as an IMU, magnetometer and a 4MB data flash chip as well as 
digital and analog ports for GPS, telemetry and a pitot tube sensor.  Figure 8.9 shows the APM 
and the setup inside the fuselage of the Skywalker. 
 

 
Figure 8.9.  Onboard APM 2.5 
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 The Ardupilot Mega (APM) 2.5 is an out-of-the-shelf low-cost autopilot solution produced 
by 3D Robotics.  Its dimensions are approximately 66x40 mm. and with the enclosure it weighs 
approximately 20 grams.  It uses an 8-bit, 16Mhz  “Atmel AT Mega 2560” processor which has 
54 digital I/O pins for which 14 can be used for PWM signals.  
 The InvenSense MPU-6000 inertial sensor is a 6-axis motion tracking device.  It combines a 
3-axis gyroscope and a 3-axis accelerometer in a 4x4x0.9mm QFN footprint and it 
communicates through a serial interface in an IC2 protocol.  
 The MEAS Switzerland MS5611 Barometric Pressure Sensor offers a high resolution 
altimeter sensor with SPI and I2C bus interfaces up to 20MHz.  It offers a factory calibrated 
sensor with a resolution of 10 cm. and its dimensions corresponds to a 5x3x1mm QFN footprint.  
 The data flash card used is a 4Mb chip embedded in the APM 2.5 board.  Previous efforts 
have shown that recording 20 floating point parameters at 50Hz allows recording approximately 
17 minutes of flight.  
 The MediaTek MT3329 is a 66 channel single chip solution with a binary output protocol 
with an update rate of 10Hz.  Its sensitivity can be up to -165dB tracking, a position accuracy of 
less than 3meters and USB/UART interfaces.  Its dimensions are 38x16x7.8mm and it weighs 
9.45g.  
 The Freescale MPXV7002DP Differential Pressure Sensor was connected directly to a 
miniature pitot tube located on the right wing.  Its maximum rating for pressure is 2kPa at 60oC.  
This sensor provides true air speed measurements that are used for the definitions of selves.  
 The Spektrum DX7s RC transmitter and receiver is a 7-channel, 2.4 GHz remote control 
device used for manual control of the aircraft and control of aileron failures in the system.  Five 
channels were used for the control of ailerons, rudder, throttle, and elevator and a sixth channel 
commanded the aileron to lock at a given position.  
 The power source chosen for the system was a G6 Pro Lite Thunder Power 5 cell LiPo 
18.5V battery.  
 The electric motor chosen for the Skywalker was a 1000Kv RPM Turnigy brushless motor.  
Its maximum current is 38A and it has a maximum power of 665W.  Its weight is approximately 
130g and its size is 35x42mm with a shaft diameter of 5mm.  
 

8.3.3.  Simulink Models 
 The onboard microcontroller has the ability to be targeted through Simulink and the APM 
2.0 Block set for Simulink.  This feature provides a great advantage for any effort involving low 
cost autopilots and sensor fusions boards.  Several Simulink models including model reference 
control, artificial neural networks and Kalman filter models, were designed in Simulink and later 
loaded into the APM 2.5 board for flight test implementation.  Figure 8.10 shows the top level of 
the Simulink model loaded into the APM 2.5 board.   
 In general, the Simulink model allows the APM board to read several sensors embedded in 
the board while recording flight test data in real time.  Once the data is recorded in the flash 
memory, it can be downloaded and processed off-line for the generation of projections.  Most of 
the features are obtained from the sensors embedded in the onboard computer.  On the other 
hand, the bank and pitch angles as well as the ANN and model reference control outputs are 
generated by separate Simulink models.  The following sections will briefly describe the 
Simulink models for the mentioned systems. 
 It is possible to auto-generate code through the Run-On-Target-Hardware tool in the 
Simulink environment into the APM 2.5 board.  The APM 2.0 Simulink blockset allows users to 
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read data from the sensors embedded in the board, command PWM signals to servos and to run 
guidance, navigation and control algorithms.  This library allows users to read the sensors 
embedded in the microcontroller.  Therefore, a Simulink model that reads the data from such 
sensors was generated and loaded into the onboard computer.  Figure 8.11 shows a sample model 
of the sensors. 

 
Figure 8.10.  Simulink Model Top Level 

 

 
Figure 8.11.  Simulink Sensor Model 
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 In previous efforts, the Skywalker 1880 platform was used as an autonomous platform.  For 
this effort, a sensor fusion solution was developed.  A discrete Kalman filter was designed in 
Simulink in order to determine bank and pitch angles of the platform.  The Kalman filter 
received inputs from a complementary filter that integrated data from the gyroscopes and the 
accelerometer.  The Kalman filter demonstrated excellent performance and accuracy in the 
estimation of the desired Euler angles.  Based on these characteristics, the estimator was included 
in the Simulink model with the objective to generate important variables for the definition of 
Self/Non-self projections.  Figure 8.12 shows a Simulink model with the basic architecture of the 
Kalman filter implementation.   

 
Figure 8.12.  Kalman Filter Architecture 

 
 A model reference controller and ANNs were incorporated into the system in order to 
generate features for the definition of self/non-self.  The ANN used was an ADALINE network, 
which requires eight variables as input.  The Simulink model presents a relatively complex 
architecture that will not be shown in detail for simplicity.  
 

8.3.4.  Flight Test Results 
 Two nominal flights and four failure flights were performed.  A total of 38 different 
channels were recorded into the flash memory.  Out of those, only 18 were selected for the 
definition of projections.  Table 8.7 presents the features that were recorded and selected for 
self/non-self definition. 
 

Table 8.7.  Self/Non-self Features for Flight Testing ݌ ܰ ௣ܰ ܰ ݍ ߮ ௤ܰ ܰ ݎ ߠ ௥ܰ ݀௘݌௥௘௙ ܽ௫ ݀௔ݍ௥௘௙ ܽ௬ ݀௥ ݎ௥௘௙ ܽ௭ ்݀
 
 153 projections were tested against flight test data in order to determine the detection 
performance of the generated selves.  The selves analyzed the data from four different failure 
flights.  The analysis determined that 30 different self projections were able to capture the 
dynamic fingerprint of abnormal conditions.  Table 8.8 presents these projections.  
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Table 8.8.  Skywalker Self Projections 
Self# Features Self# Features
,௥௘௙݌ 1 ௥௘௙ݍ ,௥௘௙݌ 16  ߠ

,௥௘௙݌ 2 ,௥௘௙݌ ௥௘௙ 17ݎ ߮ 

,௥௘௙݌ 3 ,௥௘௙ݎ 18 ݌ ܽ௫ 

,௥௘௙݌ 4 ,݌ 19 ݍ ݀௔
,௥௘௙݌ 5 ,ݍ 20 ݎ ݀௔ 
,௥௘௙݌ 6 ܰ ௣ܰ ,ݎ 21 ܽ௫ 
,௥௘௙݌ 7 ܰ ௤ܰ 22 ܰ ௣ܰ, ݀௔ 

,௥௘௙݌ 8 ܰ ௥ܰ 23 ܰ ௤ܰ, ݀௔ 

,௥௘௙݌ 9 ܽ௫ 24 ܽ௫, ߮ 
,௥௘௙݌ 10 ܽ௬ 25 ܽ௫,  ߠ
,௥௘௙݌ 11 ܽ௭ 26 ܽ௫, ݀௔
,௥௘௙݌ 12 ݀௔ 27 ܽ௫, ்݀
,௥௘௙݌ 13 ݀௘ 28 ߠ, ݀௔ 
,௥௘௙݌ 14 ்݀ 29 ߮, ݀௔
,௥௘௙݌ 15 ݀௥ 30 ݀௔, ݀௘

 
The selected projections obtained an average 21.11% and 30.68% DR for ailerons stuck at wings 
level trim and ailerons stuck during a bank maneuver respectively.  These detection rates may 
seems to be low.  However, they should be considered in conjunction with the expected 0 FA 
rate.  Table 8.9 presents the DR and FA rate of a sample set of projections. 
 

Table 8.9.  Detection Rate and False Alarm Rate for 4 Failures 

 

Right Aileron 
Locked 
at Wings Level 

Right Aileron 
Locked 
at Bank Maneuver 

Left Aileron 
Locked 
at Wings Level 

Left Aileron 
Locked 
at Bank 
Maneuver 

Self# FA DR FA DR FA DR FA DR 
1 0.00 25.6 0.00 28.7 0.00 12.4 0.00 23.8 
12 0.00 25.1 0.00 34.8 0.00 19.2 0.00 34.1 
13 0.00 32.5 0.00 36.4 0.00 31.6 0.00 39.3 
15 0.00 24.6 0.00 44.1 0.00 14.8 0.00 25.5 
22 0.00 10.2 0.00 15.6 0.00 11.3 0.00 30.5 
30 0.00 20.6 0.00 23.3 0.00 26.2 0.00 32.2 
Average 0.00 23.1 0.00 30.5 0.00 19.2 0.00 30.9 
 
 The individual selves present a low DR; however, if they are integrated into a single 
detection mechanism the DR improves greatly.  For example, if the 30 selves selected are used 
for failure detection, then the DR percentage improves to 71.9% and 90.7% for ailerons stuck at 
wings level trim and ailerons stuck during a bank maneuver, respectively.  This configuration is 
able to obtain a significant improvement in DR but it also increases the FA rates approximately 
to 5.2%.  For this reason, other configurations were tested in order to obtain an acceptable 
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tradeoff between DR and FA.  Two more configurations of selves were tested.  The second 
configuration utilizes only the 6 selves shown in Table 8.9.  This configuration obtained an 
average of 43.3% and 58.3% DR for ailerons stuck at wings level trim and ailerons stuck during 
a bank maneuver respectively, with FA rates of approximately 1% for both cases.  The third 
configuration of selves utilizes only projections that have 0% FA rate for each failure 
disregarding FA for other types of failures.  This configuration guarantees that the FA rate will 
be low and it also offers the possibility to use this method for identification purposes.  The third 
configuration presents an average of 59.6% and 77.3% DR for ailerons stuck at wings level trim 
and ailerons stuck during a bank maneuver, respectively and less than 0.5% FA.  Table 8.10 
presents a summary of these results. 
 

Table 8.10.  Detection Rates and False Alarms for 3 Configurations of Selves 

 

R. Aileron Locked 
at Wings  
Level 

R. Aileron Locked
at  
Bank Maneuver 

Left Aileron Locked
at  
Wings Level 

Left Aileron Locked
at  
Bank Maneuver 

Self # FA DR FA DR FA DR FA DR 
1 5.2 74.3 1.54 90.0 4.3 69.4 2.33 91.4 
2 0.52 47.2 0.12 60.2 1.0 39.4 0.02 56.3 
3 0.3 61.2 0.0 80.9 0.2 58.0 0.0 73.6 
 
It should be noted that the four failures investigated in flight test are considered to be low 
magnitude, which makes them more difficult to detect.  Because the locked position of the 
control surface is close to trim, no significant dynamic failure effects are noticeable until pilot 
input is provided.  The DR is computed over the entire period of time that the failure is active, 
disregarding the presence of pilot input.  This approach produces conservative low DR values as 
presented in Table 8.10.  This effect is increased by the short duration of the flight at failure 
conditions, which is approximately 20 seconds.   
 Table 8.9 shows that single projections can only obtain a maximum of 30.9% detection rate.  
Nevertheless, when the projections are integrated as a single mechanism the DR increases greatly 
(see Table 8.10).  This occurs because each projection at certain time periods of the flight test 
only captures abnormal dynamics when excited by certain maneuvers and commands.  On the 
other hand, integrating several projections allows the mechanism to capture abnormal dynamic 
fingerprints at different periods of time during the flight tests.  Figures 8.13-8.15 show the 
detection activity of single projections and Figures 8.16-8.17 shows the detection activity when 
the projections are integrated into a single mechanism.  The value of 1 represents that a detector 
was been activated and alternatively a value of 0 determines that none of the detectors have been 
activated.  The first 5 seconds are nominal flight test conditions while the remainder of the time 
corresponds to flight test data under an upset condition.        
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Figure 8.13.  Self #1 Detector Activity for Left Aileron Locked at Bank Maneuver 

 
Figure 8.14.  Self #17 Detector Activity for Left Aileron Locked at Bank Maneuver 
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Figure 8.15.  Self #18 Detector Activity for Left Aileron Locked at Bank Maneuver 

 
Figure 8.16.  Method 2 Detector Activity for Left Aileron Locked at Bank Maneuver 
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Figure 8.17.  Method 1 Detector Activity for Left Aileron Locked at Bank Maneuver 
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1 
System Requirements 

Operating System: Windows XP SP3, Windows Vista SP2, Windows 7, Windows 8 

OS Architecture: x64 (64-bit) 

Processor: Intel® Core™ @ 1.7GHz or higher

Memory: 8 GB RAM or more

Hard Drive: 4 GB free hard disk space or more

Prerequisites:  Microsoft® .NET™ Framework 4 or later (included with the installer) 
 MATLAB®/SIMULINK® R2010a or later (32-bit only)  
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2 
Installing “AIS Aircraft FDIE” 

Installing the “AIS Aircraft FDIE” is straightforward. Run the AISAircraftFDIEInstaller.exe 
file on the DVD and follow the instructions that appear on the installer interface. 

NOTE: Enter the provided serial number when the installer asks you for one. 
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To uninstall or repair the installation, run the AISAircraftFDIEInstaller.exe file again 
and choose the desired operation. 

 

 

After installing the “AIS Aircraft FDIE,” the installation folder should appear as shown below. 
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The installation folder contains the following components: 

1. Demos folder containing a set of demo flight tests, each in its own folder. The name of each 
folder has the pattern Subsystem_FailureType_FailureMagnitude. For example, 
the folder LeftStabilator_1_6 contains .mat data files for a flight test under the left 
stabilator failure, moving and locked (type 1 failure) at 6°. 

2. Flight Tests folder containing a set of flight tests used in the development of the different AIS 
components. The name of each folder has the pattern 
Subsystem_FailureType_FailureMagnitude_FlightPath. For example, the 
folder LeftAileron_1_2.5_123 contains .mat data files for a flight test under the left 
aileron failure, moving and locked (Type 1 failure) at 2.5°. Flight tests are categorized in folders 
representing the different categories of the subsystems (actuators, sensors, aileron, wing, etc.). 

3. Self Builder folder containing a 64-bit SelfBuilder.exe tool for building the selves and 
nonselves, a 64-bit AISConfig64.exe tool for configuring the SelfBuilder tool, and a 
64-bit AxComReg64.exe tool for registering the AISDCx64.dll COM Interop library. 

4. Self Viewer folder containing MATLAB script files for the SelfViewer analysis tool. 
5. Selves-NonSelves folder containing .mat data files of the selves and nonselves generated at 

West Virginia University using the Raw Data Set Union Method. 
6. Selves-NonSelves-ERAU folder containing .mat data files of the selves and nonselves generated 

at Embry-Riddle Aeronautical University using the Cluster Set Union Method. 
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7. Simulations folder containing implementations of the DC mechanism approach and the 
Structured Nonself approach with MATLAB/Simulink 2010a (32-bit). 

8. Source Code folder containing C# code projects for the DC mechanism library and other helper 
tools. 

9. AISConfig.exe: A tool for configuring the different parameters needed for the building the selves 
and nonselves, the DC mechanism, and the FDIE Visualization tool. 

 

 
 

10. AxComReg64.exe: A tool for registering/unregistering the AISDCx86.dll library. By default, 
the installer usually registers this library automatically. Check the main installation folder to see 
if it contains the file AISDCx86.tlb or not. If this file exists, then the library registration was 
successful. If not, then run AxComReg64.exe, click the Browse… button to select the 
AISDCx86.dll file, then click the Register button. 

 

11. FDIEVisualizer.exe: A tool for visualizing the FDIE outcome from the simulation models. This 
tool will run automatically by the simulation models. 
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12. SelfViewer.exe: A tool for viewing and analyzing the 2D selves/nonselves. Be patient when 
running this tool for the first time as it takes few minutes to respond after doing extensive check 
and validation of the installed MATLAB versions that are compatible with the tool. After it 
responds, select the MATLAB version you want to run the SelfViewer with and click OK. This will 
launch the selected MATLAB command window which, in turn, runs the Self Viewer v2.1 tool. 
 

 
 

 
 

13. SimDemo.exe: A tool for the running the demo flight tests automatically. See “Running the Demo 
Flights Using Automatically” below. 

14. A set of Dynamic Link Libraries (DLLs) and a Config.xml configuration file. 

 

 

Self Viewer v2.1 

Run with MATLAB version: 

lc :\Program Rles (x86)\MATLAB\ R2010a\bin\roatlab.exe (version 7.10) 

DataFolder: ~ 
lc :\Program Files (x86)\WVU FDIE\AIS A ircraft 11 

~ f:~f:V:i~J:~U~f~~}~ EJ Use ERAU data 
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9 . OQEEp 9 . OQEEp 
10. OQEEq 10. OQEEq 
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13. alpha 13. alpha g 
14. beta 14. beta ~ 
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u 
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24. rdot 24. rdot 

25. ax 25. ax z 0.3 
26. ay 26. ay 
27. az 27. az 
28. ~tCmd 28. latCmd 

0.2 29. logCmd 29. logCmd 
30. dirCmd 30. d irCmd 
31. thrCmd 31. thrCmd 
32. M 32. M 0.1 

0 
0 0.1 
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Test Data 0.166 
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3 
Running the Demos with SimDemo 

1. To run the demo flights automatically, run SimDemo.exe tool, which takes few minutes to 
load the FDIE Simulation Demo window for the first time run. 

 

2. Select the demo flight you want to run, the simulation model to run the demo with, and the 
MATLAB version (32-bit only) to run the selected simulation. Click the Run button. 

3. In the Main Window, click the Initialize button and wait until the FDIE Outcome 
Visualizer v2.0 is loaded. Then select Flight Scenario that corresponds to the 
selected demo in the FDIE Simulation Demo window (see the above figure). Finally, select 
Scenario #4 in the Simulation Scenario options then click the OK button. 
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4. In the Pilot Input Window, select All Pre-Recorded option in the Pilot Input 
group, and enter LOG_CMD, LAT_CMD, DIR_CMD, and THR_CMD, respectively, in the textboxes 
of the Data Files Names group then click the OK button. 

 

5. The next window is specific to the category of the selected flight demo. In this example, the 
Structural Damage Menu window is loaded since the selected demo was a structural 
damage one. Select the Mass & Aerodynamic Alteration option from the Failure 
Scenario group then select the Right Wing option from the Damaged Surface group 
and enter 40 in the Failure Time textbox, 0.06 (i.e., 6%) in the Mass Alteration textbox, 
0.075 in the CL textbox, 0.075 in the CD textbox, and 0.15 in the Cm textbox, then click the OK 
button. NOTE: Other windows specific to the category of the selected demo will be described 
later in this chapter. 
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6. In the Scenario #2 window, select the (NLDI + A+EMRAN NN) “Frozen” PTNN values 
– EMRAN–based AFDI scheme then click the OK button. 

 
 

7. In the Scenario #2 window, select the (NLDI + A+EMRAN NN) “Frozen” PTNN values 
– EMRAN–based AFDI scheme then click the OK button. 

8. In the next window, select one the FDIE schemes and click the OK button. 
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9. Click the Start Simulation button on the toolbar of the simulation model to start the demo 
and monitor the FDIE Outcome Visualizer tool as the simulation is running. 
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Windows and Parameters Specific to Selected Flight Scenarios: 

1. Nominal Flights: There is no specific window for this group. 
 

 
 
 
 

2. Control Surface (Actuator) Failure: 
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The following table lists the options and values for each of the installed demos that the user must 
specify: 

Demo Selections/Values 

LeftStabilator_1_6 

Choose Locked Surface, Locked at Imposed Deflection, 
and Left Stabilator. 
Enter 40 in the Failure Time textbox, 6 in the Deflection at 
Failure textbox. 

LeftStabilator_1_8 

Choose Locked Surface, Locked at Imposed Deflection, 
and Left Stabilator. 
Enter 40 in the Failure Time textbox, 8 in the Deflection at 
Failure textbox. 

RightAileron_1_8 

Choose Locked Surface, Locked at Imposed Deflection, 
and Right Aileron. 
Enter 40 in the Failure Time textbox, 8 in the Deflection at 
Failure textbox. 
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3. Sensor Failure: 
  

 
 

 

The following table lists the options and values for each of the installed sensor failure demos that 
the user must specify: 

Demo Selections/Values 

Roll_1_LSB10 
Choose Large Step Bias and Roll Rate. 
Enter 40 in the Failure Time textbox. 

Roll_LSB_1B Choose Large Step Bias and Roll Rate. 
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Enter 40 in the Failure Time textbox. 

Pitch_1_LSB10 
Choose Large Step Bias and Pitch Rate. 
Enter 40 in the Failure Time textbox. 

Yaw_1_LSB3 
Choose Large Step Bias and Yaw Rate. 
Enter 40 in the Failure Time textbox. 

 

 

4. Structural Damage: 
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The following table lists the options and values for each of the installed structural damage demos 
that the user must specify: 

Demo Selections/Values 

RightWing_1_6 
Choose Mass & Aerodynamic Alteration and Right Wing. 
Enter 40 in the Failure Time textbox, 0.06 in the Mass 
Alteration textbox, 0.075 for CL, 0.075 for CD, and 0.15 for Cm. 

LeftWing_1_10 
Choose Mass & Aerodynamic Alteration and Left Wing. 
Enter 40 in the Failure Time textbox, 0.1 in the Mass 
Alteration textbox, 0.1 for CL, 0.1 for CD, and 0.1 for Cm. 

LeftWing_1_15 
Choose Mass & Aerodynamic Alteration and Left Wing. 
Enter 40 in the Failure Time textbox, 0.15 in the Mass 
Alteration textbox, 0.18 for CL, 0.18 for CD, and 0.2 for Cm. 
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4 
Running the Demos Inside MATLAB 

Running the demos without the SimDemo tool and directly from MATLAB requires configuring 
MATLAB only for the first time before running any demo. Follow these steps to configure MATLAB to 
run the installed simulations smoothly: 
 
1. Run MATLAB and check if it has already been configured to use a compiler for compiling C/C++ 

files. If not, type mex –setup in the MATLAB’s Command Window and follow the setup a 
C/C++ compiler. 

2. Change the working directory to the “AIS Aircraft FDIE” installation directory 
[installation root]\WVU FDIE\AIS Aircraft FDIE\Simulations\WVU 
GEN 2 - DC and Real-Time SNSA\fdm\ann8\source 

3. In the command window, run the command mex dcsgl2.c to compile this file. The compiler 
will generate a binary file named dcsgl2.mexw32 in the same directory. 

4. Repeat Step 3 for to compile the files emran8.c and vrmult.c. 
5. Move all the compiled .mexw32 files to the parent (ann8) directory so that they appear next to 

their .dll files. 
6. Redo Steps 2 to 5 for the directory 

[installation root]\WVU FDIE\AIS Aircraft FDIE\Simulations\WVU 
GEN 2 - DC and Real-Time SNSA\fdm\smxl\source 
for the files VRMULT.C, VRPINV.C, VRSVD.C, and VRTRSP.C. 
Click the Set Path… menu item from the File menu. 

7. Click the Add with Subfolders… button and browse to the folder 
[installation root]\WVU FDIE\AIS Aircraft FDIE\Simulations\WVU 
GEN 2 - DC and Real-Time SNSA\fdm 
and click OK. 

8. Click Save then Close to exit the Set Path window. 
 
Once MATLAB is configured as described above, you can run the simulations from now on by 
following these two simple steps: 
1. Change the working directory to the folder corresponding to the flight demo you want to run. 

For example, if you want to run the LeftStabilator_1_6 demo, you should change MATLAB’s 
working directory to 
[installation root]\WVU FDIE\AIS Aircraft 
FDIE\Demos\LeftStabilator_1_6 

2. In the command window, type WVU_GEN2 and click enter. 
3. Follow the same instructions described previously to interact with simulation interfaces. 
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