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Project Summary

1. Task Objectives

The general goal of this research effort was to design and develop a novel biologically
inspired framework for flight envelope estimation and protection, which is conceptually
integrated with the abnormal detection and accommodation processes and is general and
comprehensive such that it can operate at all conditions, normal and abnormal, a priori known or
unknown. The proposed methodology relies primarily on the artificial immune system (AIS)
paradigm. To reach this objective, the following 3 technical objectives (TO) with a total of 14
main research tasks and one additional task over the no-cost-extension period have been planned.

TO #1. Develop a novel bio-mimetic framework for flight envelope estimation and
protection under upset flight conditions.
Task #1.1. Problem formulation including definition of abnormal conditions addressed,
parameter ranges, and envelope parameters targeted.
Task #1.2. Development of schemes for qualitative failure evaluation.
Task #1.3. Development of schemes for direct quantitative failure evaluation.
Task #1.4. Development of schemes for indirect quantitative failure evaluation. Flight envelope
reduction evaluation.
Task #1.5. Design and execution of flight simulator tests for AlS abnormal condition evaluation
schemes devel opment.

TO #2. Investigate the use of the artificial immune system paradigm for aircraft adaptive
guidance and control under abnormal conditions.
Task #2.1. Formulation of the AlS-based framework for flight envel ope protection.
Task #2.2. Immune adaptive control laws design and implementation.
Task #2.3. Systemintegration.
Task #2.4. Design and execution of flight simulator tests for development of AlS-based
abnormal condition accommodation schemes.

TO #3. Implement and demonstrate the proposed syst. on a motion based flight simulator.
Task #3.1. Design of flight smulator tests for proposed methodology demonstration.
Task #3.2. Customization of existing computational tools for aircraft simulation, adaptive
control laws, and artificial immune system generation.
Task #3.3. Implementation and integration of a simulation environment for design, testing, and
demonstration of the novel flight envelope estimation and protection methodol ogy.
Task #3.4. Execution of the 6-degrees-of-freedom (DOF) flight simulator tests and data
processing.
Task #3.5. Analysis of results and evaluation of the novel flight envelope estimation and
protection methodol ogy.
Task #3.6 Reduced system demonstration on an unmanned aerial vehicle (UAV).

The following project milestones were defined and scheduled as follows:
M#1. Formulation of a generalized conceptual framework for flight envelope estimation based
on the AIS paradigm (End of Month #8)
M#2. Flight envelope protection algorithms implemented and tested (End of Month #14)
M#3. Integrated system demonstration in the motion-based flight simulator (End of Month #18,
re-scheduled at the end of no-cost-extension period)
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The activity chart for the project is presented in Table 1. The periods of performance for all
tasks over the initial duration of the project are marked in blue. The re-scheduled periods for
Tasks 1.4, 2.3, 3.3-3.6 and Milestone #3 over the no-cost-extension (NCE) period are marked in
light blue. The due dates for the three project milestones are marked with green lines.

Table 1. Activity Chart for the Project

Months during 1st Year | Months during 2nd Year NCE

5-8 1912 1-2 | 34 5-6 7-9 10-11 | 12-13.5

TO

#1

TO

#2

TO

#3 .
3.4
3.5
3.6

2. Technical Problems

In this project, the AIS paradigm was used to accomplish critical steps towards the
development of a holistic framework for an effective, comprehensive, and integrated solution to
the problem of aircraft operation under abnormal conditions (AC). The complete aircraft AC
management process is envisioned as consisting of four major components: AC detection,
identification, evaluation, (ACDIE) and accommodation (ACDIEA). From this perspective,
performing aircraft AC management becomes an extremely challenging, complex, and multi-
dimensional task.

In continuation of previous research establishing conceptual and practical approaches for
AlS-based AC detection and identification, this project was primarily focused on addressing the
qualitative and quantitative evaluation of abnormal flight conditions consisting of
failures/damages affecting aircraft actuators, sensors, propulsion system, and aerodynamic
surfaces. The AC evaluation process is highly specific and requires individualized approaches
due to the synergistic interaction between aircraft subsystems, aircraft states, and the nature of
the ACs. Within the project, classes of AC were considered that alter subsystem aerodynamics
in a manner consistent with and predictable based on aircraft operation at normal condition,
referred to as “self” within the AIS paradigm. Integration of AC evaluation with prior detection
and identification was given significant attention.
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The multi-dimensionality of the feature (or relevant variable) space implied by the
development of a comprehensive AIS creates computational and logical issues that need to be
addressed carefully. The use of lower dimensional projections of the self (sub-selves) within the
hierarchical multi-self strategy was proposed in this project. It should be noted that the issue of
computational time for off-line and on-line processing has not been specifically targeted within
the project.

The AC accommodation problem was also addressed within the project. The possibility of
using immunity mechanisms for adaptive control and compensation of abnormal flight
conditions was investigated along two directions. One relied on the antibody
activation/suppression mechanism converted into an adaptive control approach. The other, relied
on extending the classification capabilities of the AIS and using them not only to detect and
diagnose the problem, but also to select or find the solution. In other words, once a certain
abnormal situation is detected and identified, the AIS-based system can determine the adequate
compensation.

3. General M ethodology

Developing a generalized conceptual framework (comprehensive and integrated) for the
detection, identification, evaluation, and accommodation of aircraft sub-system abnormal
conditions requires specific tools that can handle the high complexity and multi-dimensionality
of aircraft dynamic response in the context of abnormal conditions. The tools for the
development of the proposed methodology rely on a new concept inspired from the biological
immune system. The immune system protects the body against intruders by recognizing and
destroying harmful cells or molecules through simple in principle yet powerful mechanisms,
such as negative/positive selection, mutation, and cloning, which exhibit robust, adaptive, and
highly distributed cognitive capabilities. It can be thought of as a robust adaptive system that is
capable of dealing with an enormous variety of known and unknown disturbances and
uncertainties. Another critical aspect of the bio-immune system is that it can “remember” how
previous encounters were successfully handled. As a result, it can respond faster to similar
encounters in the future. The AIS is capable of mimicking these mechanisms (such as
negative/positive selection, antibody activation/suppression, state/resource assessment, and
memory) to solve the problem of aircraft subsystem ACDIEA in a general and comprehensive
manner.

The failure evaluation process must address several distinct aspects such as determining the
type of the failure, its magnitude or severity, and evaluating the reduction of the flight envelope
due to the failure, in the most general sense. Evaluation requires the previous correct detection
and identification of the anomalous conditions. Detection is the process of declaring that a
generic malfunction of the system has occurred in any of the subsystems, while the identification
implies determining what is the failed subsystem and/or component. These two aspects are
important to diagnose the effect of the failure on the aircraft operational limits and provide
necessary information to the pilot and the automatic control system to avoid commands that
might lead to loss of control and other dangerous/catastrophic situations.

The computational issues associated with high-dimensionality hyper-spaces is addressed by
using lower dimensional projections of the self/non-self within the hierarchical multi-self (HMS)
strategy, which relies on two main concepts. First, the normal/abnormal discrimination
capability of complete sets of projections is the same as the entire hyper-self under certain
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conditions. Second, projections along specific feature axes have better capabilities in capturing
the dynamic fingerprint of specific AC than others. This hierarchical ranking of sub-selves with
respect to targeted AC can be used to develop less computationally intensive detection,
identification, and evaluation schemes.

The AIS paradigm is based only on data acquisition and structuring and does not need
sophisticated modeling of the targeted system. However, this requires extensive amount of data,
mostly at normal operational conditions, and specific processing in some instances. For the
purpose of this project, data for a supersonic fighter were acquired from a motion-based 6-DOF
flight simulator.

This research effort has been performed as a close collaboration between researchers from
West Virginia University (WVU) and Embry-Riddle Aeronautical University (ERAU).

4. Technical Results

The proposed AlS-based generalized conceptual framework for aircraft AC management has
been demonstrated to be able to handle simultaneously several major aircraft subsystems, under
known and unknown abnormal conditions of different types, and severities. The subsystems
considered under abnormal conditions were: actuators (left/right stabilator, aileron, rudder),
sensors (pitch, roll, yaw gyros), propulsion (throttle), structural components (left/right wing,
horizontal tail, vertical tail).

Two different methodologies were proposed, developed, and successfully tested for AC
detection, identification, and evaluation: dendritic cell (DC) mechanism and structured non-self
approach. Integrated schemes were implemented and evaluated in terms of false alarms and
success rates for detection, identification, and evaluation. In most cases considered, the
proposed ACFDIE schemes achieve zero false alarms and success rates between 95-100%.

Specific algorithms for post-failure flight envelope evaluation have been developed,
implemented and successfully tested. The post-failure flight envelope evaluation is defined in
terms of relevant features and targets classes of AC that affect the acrodynamics of the system in
a manner consistent with the operation at normal conditions.

The preliminary investigation of AIS-based abnormal condition accommodation included
the use of antibody activation-suppression mechanism for adaptive control laws and the transfer
of immunity memory capabilities to AIS for enabling for pilot compensatory commands
extraction. Both approaches have been implemented and successfully tested demonstrating very
promising potential.

The outcomes of this project have been widely disseminated. The record to date of peer-
reviewed journal publications includes 3 published papers, 7 in review, and 1 in preparation.
The record to date of peer-reviewed conference publications includes 7 papers presented and
published and 2 papers accepted (see Appendix A for complete list of titles).

5. Important Findings and Conclusions
The technical outcomes of this project include the formulation of novel concepts and
methodologies that are expected to improve pilot situational awareness and improve the guidance
and control capabilities of aircraft systems under normal and abnormal flight conditions. The
proposed framework for ACDIEA has been demonstrated to possess the capability for providing
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a comprehensive solution to the problem of aircraft AC management including flight envelope
estimation and protection at post-failure conditions.

A set of integrated computational tools with a high degree of flexibility, portability, and
modularity have been implemented and successfully tested. They can be used for the design,
development, testing, simulation, and evaluation of fault tolerant control laws and schemes for
ACDIEA.

Specific algorithms within the AIS paradigm have been developed and demonstrated to
achieve high performance rates for various phases of the aircraft ACDIEA process.

The proposed methodology has the capabilities for facilitating the design of advanced
aircraft with high survivability, improved operation safety, and optimized performance at both
normal and abnormal/upset conditions.

The proposed framework was used to design, implement, and test through simulation
integrated schemes for aircraft AC detection, identification, and evaluation that achieved
excellent performance for a large variety of scenarios.

6. Significant Har dwar e Development
Development of hardware was not part of this project.

7. Special Comments
There are no special comments relative to the technical aspects of this project.

8. Implicationsfor Future Research

The outcomes of this project create premises for research continuation in the following
directions.

1). Extension of AC spectrum for post-failure evaluation . The algorithms developed within
this project address specific classes of ACs. For a complete and comprehensive AC management
process, additional classes of AC should be investigated.

2). Further investigation and development of AlSbased abnormal condition
accommodation. Solving the abnormal condition accommodation problem within the AIS
paradigm is expected to provide a compact, consistent, and relatively easy to implement
framework that will address completely all major processes related to fault tolerant control
(abnormal condition detection, identification, evaluation, and accommodation). This research
effort should produce a novel adaptive architecture based on hybrid approaches and artificial
intelligence techniques to increase robustness, autonomy, and safety of aircraft systems.

3). Testing the proposed methodology in flight using a remotely piloted reduced size
aircraft. The proposed AlS-based framework for aircraft AC management should be
implemented and tested under more realistic conditions using existing aerial platforms. This
project is expected to provide the opportunity to apply and investigate lessons learned, fine-tune
and extend algorithms, and validate the proposed methodology through actual flight tests. It is
expected that issues related to memory allocation and computational time during both off-line
development and on-board operation will be addressed.

4). Extension of the AIS paradigm into an alternative or complementary modeling
methodology for dynamic systems. The versatility of the AIS and its capabilities to store
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extensive system information can be expanded through combination with mechanisms inspired
by genetics to develop methodologies for building data driven system models that are expected
to remove or mitigate the burden of complex and challenging modeling tasks. The proposed
strategy is to rely on experimental and analytical data and information that is typically available
for a technical system for building a representation of the system that includes all the elements
necessary for system build up and operation, similar to the genome of biological organisms.
This will create the premises for the development of intelligent, evolving system with a wide
range of applications.
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Chapter 1

General Framework for Immunity-based Abnormal Condition Detection,
| dentification, Evaluation, and Accommodation

1.1. Biological Immune System

The biological immune system consists of two equally important components: the innate
system and the adaptive system!. The former is an inherited system that functions as the first
line of defense against invading entities, while the latter is an acquired system built through
previous exposures to invading agents. The innate immune system is always active and responds
immediately to any class of pathogen without distinction. On the other hand, the adaptive
immune system is normally silent and is much more potent in recognizing specific antigens with
slower response.

The immune system is composed of cells that are developed from stem cells in the bone
marrow and differentiate into different populations, the most important of which in the immune
response are macrophages (M®s), dendritic cells (DCs), T-cells, and B-cells. The M® and DC
populations form what is known as phagocytes (part of the innate system) whereas populations
of T-cells and B-cells form the lymphocytes (part of the adaptive system).

Phagocytes reside in the peripheral tissues searching for antigens (Figure 1.1). Proteins (or
any other markers) of an antigen are recognized by the surface of the phagocyte. The phagocyte
engulfs the pathogen and breaks it up into its constituent molecules. Special proteins in the
phagocyte, called major histocompatibility complexes II (MHC II), bind to subsets of these
molecules (specifically, peptides) and transport to the outer surface of the phagocyte along with
the bound antigen peptides (Figure 1.2). MHC II play a critical role in activating the cell-
mediated response of the adaptive system when the phagocyte migrates from the peripheral
tissues to the lymph nodes where lymphocytes reside. B-cells process antigens in a very similar
way to the phagocytes, except that phagocytes process general, non-specific antigens whereas B-
cells can only process very specific types of antigens. For this reason, phagocytes are called
professional antigen presenting cells (APCs). This communication is so crucial that the adaptive
response cannot take place without the innate response first.

Peripheral <
Tissue

Blood
el | - - - " e
Figure 1.1. Phagocytes in the Peripheral Tissue
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Figure 1.2. A Dendritic Cell Processing an Antigen

After they are developed from stem cells in the bone marrow, DCs move to peripheral
tissues that are in contact with the environment, such as skin and inner lining of the nose, lungs,
stomach, intestines, and oral cavities where they are in their initial “immature” state. They
become mature and migrate to regions rich in T-cells, primarily the lymph nodes, whether they
have already captured and processed an antigen or not (steady-state)>. In the lymph nodes, they
either present peptides of the processed antigen to the T-cells to activate the adaptive immune
response or to induce immune tolerance to “harmless” antigens, including those from the body’s
own tissues, cells, and proteins which prevents the immune response from attacking self cells, a
disease known as autoimmunity>*.

T-cells, which mature in the thymus, exist in two main types in the lymph nodes: Helper T-
cells (Th) and cytotoxic T-cells (T¢). Referring to Figure 1.3, when a DC migrates to the lymph
node carrying MHC Il-peptide complexes, it attracts Th-cells to bind to that MHC II-peptide
complex. Note that only those Th-cells with receptors “specific” to the MHC II-peptide complex
of the migrated DC can bind to it. Once bound, a Th-cell is said to be activated, upon which it
proliferates and differentiates into “memory” Th-cells and “effector” Th-cells. Memory Th-cells
stay in the body for years to provide faster response when the same antigen infects the body once
again; this is a feature of the adaptive immune system the innate system lacks, where the
adaptive memory provides stronger and faster response which effectively stops the infection with
less reliance on the innate system when it occurs the second time. Effector Th-cells, on the other
hand, raise the alarm by releasing small cell-signaling protein molecules known as cytokines
responsible of activating both T¢-cells and B-cells. It is worth mentioning here that any infected
cell in the body displays peptides of the infectious antigen on their surface via MHC I (MHC 1
molecules are displayed by any nucleated cell to enable the body to recognize infected cells
whereas MHC II molecules are displayed by APCs, such as DCs, M®s, and B-cells to recognize
epitopes of exogenous antigens and discriminate self from non-self). The role of the Tc¢-cells is
to kill the infected cells by binding its epitopes to that “specific” MHC I-peptide complex and
releasing special proteins. These proteins are the perforin, which inserts itself into the infected
cell membrane and forms a pore and the granzyme, which induces apoptosis (the healthy
programmed cell death) in the infected cell. This adaptive immune response from T-cells is
referred to as cell-mediated response.

B-cells, which mature in the bone marrow, carry “specific protein complexes on their
surfaces known as membrane-bound antibodies formed by shuffling the DNA during the
maturation of these B-cells. These antibodies bind to foreign pathogens with the same protein
combination. Upon binding, B-cells process the antigen in a similar way to that done by
phagocytes, as mentioned earlier, and display part of the processed antigen on their surface via
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the MHC II-peptide complex. However, B-cells are not activated until they receive the cytokines
released by the effector Ty-cells that are stimulated by the migrated DCs. When activated, B-
cells proliferate and differentiate into “memory” B-cells and “effector” B-cells. Like memory
Ty-cells, memory B-cells live for years in the body to provide faster B-cell response in case the
same pathogen invades the body once again, while “effector” B-cells produce clones of their
membrane-bound antibodies and release them as free antibodies. One of the important functions
of these free antibodies is opsonization, in which the antibodies bind to foreign antigens and
mark them for attack by phagocytes. The adaptive immune response from B-cells is called
humoral response.
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Figure 1.3. Activation of Th-, B-, and T¢-Cells by the APC

The negative selection (NS) process, through which important constituents of the immune
system are generated, produces biological agents that have the capability to detect microbial and
non-microbial exogenous entities (referred to as non-self) while not reacting to the cells of their
own organism (referred to as self). Briefly, the process allows the proliferation of cells that do
not match the self, but match the non-self. Therefore, they are only compatible with the non-self
and will be capable to detect its presence. The concept is illustrated in Figure 1.4, where the
term “antibodies” is used in a most generic way.
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Figure 1.4. The Negative Selection Process
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1.2. Artificial Immune System Paradigm

The AIS emerged in recent years as a new computational intelligence paradigm>® with a
variety of applications in areas such as anomaly detection, data mining, computer security,
adaptive control, and pattern recognition. All initial efforts were directed towards immunity-
based fault detection”®, which operates in a similar manner as does the biological immune
system - according to the principle of self-non-self discrimination - when it detects exogenous
antigens while not reacting to the self cells. Prior to this project, an integrated set of
methodologies®!? for AIS-based detection and identification of a wide variety of aircraft sub-
system failures/damages has been designed and implemented at WVU by the authors of this
report. Integrated high-performance AIS-based failure detection and identification schemes have
been demonstrated to be capable of handling several categories of sub-system abnormal
conditions over extended areas of the flight envelope'>. The potential of the AIS paradigm for
flight envelope reduction assessment at post-failure conditions has also been investigated with
promising results'.

The basic idea supporting the AIS paradigm for sub-system fault detection is that an
abnormal situation (i.e. failure of one of the aircraft sub-systems, which is considered similar to
an invasion by antigens) can be declared when a current configuration of “features” does not
match with any configuration from a pre-determined set known to correspond to normal
situations. These “features” — similar to the biological chemical markers — represent the
encoding of the self. They can include various sensor outputs, states estimates, statistical
parameters, or any other information expected to be relevant to the behavior of the system and
able to capture the signature of abnormal situations. Extensive experimental data are necessary
to determine the self or the hyper-space of normal conditions. Adequate numerical
representations of the self/non-self must be used and the data processed such that they are
manageable given the computational and storage limitations of the available hardware. The
artificial counterpart of the antibodies - the detectors - must then be generated and optimized.
This process typically attempts to mimic the variation followed by selection of the T-cells. The
mechanisms through which DC acquire, store, process, and transfer information can be used to
handle the large amounts of data involved in the ACDIEA process. Handling computationally
the large feature hyper-space as a whole is impractical if at all possible for a comprehensive
approach. Alternatively, lower order projections of the self can be used, but then self/non-self
discrimination outcomes from a large number of such projections must be handled. A DC-based
mechanism was developed for this purpose that will be described in details in following sections.
A summary of main components of the AIS paradigm and their biological source is presented in
Table 1.1.

The NS process through which main cellular components of the biological immune system
are generated is mimicked in the generation of detectors. Evolutionary algorithms can be used
for optimization in this process'!. As an alternative mechanism, positive selection (PS) has been
explored for AIS design. Through the PS strategy, the detectors are generated to coincide with
the self and the process is equivalent to clustering the self data. In this case, an abnormal
situation is declared if the explored current configuration does not match any of the detectors.
For detection purposes, NS and PS are equivalent; however, using PS within a detection scheme
is typically more computationally intensive than using NS because it is necessary to test the
complete set of positive antibodies before classifying a sample as abnormal. With the NS
approach, the activation of a single negative antibody is enough to declare the presence of an
abnormal situation.
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A detection logic must be designed for real time operation with a high detection rate and low
number of false alarms. The block diagram of the AIS design process for aircraft sub-system
abnormal condition detection is presented in Figure 1.5.

Table 1.1. Main Biological Terms and Their AIS Paradigm Representations

Biological Term Al S Paradigm Representation
Organic markers | System features or characteristic variables and their values.
(proteins and
other compounds)

Data clusters of feature values acquired from development tests under
normal operating conditions.

Alien entities or | Set of complementary clusters covering the feature hyper-space outside of
non-self self clusters.

Antigen Abnormal condition or set of feature values at abnormal conditions
Antibody Cluster of the non-self or detector

A computational unit that processes the outcomes of the self/non-self
discrimination process.

Organism or self

Dendritic cell

Definitions of: ) .
targeted aircraft sub-systems Definition of D Al'S Detection Scheme Desian
types of abnormal conditions Featuresfor Self

Seneaitien D External Processes

Flight tests and/or
Simulation tests

Experimental design
and/or Regular mission

Self/non-self numerical
representation
Cluster shape
Positive vs. negative selection
Optimization

Aircraft Operation at
Normal Conditions
and Data Acquisition

<

Normalization . A A
Elimination of duplication Data Processing Detector
Processing for compactness for Self :> Generation =N Detector Set
Dimensionality reduction Definition Process
7 ’ ’ Jvl

Updating data from
post-processing

Composition algorithms

Decision logic Detection
Matching rules Scheme
S
r N
Detection On-Line
Output Implementation
\ J

Figure 1.5. Design of AIS-Based Abnormal Condition Detection Scheme
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For the identification and evaluation phases, additional information is needed to structure the
non-self hyperspace, which can be obtained through a PS-type of mechanism using data under
failure conditions. In particular, for the quantitative direct evaluation, the non-self must be
separated into sub-regions corresponding to the different “identifiable” level of failures and PS
must be used to assess the distribution of the failure signature within the non-self by labeling the
antibodies corresponding to different magnitudes of the failure.
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1.3. Definitions, Nomenclature, and Notation

For a general formulation, it will be assumed that the targeted system is the “aircraft”,
including the vehicle itself with all its subsystems (such as actuators, sensors, propulsion, etc.),
the human pilot, and the environment. However, the proposed methodology is generally
formulated and can be applied to any system and its components.

The generic term of “abnormal conditions” (AC) refers to faults and failures of hardware,
human pilot-related abnormal situations, operational upset conditions, extreme environmental
conditions, and any other situations that require specific attention and/or action for safety
purposes. It should be noted that for the practical design and implementation of ACDIEA
schemes, the designer is required to define the nature, type, and severity of the AC targeted.

The detection represents the process through which the existence of an AC is assessed or, in
other words, a failure within at least one of the aircraft sub-systems has been acknowledged. The
outcome of the detection process Det is binary:

Det=0 for normal conditions

Det 0,1 , Py
{03 Det=1 for abnormal conditions

(1.1)

The identification or isolation process determines which subsystem has failed. Depending
on the complexity of the targeted system, the AC identification can be performed in several
phases. For example, a first identification phase could distinguish between actuator and sensor
failures. If an actuator failure is identified, a second phase could determine whether it is an
elevator, aileron, or rudder failure. Finally, a third identification phase could establish that the
left elevator has failed or the left in-board elevator has failed, if the aircraft is equipped with
additional redundancy. The outcome of the identification process, Idt, can be formulated as an
Ns-dimensional vector with binary components, where Ns is the total number of sub-systems
considered:

idj =0 for subsystem j at normal conditions
Idt =[id; idy - idyng], _ L (1.2)
idj =1 for subsystem j at abnormal conditions

Alternatively, the outcome of the identification process can be formulated as a set of integers
labeling the failed sub-system:

ldt=|id; idy - idyng | (1.3)

where Nsf is the number of failed sub-systems and id j represents the label associated to each

subsystem, typically:

idjefl 2 - Nsj (1.4)

Once a failure has been detected and correctly identified, the AC evaluation process must
address three aspects. One is of a qualitative nature and involves determining the type of the
failure. For example, the qualitative evaluation is expected to determine if an actuator failure
consists of a locked actuator, or a freely moving control surface, or a reduction of control
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efficiency. The other two aspects are of a quantitative nature and can be defined as direct and
indirect. The direct failure evaluation consists of estimating the magnitude or severity of the
failure (e.g. left aileron locked at +10deg). The indirect failure evaluation includes the re-
assessment of the flight envelope and prediction of the limitations and constraints on the
performance and handling qualities inflicted by the presence of the failure.

The outcome of the qualitative evaluation, EV1, is an Nsf -dimensional string of integers

labeling the type of failures for all Nsf affected sub-systems out of a list of Nft,, k=12,...Ns,
potential types associated to each sub-system id;, j=12,...Nsf:

Evie{l 2 ... Nfty} (1.5)

Let the set F of all failures considered be expressed as:
F=ifi fo .. fn.J (1.6)

where N is the total number of AC considered and:

Ns
Ng = > Nfty (1.7)
k=1

The outcome of the direct quantitative evaluation process, EV2, can take a numerical value
that relates to the magnitude or severity of the AC. For example:

Ev2 =40% (1.8)

where 40% represents, let’s say, the relative area of the left aileron affected by structural

damage. While possible in some cases, this level of accuracy is, obviously, difficult to achieve

in general. Alternatively, the direct quantitative evaluation could provide a severity estimate
mapped on a discrete set:

Ev2 e {low severity mediumseverity high severity} (1.9)
or, it could provide a severity evaluation based on fuzzy logic and expressed as:

Ev2=[v; Vo ... V] (1.10)

where V; are fuzzy membership values with respect to the m linguistic values associated to the

severity metric EV2 (e.g. low severity, medium severity, and high severity). EV2 can also be
expressed as a scalar by using a defuzzification algorithm:

Ev2=Av; vy ... vyl (1.11)

where A is the defuzzification operator.
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The outcome of the indirect quantitative evaluation process, EV3, typically represents a set
of new ranges at post failure conditions of the variables y; that define the flight envelope, in its

most general meaning. Let the number of these variables be Ne. Then:

Ev3={(Yimin: Yimax) (Y2min: Y2mex) - (YNemin» YNemax)] (1.12)
More specifically, let a directly involved variable (DIV) vs in the AC be a variable whose
alteration or abnormal variation is directly and significantly the result of the AC. Typically, DIV
are used to define/characterize the AC. They may be part of the feature set or not. If they are
not, then a relationship between the DIV and some other variable(s) in the feature set must be
established. This process will define equivalent directly involved variables (EDIV), v,., which

are part of the feature set. For example, consider the case of the left stabilator locked failure.
The DIV can be defined as the left stab deflectiondy . It obviously defines the failure; however,

let us assume that it is not part of the feature set that has been established. A relationship can be
formulated between the left stab deflection o and the longitudinal stick displacement dg -

which presumably is a feature — of the form dg = f( g ). Therefore, the EDIV is in this case,
de. For each failure considered, a set of variables Vg must be determined that are affected by

the failure, that are part of the feature set, and that are relevant from the point of view of aircraft
operation (they are flight envelope relevant variables). These variables may be determined
through analytical means but also through the analysis of the 2-D selves.

The accommodation process can take two forms: passive accommodation through warnings
and information displayed in the cockpit and active accommodation through direct compensation
as integral part of the control laws. The passive accommodation represents actually the re-
processing of the outcomes of the detection, identification, and evaluation and their delivery to
the pilot in a form that is easy to perceive and understand. The direct accommodation involves
triggering of pre-existing compensating modules within the control laws and/or actual
computation of commands at post-failure conditions.

The feature variables or shortly features are the variables ¢; that completely define the
targeted system and are expected to capture the fingerprints of all AC considered, in terms of

occurrence, presence, and severity. They can be (sub-)system states, inputs, control system
variables, estimated values, etc. The set of all features 3 :

S={p | i=12,..N} (1.13)

defines a feature point P as a set of simultaneous values of all features ¢; that can be obtained
through measurements or simulation, at normal or abnormal conditions. The set 3 defines an N-
dimensional hyper-space 7/, which will be referred to as the “Universe”. An orthogonal
coordinate system (CS) equally denoted U is associated to this hyper-space. Its origin is at point
O with coordinates [p3 =0 @5 =0 ... @yN =0]. Therefore, the feature point P can be

represented by the position vector with respect to O, FOP, whose coordinates with respect to CS

7/ are denoted as:
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[fOPJ7/=[¢1P P . ONPL, (1.14)

The self & is defined as the hyper-sub-space of all possible feature points at normal
conditions. All other points in U form the non-self .. Therefore:

FUF =% and NS =@ (1.15)

For computational tractability and practical reasons, the self points are clustered. These self
clusters can be shaped as hyper-spheres, hyper-rectangles, or hyper-ellipsoids. Clustering of the
non-self generates what is referred to as detectors. They may be directly used in the detection
process. Structuring the non-self by adding information to the detectors makes them capable to
be used in the failure identification process. Such upgraded detectors will be referred to as
identifiers. Clusters of the self or non-self that are processed to be used for evaluation or
accommodation will be referred to as evaluators and compensators, respectively.

The threshold between “normal” and “abnormal” (i.e. between self and non-self) is
represented by an N-dimensional surface:

Z(p1, @2, ... on)=0 (1.16)

Lower dimensional projections of the self will be referred to as sub-selves. Let us assume
that we consider a 2-dimensional projection (or sub-self) defined by features ¢4 and @» and we

collect all possible feature points at normal conditions. Area 0 will result as shown in Figure 1.6.
Note that typically normalized values are used for the features; therefore, a working sub-region
of the universe % is used next, which is represented as a hyper-cube of side 1. The projection
of X is represented as straight line segments for convenience, without loss of generality. All

points outside Area 0 belong to the non-self .. That means that whenever a pair of values
(@1,92 ) is measured that lies outside Area 0, a failure can be declared. However, whenever a
pair of values (@q,95 ) is measured that lies inside Area 0, it cannot be necessarily concluded

that the conditions are normal. AC whose dynamic fingerprints depend on one or more other
features can produce projections inside Area 0.

The order of an AC, denoted as Ord(AC), is defined as the minimum number of features
necessary to completely detect that AC. A complete detection is said to be possible if all feature
points produced at AC fall within the non-self. For example, a first order failure would require

only one feature ¢" for detection. In other words, the presence of the failure necessarily
produces always values of ¢” that are outside a normal range. In Figure 1.6, if Area 1 is the

projection of all points under a certain failure, then that failure is first order with ¢* = @;.

Similarly, Area 2 represents an AC of degree 2, and Area 3 a failure of degree 3 or higher. A
complete detection of the failure represented by Area 1 can be performed using the 2-

dimensional self defined by ¢q and @5, but also using only the projection, or the 1-dimensional
sub-self defined by ¢1. The 2-dimensional self is necessary and sufficient to completely detect
the failure represented by Area 2. Using the sub-self defined by ¢4 will never succeed detecting
this failure, while using the sub-self defined by ¢, will allow detection in some instances, but
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not a complete detection. Using the 2-dimensional self to detect the third failure will not ensure
a complete detection. However, it should be noted that, in practice, the approach could achieve
very high rates of detection if the feature points that are projected inside the self are reached with

very low probability.

P2min

v

@1

Figure 1.6. Self/Non-Self 2-Dimensional Projection
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1.4. Aircraft Abnormal Condition Management Process
The aircraft AC management (ACM) based on the AIS paradigm can be considered to include
three main components functionally connected in a closed loop as shown in Figure 1.7:
e off-line ACM system design and implementation
¢ on-line AC detection, identification, evaluation, and accommodation
¢ post-processing of flight data and ACDIEA outcomes

ACM System Objectives Aircraft System
and Resour ces Simulation

oo . Current Flight M easurements
Initiation of Design Self Building Data (Optional)
Process ﬂ
On Board Transfer of \ ACDIEA [
ACM System Designand | ACDIEA Schemes On-LineACDIEA [LOUICOMES | Ajroraft System
I mplementation Update of i’
T 7 Self/Non-Self < \
Data for Self/Non-Self
Update Ve
Post-Processing of Flight Data )
and ACDIEA Outcomes Current Flight
Previously Recorded Flight Data Measurements

(Sdlf Building Data)

Figure1.7. AIS-Based ACM Process

The off-line ACM system design and implementation has as outcome the development of an
integrated and comprehensive ACDIEA scheme. The design depends on a clear definition of the
aircraft sub-systems that are targeted, the types of AC (including known and unknown failures),
the failure severity scale, the flight envelope variables, and the nature and level of passive and
active accommodation. The development of the ACDIEA scheme requires the availability of
large amounts of measured data that must be pre-processed for self/non-self generation and
structuring. For a comprehensive solution, acquiring and processing these data is considerably
less difficult and expensive than developing extensive accurate models, as required by alternative
approaches, still with questionable level of success. The block diagram of the ACM design
component is presented in Figure 1.8.

The on-line ACDIEA process implies the real time operation of the ACDIEA scheme. Sets
of current values of the features measured in flight at a certain sampling rate are compared
against the detectors, identifiers, evaluators, and compensators and the outcomes of the ACDIEA
are generated. These outcomes are transferred to the pilot, the on-board monitoring and
recording system, and the automatic fault tolerant control laws. The block diagram of the on-line
ACDIEA component is presented in Figure 1.9.

The post-processing of ACDIEA outcomes and the analysis of false alarms and failed
detections in conjunction with current measured values of the features can potentially be used to
modify/extend the sets of detectors, identifiers, evaluators, and compensators and improve the
overall performance for future operation. The block diagram of the post-processing component
is presented in Figure 1.10.
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1.5. Definition of the Self and Non-Self

1.5.1. General Algorithm

One of the most critical elements of the design of the ACM system is the selection of features.
They must be relevant to all four processes (ACDIEA). Their number and nature depend on the
aircraft sub-systems that are targeted, the types of AC, the failure severity scale, the flight
envelope variables, and the nature and level of passive and active accommodation. For a
comprehensive and integrated approach, all states, inputs, and variable parameters of all
subsystems considered must be taken into account. It should also be noted that a complete
detection of an N-degree failure requires N relevant features, therefore, an N-dimensional self. If
the number of subsystems considered is NS, then the states Xi, inputs Ui, and other relevant

parameters Pi corresponding to sub-system i i =12,... Ng can be expressed as, respectively:
P T
Xi _[Xil Xj2 ... XiNSi] (1.17)
i T
Ui=[uip Uiz - Ui (1.18)
Pi=[pp P2 - pini]T (1.19)

For any sub-system i, the maximum order an AC can have is:
NiZNSi +Nui +Npi (1.20)

Therefore, for a complete detection of all AC from an exhaustive set F, the number of necessary
features to build the self/non-self is:

NS * * *
N:Z(Nsi +Nui+Npi) (1.21)
i=1

where the *-variables exclude duplication among the sub-systems. If all states, inputs, and
parameters are distinct, then:

*

Ng =Ng. Ny =Ny,and Np=Np (1.22)

otherwise, for example:

* N fori=1
{ st (1.23)

N':
$ " INg-n fori>1

where n is the number of duplicate states for each sub-system, that is the states with the property
that Xjj € Xj and Xjj € Xj_3. It can be easily noticed that the number of necessary features N
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and hence the dimensionality of the self/non-self can become excessively large and create
significant computational problems’. These problems can be avoided under certain conditions
by using lower dimensional sub-selves, or projections, within a hierarchical multi-self (HMS)
strategy'’.

Let the maximum order of failures in the set F be denoted as:

Nimax = max(Ord( ;) j=12,...,Ng (1.24)
J

and Ord( fri) = Npmax (1.25)

If Npax = N, then a complete detection for fy, can only be obtained, in general, with an N-

dimensional self. If the self/non-self has particular shapes, then at least on one of the (N-1)-
dimensional projections, the projection of the feature points at AC will fall inside the non-self.
For example, in Figure 1.11, a 3-dimensional case is presented in which an AC feature point,
ACl1, is projected outside all three 2-dimensional projections. Feature point AC2 is projected
outside one of the N-1 dimensional sub-selves. For specific shapes of the self/non-self, it is
possible that some AC feature points are projected inside all sub-selves, as illustrated by feature

point AC3.
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Figure 1.11. Potential of Sub-Selves to Capture the Abnormal Conditions

If Npax <N, then a complete detection for f,, can be obtained by using an N -

dimensional sub-self with proper features. In this situation, the N-dimensional self does not need
to be considered. A complete detection for all failures can be obtained by using all possible
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N max -dimensional projections or sub-selves. The approach is conservative and some of the

projections may be ignored or replaced by lower dimensional projections without loss of
performance.

Determining the order of an AC may be difficult in many cases or even impossible;
therefore, N5x may be unknown. In this situation, a low value for N5 may be assumed and

the self/non-self built as the set of all possible Npgy-dimensional sub-selves, with the
observation that the higher the assumed value of Ny, the higher the likelihood of better
performance. The total number of possible N 55 -dimensional sub-selves for N features is given
by:

|
Ng = CNmc — AL (1.26)

N ! (N = N )!

The generation of the self/non-self requires large amounts of measured data at normal
conditions, ideally covering the entire flight envelope. These N-dimensional feature points are
clustered and the self .%” is represented as a set Sof hyper-bodies including these clusters, which
will be referred to as self clusters. Similar hyper-bodies are used to represent the non-self & as
well and will be referred to as detectors. The geometry of these hyper-bodies can potentially
have an impact on the efficiency of the detector generation process and on the detection itself.
They determine how well the non-self is covered, how many detectors are necessary, and how
intensive the computational process is. The following shapes for the self/non-self representation
can typically be considered:

e Hyper-cubes — determined by an N-dimensional center and one value for the side;

e Hyper-rectangles — determined by an N-dimensional center and N values for the sides;

e Hyper-spheres — determined by an N-dimensional center and one value for the radius;

e Hyper-ellipsoid of rotation — determined by an N-dimensional center and two values for the
axes;

e Generalized hyper-ellipsoid — determined by an N-dimensional center and N values for the
axes.

For all shapes (except hyper-spheres) variable orientation can be considered as determined by an
additional N-dimensional vector. For example, for the hyper-spherical representation with NC
clusters Cj, the self and the self clusters can be expressed as:

SZ{C]_ Co ... CNC}, CiZ[Ci RCi]Z[(Dli @2 ... ONi RCi] (1.27)

where C; is the center and RC; is the radius of the cluster. For the same hyper-spherical
representation with Nd detectors d j » the non-self and the detectors can be expressed as:

é={d1 d2 de},dj=le Rde=|_(01j ¢2j gDNj RdJJ (1.28)

where Dj is the center and Rd; is the radius of the detector.

When generating the self and the non-self, the following optimization criteria should be
considered:
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no overlapping among detectors and self clusters;
minimum empty space inside the self clusters;
minimum un-covered areas inside the non-self;
minimum overlapping among self clusters;

minimum overlapping among detectors;

minimum number of detectors for a desirable resolution.

The block diagram of the self/non-self generation process is presented in Figure 1.12. A set
of computational tools have been developed at WVU for the generation, optimization, and
verification of detector sets within the AIS paradigm!®'®., The WVU Immunity-based Failure
Detector Optimization and Testing tool relies primarily on evolutionary computation providing a
wide selection of algorithms and options as well as capabilities for testing and tuning'"'°.

[~~~ === ——— == ————— :
4 ) I ) ) )
Flight Data Data Duplicate Data | Flight Data |
Acquisition Normalization Removal ‘ Clustering |
\ J J J J
Data Processing I
Mo S S S S B S B BN BN B B BN B B e e . _-— - -
r ( ( l | ( N |
| Complete Partial/Pseudo Detectors Self Clusters |
[ Optimization Optimization Generation Generation
\ R J |
I Non-Self Generation || Self Generation |
o ses ses sos e o \ e e e e S S S - S S S S S S . .. s e S S S S -
Optimization
Criteria

Figure1.12. Self/Non-Self Generation Process

To support the AC identification and evaluation processes, the non-self must be structured to
provide information regarding the sub-system affected, the type of the failure, and the failure

severity. This can be achieved by attaching to each detector d j aset of structuring tags de :
dSJ = {da/SJ dth dFSJ‘} (1.29)

where, in general, d&lsj c {1 2 ... NS}, dth c {1 2 ... Ng }, and dFSj consists of a
set of failure severity metrics associated to each failure type in dFt j and
size(dSys;j ) = size(dFtj ) = size(dFsj ). The implication here is that each sub-system may be

affected by only one failure at a time. The case in which a combination of failures occurs can be
handled within this framework by defining in the set F a distinct AC with such multiplicity

characteristics. Alternatively, for each sub-system represented by dS/Sj , the elements of dFt i
and dFSj may be defined as sub-sets of size larger than 1. In this case,
size(dSysj ) < size(dFtj ) = size(dFsj ). The three sub-sets in Eq. (1.29) will each have only

one element in the ideal situation when the N features have been defined perfectly and
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completely, one N-dimensional self is used, and the size of the detectors provides perfect
resolution. In other words, any given detector can be associated to only one sub-system, one
failure type, and one level of failure severity.

The process of generating the antibodies requires adequate numerical representations of the
self/non-self and adequate data processing such that they are manageable given the
computational resources and storage limitations of the hardware. In this project, 2-dimensional
projections were used for self/non-self representation for which antibodies were generated using
two alternative approaches that are described next. In the first approach, all raw test data
available are collected in one file before a set of antibodies is generated. In the second approach,
the processing of smaller individual sets of data is performed by clustering and then combining
the clusters in a single set for detector generation. Using the two approaches, data for each
combination of features corresponding to a particular projection or sub-self are processed
separately to produce a set of antibodies by covering the respective 2-dimensionmal non-self.
The block diagram of the AIS antibody generation methods is presented in Figure 1.13.

Acquisition ) )
of Multiple Sets Prellmmary Data édfsthta
of Flight Data Processing ) ustering )

212

=
s . Generation of
Antibodies
_ I #

PrelimiparybData y =~ e T e e e e e o
Processing I
I
I

____________________ 1

Clustering of
Individual Flight

Set Union for ; ) _ |
One Single Set of Duplicates Generationof | |
Clusters Elimination Antibodies :

J

Cluster Set Union

Figure 1.13. Two Methods for AIS Antibodies Generation

1.5.2. Raw Data Set Union Method

The raw data set union method (RDSUM) processes experimental data at normal conditions
in four main phases or modules as presented in Figure 1.13.

Generation of Single Data File. Raw data from different flights or simulator tests are
combined in one single data file. The data are left intact and no further processing is performed
here.

Data Preprocessing. Preprocessing of the data includes two steps: normalization and
duplicate elimination. The raw data received from the data fusion component are normalized
between 0 and 1. Therefore, the feature space becomes a unit hypercube. The normalization
factor for each dimension is determined as the span of the flight data plus a percentage margin.
Duplicate points of the normalized data are then eliminated to reduce the size of the data file.
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This process decreases the amount of storage and computing resources needed, while preserving
the information content of the data. Note that implicit duplicate point elimination may also take
place during the clustering process, which follows.

Self Data Clustering. The data produced from the previous processing component define
self points that need to be represented by a definite number of geometric hyper-bodies, referred
to as clusters. This can be done by using the “k-means” clustering algorithm. A modified
version of this algorithm!” was used to represent the clusters as hyper-spheres, but they could
also be represented as hyper-rectangles or hyper-ellipsoids.

Generation of Antibodies. Self clusters are used to generate antibodies by covering the
non-self hyper-space with hyper-bodies similar to the clusters. An enhanced negative selection
algorithm for real-valued representation with variable non-self radius'” was used within this
project. The algorithm ensures that there is no overlapping with the self and that the non-self is
covered to a desired predetermined level. It should be noted that the algorithm requires a
number of specific parameters that must be carefully selected and correlated. The antibodies
generation process can be stopped after a prescribed number of iterations when a preset
maximum number of acceptable detectors is reached or when a desired coverage of the non-self
is achieved.

Figure 1.14 shows sample 2-dimensional self clusters along with the AIS antibodies
generated for a projection or sub-self defined by the non-dimensional roll rate neural network
output feature NN and the reference roll rate pg using the raw data set union method

described above. 1
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Figure 1.14. 2-D Self Clusters with AIS Antibodies Generated Using the Raw Data Set Union
Method
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1.5.3. Cluster Set Union Method

The mechanism to generate antibodies using the cluster set union method (CSUM) is based
on a 5-phase/modules process that uses an optimized algorithm to fusion different sets of clusters
generated from single sets of experimental flight or simulation data. The main components of
this methodology, according to Figure 1.13, are described next.

Preliminary Data Processing. If the amount of experimental is large enough to exceed the
available computer memory, within this approach, the data can be split in sub-sets and the
following steps in the process can be applied to the individual smaller data sets. Pre-processing
of the data includes two steps: normalization and data preparation for clustering. As a result of
the normalization, the values of each measured feature are scaled to values between 0 and 1 and
as is the case with the previous approach, the feature space becomes a unit hypercube. The
normalization factor for each dimension is determined as the span of the flight data plus a
percentage margin. Alternatively, desired maximum and minimum values can be specified in the
computation of the normalization factor. Note that when multiple sets of experimental data are
used for antibodies generation, the same normalization factors must be used for all data.

Clustering of Individual Data Sets. This module is similar to the previous approach;
however, the clustering algorithms are applied to the individual smaller sets of experimental
data. Note that parallel computation may be used to perform this phase.

Clusters Set Union. Once several sets of clusters have been generated, a fusion process is
performed that consists of set union accompanied by overlapping elimination.

Clusters Duplicate Elimination. The overlapping between clusters is estimated in a similar
way as between the detectors, where a minimum overlapping threshold of a detector with respect
to the others is allowed during the process. Since the radius of each cluster is known, the
overlapping between a current cluster and the nearest one(s) can be determined. The distance
between centers must be greater than or equal to the sum of the radii of the clusters minus the
permitted overlapping threshold. This approach favors clusters with bigger radii and will
preserve for the final self-representation those clusters with more efficient coverage. The
approach allows the update of the database when new flight tests are available by clustering only
the newly acquired data and then putting old and new clusters together and eliminating any
duplication.

Figures 1.15 and 1.16 present an example of the clustering reduction using the fusion
algorithm. The 2-dimensional self space in this case is defined by the non-dimensional roll rate
neural network output feature NN, and the reference roll rate pye . Figure 1.15 shows the

union of different sets of clusters generated from 11 single simulator test data before the fusion
process is applied. The union set has a total of 22000 clusters. Figure 1.16 shows the reduced
set of 6343 clusters after the complete fusion process. The fusion algorithm is able to reduce
down the number of clusters to approximately one third with an acceptable overlapping among
them. The allowed overlap value has to be selected in such a way that the balance between the
holes and the covered space is adequate.

Generation of Antibodies. The same enhanced negative selection algorithm for real-valued
representation with variable detector radius is applied to the cluster union set generated in the
previous module. The algorithm ensures no overlapping between detectors and self clusters and
minimizes the un-covered areas in the non-self.

In Figure 1.17, an example of the clusters and generated antibodies is presented for a 2-
dimensional self projection defined by a non-dimensional roll rate neural network output feature

NN , and the reference roll rate pyg using CSUM.
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An comparative analysis of the two proposed methods has been performed in terms of
computational time and detection performance of the resulting sets of detectors. Numerical
results and additional details are presented in journal paper #1 in Appendix A.

1.5.4. Comparison of the Proposed Methods for Antibody Generation

The computational time needed by RDSUM is consistently lower than the one needed by
CSUM. The difference varies quite largely depending on the self. The fewer the number of
distinct data is, the lower the computational time RDSUM needs for clustering. Typically, the
raw data file reduces size significantly after the elimination of duplicate points. The clustering
module is invoked only one time per self for RDSUM. The CSUM clusters the same number of
flight data points 11 times (the number of flight tests used for this analysis) without any duplicate
point removal. Only then, duplicate clusters are eliminated. For some of the selves generated
using RDSUM, the number of unique data was around 60k (which is comparable to the number
of records in each of the 11 flight files). It should be noted that the single file including all flight
data used for detector generation with RDSUM has about 600,000 records. In most cases, this
results in a still large data set even after duplicates are eliminated, which cannot be handled by
the k-means clustering method on computers with less than 8GB RAM.

The detection performance in terms of percentage detection rate and false alarms of the two
sets of detectors obtained with the different methods has been compared for a sub-set of relevant
2-dimensional projections or sub-selves under several types of failure. The performance is
similar and the two methods can be considered equivalent from this point of view. In Figure
1.18, typical results in terms of detection rate are presented for a stabilator failure.

The RDSUM requires large computer memory, but the total computation time is lower. The
CSUM can be implemented on lower memory computers; however, the overall computation time
increases, unless parallel computation is used.
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Figure 1.18. Detection Performance Comparison of Detectors Obtained with CSUM and
RDSUM for a Stabilator Failure
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1.6. Hierarchical Multi-Self Strategy

For a comprehensive and integrated solution to the ACDIEA problem using the AIS
paradigm, the number of system features for any system of aircraft complexity ends up to be
very large. Handling the resulting hyper-space as a whole produces critical issues related to
computational resources and effort and to the characteristics of hyper-spaces relative to distances
and thresholds.

The issues related to computational resources and effort are obvious considering that in
order to achieve similar high resolution of the feature space — a critical element especially for the
identification and evaluation phases — exponentially larger computational effort is required with
unitary increase of the space dimensionality.

The implications of the characteristics of hyper-spaces relative to distances and thresholds
are more subtle. It should be noted that when the dimensionality of the hyper-space goes to
infinity the volume of the unit hyper-cube (the “Universe”) remains equal to one, while the
volume of the inscribed hyper-sphere goes to zero. This means that our intuition in establishing
thresholds and assessing distances, which is built in lower dimensional spaces (actually in the 3-
D physical space), becomes in-operational. This counter-intuitive effect becomes significant
once the number of features goes beyond 10.

To eliminate or at least mitigate these effects, the HMS strategy was proposed!'® based on the
observation that, while the entire set of features is necessary to capture the dynamic fingerprint
of “all” ACs, only limited subsets may be necessary to capture the dynamic fingerprint of any
individual AC. Under certain conditions (as discussed in Section 1.5) and with proper ACDIE
logic, subsets of features may be used to build projections of the self that eventually yield similar
ACDIE performance as when considering the entire multi-dimensional self as a whole. This
concept is illustrated in the block diagram of Figure 1.19.

Simulation results'® have shown that different low-dimensional self configurations can be
selected and integrated to achieve low number of false alarms and high detection rates for a
variety of subsystem abnormal conditions. In other words, the ACDIE performance achieved by
a complete set of features of dimension Ns may be matched by a collection of sets i, each of
dimension ni , where nNi<<Ns if they are properly integrated. As a result, the issues with the
multi-dimensionality of the hyperspace can be mitigated or even eliminated. This approach
involves determining the capabilities of different sets of features relative to the detection of
specific types of ACs. Careful analysis is needed and the selves with best detection results must
be identified, organized, and integrated within a hierarchical scheme such that a high detection
rate, low number of false alarms, and correct identification are achieved for all ACs. The
process is performed off-line and can be customized continually until a configuration is obtained,
which ensures the desirable performance of the AIS scheme. The outcome of this process
consists of a reduced-number set of sub-selves (projection) of specific size and feature content.

Previous research!” by the authors of this report has demonstrated the merits of the
approach. Sets of lower dimensional selves were obtained through analysis and testing that
yielded excellent ACDIE performance. However, the approach requires extensive information
and/or investigation of ACFDIE capabilities of different features (equivalently, sub-selves or
projections).

In this project, special focus was on developing a methodology that could avoid the need for
significant prior knowledge or investigation of selected feature subsets (projections or sub-
selves) capability for AC fingerprint capture. In other words, the number of projections, their
dimension, and feature content is expected to be the result of an automated algorithm that does
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not use prior knowledge. A first target of this investigation was to consider a complete set of
lower-dimensional projections of uniform size. Considering Eq. (1.26), it can be seen that the
number of projections may become very large. For example, for 32 features we obtain a
complete set of 2-D projections of 496 elements. This number of projections becomes 4960 if 3-
D projection are considered fort he same number of features. Each projection would yield a
detection outcome and all outcomes must be assessed and integrated properly to obtain a global
detection outcome. This need led to the development of the dendritic cell mechanism, which
will be discussed later.
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Figure 1.19. The Hierarchical Multi-Self Strategy for ACDIE

44



1.7. Selection of Development and Demonstration Test Cases

1.7.1. Aircraft Subsystems

Four major aircraft subsystems with components (adding up to 19 individual subsystems)
were considered for the purpose of this research effort:

e Actuators:left and right (L-R) stabilator (S), L-R aileron (A), L-R rudder (R), L-R throttle

e Sensors: pitch, roll, and yaw gyro

e Structure: L-R wing (W), L-R horizontal tail (H), L-R vertical tail (V)

e Propulsion: L-R engine
Total number of individual subsystems is:

Ns=8+3+6+2=19 (1.30)

1.7.2. Types of Subsystem Abnormal Conditions
For each subsystem, a list of targeted ACs must be established. Each list has
Nft, ,k =12,...Ns, failures. The following ACs have been considered within this project:

k=1-8, Nfty =2 (actuators) k=12-17, Nft, =1 (structure)
locked at current position (trim) missing structure
moving and locking at a non-trim position

k=9-11, Nft, =2 (sensors) k=18-19, Nft, =1 (propulsion)
sensor bias reduced effectiveness

constant sensor output
The total number of failures is:

Ns
Ng = 3 Nfty, =2x8+2x3+1x6+1x2 =30 (1.31)
k=1

1.7.3. Flight Envelope Analysis Parameters

In Table 1.2 below, example lists of DIV, EDIV, and envelope relevant variables are
presented. The resultant set of all features considered in Table 1.2 for evaluation purposes is:

Se=HMV para,aya, quaﬂ6’<0}=UVEi i=12,...,Ng (1.32)
|

The total number of features considered for evaluation purposes in Table 1.2 (i.e. flight envelope
reduction assessment) is Ng =16. It should be noted that subsets of these variables have been

considered within the project for methodology development and demonstration.

Table 1.2. Parameters for AC Indirect Evaluation Analysis

ke |k | Type  of | DIV vg EDIV v, Envelope var. Vg Notes
Failure

1 1 L S locked L S defl longitudinal stick ay. ay,H,M,q,p, 4, a,

2 1 L S mv/lkd L S defl longitudinal stick ay. ay,H,M,q,p, 4, a, @

3 2 | R Slocked R S defl longitudinal stick ay, a;,H,M,q,p, 4, @, 6
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4 2 | RS mv/lkd R S defl longitudinal stick ay, az,H,M,q,p, 4, ., 0
5 3 | L Alocked L A defl lateral stick ay.pr, p.r, B, 0
6 3 L A mv/lkd L A defl lateral stick ay’ pr, p.r, B, ¢
7 4 | R Alocked R A defl lateral stick ay.pr, p.r, B,
8 4 R A mv/lkd R A defl lateral stick ay’ pr, p.r, B, ¢
9 5 | LR locked L R defl pedals ay.pr, p.r, B, ¢
10 5 L R mv/lkd L R defl pedals ay’ pr, p.r, B, ¢
11 |6 | RRlocked R R defl pedals ay.pr, p.r, B, ¢
12 |6 | RRmv/lkd R R defl pedals ay’ pr, p.r, B,
13 |7 | LTlocked L T defl pilot throttle ay, a,, 1L H,M,V, a, 0
14 |7 | LTmv/lkd L T defl pilot throttle ay, ay, 1L, H,M,V, a, 0
15 8 R T locked R T defl pilot throttle ay, a,,LH,MV, a, 6
16 8 R T mv/lkd R T defl pilot throttle ay, a,, L HMV, a, 8
17 |9 | pbias p meas lateral stick ay,pT, p.r, B,
18 9 | pconst p meas lateral stick ay’ pr, p,f, B, ¢
19 | 10 | qbias q meas longitudinal stick ay, ay,H,M,q, ¢, «, 0
20 | 10 | qconst q meas longitudinal stick ay, ay,H,M,q, ¢, «, 0
21 11 | rbias r meas pedals ay.pr, p.r, B, ¢
22 11 | rconst I meas pedals ay’ pr, p.r, B,
23 12 | L W damage | L W lift longitudinal  stick, ay, ay’ a,,H,M,p,q,r, p,q.r
L W pitch | lateral stick, pedals,
moment pilot throttle a, pB.0,¢
24 13 | R Wdamage | RW lift . longitudipal stick, ay, ay’ a,,H,M,p,qr p.q.r,
R W pitch | lateral stick, pedals,
moment pilot throttle a, ﬂ , 0, (1)
25 14 | L Hdamage | L Hlift 10ngitudi.nal stick, ay, ay’ a,,H,M,p,arp.qgq.r,
lateral stick,
a > ﬂ3 03 ¢
26 15 | RHdamage | R Hlift longimdi.nal stick, ay, ay’ a,,H,M,p,arp.q.r,
lateral stick,
(04 > ﬁ’ 05 ¢
27 16 | L Vdamage | L Vlift lqteral stick, pedals, ay, ay’ a,,H,M,pr, p,r,p
pilot throttle
28 17 | RV damage | RV lift la.teral stick, pedals, ay, ay’ a,,H, M, pr, p,r, B
pilot throttle
29 18 | L E red eff L E thrst pilot throttle ay, a,,rL,HM, a, 0
30 19 | RE red eff R E thrst pilot throttle ay, ay, 1, H,M, a, @
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1.7.4. Features Selection
Based on the subsystems considered, the nature of ACs, and the extent of the flight envelope
prediction attempted, a set of variable were selected to represent features for self/non-self
definition, including states, states derivatives, inputs, control system variables, and artificial
neural network (ANN) estimations. These variables are listed in Table 1.3.

Table 1.3. Features for Self/Non-self Definition

H altitude dr = pilot throttle

\Y = aircraft ground speed Preg = roll rate command

M = Mach number )

ay = longitudinal acceleration Aref = pitch rate command

ay = lateral acceleration Mref = yaw rate command

a, = vertical acceleration NNgup = roll acceleration error

a = angle of attack NNoytq =  pitch acceleration error

B = sideslip angle NNgur = yaw acceleration error

¢ = roll attitude angle MQEE = main quadratic estimation error
0 = pitch attitude angle OQEE = output quadratic estimation
7% = yaw attitude angle error

p = rqll rate DQEE,= decentralized quadratic roll
? i ggsvhr;l::e rate estimation error

o —  toll acceleration DQEE, = decentralized quadratic pitch
q = pitch acceleration rate estimation error

¢ = yaw acceleration DQEE, = decentr'alize.d quadratic yaw
de = longitudinal stick displacement rate estimation error

da = lateral stick displacement

d, = pedal displacement

Note that the parameters based on ANN estimates of angular rates are computed as follows'.
The main quadratic estimation error (MQEE) is defined as:

MQEE(K) = 2 (p(K) - Branna (2 + (60K)~ Gy (KD + (1K)~ Py (K0Z] (133

where p(k), q(k), and r(k) are measurements of angular rates at sample k and Pynn(K),
aunn(k), and Tynn(K) are neural estimates of the angular rates based on sensor

measurements including the respective gyro, over a specified time window. The output
quadratic estimation error (OQEE) is defined as:

OQEE(k) = %[(bDNN(k)— P (k)% + (@pnn (k) = v (k))? +(fDNN(k)—fMNN(k))Z]
(1.34)
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where Ppnn(K), OGpnn(K), and Tpyn(K) are neural estimates of the angular rates based on

sensor measurements that do NOT include the respective gyro, over a specified time window.
Finally, the decentralized quadratic angular rate estimation error (DQEE) is defined as:

DQEE, (k) =5 (omn (K)- X(K)P, x=par (1.35)
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1.8. WVU Simulation Environment

For the purpose of this project, experimental data were collected from the WVU 6-DOF
flight simulator system?® shown in Figure 1.20. The simulator relies on a motion platform driven
by electrical induction motors to provide adequate 6-DOF translational and rotational motion
cues. Laminar research X-Plane flight simulation software is used to provide external visual
cues through a six-monitor system. The motion platform is interfaced with an external computer
on which an aircraft model can run within the Matlab/Simulink environment driving the entire
simulator system.

V) AR

Figure 1.20. The WVU 6-DOF Motion-based Flight Simulator

Figure 1.21 shows the top level Simulink diagram of the model interfaced with the WVU
Flight Simulator. The model includes the nonlinear dynamics of a supersonic fighter including
models of failures/damages of actuator, sensors, structural components, and engines. The three
large blocks at the bottom of the figure include the computation of specific variables to be
provided to the flight simulator to drive the generation of visual and aural cues as well as the
motion of the simulator platform.

To define the AIS self/non-self as completely and accurately as possible, adequate coverage
of the feature space must be achieved. Different flight scenarios are considered over a wide
range of the flight envelope, which is first defined based on the nine reference points shown in
Figure 1.22 for Mach numbers between 0.6 and 0.9 and altitudes between 9,000 ft and 31,000 ft.
All flight tests start at steady state flight condition at point 1 and continue to cover the nine
points as described by the arrows. For example, one flight test starts at point 1, the aircraft is
accelerated at constant altitude to point 4, descended at constant speed to point 5, and then
returned to points 4 and 1. A total of eight such tests are necessary to cover the testing flight
envelope. The data collected from flight tests under normal conditions with these points were
used to build the self/non-self of the aircraft. Additional intermediate points (A, B, C, and D in
Figure 1.22) were used to provide validation data. The set of flight scenarios, lasting between 10
and 20 minutes each, are designed to include steady-state flight conditions, transitions between
steady-state conditions, and mild to moderate maneuvers. These flight scenarios are simulated
under normal flight conditions. They are repeated under various failure scenarios for both
design/development and validation purposes. Only one failure at a time is considered to
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capture/isolate the dynamic fingerprint of each type of failure and generate antibodies
appropriately. The data acquisition rate from the simulator is 50 Hz.
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Figure 1.21. Simulink Supersonic Fighter Aircraft Model
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Figure 1.22. Testing Flight Envelope
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1.9. WVU Self/Non-self Analysis Tool
Visualizing the 2-dimensional sub-selves is very helpful in analyzing how well the self
clusters and detectors are generated using one of the methods discussed in the previous sections.
A simple interactive tool (see Figure 1.23) was developed to analyze all the generated 2-D
subselves and project a given flight test data on these sub-selves in order to validate them before
adopting them as a basis to the ACDIE schemes.

iversi

B} AIS Self Viewer v2.0 - Dia Al Azzawi, West Virginia University, 2014
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Figure 1.23. The WVU Interactive Tool for Self/Non-self Analysis

The visualization tool is user friendly and has the following main components referenced in
Figure 1.23:
1. “Data folder” textbox to specify the fully-qualified path of the main folder containing all the
flight tests and the self/nonself data generated.
2. Two list boxes of features containing the all features considered for self/non-self definition.
Any feature selected from the left list box represents the abscissa of the 2-D plot and any feature
selected from the right list box represents the ordinate.
3. “Flight test” dropdown menu containing all available flight tests.
4. Three check boxes providing options for plotting flight test data points on the figure,
plotting self/non-self generated with the CSUM method (use ERAU data checkbox), and plotting
post- failure flight envelope ranges.
5. Two optional textboxes to specify the starting and ending time steps used in plotting flight
test data points. If these textboxes are empty, all data points in the selected flight test are to be
plotted.
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6. An optional drop down menu to quickly plot the selected 2-D projection.
7. An X-Y plot area onto which the self clusters, non-self shapes, and (optional) flight test data
are plotted.

The zooming feature of the analysis tool facilitates the validation of the self/non-self
generation process such as how well the detectors cover the non-self space, whether the method
has generated self clusters within the specified margins or not, whether detectors overlapping is
reasonable or not, whether there are issues with the self generation method (or its underlying

processes) or with the flight data, etc. Figure 1.23 illustrates the zoom feature.
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Figure 1.24. The Zooming Action of the Interactive Tool for Self/Non-self Analysis
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Chapter 2

Immunity-based Detection of Aircraft Subsystem Abnormal Conditions
2.1. Detection through Direct Self/Non-self Discrimination

2.1.1. General Aspects
Let the self and non-self be defined as in Eqgs. (1.27) and (1.28). Let the current sample t of
the measured feature point be:

O =[py o2 ... Ot (2.1)

The AC detection can be performed through mechanisms that can be of two types. The NStype
of detection mechanism involves comparing the measured feature point against the detectors,
while the PS-type of mechanism involves comparing the measured feature point against the self
clusters. If one N-dimensional self/non-self is used, then the negative selection-type detection
can be modeled as:

. QO@,[ _ QODJ ) .
Det, — 0 if ‘r r >Rd; forall j=12,.,Nd 2.2)
1 otherwise
while the PS-type of mechanism can be expressed as:
o [-0®,  -OC _ L
Det, = 1 if ‘r r "> Re; forali=12,.,Nc 2.3)
0 otherwise

If Ng sub-selves are used, then Eq. (2.2) or (2.3) is applied for each sub-self to obtain sets of
values Detj, i =12,...,Ng. Then:

Det; = > (Detyi ) (2.4)

I1=1,Ngg
Note that a more complicated function than max(*) can be considered such as one describing a
dendritic cell mechanism.

To obtain a “normal condition” outcome with the negative selection approach, all detectors
must be checked at each sample t. With the positive selection approach, the testing of the current
feature point is stopped as soon as a matching self cluster is found. Therefore, at normal
conditions, the positive selection-based detection is less computationally intensive. On the other
hand, an AC will be declared as soon as a matching detector has been found with the negative
selection approach instead of testing the entire set of self clusters as is required by the positive
selection approach. Therefore, an AC may be detected faster with the negative selection
approach. Depending on the number of self clusters and detectors in conjunction with the system
update rate, these differences may be relevant or not. However, note that building and
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structuring the detectors is critical for the failure identification process if the structured non-self
approach is used.
At each moment, a detection outcome can be simply obtained as:

Det = Det; (2.5)

However, in order to prevent excessive false alarms, instead of using Eq. (2.5) directly, an
additional detection logic must be used to build the detection phase outcome as a function of
current and past outcomes and/or a composition of sub-selves-based detection outcomes.

Within the HMS strategy, sets of 2-dimensional and 3-dimensional projections were
investigated for the detection through direct self/non-self discrimination.

2.1.2. Generation of Detectors

The process of generating detectors, or antibodies, is an exhaustive and lengthy procedure
that requires adequate computational data processing capabilities and adequate numerical
representations of the self/non-self. However, it should be noted that the process is performed
off-line and does not affect the real time operation of the on-board detection scheme.

CSUM was used to process extensive experimental data necessary to properly define the
nominal “hyper-space” representation. For each combination of features corresponding to a
particular projection, segments of data are processed separately to produce sets of detectors that
cover the non-self hyperspace. The CSUM is a 5 phase process (see Figure 2.1) that uses an
optimized algorithm to fuse different sets of clusters generated from single sets of flight or
simulation data. This methodology is particularly convenient when the computer characteristics
used for pre-processing are not powerful enough for an efficient application of the algorithms.

Acquisition of Clustering of

Multiple Sets of Preliminary

———)p- ) ata Processing —- Individual

Flight Data Flight Data Sets
e e Set Union for
Generation of Elimination of

: One Single Set
Detectors -— Duplicates -— g

of Clusters

Final Set of

Detectors

Figure 2.1. Cluster Set Union Based Logic
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2.1.3. Analysisof Detection Performance of Individual Selves

A total amount of 496 2-D projections of sub-selves were generated. Out of the 4960
possibilities for 3-D sub-selves, only 45 were generated. The performance of each projection or
sub-self was analyzed and compared based on the detection rate (DR) and false alarm (FA) rate.
The detection function output is a binary signal that determines if a sub-system failure has been
detected (output=1) or if the aircraft is flying at nominal conditions (output=0). The binary
output can be categorized in four types as follows:

e True Positive (TP): a failure is detected and declared as failure;

e True Negative (TN): nominal conditions are declared as nominal;

e False Positive (FP): nominal conditions are declared as failures;

e False Negative (FN): failure condition is not detected.
These categories can be used for a quantitative evaluation of the DR and FA. The following
equations can be used to calculate the DR of a specified projection.

DR = ——x 100
TP+ FN 2.2)
Similarly, the FA rate can be calculates as follows:
FA=—""—-=%x100
TN + FP 2.3)

The detection rates and false alarms were calculated for 26 different ACs varying in affected
subsystem, type, and severity. Table 2.1 presents a sample set of projections among the 496
generated sub-selves that were selected as an example of the relevant combination of features
utilized in this effort.

Table 2.1. Features of Selected Projections

Self Features Self Features | Self Features Self Features
Self#3 Drer, NN, | Self#94 NN,,r | Self#85| NN,, OQEE | Self#105| NN,,dr
Self#30 | qres, NN, | SEIf#95 | NN,y | Self#86 | NN, DQEE, | Self#106 | NN, M
Self#42 |  drerq | SEIf#96 | NN, 0 | Self#87 | NN, DQEE, | Self#224 | DQEE,, y
Self#53 Qref, Ar Self#97 | NNy, ¢ | Self#39 NN,,V Self#233 | DQEE,, d,
Self#82 | NN, NN, | Self#98 | NN,,H | Self#90 NN, a Self#410| NN, p
Self#83 | NN, NN, | Sef#99 | NNy, a, | Self#92 Ny, p Self#d4l | NN, q
Self#84 | NN,, MQEE | Self#100 | NNy, a, | Self#93| NN, q |Sdf#471| NN,,7

Table 2.2 presents the performance analysis of those selves under four different failures: left

aileron locked at 2.5 deg., left stabilator locked at 2 deg., 6% left wing loss, and 5 deg bias in the
pitch rate sensor output. A sample set of 20 projections is presented. The detection rate as well
as the false alarm rate is shown. These results demonstrate that certain selves favor the detection
of certain types of failures while showing poor detection rates for others. This fact has been used
in previous research efforts to support the formulation of the HMS startegy. The presented
mechanism uses low order projections to build sub-selves using a specific hierarchy of features
relevance with respect to each type of failure. Figures 2.2 through 2.5 present the individual
detection rates obtained for different projections and four different failures.
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Figure 2.6 presents the detection rate that a single projection can attain when tested against
four different failures. It should be noted how a single projection is able to detect three different
failures successfully while showing poor performance for a fourth one. This is due to the fact
that the dynamics of such failure do not have great impact on the features corresponding to Self
#87.

Table 2.2. Detection Performance of Selected Individual Selves

L Aileron Locked | L Stabilator | 6% Lossof Left | Pitch Rate Sensor
Self | at 2deg Locked at 2 deg Wing Bias (5 deg/sec)

DR FA DR FA DR FA DR FA
S3 82 1 99.3 1.85 99 1.1 2.27 1
S30 | 83.5 0.0 99.2 0.0 99.5 0.0 4.16 0.0
42 0.0 0.0 8.22 0.0 0.1 0.0 99.9 0.0
S53 229 0.0 24.8 0.0 25.1 0.0 86.7 0.0
S82 1923 0.0 99.7 0.0 99.2 0.0 4.63 0.0
S83 | 88.1 0.0 99.6 0.0 99 0.0 0.22 0.0
S84 | 86.2 0.0 99.5 0.0 99 0.0 0.05 0.0
S85 | 88.7 0.0 99.4 0.0 98.9 0.0 26.5 0.0
S86 | 84.2 0.0 99.4 0.0 98.9 0.0 242 0.0
S87 | 80.4 0.0 99.4 0.0 99.1 0.0 46.8 0.0
S89 |90 0.0 99.6 0.0 99.2 0.0 1.46 0.0
SO0 | 91.1 0.0 99.5 0.0 99.5 0.0 0.68 0.0
S92 | 80.8 0.0 99.3 0.0 99 0.0 0.09 0.0
O3 | 82.9 1.25 99.4 1.55 99.4 0.0 1.3 0.0
S94 | 85.8 2.25 99.5 2.25 99 2.4 0.51 2.25
S95 | 90.9 0.0 99.6 0.0 99.1 0.0 0.87 0.0
S96 | 89.5 0.0 99.5 0.0 99.3 0.0 3.18 0.0
SO7 | 86.3 0.0 99.5 0.0 99 0.0 0.08 0.0
S98 | 94.6 0.0 99.6 0.0 99.2 0.0 11.2 0.0
S99 | 86 0.0 99.4 0.0 99.2 0.0 2.98 0.0
S100 | 86.9 0.0 99 0.0 97.7 0.0 0.16 0.0
S105 | 91.1 0.0 99.6 0.0 99 0.0 12.2 0.0
S106 | 93.1 0.0 99.5 0.0 99.1 0.0 6.76 0.0
S224 | 0.36 0.0 1.85 0.0 0.9 0.0 63.7 0.0
S233 | 5.51 0.0 8.04 0.0 12.4 0.0 87.8 0.0
$410 | 81.4 0.0 99.4 0.0 99.1 0.0 0.06 0.0
$441 | 80.9 0.0 99.4 0.0 99.1 0.0 0.64 0.0
A71 | 80.5 0.0 99.3 0.0 98.9 0.0 0.05 0.0
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Figure 2.2. Detection Rate of Left Aileron Locked at 2.5 deg Failure
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Figure 2.3. Detection Rate of Left Stabilator Locked at 2.0 deg Failure
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Figure 2.6. Detection Rate of Self 87 for 4 Different Failures

2.1.4. Detection Logic for Direct Self/Non-self Discrimination Scheme

Based on the sensitivity analysis that establishes the capability of each projection to capture
the dynamic fingerprint of the ACs considered, a sub-set of projections of size n is selected for
detection. A weight is associated to each projection depending on their detection potential.
During the detection phase, sets of current values of the features measured in flight at a certain
sampling rate are compared against the detectors that have been generated for each of the n 2D-
projections selected for detection. A detection parameter ( is calculated, which represents the
number of consecutive points over a time window of size ® that trigger detectors, summed over
all sub-selves and affected by the weights. If { is within a certain range (less than a threshold
Thri), a failure warning is issued, but if { exceeds the upper bound of the range (larger than a
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threshold Thrz), a failure is declared and the identification phase starts. The flow chart of the
SNSA detection logic is presented in Figure 2.7.
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Figure 2.7. On-Line Failure Detection Logic with SNSA

2.1.5. Detection Performance Using Self/Non-self Discrimination
The set of aircraft features from Table 1.3 were used to build the AIS self and non-self.
Several ACs were tested on the WVU 6-DOF motion-based flight simulator, as listed in Table
2.3. Different flight scenarios were considered over a wide range of the flight envelope for Mach
numbers between 0.6 and 0.9 and altitudes between 9,000 ft and 31,000 ft. Each flight test lasted
between 15 and 20 minutes. The data acquisition rate was 50 Hz. The two performance metrics
used are the percentage detection rate and the false alarm rate, as defined in section 2.1.3.

Table 2.3. Aircraft Subsystems Considered for AC Detection

Category | k | Subsystem Tests Performed

1 | Left Stabilator Control surface locked at 2° and 8°

2 | Right Stabilator Control surface locked at 2° and 8°
Actuators 3 L(?ft Ail‘eron Control surface locked at 2.5° and 8°

4 | Right Aileron Control surface locked at 2.5° and 8°

5 | Left Rudder Control surface locked at 8°

6 | Right Rudder Control surface locked at 8°
Structure 7 | Left Wing 6% and 15% loss of the wing

8 | Right Wing 6% and 15% loss of the wing

9 | Roll Gyro Sensor 5 deg/sec and 10 deg/sec Fast Drifting Bias
Sensors 10 | Pitch Gyro Sensor Sdeg/sec and 10deg/sec Fast Drifting Bias

11 | Yaw Gyro Sensor ldeg/sec and 3deg/sec Fast Drifting Bias
Engine 12 | Left Engine 100% efficiency reduction

13 | Right Engine 100% efficiency reduction
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Table 2.4 presents the average detection performance for the SNSA-based failure detection
schemes. As it can be seen from the results, the proposed methods exhibit very good
performance with high detection rates and practically zero false alarms for the variety of ACs
considered.

Table2.4. Average Detection Performance of the SNSA Scheme

k Subsystem Affected by AC |Detection Rate[%] [False Alarms|[%]
1 LeftStabilator 99.78 0.00
2 RightStabilator 100 0.00
3 LeftAileron 97.5 0.00
4 RightAileron 97.48 0.00
5 LeftRudder 65.86 0.00
6 RightRudder 75.04 0.00
9 Left Wing 100 0.00
10 Right Wing 100 0.00
15 RollRateSensor 99.98 0.00
16 PitchRateSensor 99.98 0.00
17 'YawRateSensor 97.19 0.00
18 LeftEngine 94.77 0.00
19 Right Engine 72.54 0.00
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2.2. Dendritic Cdl Mechanism for Abnor mal Condition Detection

2.2.1. TheArtificial Dendritic Cell
The DC mechanism-based approach for failure detection is inspired by the functionality of
the biological DCs in the tissue and their interaction with the adaptive immune system. A
detection outcome is produced based on the combined discrimination outcomes from all 2-D
projections (possibly augmented with the outcomes from higher dimensional projections).
Let the time sample be denoted as t. Define the detection matrix D; as:

S, S, .. Sy
D, —|Detyy Detp, ... Detoyg (2.3)

O if feature pointisinside S;

h e i = | = 2.4
where Detj; {1 it feature pointisoutsideSj’ i=12,...,w j=12,..,Ngg (2.4)

A moving time window of size W is assumed for detection. Each column of matrix D; is a set of

detection outcomes of a particular sub-self over the entire time window. Ideally, all elements of
this matrix are equal to zero under normal conditions and to 1 under abnormal conditions. In
practice, D; usually contains both zeros and ones whether the time window is under normal or

abnormal conditions due to imperfections in designing and building the sub-selves and/or due to
the shape of the self that may project abnormal condition feature points into the self area. This
situation may lead to false alarms and missed detections if not properly handled.

Let the complement of matrix D; be:

D; = {@ij | Detij = non( Det;; )} (2.5)

Cells from a pool of DCs are randomly selected to process the input matrices Dy and Dy .
For each DC the “triggered features matrix” F; and the “non-triggered features matrix” Fy are
built.

S, S .. Sng
Fiin Fi2 ... Fing | o1

Fi=|Fa1 Fa2 ... Fing | o (2.6)
Fnt Fnz - Fang | on

where Fgj = Fgj +1 if ¢q belongs to the triggered sub-self S; .
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Si Sy .. Sng

Fii Fi2 ... Fing | o1
Fo=|Fa Fz .. Fing | o2 2.7)
Fn1 Fnz - Fang | on

where Fg = Fgj +1 if ¢q belongs to the not-triggered sub-self S; .
For each sub-self S, a “confidence” factor (Wpj € [0, 1], wy €[0, 1]) for accurately

capturing the self and non-self is defined, which is used to define the following weighting
vectors:

W0=[W01, Wo2, .-+ WONSS]T (28)

represents the level of confidence that an output of “0” is trustworthy.

W]_:[Wll, Wio, ..., W1N$]T (29)

represents the level of confidence that an output of “1” is trustworthy.

When a DC processes an input, the concentration of the secreted proteins, known as “co-
stimulatory molecules,” denoted by CSM, on the surface of the cell increases, regardless of
whether the input is self or non-self (i.e., antigen). It is important to note that T, -cells cannot be

activated unless both the antigen and the CSM coexist. If the input is an antigen, the cell
produces a special cytokine called “interleukin-12,” denoted by IL12. Otherwise, it produces
another type of cytokine called “interleukin-10,” denoted by 1L10. Thus, the presence of IL12 is
an indication of abnormal condition and that of IL10 is a normal one. Any DC cannot migrate to
the lymph node until its CSM reaches a predefined threshold, M, which is randomly assigned to
each cell C, eC during initialization. Like any other cells, some DCs experience “apoptosis,”

the healthy programmed cell death. This is expressed by assigning a random life, L, to each
artificial cell C, e C during initialization.

Some cells migrate to the lymph node (the adaptive immune system) with an indication of
abnormal conditions and stimulate the adaptive immune system to generate cytotoxic T-cells
while other cells migrate with an indication of normal conditions and stimulate the adaptive
immune system to generate suppressor T-cells to regulate the generated cytotoxic T-cells. This
stimulation/suppression of the cytotoxic T-cells determines the resultant response of the adaptive
immune system which indicates whether the system is under normal or abnormal conditions.

At each time sample, the selected DCs update their internal parameters based on detection
outcome from all projections according to the following relationships:

IL10; = IL10;_q + I N - Dt W (2.10)
where Ing =[1, 1, ..., 1], size(lng )=Nss
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IL12; = 1L12 3 + Iy - Dy Wy (2.11)
CS\/lt =CS\/||:_1+1 (212)
Lt = Lt—l_l (213)

If L=0, a cell is considered dead and it is replaced by a new cell. This can be done by
reinitializing the dead cell with the default properties. Any cell with CSM > M should migrate
from the tissue to the lymph node to present the processed input and must be replaced by a new
cell with default properties. If these two conditions are not met, the cell continues processing the
next element of Dy and Dy, if the cell belongs to the randomly selected subset. Any migrated
DC with IL12>1L10 is called “stimulatory” since it activates cytotoxic T-cells; otherwise it is
called “regulatory” since it activates suppressor (regulatory) T-cells.

Let the mature DC be denoted by DCy, k=12,..,Npc, where Np¢ is the total number

of mature DCs. Let the set of activated cytotoxic T-cells be K = {Kq | g=12,...,N }, where
Kq is the number of activated cytotoxic T-cells corresponding to feature ¢, then:

Npc Nss
Kg= 2 Z Figj for all mfor which IL12>1L10 (2.14)
m=1j=1
Let the set of activated suppressor T-cells be:

R={Ry | a=12....N{ (2.15)
where Rq is the number of activated suppressor T-cells corresponding to feature ¢, then:

Npc Nss .
Ry = >y Fog for all mfor which IL12 < IL10 (2.16)
m=1j=1

The role of the suppressor T-cells is to regulate the adaptive immune response by
suppressing a corresponding number of activated cytotoxic T-cells. This results in a set of
residual cytotoxic T-cells given by:

K={Kq=Kq-Ry | a=12...,N 2.17)

The detection outcome at sample time t is finally defined as:

0 if

< <
Dett= Kq_o

1 (2.18)
1 otherwise

J|?[\/]z
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The block diagram of the proposed algorithm is illustrated in Figure 2.8. A set C of N
dendritic cells is initialized with each cell C,eC (¢=1,2, -, Npc ) having the data structure
shown in Figure 2.9.

Ry yK
| Immune Response Regulation |

I
| |
I @ ’ !
Tissue : :
| Data | CcC Ralr;clcom 1
cor | I
I LymphNode g ke Selector | | 4
I
| + | : Y + |
| . 1
Migrated DCs I
! 1g2d © > I "] Dead DCs Immature I
1 >0 ! ||
: CSM > M L L=0 DCs I
! I ' LT _------_| ¥
" S
I | Regulatory DCs Stimulatory DCs| | | DC
I IL12 < IL10 IL12 > IL10 |1 ~|Reinitializer
I I
| /T 1 +
1 Y Y |
| Suppressor Cytotoxic 1
! T-cells T-cells !
: Activator Activator :
I I
| I
I I

| Detection Logic |

Figure 2.8. Block Diagram of the DC Algorithm for Failure Detection

C
Co-stimulatory | | 1nterleukin-10 | | Interleukin-12 Life Migration | | Non-Triggered Triggered
Molecules Threshold | | Features Matrix | | Features Matrix
CSM e N0 IL10 € NV IL12 € NV LeNJ| MeN Fo F,

Figure 2.9. Data Structure of an Artificial Dendritic Cell
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2.2.2. Detection Performance Using the DC Mechanism
The artificial DC mechanism for detection was implemented in C# for computational speed
considerations. The code was compiled with Microsoft® .NET™ Framework version 4.5 and
integrated with the WVU simulation environment for the fighter aircraft. Validation tests, along
with the information of the generated sub-selves, were used as input data to the DC algorithm.
The algorithm was initialized with a pool of 100 DCs and a moving time window of 50 time

N~
steps (i.e., 1 s). The sum of the residual cytotoxic T-cells Zi=1ki in Eq. 2.18 versus time is
shown in Figures 2.10 - 2.13 for different tests. These figures show that the sum of the residual
cytotoxic T-cells produced by the DC mechanism is negative and remains in a narrow band for
normal conditions. When an AC occurs, this parameter experiences an abrupt increase and
remains positive, capturing the occurrence of the AC and providing a reliable detection criterion.

x 10 x10°

Sum of Residual Cytotoxic T-Cells
Sum of Residual Cytotoxic 1-Cells

|
05:00 10:00
Time, mm:ss

Figure 2.11. Sum of Residual Cytotoxic T-
cells vs. Time of an AC Flight Test: Right
Aileron Locked at 8°. Actual Failure Time =
40 s; Detection Time = 40.76 s

00:00 05:00 10:00
Time, mm:ss

Figure 2.10. Sum of Residual Cytotoxic T-
cells vs. Time of a Nominal Flight Test

x10° x10°

Sum of Residual Cytotoxic T-Cells

Sum of Residual Cytotoxic T-Cells
- &
&

00:00 05:00 10:00 15:00 00:00 05:00 10:00 15:00
Time, mm:ss Time, mm:ss

Figure 2.12. Sum of Residual Cytotoxic T-
cells vs. Time of an AC Flight Test: 3° LFDB
in Yaw Rate Sensor. Actual Failure Time = 40
s; Detection Time = 43.38 s
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Figure 2.13. Sum of Residual Cytotoxic T-
cells vs. Time of an AC Flight Test: 15% Loss
of the Left Wing. Actual Failure Time = 40 s;
Detection Time =40.52 s



Table 2.5. summarizes the detection rate for different subsystems. The percentage detection
rate is computed based on the ratio between the number of samples detected as AC and total
number of samples under AC. Note that these rates are the averages of detection rates of the
corresponding number of different tests with different failure magnitudes and/or flight paths in
the third column of the table. Also note that each flight test lasts for about 20 min. on average
and that all failures were introduced at 40 s. Failures can be introduced at any time during the
flight test without affecting the performance of the algorithm. Samples during the first 40 s were
used to determine the false alarm rate as the ratio between the number of samples detected as
failure and the total number of samples under normal conditions. In all tests, the false alarm rate
was zero. Without specific tuning of the parameters, the average detection time of the algorithm
for the failures considered was 2 s, with a standard deviation of 2.8 s.

Table 2.5. Average DC-based Detection Rate for Different Subsystems

k Subsystem Detection Rate,% |No.Tests
1 [Left Stabilator 99.93 3
2 [Right Stabilator 99.93 3
3 [Left Aileron 99.46 4
4 Right Aileron 98.94 3
5  [Left Rudder 93.09 3
6  [Right Rudder 80.47 2
7  |Left Throttle 54.76 2
8  Right Throttle 54.72 2
9 |Left Wing 99.93 4
10 Right Wing 99.94 4
11 [Left Horizontal Tail [99.82 2
12 |Right Horizontal Tail 99.91 2
13 [Left Vertical Tail 24.95 3
14 Right Vertical Tail 16.66 1
15 [Roll Rate Sensor 96.46 6
16 Pitch Rate Sensor 99.86 S
17 [Yaw Rate Sensor 99.78 S
18 [Left Engine 59.72 4
19 Right Engine 59.22 4
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Chapter 3

Immunity-based Identification of Aircraft Subsystem Abnormal Conditions
3.1. Structured Non-self Approach for Abnormal Condition Identification

3.1.1. Principles of AC Identification Using the Structured Non-self Approach
Structuring the non-self for AC identification and converting the detectors into identifiers by
attaching the dSys ; tags involves the identification of detector sub-sets that correspond to AC

that affect specific sub-systems. This implies the prior generation of the non-self with adequate
resolution and knowledge of AC characteristics. Such information can be obtained from tests,
simulation, or analysis. The concept is illustrated in Figure 3.1 for the 2-dimensional case with
the assumption that the sub-sets dSys ; have only one element each.

. Self

AC due to:

0 1
Figure 3.1. Failed Subsystem Identification Using the Structured Non-self Approach

If Det, =1, then the triggering detector is checked for structural parameters and a current
identification outcome is defined using Eq. (1.2), for example, as.

idl-=0 fOl"lgdSySJ

]dtt:[id] idy - ist]’ id; =1 foriedSys;
i= J

(3.1)
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If Eq. (1.3) is used then the current identification outcome is defined as:

Idttzlidl idy - istfJ’ id; =i foriedSys; (3.2)

If one N-dimensional non-self is used with perfect feature definition, then the identification
process outcome can be defined as:

Idt = Idt, (3.3)

If the HMS strategy is used, then Eq. (3.1) or (3.2) is applied to each sub-self and a
composition logic ~ must be designed to obtain the current identification outcome as:

Idt, =7 (Idt;),  i=12....Ng (3.4)

then Eq. (3.3) can be applied. However, as was the case with the detection process, using Eq.
(3.3) directly may produce a large number of incorrect identifications. This can be mitigated by
reprocessing the current outcomes /dt, over amoving time window. The composition logic ~

can also rely on the DC mechanism.

3.1.2. Identification Algorithm Using the Structured Non-self Approach

The identification algorithm is only activated when the detection algorithm declares that an
abnormal condition is present. The identification phase assumes that the output of the detection
phase is correct.

In this research effort a novel structured non-self approach (SNSA) has been devel oped
within aHMS strategy. This approach is based on a structuring process, or arrangement, of non-
self projections and intends to reduce the computational effort required and facilitate the real-
time application of the AIS approach without compromising the ACFDIE performance. The
SNSA consists of a dual- phase algorithm where 2-dimensional self/non-self projections,
previously generated using a negative selection mechanism and tested in simulation under
several abnormal conditions, are selected according to the ability to detect failures at a
predefined detection rate percentage. Then, by using a positive selection-type mechanism, the
resulting projections are processed in order to generate identifiers capable of differentiating
similar dynamic prints among several abnormal conditions and declaring correct failure types,
and magnitudes. For example, within a first phase of the SNSA, a total of 496 self/non-self
projections were generated based on the availability of 32 features to capture the dynamic print
of abnormal conditions. After extensive experimentation it was possible to reduce the number of
self/non-self projections to 183 possible candidates with a DR equal or larger than 70%. These
projections are considered to possess the ability to capture the dynamic print of several sub-
system failures and, more importantly, facilitate the process of characterizing the projections that
perform better during the identification of specific failures. Table 3.1 presents a sample set of 2-
dimensional projections investigated within the identification phase.

It is important to note that the dynamic fingerprint of several failures may produce a very
similar effect on the features of self/non-self projections. This characteristic presents a more
complex problem in which incorrect identification may be produced if the identification problem
is not defined appropriately. For example, let us assume that an identification algorithm, only
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consisting of Self#3 (pyesr, NN,), is tested for two sub-system failures (i.e. right wing structural
failure and left aileron stuck failure). This particular pair of failures will produce an undesired
roll rate that can be successfully perceived and detected by Self#3. The dynamic fingerprint
produced by both abnormal conditions in the selected projection may look very similar,
increasing the complexity of the identification problem. Now, let us assume that the same
identification algorithm is augmented with Self#30 (qr.s, NN,), which can aso capture the
abnormal condition dynamic print of the mentioned failures. Due to the fact that Self#30 aso
captures dynamic changes in pitch rate, it is possible to identify and distinguish between the two
mentioned failures. Within a second phase of the SNSA, positive selection applied to the 183
self/non-self projections is performed in order to address the mentioned identification problem.
For illustration, Figures 3.2 and 3.3 present the similarity of the dynamic print of two different
failuresin a 2-dimensional projection.

Table 3.1. Self/Non-self 2-D Projections for SNSA Approach

Self Features Self Features
Self#3 Dres, NN, Self#56 Trers NN,
Self#4 Pref, NNg Self#57 Trers NNy
Self#7 Pres) OQEE Self#60 Tref) OQEE
Self#8 Dres, DQEE, Self#61 Trer, DOEE),
Self#9 Pres, DQEE, Self#62 Trer, DQEE,
Self#30 Grer NN, Self#69 TrefsT
Self#31 Qrefr NNg Self#82 NN, NN,
Self#34 Qrer NN, Self#83 NN,, NN,
Self#35 Qrer DQEE, Self#84 NN,, MQEE
Self#36 Grer DQEE, Self#85 NN,, OQEE
Self#42 Pref, NNy, Self#86 NN,, DQEE,
Self#52 Qrefr de Self#87 NN,, DQEE,
Self#53 Qref, Ar Self#88 NN,, DQEE,

The combined identification capabilities of the projections utilized within the two phases of
the SNSA (see Figure 3.4) provides a more robust system capable of not only correctly
identifying the detected failure but also providing information regarding the magnitude of the
investigated failures. With the correct combination of projections and their corresponding
identifiers, it is possible to discard incorrect identifications and ultimately determine which
abnormal condition is affecting the system.
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Figure 3.2. (a) Self#3 with Left Aileron Failure; b) Self#3 with Right Wing Structural Damage
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Figure 3.3. (a) Self#30 with L Aileron Failure; (b) Self#30 with R Wing Structural Damage
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Figure 3.4. Structured Non-Self Approach Logic

3.1.3. Generation of Identifiers

The process of generating identifiers is very similar to the detector generation. However,
the generation of identifiers is based on a positive selection-type of agorithm, in which failure
flight test data are used to expose the dynamic fingerprint of a failure throughout the entire flight
envelope. The generation of identifiers consists of a multi-step process that optimizes the set .
The radii of the identifiers depend mostly on their distance to the self. The flow chart of the
identifier generation is presented in Figure 3.5. The main components of the process are
described next.

Abnormal Flight Tests. Flight tests at different abnormal conditions throughout the entire
flight envelope must be performed. Previously selected features corresponding to the self/non-
self definition as shown in Table 3.1 must be recorded for future processing and identifier
definition.

Normalization. The sets of raw data received from the flight tests are recorded and their
values are normalized between O and 1. The normalization factor of each projection is
determined by the range of the flight data plus a percent margin. The normalization factor is the
same used for the self/non-self projections during the antibodies generation. Therefore, the
normalized data points of failure data correspond to the correct hypercube projection of each
specific feature combination.
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Offset Hypercubes. The unit hypercube determined during the normalization process
delimits the hyperspace of the nominal conditions. High magnitude failures may contain data
points that lay far away from the unit hypercube of the self/non-self projection. Therefore,
outward concentric hypercubes are defined in order to determine the distance of the abnormal
condition point from the self (see Figure 3.6), which subsequently allows the algorithm to
determine the magnitude of the corresponding failure as part of the direct quantitative evaluation.
Note that these phases defined, in general, subsequently may be performed simultaneously.

Figure 3.5. Flowchart of the Identifier Generation Process

Figure 3.6. Concentric Hypercubes and Radii Variation With Respect to Distance from the Self

Radii Assignment. The radius of any identifier is predetermined and it is assigned
depending on the location of its center with respect to the offset hypercubes. The radius of an
identifier increases as the position of its center lies within an outward hybercube. In other words,
the radii of all identifiers increase as their distance to the self increases as illustrated in Figure
3.6.
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Identifiers Elimination/Fusion. The amount of initial identifiers depends on the number of
data points obtained from the flight tests. This may yield an enormous number of identifiers
which will produce a degradation of the computer processing capability. A simple elimination
algorithm is implemented in order to reduce the number of identifiers. Identifiers that lay inside
the radius of another identifier plus a tolerance are eliminated. Finally, a fusion process is
performed. The fusion process consists of a set union accompanied with overlapping
elimination. After this step is concluded, the final number of identifiersis reduced considerably.

3.1.4. The Two Phases of the SNSA Approach

The first phase of the SNSA is the result of the failure detection testing within the HMS
strategy and consists in the selection of lower dimensional projections. Only 2-D projection
have been considered in the phase of the project. As mentioned previously, 496 2-dimensional
self/non-self projections were generated for failure detection algorithm experimentation. These
projections were then tested against over 20 different failures. Different magnitudes/severities of
the ACs were also considered. Extensive experimentation was required in order to determine
which projections could substantialy detect a failure with good detection rates and minimum
false dlarms within a NS approach. It was determined that a total of 183 projections were able to
fulfill the objectives of a DR equal or higher than 70%. This processis referred to as the Phase |
Non-Self Structuring. The selected projections were chosen as potential candidates for
identification included sensor outputs, state estimates, and statistical parameters among other
features. The set of abnorma conditions involved sensor failures, structural damage on the
wings, engine failures, and control surface failures. Table 3.2 presents a list of the failures
investigated in this research effort.

Table 3.2. Phase| SNSA Subsystem Failures

Failure # | Failure Type Failure # | Failure Type

1 Left Aileron 2deg 9 Left Wing Loss 6%

2 Right Aileron2deg | 10 Right Wing Loss 6%

3 Left Aileron 8deg 11 Left Wing Loss 15%

4 Right Aileron 8deg | 12 Right Wing Loss 15%

5 Left Stabilator 2deg | 13 Left Engine Out

6 Right Stabilator 2deg | 14 Right Engine Out

7 Left Stabilator 8deg | 15 Roll Sensor Bias 5deg/sec
8 Right Stabilator 8deg | 16 Roll Sensor Bias 10deg/sec

Several failures presented similar dynamic prints on several 2D-projections, which
subsequently led to the repetition of several projections with the ability to detect multiple
failures. On the other hand, certain failures that are difficult to detect, such as rudder failure,
only resulted in the activation of a small number of projections. The negative selection logic
behind the Phase | Structuring resulted in the reduction of the number of the original projections
into a smaller set, reducing the complexity and the hardware requirements for its
implementation. Table 3.3 presents a sample of the projections that are considered to be
adequate for abnormal condition identification based on a detection performance equal or higher
than 70%. The detection capability of this sample set of projectionsis presented for five types of
failures. Various projections present the ability to capture the dynamic fingerprint of several
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abnormal conditions while others can only capture the dynamics of a small set or just a single
abnormal condition. For example, Self#3 demonstrated its ability to capture the dynamic
fingerprint of a left aileron locked, a right wing structural damage and a left stabilator locked
failure. On the other hand, Self#4 only demonstrated the ability to capture the dynamic
fingerprint of aleft stabilator locked type of failure.

Table 3.3. Detection Sensitivity of a Sample Set of Projections (%DR)

. Left Right Win Pitch
Failure Aileron 6‘55 ®| Left . Right Engine | Sensor
Stabilator
Self stuck  at | Structural Stuck at 8 deg, Out IQdeg/sec
2.5 deg Damage Bias
Self# 3 82.02 99.84 99.96 10.51 3.42
Self# 4 1.45 3.87 99.85 142 4.08
Self# 30 83.49 99.83 99.96 10.57 30.02
Self# 31 0.85 1.94 99.82 0.52 60.68
Self# 52 0.99 0.76 1.56 1.10 71.52
Self# 56 86.85 99.94 99.88 12.94 0.59
Self# 82 92.33 99.96 99.97 21.32 15.01
Self# 83 88.06 99.93 99.97 14.13 0.74
Self# 84 86.23 99.94 99.98 12.05 0.30
Self# 85 88.76 99.91 99.96 12.80 37.42
Self# 100 86.92 99.45 99.25 15.20 0.46
Self# 142 0.06 29.35 56.08 72.42 0.99
Self# 233 5.51 1.47 7.02 5.49 92.07
Self# 259 13.44 54.05 77.33 72.54 941
Self# 350 15.39 33.10 60.70 172.47 22.27
Self# 351 26.07 50.30 67.13 71.49 14.23
Self# 433 1.39 144 6.76 2.33 77

Within this analysis it was possible to isolate the projections that can be used for
identification purposes. From the Phase | analysis, it was possible to determine which specific
projections correspond to every specific faillure investigated. Furthermore, it is also possible to
determine how many projections capture the dynamic fingerprint of an abnormal condition.
Table 3.4 below presents the number of projections from the 183 tota initially selected that have
the potential to be used for successful identification purposes.

The outcome of the Phase | self/non-self structuring reduces the total amount of projections
needed to perform ACFDIE. Its outcomes aso alow for adequate design of the mapped-based
positive selection algorithm utilized in the second phase of the SNSA by reducing the number of
possible projections for the generation of identifiers as well as the reduction of identifiers
required in the identification algorithm for each individual projection.

Phase Il of SNSA includes a positive selection process where flight failure test data are used
to generate higher resolution non-self detectors called identifiers. Resulting projections from
Phase | are processed in order to generate identifiers capable of differentiating similar dynamic
fingerprints among several abnormal conditions and declaring correct failure types, and
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magnitudes. In order to obtain correct identification results, the identification logic must be
carefully formulated and the generation and selection of identifiers must be adequate. Subsets of
antibodies or identifiers must be generated with sufficient resolution to avoid incorrect outputs.

Table 3.4. Total Number of Projections Activated per Failure

Actuator Engine Structural
Aileron Stabilator Rudder Eneine Out Wing Damage
Stuck (8 deg) Stuck (8 deg) Stuck (8 deg) g (15%)

L R L R L R L R L R

31 31 72 62 9 11 31 4 31 31

The identifiers generated during Phase | and 11 are loaded into an identification function and
organized in asingle array such that the index of each identifier corresponds to afailure type and
magnitude. The arrangement of the identifiersis inspired by a mapping-based algorithm, which
simplifies the selection scheme. The positive selection process is performed in parallel by all the
projections included in the identification algorithm. Each projection outputs a single index that
corresponds to a type and magnitude of failure. The outputs of all projections are compared
among each other and the most frequent value is determined. If a specific failure index is
constant throughout the majority of the projections outputs, its value is selected and a proper
identification is declared.

3.1.5. AC Identification Performance Using Self/Non-self Discrimination

Since the SNSA covers not only general identification logic, but also a qualitative and
guantitative evaluation logic integrated into a single less complex algorithm, the identification
results are presented in Section 4.1 integrated with classification results of magnitude and
category of faillure. This novel approach intends to reduce the computational processing for real
time application of the solution to the ACDIE problem. The proposed mapping-based positive
selection logic targets a multi-dimensional problem by means of asimpler but effective logic that
can result in amore efficient real time algorithm.
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3.2. Dendritic Cell Mechanism for Abnormal Condition Identification

3.2.1. Dendritic Cell Mechanism for AC ldentification
The DC mechanism-based approach for AC identification infers the subsystem affected
based on the topography of the detection outcomes from self/non-self projections, within the
HMS strategy. Therefore, with the DC approach, the AC identification is formulated as a pattern
recognition problem. The AC identification consists of determining which one of the Ng sub-

systems has been affected by the AC and it starts once an AC has been detected. Patternsfor AC
identification purposes may be defined based on the F; matrix. Note that the F;, matrix may
also beintroduced into the process. Ny different patterns must be established, one associated to

each subsystem. The process of establishing the library of pattern is presented in Figure 3.7.
There are three possible alternatives for defining the patterns:

Feature-pattern (F-P) approach

Projection-pattern (P-P) approach

Matrix-pattern (M-P) approach

A). Feature-pattern (F-P) approach for AC identification
For each AC, define the vector of membership values of each feature to the set of equivalent
directly involved variables:

FPACj:[mI my ... mN]T, m; elo, 1] (3.5)

For each subsystem £, define the FP vector as:

N fik
1 J . _ 1T
FPk = Nﬁk Z FPAC] = [I’I’Z] my ... mN] (36)
. j=1
max('Y. FPyc; )
i =]
where m;elo, 1], k=12,...,Ng (3.7)

All these membership values can be determined based on tests and heuristics. Note that binary
logic can be used instead of fuzzy logic. Inthiscase: m; {0 1} and m; {0 1}.

At each sample time, after an AC is detected, use the F; matrices of the mature DCs to
compute the current AC FP as:

Noc N o x1

Fip=| YFiq [ Ing s Ing €SS (3.8)
q=1

Use amatching algorithm to determine which one of the N g FP vectors best matches Fig-

B). Projection-pattern (P-P) approach for AC identification
For each AC, define the vector of membership values of each projection to the set of AC-
relevant projections (projections that can capture the dynamic fingerprint of the AC):
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PPACj= ny ny ... nNSS]T’ l’liE[O, ]] (39)

For each sub-system £, define the P-P vector as:

1 N e L _ T
PPk: Nﬁk ZPPACJ-:[I’I] ny ... nNSS] (310)
j=1
i j=1
where nelo, 1], k=12,...,Ng (3.11)

All these membership values can be determined based on tests and heuristics. Note that binary
logic can be used here as well.

At each sample time, after an AC is detected, use the F; matrices of the mature DCs to
compute the current AC PP as:

Fip=1I NDCF I IxNss
p=In-| X Fig | Iyell} (312
q=1

Use amatching algorithm to determine which one of the Ng PP vectors best matches Fp.

C). Matrix-pattern (M-P) approach for AC identification
For each sub-system k, define the FP vector FP, and the PP vector PP, as described

above. Usethem to build the MP matrix MP, .

% ES *
I’I’l]] I’I’l12 m]NSS
% * *
3
Mp, =| "1 m:22 - M2Nss |, my [0, 1], i=12...N, j=12,..Ngg (3.13)
* >X.< ' *
_mNI mNZ mNNSS_
max(m;,n;) if @:belongsto S ;
where m:;:{ (i) if ¢ 8102 (3.14)

0 otherwise
At each sample time, after the AC is detected, compute the sum of all mature DC F; matrices as:

Npc
F]MZ ZFIq’ qz],Z,...,NDC (315)
q=1

Finally, use a matching algorithm to determine which one of the Ng M-P matrices best
matches F]M .
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Figure 3.7. Generation of Library of Reference Patterns for Identification Using the DC
Mechanism for Identification and the Naive Bayes Classifier

3.2.2. Performance of AC Identification Using a Dendritic Cell Mechanism
Among the three pattern approaches, the F-P approach was selected since it requires less
computational resources as compared to the P-P and M-P approaches. The artificia DC
mechanism for identification with the F-P approach was implemented in C#. The naive Bayes

classifier was trained with the current F-P vectors £, from a set of training failure tests for each

subsystem & to implicitly define the reference features-pattern FP, of that subsystem in terms of
the corresponding mean vector and covariance matrix. Figure 3.8 illustrates the variation of the
current F-P vectors £, over the entire test time of a failed right wing subsystem (k = 13) in one

of these tests. Figures 3.9 through 3.11 depict the reference FP, vectors of the right wing (k =

13), left aileron (k = 3), and the yaw rate sensor (k = 11), respectively. Once afailureis declared
by the DC mechanism, the current £, vector is passed to the naive Bayes classifier to select the

closest F'F, to the current F;, vector, and thus identify the failed subsystem. A sample current

F,, isshown in Figure 3.12 for avalidation failure test with right wing damage.

Listed in Table 3.5 are the average identification rates for different subsystems. These
results show the capability of the proposed AC identification scheme in isolating the failed
subsystem with very high identification rates. Note that the first column in Table 3.4 represents
the subsystem affected by the failure and the first row represents the subsystem identified as the
faled one. The off-diagonal numbers in the table represent the incorrect identification
(misclassification) rates. For example, 99.13% of the samples under failure of the right stabilator
were correctly identified, whereas for 0.81% of these samples, the failed subsystem was
incorrectly identified as the left stabilator; for 0.05% of these samples, the failed subsystem was
incorrectly identified as the left rudder; and for 0.01% of these samples, the failed subsystem was
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incorrectly identified as the pitch rate sensor. The small variations in performance between
subsystems may be typically attributed to imperfect coverage of the self, imperfect detector
generation, errors introduced by the projections, and variations of the classification algorithm
used in conjunction with the DC mechanism.

Fie

Featu,

Ly .1-'1 T i
it 0

Figure 3.8. Variation of the Feature-Pattern Vector with Time of a Failed Right Wing

Subsystem
1 1
081 1 0:5 +
0.6 0:(-
S 0.5 S 0.5
0.4 04
0.2 02
0.1
0
) Features ) Features
Figure 3.9. Reference Features-Pattern of a Figure 3.10. Reference Features-Pattern of a

Failed Right Wing Failed Left Aileron
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Table 3.5. Average |dentification Rates Using the DCMechanism

Left Right [Left Right [Left Right ILeft Right [Roll Pitch |Yaw
Stab. [Stab. |Aileron Aileron [Rudder [Rudder [Wing Wing [Rate Rate Rate
Left
Stab. 100.00 [0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Right
Stab. 0.81 99.13 |0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.00
Left
Aileron |0.00 0.00 99.78 [0.14 0.01 0.00 0.04 0.00 0.03 0.00 0.00
Right
Aileron |0.00 0.00 0.00 99.89 |0.08 0.00 0.00 0.00 0.01 0.00 0.02
Left
[Rudder |0.00 0.00 0.00 0.00 99.95 0.05 0.00 0.00 0.00 0.00 0.00
Right
[Rudder |0.00 0.00 0.00 0.00 0.04 99.96 0.00 0.00 0.00 0.00 0.00
Left
Wing [0.00 0.00 0.00 0.00 0.00 0.00 99.95 0.05 0.00 0.00 0.00
Right
Wing [0.00 0.00 0.00 0.00 0.00 0.00 0.02 99.98 ]0.00 0.00 0.00
[Roll
[Rate 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 99.99 |0.00 0.00
Pitch
[Rate 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
Yaw
[Rate 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 99.99
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Chapter 4

Immunity-based Direct Evaluation of Aircraft Subsystem Abnormal
Conditions

AC direct evaluation consists of two parts. qualitative direct evaluation and quantitative
direct evaluation. The qualitative evaluation refers to determining the nature or the type of the
AC, while the quantitative direct evaluation refers to determining the severity of the AC or the
actual values of parameters that are a direct consequence of the AC. The AC direct evaluation
within the AlS paradigm can be approached in asimilar way as the identification phase.

4.1. Structured Non-self Approach for Abnormal Condition Direct Evaluation

The Structured Non-self approach can be used not only to perform general AC
identification, but also a qualitative and quantitative AC evaluation within an integrated logical
framework, such that the overall algorithm is less complex. This novel approach intends to
reduce the computational processing for real time application of the solution to the ACFDIE
problem. The proposed mapping-based positive selection-type of approach targets a multi-
dimensional problem by means of a simpler but effective logic that can result in a more efficient
real time algorithm. Within this method, the determination of the type and severity of an AC,
also known as direct evaluation, is performed simultaneously with the identification stage as a
single process, leaving the indirect evaluation as an individual stage in the SNSA. This
architecture is presented in Figure 4.1.

4.1.1. Structured Non-self Approach for Qualitative Direct Evaluation
The qualitative evaluation can be performed in a manner similar to the identification by
structuring the non-self and attaching to each detector d ; thetags dFt;. This processinvolves
the identification of detector sub-subsets within each subset corresponding to one single
subsystem. Aswas the case with the identification process, prior generation of the non-self with
adequate resolution and knowledge of AC characteristics is required. This concept is illustrated
in Figure 4.2 for the 2-dimensional case with the assumption that the sub-sets dFt; have only

one element each.
If Det; =1, then the triggering detector is checked for structural parameters and a current

gualitative evaluation outcome for the case when only one sub-system is affected can be defined
as.

evl; =0 forigFt,

Evl, =levl; evl, --- evi—;|,with Nft = Nfi ~and 4.1

! |' ! 2 NﬁJ 4 deysf evl; =1 forieth (41)
Notethat Evi; can beformulated to consist of non-zero elements only, case in which:

Evl, = dFt; (4.2)
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If several subsystems may be affected (that is size(dSys;)>1), then EvI; from Eq. (4.1)

becomes a matrix with size(dSys ; ) rowsand max (Nft; ) columns. Note that some rows of
k=I,..

seeed Vg

this matrix must be completed with zeros to account for the different values of Nfz; .

-
Flight and/or ] r ) .
Simulation Tests art > Self/Non-Self Str:ctursn:E of
Nominal Conditions J l Generation Non-
y
-
r )
Failure - Faihure ]}Etactlum
Warning - Detected 7 Logic
\, y y
l A
r "y 1
Failed Td entification
Subsystem Logic
N - ¥
-
Failure Qualitative
Ivpe Evaluation Logic
\, y g §
- ! - l "
Failure é Quantitative
Sev erity Evaluation Logic
\, y L B
) S S
New Ranges for .
Envelope " Indl:ract .
Parameters Evaluation Logic
. J \ y

Figure 4.1. Integration of Direct Evaluation and Identification Within SNSA

If one N-dimensional non-self is used with perfect feature definition, then the qualitative
evaluation outcome can be defined as:

Evi=Evi, (4.3)

If the HMS strategy is used, then Eq. (4.1) or (4.2) is applied to each sub-self and a
composition logic ~~ must be designed to obtain the current qualitative evaluation outcome as.

EV]t = (/’_(EV]H'), i= ];2;---; Nss (44)
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then Eq. (4.3) can be applied. However, the current qualitative evaluation outcomes Evi, can be

further processed over a moving time window to improve performance. Aswas the case with the
identification process, structuring of the non-self can be avoided within the HMS strategy if an

adequate composition logic ~  can be formulated.

1

@ ser
O AC Type #1
@ AC Type #2
@ AC Type #3

O U @ ¥ @ = AC of Sub-system #2

0 1

Figure 4.2. Failure Qualitative Evaluation Using the Structured Non-Self Approach

4.1.2. Structured Non-self Approach for Quantitative Direct Evaluation
The direct quantitative evaluation relies on correct qualitative evaluation and must be
approached in different ways depending on the specific definition of the process outcome. If a
definition of Ev2 as illustrated by Eq. (1.8) is used, then the dFis; tags in Eq. (1.29) must

represent the values of some ad-hoc defined metric that can capture the severity of the failure.
For example, for many types of failure, the minimum distance from the center of the detector to
the nearest self cluster can be used as illustrated in Figure 4.3. If a definition illustrated by Eq.
(1.9) or (1.10) is used instead, then the dF's ; tags represent quantitative attributes (for Eq. (1.9))

or membership function values associated to a set of quantitative attributes (for Eq. (1.10)), as
illustrated in Figure 4.4. In any case, the quantitative evaluation outcome Ev2 must correspond
to Evi, that isfor each scalar element of Ev/ there will be a scalar element of Ev2 if Eq. (1.8) or
(1.9) are used, or avector element if Eq. (1.10) isused. Therefore, at each sampling time ¢:
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Ev2, = dFSj (4.5)

. Self

Detector triggered
by AC #1

@ Detector triggered
by AC #2

Minimum distance

Severity of AC #2 higher than
severity of AC #1

0 1
Figure 4.3. Failure Direct Quantitative Evaluation Based on Distance to Self

If one N-dimensional non-self is used with perfect feature definition, then the overall direct
guantitative evaluation outcome can be defined as:

Ev2 =Ev2, (4.6)

If the HMS strategy is used, then Eq. (4.6) is applied to each sub-self and a composition
logic ~~ must be designed to obtain the current qualitative evaluation outcome as:

Ev2, =7 (Ev2,;), i=12,.,Ng (4.7)

then Eq. (4.6) can be applied. As in the previous phases, the current outcomes Ev2, can be

further processed over a moving time window to improve performance.

It should be noted that associating type and/or severities of ACs to regions of the non-self,
that is to specific detectors (they become thus “evaluators’) requires tests at abnormal conditions
of different types and severities and identification of the corresponding areas in the non-self
(detectorg/identifiers). The approach may prove resource prohibitive for a comprehensive
solution. The distance-to-self approach for severity assessment, on the other hand, does not
require extensive specific tests for development; however, distance thresholds must be
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established for the discrete set of linguistic values typically used for direct quantitative
evaluation.

OU @ U @ = ACType #1

0 1
Figure 4.4. Failure Direct Quantitative Evaluation Using the Structured Non-Self Approach

4.1.3. Performance of Direct Evaluation Using the Structured Non-self Approach

The identification of the affected system, the determination of the type of AC, and its
severity have been performed simultaneously using the SNSA. The performance evaluation was
performed using similar metrics as for the detection phase. A correct identification percentage
and a miss-identification percentage are calculated depending on an accurate declaration of
subsystem failure for every time step in which an upset condition is present. The identifier
generation algorithm proposed in this research effort was implemented for 9 different failures
considered to be high magnitude using the 183 selected projections. Based on the assumption
that lower magnitude failures of the same type of failure generate similar dynamic fingerprints
with a close proximity to the self, the set of identifiers was subdivided into two groups. The first
set corresponds to high magnitude and the second set to low magnitude failures (i.e. closer to the
self). This approach increases the total amount of equivalent AC that can be identified to 18
instead of the original 9. A total of 1647 different cases for identifier generation were
implemented in order to cover all the possible failure outputs investigated.

Each set of identifiers generated per failure contains on average 36 identifiers. Considering
that every set of identifiers for al failuresisintegrated into each projection, an approximate total
of 324 identifiers per projection are used for the identification through this positive selection-
typeof process. After an initial analysis, the algorithm was optimized and it was determined
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that out of the 183 projections, a total of 93 projections were enough to correctly identify the
investigated failures. The reduction of the total number of projections required for identification
has reduced the computational complexity of the algorithm considerably. Table 4.1 presents a
sample set of projections used for AC identification and direct evaluation.

Table 4.1. Projections Used for Simultaneous I dentification and Direct Evaluation
Self# | Features Self# | Features Self# | Features Self# | Features
3  |Prer| NNy, |57 |7rer| NNy |110 | NNg | DQEEp | 121 | NNg | ¢
4 Prer | NNg; |60 Tref | OQEE | 111 | NN, | DQEEq | 123 | NN, | ax
7 Prer | OQEE | 82 NN, | NN, |113 | NN, v 124 | NN, | ay

9 Pref | DQEEq |83 | NN, | NN, |[114 |NN,| a |125 |NN;|az
31 | Grer| NN, |84 | NN, | MQEE |115 |NN;| g |126 |NN; |d,
34 | qrer | OQEE |86 |NN, | DQEEp |116 |NN,| p |127 |NN, |4,
35 | Grer | DQEEp |87 | NN, | DQEEq | 117 | NN, q 128 | NN, | d,
42 | qref| q |88 |NN, | DQEEr |[118 |NN;| r |129 |NN, |d;
56 | Trer| NN, |107 |NN,| NN, [120 |[NN,| 6 [130 |NN,| M

Further analysis was carried out to reduce the number of projections required to produce
desirable identification outputs. In some cases, the use of a single projection was enough to
obtain favorable identification rates. On the other hand, other failures require more projections
in order to obtain desirable identification results and also to reduce misidentification rates. Table
4.2 presents the number of projections required for a correct failure identification outpuit.

Table 4.2. Total Number of Projections Used for Simultaneous Identification and Direct

Evaluation

Eailure Failure Type grs'(éj;iections Eailure Failure Type 51:31
1 Left Aileron Stuck at 2deg 14 9 Ic_)fefg%Wing Loss 2

2 Right Aileron Stuck at 2deg | 7 10 g%ﬁ;wmg Loss| 4

3 Left Aileron Stuck at 8deg 8 11 I(;fefltsoyg/ ing Loss 1

4 Right Aileron Stuck at 8deg | 8 12 gglrg(yl/vmg Loss|,

5 Left Stabilator Stuck at 2deg | 18 13 Left EngineOQut | 1

6 Right Stabilator Stuck at 2deg | 2 14 CR)iL?tht Engine| ;g

7 L eft Stabilator Stuck at 8deg | 9 15 o desglng Bias | 4

8 Right Stabilator Stuck at 8deg | 31 16 EfOToaSSSZEL Bias | 7

The identification and direct evaluation algorithm was tested under 16 different failures
(refer to Table 4.2). Table 4.3 shown below presents the results for the performance rate
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analysis. Note that in Table 4.3 the first column represents the actual failure and the
corresponding row represents how it was identified/evaluated. For example, failure #1 is
identified correctly 99.7% of the time but presents confusion with failures 3, 4 and 14 for 0.1%
of the time, respectively.

Table 4.3. Performance of AC Identification and Direct Evaluation

Identified Failure #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 [99.710 01 |01 |O 0 0 0 0 0 0 0 0 01 |0 0
2 |99 [873(0 0 0 0 0 0 0 0 0 0 0 28 |0 0
3 (04 |0 956 |06 | O 0 0 0 0 0 0 0 0 34 |0 0
4 |0 0 01 |972 1|0 0 0 0 0 0 0 0 03 |24 |0 0
5§ |05 (17 |15 |O 925115 (11 |O 0 0 0 0 0 0 12 |0
6 |99 |0 12 |0 0 86.8 | O 21 |0 0 0 0 0 0 0 0
7 102 |1 0 0 0 0 96.1 |15 |0 0 0 12 |0 0 0 0
g |05 |0 0 0 0 0 48 193809 |0 0 0 0 0 0 0
9 |12 |2 02 |0 0 01 |0 09 |956 |0 0 0 0 0 0 0
100 0 21 |0 0 0 0 0 11 (9450 0 0 11 |0 12
111]0 0 0 0 0 0 0 01 |76 (01 [922]0 0 0 0 0
1210 0 0 0 0 0 11 |0 0 11 |0 97503 |0 0 0
q‘;’ 13]0 0 0 0 0 0 0 0 0 0 0 0 926 |74 |0 0
‘E 14| 0 0 0 0 0 0 0 0 0 0 0 0 01 1999 |0 0
Tg 1510 0 0 0 0 03 |0 02 |03 |0 02 |0 21 |13 [956 |0
2160 0 0 03 |0 0 0 0 0 0 27 |10 0 21 |0 94.9
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4.2. Dendritic Cell Mechanism for Abnormal Condition Direct Evaluation

4.2.1. Dendritic Cell Approach for Qualitative Direct Evaluation
The AC qualitative evaluation assumes that correct detection and identification have been
performed. At this point it is known that a failure is affecting at least one sub-system &,
k=12,...,Ng. With the DC approach, the AC qualitative evaluation is approached as a specific

identification problem, using the same algorithms. While the AC identification presented
previoudy is a pattern recognition problem, where one must distinguish between Ng different

patterns each corresponding to one of the Ng sub-systems considered, the AC quadlitative
evaluation is equally a pattern recognition problem, where one must distinguish between N4

different types of failures corresponding to sub-system 4. In a similar manner to the SNSA, the
AC qualitative evaluation based on the DC mechanism may be viewed as an identification
process where the target is the “AC”, which has the type of the failure as defining element in
association with the affected sub-system. Patterns for qualitative evaluation are similar to the
ones defined for identification and rely on the F; matrix. Note that the F, matrix may also be

introduced into the process. The flowchart of the process of establishing qualitative evaluation
patternsis presented in Figure 4.5.
For each sub-system, N4 different patterns must be established, one associated to each of

the AC considered.
As is the case with AC identification, three possible alternatives exist for the definition of
the patterns:
Feature-pattern (FP) approach
Projection-pattern (PP) approach
Matrix-pattern (MP) approach

AC Flight Test N l

DC Mechanism
for Detection
Failure Type [ ¥
ft

Set N, =N, +1
and Compute Pattern
Vector from F, Matrices

of All Migrated DCs

Failure
Detected?

Compute Mean Vector
Save N, , p,,and X, M, and Sample
(Library of Reference Patterns) Covariance Matrix X,

for all Pattern Vectors

Figure 4.5. Generation of Library of Reference Patterns for Qualitative Evaluation Using the
DC Mechanism and the Naive Bayes Classifier
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A). Feature-pattern (FP) approach for AC qualitative evaluation
For each sub-system &, define for all N 4 ACs the vector of membership values of each

feature to the set of equivaent directly involved variables (this is the same AC FP vector as
described earlier):

FPAC] :[m] my; ... mN]T, mie[O, ]], j:]’2""’Ntfk (48)

All these membership values can be determined based on tests and heuristics. Note that binary
logic can be used instead of fuzzy logic. In this case: m; € {0 ]}. The Ny AC FP vectors

form a library of patterns against which the current AC FP vector is compared to determine the
AC type. The current AC FP vector is computed at each sample time, after an AC is detected,
using the F; matrices of the mature DCs, as part of the identification process:

Fp = Nch 1 Iy.. eilfNss*! (4.9)
lp = ) lq |""Ngs» "Ngs '
q:

A matching algorithm must be used to determine which one of the N4 AC FP vectors best
matches £7,. Note that AC qualitative can be performed before identification, with possibly
some benefits (to be investigated).

B). Projection-pattern (PP) approach for AC qualitative evaluation
For each sub-system &, define for all N4 ACs the vector of membership values of each

projection to the set of AC-relevant projections (projections that can capture the dynamic
fingerprint of the AC, that are the projections that get triggered under AC):

PPACj= ny ny ... nNSS]T’ l’liE[O, ]] (410)

This is the same AC PP vector as for the previous method. All these membership values can be
determined based on tests and heuristics. Binary logic may also be used here. At each sample

time, after an AC is detected, use the F; matrices of the mature DCs to compute the current
ACPP vector as:

Fip=1 NDCF 1Y Nss 4.11
p=Iy-| 2 Fiy |, Iyell] (4.11)
q=1

A matching algorithm must be used to determine which one of the N4 AC PP vectors from
the library best matches F;p.
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C). Matrix-pattern (MP) approach for AC qualitative evaluation
For each subsystem k, define for al N, ACs the AC FP and the AC PP vectors as

described previously. Build then the MP matrix as:

* * *
mpy mjpy ... m]NSS
* * *
MP]EZ myy mpy ... mZNSS (412)
s .
_mN] myo> ... mNNSS_
where mj el0, 1], i=12,...N, j=12,..Ngg, k=12,...N (4.13)

* {max(mi,nj) if p;belongs to S ; (4.14)

and m:: =
Y 0 otherwise

At each sample time, after the AC is detected, compute the sum of all mature DC F; matrices as.

Npc
F]M = Z F]q y q=1,2,...,NDC (415)
q=1

Use a matching algorithm to determine which one of the Ny MP matrices in the library
best matches F;, .

Similarly to the SNSA, the AC identification and qualitative evaluation can be performed
simultaneously by redefining ACs to include both affected subsystem and AC type as category
designations. The pattern generation process for the joint approach is summarized in Figure 4.6.

\ 4

On-Line DC Mechanism
Measured Data for Detection

Compute Current
Pattern Vector from F;

Matrices of All Migrated

Failure
Detected?

DCs
Library of Library of
Reference gattems Compute Discriminant Compute Discriminant Reference Patterns
for Identification Vector A, from the Vector A, from the for Qualit.ative
(N,,u, and X,) Pattern Vector Pattern Vector Evaluation

(Nﬁ sWy s and th )

v

Failed Sub-system Failure Type
k"= agmax (A;) ft' = agmax (A,)
k=12,..,N, fi=L2,  Nft

Figure 4.6. DC Mechanism for Simultaneous AC Identification and Qualitative Evaluation
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4.2.2. Dendritic Cell Approach for Quantitative Direct Evaluation
Similar to the AC qualitative evaluation, patterns for each failure severity can be defined
based on the detection outcome of al subselves based on the F1 matrices of the migrated DCs.
If the number of severity scales of failure ACj is Nfs, then Nfs different reference patterns must
be established: one associated to each severity scale. The reference F-P vector corresponding to
the failure severity AC,. can be expressed as:

FIDAC.::[ml my, - mN]T7 (4.16)

where m, € [0,1] are fuzzy membership values of each feature with respect to the set of directly

involved variables. The reference F-P of Eq. (4.16) can be determined through a training process
with experimental or simulation data under failure exposed to the artificial DC mechanism. The
naive Bayes classifier described previously can be used to construct these reference patterns by
training the classifier offline against samples from a set of training tests of known failure severity
scales. Training the classifier for simultaneous detection and qualitative evaluation is very
similar to training it for AC qualitative evaluation as shown in the schematic diagram of Figure
4.7.

[ AC Flight Test v
DC Mechanism

Failure Severity for Detection
,“3‘ r 3

Set Ny = Ny + 1
and Compute Pattern
Vector from F; Matrices
of All Migrated DCs

Failure
Detected?

Compute Mean Vector

[[ Save Ny, by, and Zy Iy, and Sample
(Library of Reference Patterns) Covariance Matrix X
for All Pattern Vectors

Figure 4.7. Training the Naive Bayes Classifier for AC Detection and Qualitative Evaluation

The current features-pattern £, is computed and compared to the library of reference patterns to
determine the discriminant AC,_ for each severity scale from:

A (x)= InN, —%In‘zﬁ

~(m,) B (x-n,) (417)

where N, isthe number of samples in tests with failure severity fs, x=F,,and p,and X, are
the mean vector and sample covariance matrix given by:
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1 &
_ (m)
By = N, Z::lx./:v ’ (4.18)

1 & i
and = N, _12("(/&) _"ﬁv)(x(fv) _"f:v)T’ (4.19)

m=1

respectively. The block diagram of AC detection and qualitative evaluation scheme is presented

in Figure 4.8.
~
Online Measured DC Mechanism
Data ] for Detection

Compute Current
Pattern Vector from F,
Matrices of All Migrated

Failure No

Detected?

DCs
Library of Reference Patterns
for Direct Quantitative Evaluation
(A_‘,’r'\« |Jm. and E_]r."-)
Y
™\ 3
Compute Discriminant Failure Severity
Vector A j; from the fs* = argmax (Ag)
Pattern Vector fs=1,2, ... Nfs

7 o

Figure 4.8. AC detection and Qualitative Evaluation Scheme Using the DC Mechanism

4.2.3. Performance of Direct Evaluation Using the Dendritic Cell Approach
The F-P approach was also used to implement the AC detection and qualitative evaluation
scheme with the DC mechanism. The naive Bayes classifier was trained using two sets of

training tests under failure. The first training set provides the reference features-pattern £P, for
each failure severity /5. Figures 4.9 through 4.14 illustrate the reference features patterns for

subsystems under different levels of failure severity.

Table 4.4 presents the AC detection and quadlitative evaluation rates for the four main
subsystems considered in this study. The rate is defined as the number of time steps for which
the failure severity is correctly evaluated divided by the total number of time steps after failure.
The second column in this table represents the “known” failure severity of the corresponding
subsystem, whereas the first row represents the evaluated failure severity. Note that only “low”
and “high” severity levels were ssmulated for the sensors and engine failures. These results show
the capability of the proposed scheme in isolating the failure severity with very high rates.
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Figure 4.13. Reference Features-Pattern for a
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Table 4.4. AC Detection and Qualitative Evaluation Rates of the DC Mechanism Scheme

Subsystem -Low Medium High
Low [9872 [L28  [0.00
Medium|0.04  [99.96 0.0
Stabilator — yiop  loos 000 [99.95
Low [10000 Jo0O  (0.00
. Medium[3.10  [9547 143
Aileron High [0.11 (000 [09.89
Low [10000 Jo.0O  (0.00
Medium[0.01  [99.99 0.0
Rudder High [000 000  [100.00
Low [10000 JooO  (0.00
. Medium[0.0L  [99.99 0.0
Wing High [0.06 (000 [09.94
Low [10000 Jo.0O  (0.00
_ [Medium[000 9999 Jo.o1
(HorizontalTal fpsop  Joor 000 [09.99
Low [10000 JooO  (0.00
Medium[0.0L  [99.99 0.00
VerticalTail |3 1ooo 000 [100.00
Roll Rate Low 9999 |— 0.01
Sensor High [0.00 — 100.00
Pitch Rate Low 100.00 |~ 0.00
Sensor High [0.00 — 100.00
vaw Rate  |Low  [10000 |  10.00
Sensor High [0.01 — 99.99
Low [10000 -  (0.00
Engine High [000 — 100.00

94



Chapter 5

Flight Envelope Estimation Under Abnormal Conditions Using Artificial
Immune System

5.1. Problem Formulation

The AC indirect quantitative evaluation requires that the direct evaluation is successful.
While for detection, identification, qualitative evaluation, and direct quantitative evaluation
consistent general design algorithms can be applied as presented so far that are valid for a variety
of systems and AC types without significant changes, the indirect quantitative failure evaluation
process or altered flight envelope evaluation requires specific customization depending on the
subsystem, nature of the AC, and the affected parameter of the flight envelope addressed by the
evaluation. However, a general framework can be still formulated up to a point. A
comprehensive indirect evaluation or atered flight envelope prediction must rely on a combined
strategy based on analytical flight envel ope assessment and Al S-based approaches for parameter
gpace alteration assessment. The analytical methods require accurate modeling of the failures
and significant on-line computational capabilities. The AIS method implies that all pertinent
parameters to the flight envelope — considering its generalized meaning — are part of the feature
setsthat define the “ self”.

Let us assume that the self S and non-self S are defined as sets of N-dimensional hyper-
spheres according to Eq. (1.27) and (1.28). Some main concepts previously defined for the AC
evaluation process will be repeated here for completeness. A directly involved variable (DIV) in
the AC is avariable whose alteration or abnormal variation is directly and significantly the result
of the AC. Typicaly, DIV are used to define/characterize the AC. They may be part of the
feature set or not. If they are not, then arelationship between the DIV and some other variable(s)
in the feature set must be established. This process will define equivalent directly involved
variables (EDIV), which must be part of the feature set. For example, consider the case of the
left stabilator locked failure. The DIV can be defined as the left stab deflection o, . It

obviously defines the failure, but let us assume that it is not part of the feature set. A relationship
between the left stab deflection 6,; and the longitudinal stick displacement d,, which is a

feature, can be established:
de = f(0e1) (5.1

Therefore, the EDIV isinthiscase d,. The self can be viewed as a generalized flight envelope
based on features ¢;. Assume that each failure f; e ', i=1,2,..., Np, produces aset of N ;
constraints /; on aset of known variables X ; , where:

L=V 72 - 7/iNn} (5.2)
7/U:}/U(Xl):0, i:],2 ..... NF and j:],z,...,N]‘i (53)

The variables X; must be part of the feature set, that is:
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Xi :{xl’] xi2 xiNX }CS (54)

Let us assume that the alteration of the flight envelopeis assessed intermsof aset Y < 3 of Ny
variables y; , that is:

Y:{yj Yy o yNnyS (5.5

Typicaly the constraints /7; are not completely known, otherwise they would specify any
alteration of the variables y; and the problem would be solved. The solution is equivalent to

determining a new self at post-failure conditions based on a set of features Y. If Y =3 then a
solution is found if perfect structuring of the non-self is possible, which in the most general case
isnot. If Ny <N, then the flight envelope ateration assessment is equivalent to obtaining the

Ny -dimensiona projection of the N-dimensional non-self region corresponding to the targeted
faillure f;. Again, if structuring of the non-self for f; isavailable, then the problemis solved. If
not, we can still obtain the Ny -dimensional projection of the self. In many cases, depending on
the failure, the constraints 77, and the set Y we can infer the relative position of the Ny -
dimensional projections of the non-self and the self. For example, let us consider a stuck
elevator failure (the left or right elevator is locked at a constant deflection 6, ). The effects on
aircraft pitch rate ¢ must be assessed. Therefore, x; =0,, y; =¢q,and y; =6, —-d,9 =0. Due
to the nature of this failure, it can be inferred that the values of the pitch rate at post failure
conditions will be in the range of normal conditions corresponding to 6,,. In other words, the
projection of the non-self on the 2-dimensiona plane (x;,y; ) falsinside the projection of the

self. For such situations, a“new” self S or reduced envelope at post failure conditions can then
be defined as:

S = {Ci | c; satisfies constraints Fl} (5.6)

The concept isillustrated in Figure 5.1 for the 2-dimensional case.

The development of schemes for indirect quantitative failure evaluation (IQE) is based on
Table 1.2. Specific agorithms must be developed for all targeted variables (Np =16) in
conjunction with the nature and type of the failure.

It is assumed that failure detection, identification, and direct evaluation are successfully
completed at this point. Therefore, the sets of DIV (vs), EDIV (v, ), and envelope relevant

variables (v ) are determined. Note that, in general:

Vs = |_V5] vso2 ... V5N5J
Ve = [vgl Ve ... vgNgJ, v, 3 (5.7)
ve=ler ve2 - vEng} vECSSpcS
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For IQE, arelationship between v, and vs must be known:

ve = fas(ve) 8
where fos =|fost Sos2 - foav,] (5.9
such that Vg =fes(Vs) i=12,...,N, (5.10)
! Y1
. ‘U O = Self s

O - “Newrself 3

Constrained y,,,in

Constraint: x; —x19 =0

X1

0 X10 1

Figure 5.1. Post-Failure Flight Envelope Estimation Using the AlS Paradigm
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5.2. Estimation Algorithms for Actuator AC

5.2.1. Stabilator Failure
This discussion covers failures k. =1 through kp =4 of Table 1.2, since, from the point of
view of the IQE, they are equivalent. The discussion will continue with reference to the left stab;
however, everything applies smilarly to the right surface failure as well. For kp =1-+4, the
following parameters can be specified:

vs =[vsi]=[6..], 1€ft (or right) stab deflection, positive downwards
v, =[v.;]=|d,], longitudinal stick (5.11)
vE:[ax a, H MV qg p ¢ « 49]

The relationship between DIV and EDIV is:
de = f551 (5eL) (5-12)

where d, =k,5, =k, @ (5.13)

If the left stab is locked, then:
Oer (1) =0 F (5.14)

where J,; - is a value determined through direct quantitative evaluation. The nominal range for
d, is(typically d, . =—demin):

5eL max T 5eR max

demax = ke > (5.15)
A~k SeL min '2"5eRmin (5.16)
After failure, therangefor d, becomes:
doma i = ko 2LE +25 eRmax (5.17)
dominfe = k, 2L Oeltmin (5.18)

2

Note that this is a rather virtual or equivalent range, since the stick in the cockpit is assumed to
still be capable of moving within the nominal range, only the effects are different. Note also that
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the range at post failure conditions ([d,imr,  demacr ) iSinvariable with respect to the surface
failed (L or R) and that [d,inrs demarr |<[demins  demax]- With the new range after failure,

new ranges for all vy may be obtained from the 2-D projections, if there is a mutual constraint
(cause/effect relationship) between the two features involved in the projection. If thereis not, it
means that one variable will reach all its values in the nomina range irrespective of the other
variable values and the self projection will be a square. In this cases, if it is known that the
variable involved is part of vy, special consideration must be given. For example, alocked stab
failure will have an effect on the capability to produce rolling rate. The asymmetry induced by a
locked stab failure produces undesired roll moments and rates that must be typically
compensated by aileron deflections. These deflections affect the control authority on the roll
channel and thus the production of roll rate. This effect is rather indirect as the self projection
defined by d, and p isasquare. To determine the effects on p produced by alocked stab failure,
it will be stipulated that the locked stab failure induces an aileron pseudo-failure, from the point
of view of producing roll rate. This pseudo-failure involves a non-zero aileron trim deflection at
a position J,pr necessary to compensate for the rolling effect of the locked stab failure. The

compensating aileron deflection can be approximated using the balance of the rolling moment:

Ci,, OeLF *+Cis,p *Oer =—Cls, *OarF (5.19)

Cis,y *(OeLr =0er) =—Cis, - OapF (5.20)
Cis

Supr = ——L(Sor — e ) (5.21)
Cis

a

The following convention for the definition of the generic aileron deflection will be assumed,
which is the one used for the aerodynamic model of the aircraft within the simulation
environment:

04 =041 —Our (5.22)

With linearity assumption, the relationship with the EDIV is:

d, =k,d, (5.23)
The nominal lateral control rangeis:

d g max =ka04 max (5.24)

d g min = kaa min (5.25)

Under stab failure, the new range for the lateral control is:
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da max F = ka(5a max _5aPF) ..(5.26)
da minF = ka (5a min _5aPF) (5-27)

Note that this is equivalent to shifting the range of d, in one direction or the other (depending
on the sign of the stab failure), while maintaining the same span:

[daminF’ damaxF](Z [damin’ damax] (5-28)
da maxF _da minF = da max _da min (5-29)
Now the new range of d, can be used with the (d,,, p) projection to determine the effects on p
of the stab failure. Note that extrapolation on the projection is needed, since the new range ends

up outside the old one. This range can be expressed in terms of the failed surface as follows:

Cis,,

da max F — ka [5(1 max +a(5eLF - 5eR )] (5-30)
Cls,
da minF — ka[5amin +T5L(5€LF _5eR )] (5-31)

a

If the right stab fails, then the range can be expressed as:

Cis

da max F — ka [541 max +T;R(56RF _5eL )] (5-32)
Cls,

da minF = ka [5a min +T;(56RF _5eL )] (5-33)

a

Note that Cjs =-Cjs,. Therefore the aileron pseudo-failure range is the same if the
opposite stab islocked in the opposite direction relative to the trim. Span is preserved.

5.2.2. Aileron Failure
This discussion coversfailures kp =5 through kr =8 of Table 1.2, since, from the point of

view of the indirect quantitative evaluation, they are equivalent. The discussion will continue
with reference to the left aileron; however, everything applies similarly to the right surface
failure aswell, unless otherwise noted. For kr =5+ &, one can specify:
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vs =[vsi]=[0,.], 1€ft (or right) aileron deflection, positive downwards
v, =[v.;]=[d,], lateral stick (5.34)
ve=lay pr b i B g

The relationship between DIV and EDIV is:
dg = fes1(0ar) (5.35)
dq =ka(841 —64r) (5.36)
If the left aileron islocked, then:
OaL(t) =OurF (5.37)

where J,,;  isavaue determined through direct quantitative evaluation. The nominal range for
d, is(typicaly d, .. =—dgmin):

dgmax = Ka(OaL max = OaRmin/ (5.38)

dgmin = *a(OaLmin =~ OaRmax) (5.39)
After failure, the range for d, becomes:

damaxF = ka(OaLF =R min) (5.40)

da minF = ka (5aLF - 5aR max) (5-41)

The same observation must be made as in the case of the stab, that is that thisis a rather virtual
or equivalent range, since the stick in the cockpit is assumed to still be capable of moving within
the nominal range, only the effects are different. Note also that the span of the range at post
failure conditions is reduced ([dinr:  damarr |<[damin:  damax]); hOWever, the post failure

range is not invariable with respect to the surface failed (L or R). Assume that the range of the
generic aileron deflection at normal conditions is +30 deg. The ranges for left and right aileron
deflections are +15. If the left aileron islocked at 5 deg, then the post failure rangeis:

damaxr =ka[5—(-15)] = 20k, (5.42)
daminF =kaq(5—-15)=-10k, (5.43)

If theright aileron islocked at 5 deg, then the post failure rangeis:
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damaxF =ka(15-5) =10k, (5.44)
dymink =ka(—15-5)=-20k, (5.45)

Note that this range will be the same if the opposite surface is locked in the opposite direction.
With the new range after failure, new ranges for al vy may be obtained from the 2-D
projections.

5.2.3. Rudder Failure
This discussion covers failures kp =9 through kp =12 of Table 1.2, since, from the point

of view of the indirect quantitative evaluation, they are equivalent. The discussion will continue
with reference to the left rudder; however, everything applies similarly to the right surface failure
aswell, unless otherwise noted. For kp =9+ 12, the following parameters can be specified:

vs =[vs;]1=[8,2], €ft (or right) rudder deflection, positive to left of pilot such

that it produces positive lift on the vertical tail in body axes
ve =[ves]=[d,], pedals (5.46)

ve=lay p r b+ B g
The relationship between DIV and EDIV is:

dr = f851 (5rL) (5-47)

5rL + 5rR

d, =k, (5.48)

If the |left rudder is locked, then:
Oy (1)=OpLF (5.49)

where J,; - is a value determined through direct quantitative evaluation. The nominal range for
d, is(typicaly d, jay =—d; in):

o 1)
dr e = kr rL max'; rRmax (5_50)
Oul min + OrR mi
dyemin =k, rL min ; rRmin (5.51)

After failure, therange for d, becomes:
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5rLF + 5rR max (5_ 52)

dr maxF = kr P
) O p i
dr mlnF — ky rLF +2 Vlei’l (553)

As was the case with the other control channels, thisis arather virtual or equivalent range, since
the pedals in the cockpit are assumed to still be capable of moving within the nominal range,
only the effects are different. Note also that the range at post failure conditions (
[d,minF> drmaxr]) is invaridble with respect to the surface failed (L or R) and that

[dminF> drmaxk 1< drmin: drma]-  The span of the range at post failure conditions is
reduced ([dypminr> drmaxr 1S drmins drmax])- Because of its collective deflection, the case

of the rudder is similar, in many respects, to the stabilator, if the aircraft is equipped with dual
rudder, asis the case with the aircraft used for demonstration in this project. With the new range
after failure, new rangesfor all v may be obtained from the 2-D projections.

5.2.4. Throttle Failure
This discussion coversfailures kr = 13 through kr =16 of Table 1.2, since, from the point

of view of the indirect quantitative evaluation, they are equivalent. The discussion will continue
with reference to the left (engine) throttle; however, everything applies similarly to the right
actuator failureaswell. For kp =13+16, thefollowing key parameters can be specified:

vs =[vs;]1=[67], 1€ft (or right) throttle/fuel valve, positive = open
v, =[ve1]=ldr], collectivethrottle (is assumed) (5.54)
vp=la, a, r H M V a 6

The relationship between DIV and EDIV is:

dr = fes1(01L) (5.55)
dy =kpdp =kp @ (5.56)

If the left throttle is locked, then:
Orp(t) =0 F (5.57)

where o7y 1S a value determined through direct quantitative evaluation. The nominal range for
dp istypicaly dr [0, 100%] with:
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5 5
i ax =k “TEm ST — g0 (559)

511 min * OrRmi
and i i = ke L= ZTRn — g (559)

After failure, the range for d; becomes:

orLp +0 orpp +100

dT e kT TL ZTRmax kT TL 2 (560)
o F + 0 R mi O F

dTminF =kr 1L P TRmin — kr 7;, (5.61)

The throttle lever in the cockpit is assumed to still be capable of moving within the nominal
range, only the effects are different; therefore, the rangein Eq (5.60) and (5.61) is arather virtual
or equivalent range. Note also that the range at post failure conditions ([d7pinr. d7macr]) 1S

invariable with respect to the surface failed (L or R) and that [d7,r. drmacr ][0, 100].

With the new range after failure, new ranges for al vy may be obtained from the 2-D

projections, if there is a direct mutual constraint (direct cause/effect relationship) between the
two features involved in the projection. It seems that this is the case for some of the envelope
relevant variables not for others. For instance, » appears to need some special attention sinceitis
clear that the effects on r are different whether the L or R engine fails and the differencein L or
R failure is not captured by the virtual control range after the failure. Due to asymmetry, a
throttle failure will create an undesired yawing moment (depending on the distance of the
engines with respect to the aircraft centerline), which needs to be compensated for by using
rudder deflection. This will reduce the overall control authority on the yaw channel. A similar
approach as in the case of the rolling moment compensated using ailerons, in the case of a stab
failure, will be applied next. To determine the effects on r produced by a locked throttle failure,
it will be stipulated that the locked throttle failure induces a rudder pseudo-failure, from the point
of view of producing yawing rate. This pseudo-failure consists of a shift of the trim position of
the rudder at o,pr necessary to compensate for the yawing effect of the locked throttle. The

compensating rudder deflection can be approximated using the balance of the yawing moment:

Casy, (O1LF =O1R) =~Chrs, * OppF (5.62)
Cns
S,pp =—— ;L (O1LF —O71R ) (5.63)
n

r

Notethat C,5, >0 and C,,5 <0. Considering that 67,7 €/0,100] then:
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Cus
Str, ——L (100~ 67 )]
Cn5

Cn 5TL

opr €[
no

r r

For full range of o7 we get:

Cn 5TL

c
100, ——"1L 1997
Cné'

o,pr €/
no

r r

C
Note that —;—5”]00 > (. If theright engine fails, then:
no

r

Cl’l 5TL

OpF = (01, — OTRF )

no

7

Notethat C,5., <0 and C,s <0. Considering that é7.5 €/0,100] then:

Cn 5TR

Cné'
opr €/ c 2

orr, (61, —100)]

no no

r r

For full range of o7; we get:

Cnom_ 150 En0m_ 100,

no

O,pr €[—
no

r r

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

C
Note that — Mzoo < 0. Thegeneric rudder deflection is (for dual rudder aircraft), of course:

Cn5

é‘rL + é‘rR
2

0, =
and the relationship with the EDIV is:
d, =k,0,

The nominal directional control rangeis:

d

rmax — kr5r max

dr min = kr5r min

Under throttle failure, the new range for the directional control is:

105

(5.69)

(5.69)

(5.70)

(5.71)



drmax F =kr(0r max —OrpF ) (5.72)
dr minF — kr (5r min _5rPF) (5-73)

Note that thisis equivalent to shifting the range of d, in one direction or the other (depending on
the side of the failed engine and the throttle of the healthy engine), while maintaining the same
Span:

[drminF: drmaxF]¢ [drmin’ drmax] (5-74)

dr maxF — dr minF = dr max dr min (5-75)
Now the new range of d,. can be used with the (d,., ) projection to determine the effects on r of

the throttle failure. This range can be expressed in terms of the failed surface and the throttle of
the healthy engine as follows:

Cl’lgTL

dr max F = kr [5r max T (5TLF _5TR )] (5.76)
no,
Chspy
dr minF = kr [5r min T (5TLF _5TR )] (5.77)
no,
Therefore, for o7 =100
CI/Z&TL
max(dr maxF) = kr [5}" max T (5TLF - ]00)] (5-78)
no,
and for o7p =0
Cus
min(drminF) = kr(5rmin + it 5TLF) (5-79)
no

I

If the right engine fails, then the range can be expressed as:

Cus
drmaxF = kr [5rmax _#(é}L _5TRF )] (5-80)
no,
Cus
dyminF =K [ Sremin —— ;R (011 —O1RF )] (5.81)
n

7

106



Therefore, for 677 =0

Cus
max(dy oy ) =kp (0 max + é ;L OTRF )
n r
(5.82)
and for §TL =700
. Cné'TL
min(dy yin ) =k [ 8 min + (orrF —100)] (5.83)
no

7

Note that C,s5,, =—Cps,, - Therefore, the rudder pseudo-failure range shifts towards positive

deflections for a left engine failure, and towards negative deflections for a right engine failure.
The span remains the same.
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5.3. Estimation Algorithms for Sensor AC
5.3.1. Roll Rate Sensor Bias
The analysis of the sensor failures relies on the specifics of the control system that uses the

sensor information. Based on stick displacement, the control laws determine first a “desired’
angular rate response as determined by reference models (established using handling qualities

criteria). Then, they track the desired angular rate response. For kyp =17, one can specify:

vs =[vs1]=[Pmeas], measured roll rate
v, =[v.;]=[d,], lateral stick .(5.84)
ve=lay, p r p B 9

At nomina conditions, the desired or referenceroll rateis:

Pref =Fy(d,) (5.85)

where F; represents the roll channel reference model, a first order transfer function. If the roll
rate measurement is assumed to be perfect:

Pmeas = Pact (5.86)
and the commanded roll rate is given by a control law of the form:
Pemd = F2(Pref = Pact) (5.87)
At failure condition, the reference is unchanged; however:
PmeasF = Pact + Pbias (5.88)
PemdrF = F2(Pref — Pact = Phias) (5.89)

As aresult of the failure, an undesired additional roll rate command is produced, which can be
expressed with some simplifying assumptions at steady state as:

W emd = PemdF — Pemd = ~Pbias (5.90)
In other words, the control laws will rotate the aircraft in the opposite direction of the sensor
bias. This effect must be compensated using aileron command; therefore, the control authority

on the roll channel will be affected by restricting the excursion of the cockpit controls by the
amount d,r equal to what is necessary to command aroll rate equal to the bias:

dur =F; ( Pbias) (5.91)
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The new equivalent range of d, is:
da maxF = da max — daF (5.92
da minF = da min — daF (5-93)

With the new range of lateral stick after failure, corresponding new ranges for al vy may be
obtained from the 2-D projections.

5.3.2. Pitch Rate Sensor Bias
For kr =19, one can specify:

Vs = [Vé'l] = [Qmeas] , measured pitch rate

v, =[v.;]=[d,], longitudinal stick
(5.94)

vp=la, o, H M V ¢q ¢ a 0

The analysis of the pitch sensor failures follows the same approach as the roll sensor failures. At
nominal conditions, the desired or reference pitch rateis:

Qref = Fi(d,) (5.99)

where F; represents the pitch channel reference model, a second order transfer function. The
pitch rate measurement is assumed to be perfect:

meas = Yact (5.96)

and the commanded pitch rate is given by a control law of the form:
Gemd =12 (Qref ~Gact) (5.97)

At failure condition, the reference is unchanged; however:
9measF = Y9act t 9bias (5-98)
Gemdr = F> (‘]ref ~Yact ~ Dbias) (5.99)

As aresult of the failure, an undesired additional pitch rate command is produced, which can be
expressed with some assumptions, at steady state, as:

Memd = DemdF —Demd = —Dbias (5.100)
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In other words, the control laws will rotate the aircraft in the opposite direction of the sensor
bias. This effect must be compensated using stabilator/elevator command; therefore, the control
authority on the pitch channel will be affected by restricting the excursion of the cockpit controls
by the amount d, equal to what is necessary to command a pitch rate equal to the bias:

der = Fi ! (4pias) (5.101)
The new equivalent range of d, is:

demaxF = demax —der (5.102)

deminF = demin —der (5.103)

With the new range of longitudinal stick after failure, corresponding new ranges for all vy may
be obtained from the 2-D projections.

5.3.3. Yaw Rate Sensor Bias
For kr =21, the following parameters can be specified:

vs =[vs1]1=[Fmeas], Measured yaw rate
Ve :[Vgl]:[dr]1 pedals (5.104)
vg=la, p r p i B o

At nominal conditions, the desired or reference yaw rateis.

ter =F1(d)) (5.105)

where F; represents the yaw channel reference model, a second order transfer function. The
yaw rate measurement is assumed to be perfect:

Fmeas = Tact (5.106)
and the commanded yaw rate is given by a control law of the form:

Yemd = F2(Tref —Vaer) (5.107)
At failure condition, the reference is unchanged; however:

TmeasF = Tact T Thias (5.108)
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Yemdr =2 (rref ~Tact ~Thias) (5.109)

As aresult of the failure, an undesired additional yaw rate command is produced, which can be
expressed with some assumptions, at steady state, as:

Arcmd =TVemdF —Yemd = "Tbias (5-110)

In other words, the control laws will rotate the aircraft in the opposite direction of the sensor
bias. This effect must be compensated using rudder command; therefore, the control authority
on the yaw channel will be affected by restricting the excursion of the cockpit controls by the
amount d, equal to what is necessary to command ayaw rate equal to the bias:

dop = F (hias) (5.111)
The new equivalent range of d,. is:

drmaxF = 4y max —drp (5.112)

dyminF =4y min —drF (5.113)

With the new range of pedals after failure, corresponding new ranges for all v may be obtained
from the 2-D projections.
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5.4. Estimation Algorithms for Structural Damage

5.4.1. Wing Damage
For kp =23+ 24, the key parameters for AC indirect evaluation can be specified as:

vs =lvs; vs21=14Cy,,  AC,,, 1, lift and pitching moment alteration due to left wing failure
Ve=[Ve; Ver Ve3 Vesl=[d,d,d,.dr], \atera stick, longitudinal stick, pedals, throttle lever
vE=lHMquraxayaZin*aﬂ¢9¢J (5.114)

At normal trim conditions, the external forces acting on the aircraft are presented in Figure 5.2.

Figure 5.2. Ai rraftorces in the Plane of Symmetry at Trim

The balance equation can be expressed as:

(T + Lsin(a)—Dcos(a)—Gsin(6)=0
—Lcos(a)—Dsin(a)+Gcos(8) =0

\Myp =-M yr (5.115)
Cr=Cr(Cp)
Ciwr =0
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I'(M,H,dyp)+L(M,a)sin(a)—-D(M,a )cos(a)—Gsin(0) =0
—-L(M,a)cos(ax)—D(M,a)sin(ax)+Gcos(0) =0

Myp(M,a) =M yr(M,a,5,) (5.116)
Cr(M,a)=Cr(Cp(M,a))
Crwr =0

Note that WF stands for “wing and fuselage” and HT for “horizontal tail”. Assuming that at post
failure conditions the same flight condition is maintained, then:

MF:M,HF:H,]/F=]/ (5117)

The effect of the failure will consist of producing variations A’s of all other variables.
Therefore:

T+AT +(L+AL)sin(a+ Aa)—(D+AD)cos(a+ Aa ) — G sin(0+ A6 ) =0
—(L+AL)cos(a+Aa)—(D+ AD )sin(a+ Aa )+ Gcos(0+ A0 ) =0

Myp + AMyp =-M yp — AM g (5.118)
Crr =Crr(Cp)

ACyyp = —=ACLyr g #0

where / 4; isthe distance to the plane of symmetry of the left wing aerodynamic center at post-
failure conditions. Note that /4; <0, while /4 >0. The non-zero rolling moment must be
compensated using aileron deflection, thus reducing the authority of the aileron command. The
same concept of aileron “pseudo-failure” may be considered here as in the case of the stabilator
faillure. This pseudo-failure involves a non-zero aileron trim deflection at a position J,pp
necessary to compensate for the rolling effect of the damaged wing. This compensating aileron
deflection can be approximated using the balance of the rolling moment:

—ACrwr -lar = —4bC15, - Oarr (5.119)
AC /

Sopp = —EL—AL (5.120)
8abCl5

where b is the wingspan and ¢, is an alteration factor depending on how the left aleron is
affected by the wing failure (g, =1 if the aileron is not affected by the wing failure and
g, =0.5 if theaileron is completely out of work). For alinear relationship with the EDIV is:

d, =k,0, (5.121)

then the nominal lateral control rangeis:
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da max — ka 551 max (5.122)

da min = ka 5a min (5-123)

With the damaged wing, the new range for the lateral control can be assumed to be:

da max F = ka (551 max _5aPF) (5.124)
da minF = ka (5a min _5aPF) (5-125)

Note that this is equivalent to shifting the range of d, in one direction or the other, while
maintai ning the same span:

[daminF’ damaxF](Z [damin’ damax] (5-126)

da maxF — da minF = da max — da min (5-127)

The direction of the shift depends on the failed wing side and the sign of the lift alteration.
However, it is reasonable to assume that AC; y; <0 since one would expect that wing damage

would decrease the lift produced. Now the new range of d, can be used with the respective

projections to determine the effects of the wing failure on lateral-directional variables. This
range can be expressed in terms of the failed surface as follows:

AC -l
da max F = ka (551 max _LAL) (5-128)
SabCl5a
AC -l
da min F = ka (551 min _M) (5-129)
Eabclga

Note that ACyy , 14, ad &, must be known. How to adequately determine them must be
further investigated. AC;y; could be a measure of wing failure severity and determined as an
outcome of the quantitative direct failure evaluation. The same observation appliesto AC,,

as well. If this alteration is known, then the reduction of longitudinal control authority can be
determined using the pitching moment balance, as follows:

AMWF = —AMHT (5130)

ACuwr, ==Cins, - Adepr (5.131)
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Acm WL

AS pp = — (5.132)
Cis,
With the same previous assumptions, the new equivalent range for d,, is:
demaxF = demax = ke (ABepF + Oetrim ) (5.133)
deminF = demin —ke - (A0epp + Oetrim) (5.134)

The new equivalent range for d, can be used to obtain, from the respective projections, the new

ranges for longitudinal variables. To determine effects on H, M, and V, we can consider the
equations for the longitudinal force, the vertical force, and the polar:

T+AT +(L+ AL )sin(a )cos(Aa ) +( L+ AL )cos(a ) sin( Aa ) —

—(D+A4D )cos(a)cos(Aa )+ (D + AD ) sin(« ) sin( Ax ) —
—Gsin(0)cos(A0)—Gcos(8)sin(A0) =0

—(L+A4L)cos(a)cos(Aa)+(L+ AL ) sin(e ) sin( Aa ) — (5.135)
—(D+AD )sin(a )cos(Aa ) — (D + AD ) cos(a ) sin( Aa ) +
+Gceos(8)cos(A0)—Gsin(6)sin(A6) =0

AD = Cpf(AL)

For keeping the same trajectory dope 7, then Aa = 46. AL isknown. If thepolar C;rp(Cp )
is known, then a system of 3 equations and 3 unknowns AT, AD, and A« isobtained. Solving
for AT, alows determining new virtual ranges for d, . From respective projections, new ranges

for M, H, and V' can then be obtained. Note that the method derived here relies on several strong
assumption. Therefore, the method applies for classes of ACs that satisfy these assumptions.

5.4.2. Horizontal Tail Damage
For kr =25+ 26, one can specify:

vs =[vs]= [ACLHL], lift alteration due to left horizontal tail damage
ve =[ve verl=1[d, d,], lateral stick and longitudinal stick (5.136)
ve=[HMV pqgraya,a, pgrafpog

The assumption is made that the left elevator (stabilator) can be still deflected; however, the
respective control derivative may be affected, such that:

ACLHL = ACLHLO + ACLé‘e 56 (5137)
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It is assumed that both AC;, ~ and ACps are negative representing a reduction of the

horizontal tail capability to produce lift. For longitudinal balance, this lift variation must be
compensated by an additional elevator deflection A5, > 0 such that:

40— B a0 ys o S s 5138
- LHL - T- L5€ )d e +T e ( " )
~ACy,, = Cps, - ACLs, Y5, (5.139)
A5, = A (5.140)

Crs, -4ACLs,

For lateral balance, a compensatory rolling moment must be produced using aileron, such that:
I ar
ACy,, s Ci5, 45, (5.141)

where /; 7 <0 is the distance from the left horizontal tail aerodynamic center to the plane of
symmetry. Notethat /p5r >0. Then:

_ACL, liar

A5
“ bCys,

(5.142)
Toestimate ACy,~ consider that:
ACLHL = ACLHL _BeforeFailire — ACLHL _AfterFailwe =
= ACLHL _ BeforeFailire — sddeL- ACLHL _ BeforeFailire =
= (] - deeL)ACLHLiBeforeFailtre = (5143)

Crs

=(1-sddel) > =0,

Therefore:
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CLs,

1—sddelL 0,
5 - ACy,, - ( ) ) %
e
Crs -AC C
Lo Ty s - (1 sddeL) 22
2 (5.144)
1 sddet) e 5
| (Imsddel) "0 (1 sddeL)s,
Crs (I- 1 N sddeL) 1+ sddelL
e’ 2 2
The value of /; ;;r can be approximated as:
Cis,L
lgr =2 e (5.145)
Crs,
The relationships between DIV and EDIV are:
de = fes1(0,) and dg = fe52(04) (5.146)
or d, =k,5, and  d, =k,05, (5.147)
After failure, the rangesfor d, and d, become:
demaxF = e max —keAS, and deminF = e min —keAS, (5.148)
da maxF = dg max ~ kaA5a and da mink = da min — kaAé‘a (5.149)

It is postulated that new ranges for longitudinal variables may be obtained from corresponding 2-
D projections of d,. Similarly, new ranges for lateral-directional variables may be obtained

from corresponding 2-D projections of d,,.

5.4.3. Vertical Tail Damage
For kp =27+ 28, the key parameters can be specified as:

vs =[vsi] = [ACYVL], lift (lateral force) alteration dueto left vertical tail damage
ve =[vg verl=ld, d,], lateral stick and pedals (5.150)
vp =lpra, prp¢]

It is assumed that the left rudder can be still deflected; however, the respective control derivative
may be affected, such that:
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AC Y = ACYVL 0 + ACY&; 5,,. (5151)

For directional baance, this lift variation must be compensated by an additional rudder
deflection 40, such that:

Ay = a5+ s 5.152
- YVL - (T- Yér ﬂ v +T r ( . )
—ACy,, = Cys, - ACys, 16, (5.153)
A5, =—AC¢ (5.154)

Cys, - ACys,

For roll balance, a compensatory rolling moment must be produced using aileron, such that:
ACy Jvr _ Cis A5, (5.155)
VL b a

where Ay <0 is the distance from the vertical tail aerodynamic center to the body horizontal
plane. Notethat 4, isnormally thesamefor L and R. Then:

45, :MZVCL—;VT (5.156)
The relationships between DIV and EDIV are:

dy=fes1(0q) ad  d.=fc5:(6,) (5.157)
or d,=k,0, and d, =k,.o, (5.158)
After failure, the rangesfor d, and d, become:

drmacF =Armax —kr A6, ad  dyppinp =dyin — kA5, (5.159)

damaxF = damax —kaA0q & dyyinp =damin =k A0, (5.160)

It is postulated that new ranges for directional channel variables may be obtained from
corresponding 2-D projections of d,.. Similarly, new ranges for lateral channel variables may be

obtained from corresponding 2-D projections of d,. This hypothesis requires further
investigation given the typical coupling between the two dynamic channels.
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5.5. Estimation Algorithms for Propulsion AC
This discussion coversfailure kp =29 and kp =30 of Table 1.2. It makes reference to the

left engine; however, everything applies similarly to the right engine failure. For kp =29+30, it

can be specify that:
vs =[vsi]=[T1], 1€ft (or right) engine thrust

v, =[ve;]=[dr], collectivethrottle (is assumed) (5.161)
vg =lvgl=lay, a, ¥ H M V a 6]

The relationship between DIV and EDIV is:
dr = fesi(Tp +TR) (5.162)

The nominal range for dy istypicaly dy €[0, 100%], with:
AT max = Jes1(TLmax + TRmax ) = fe51(2Tnax ) = 100% (5.163)

and dTmin :fgé'](TLmin +TRmin) :fgél(ZTmin) =0% (5-164)

The failure consists of changing the range of 7; to 7} ,,i,r @d Ty ,..r ad changing the
function f,s; accordingly. After failure, the equivalent range of d; can be defined as:

dTmaxF = fgé'](TLmaxF +TR max) (5-165)

ArminF = Jes1(TominF + TRmin) (5.166)

Most often, 77 ,inp =0 and Ty ,0cF <Tmax)- The vaues of T ,..,r and Ty, must be
determine through direct quantitative evaluation. Also, f,.s; is assumed known; it can be

approximated as a linear relationship. Note also that the equivalent range at post failure
conditions ([d7 ying>  d7macr)) 1S invariable with respect to the surface failed (L or R) and that

[drminr> Armacr ]<[0, 100]. With the new range after failure, new ranges for all v may be

obtained from the 2-D projections, except for r (see discussion for throttle failure). An undesired
yawing moment (depending on the distance of the engines with respect to the aircraft centerline)
may be produced, which needs to be compensated for by using rudder deflection. This will
reduce the overall control authority on the yaw channel. A similar approach as in the case of the
locked throttle can be applied to handle this case. However, this time, the pseudo-failure of the
rudder consists of a variable trim deflection depending on dy .

Let us assume linear relationships at normal conditions between pilot throttle input and total
thrust as well as between pilot throttle input and fuel valve deflection. Therefore, the total
yawing moment is:

Cn5TL : 5TL + Cn5TR : 5TR =0 (5167)
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or (Cugyy +Cugyp ) dr =0 (5.168)

where, of course, C, —Chs,, >0. At post failure conditions, the healthy engine control

oL ~
derivative remains unchanged, while the failed engine control derivative is affected:

(Cuspyp +Cnspp )-dr #0 (5.169)
For ZeL :_leR:
—lop(Ty, —TR )
(Cn5TLF + Cn§TR ) : dT = ep 2 (5'170)
= SbV
2
—lo T,
Cl’lé‘TLF dT = p € (5171)
Spv?
Assuming alinear relationship and 77} ,,,;,F =0
let " TLmaxF
Cl’lé‘TLF =- € ma (5172)

§Sbv2 A7 e

where [ ; is the distance from the aircraft center of gravity to the axis of the left engine
(negative for L, positive for R). The yawing moment is compensated by the rudder such that:

(Cuspype + Cnopg ) dr ==Cas,  OrpF (5.173)
C +C
and 8ypr (dy ) =~—"TE 1O g (5.174)
no,

The relationship with the EDIV for this pseudo-failureis:
d, =k,.o, (5.175)
The nominal directional control rangeis:

4y max = k0 max (5.176)

dr min = krar min (5-177)
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Under the loss of efficiency failure, the new range for the directional control is:

dr maxF(dT) = kr (5r max — 5rPF (dT )) (5178)
dr minF(dT) = kr (5}’ min — 5rPF (dT )) (5-179)

Note that this effect is similar to the throttle failure. The new range of d, can be used with the (
d,., r) projection to determine the effects on » of the engine loss of efficiency failure.
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5.6. Performance of Flight Envelope Assessment Under AC

5.6.1. Evaluation Metrics for Flight Envelope Assessment

Assumed nominal ranges for flight envelope relevant variables (ERV) have been determined
based on simulator tests. Verification tests under AC have been performed for each specific
subsystem failure attempting to achieve the same tasks and level of maneuverability as in the
nominal tests.

To achieve desirable performance of the post-failure envelope prediction methodology, data
points acquired through properly designed verification tests under abnormal conditions must stay
within the predicted range and be close to the predicted limits. Therefore, for performance
evaluation, three metrics have been defined attempting to capture the level of prediction
confidence, the level of possible range exceedance, and the level of predicted range
conservativeness. The first evaluation criterion is expressed by a prediction rate (PR) calculated
as the percentage of all verification data points ERV,,,; that fall inside the predicted range. If the

predicted range of any ERV isdenoted as Rgry =/ ERV ,yin » ERV 0y ], then the total number
of validation points Ny isthe sum of pointsinside (/N ) and outside ( Nz ) the predicted range:

NV :NR +N§ (5180)

The prediction rate is then calculated as:

N
PR="%.100 (5.181)
Ny

The level of possible range exceedance is assessed as the relative maximum amount by which
points in the verification data set exceed the predicted range. The predicted range exceedance
index (REI) is defined as:

max [min(|ERV ,y; — ERV i || ERV ) — ERV i | )]

N
REI =—2~ 100 (5.182)
|ER Voax — ER Vm,-n|

Obvioudly, it is desirable to have large values of PR and low values of REI. However, it should
be noted that, if the predicted range is exceedingly/unredistically large, then PR = 100% and
REI = 0% without representing good performance. Therefore, the values of the previous two
evaluation metrics must be considered in conjunction with a margin index (M1) that is expected
to capture the level of predicted range conservativeness. Ml is defined as:

max [min(lER Vvai = ERVpax
Ng

ERV,, —ERme|)]

)

MI =

100 (5.183)
|ER Vowax —ER me|
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It should be also noted that, if the verification test does not cover the nomina range of the tests
used for self generation, then high values of MI do not necessarily indicate a flaw in the post-
failure range prediction.

5.6.2. Flight Envelope Assessment Under Actuator Failure

Table 5.1 presents the predicted post-failure flight envel ope ranges under an elevator failure
along with the corresponding nominal ranges and the performance metrics defined above. Figure
5.3 shows an example of a 2-D projection in the AIS WVU Self Viewer (the 2-D analysis tool
developed for the purpose of this project) with the verification test points and the corresponding
predicted post-failure ranges represented by the vertical and horizontal lines. The failure
considered consists of left stab locked at 8 degrees. Two different verification tests have been
performed covering the altitude range of the nominal tests for Mach between 0.7 and 0.9. The
results show alterations of the ranges of pitch rate, pitch acceleration, and roll rate as expected.
Note that the reduced range of Mach and altitude considered when building the self is not
affected by this elevator failure. The verification points are well within predicted ranges for all
variables considered. Only very few points exceed the predicted ranges by small relative
amounts, as captured by REI, except for pitch acceleration. The variation of this variable
experiences a short-duration sudden peak at the failure occurrence moment. The duration of the
peak is very short as shown by the values of the pitch rate, which remain practically within
predicted range. The low values of M| show that the predicted limits of the respective variables
are not unrealigtically large. It should be noted that the large MI value recorded for Mach
number is due to the fact that the verification tests do not cover the range between 0.5 and 0.7,
which was included in the self. This is one example of a situation when large values of Ml
reflect the incompleteness of the verification tests rather than flaws in the range prediction
process.

Table 5.1. Performance of Flight Envelope Prediction Under Stabilator Failure

ERV [Nominal Range Post-Failure Range PR,% RE[% M1, %
H [2012,9929] [2012,9929] 100.0 0.0 8.0
M [0.526,0.95] [0.526,0.95] 999 |16 32.9
q [-0.225,0.183] [-0.141,0.105] 100.0 2.6 0.0

q [-0.383,0.386] |[-0.23,0.32] 99.7 246 0.0

p [-0.94,1.08] [-0.90,0.79] 100.0 0.0 1.0

The predicted post-failure flight envelope ranges under the aileron failure are presented in
Table 5.2. Corresponding nominal ranges and values of the three performance metrics are
included. The failure consists of a right aileron locked at 8°. Two different verification tests
have been performed covering an altitude range between 2,000 m and 10,000 m and a Mach
number range between 0.7 and 0.9. The results show alterations of the ranges of roll rate and roll
acceleration, as expected. The verification points are all within predicted ranges for both
variables considered with only insignificant exceedence as indicated by REI. The low values of
REI and M1 indicate that the predicted ranges are not unredistically large.

The predicted post-failure flight envelope ranges under the rudder failure are presented in
Table 5.3. The failure consists of a right rudder locked at 8°. Two different verification tests
have been performed covering the altitude and Mach ranges of the nominal tests. The results
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show alterations of the ranges of yaw rate and yaw acceleration, as expected. The verification
points are all within predicted ranges for both variables considered. The relatively low values of
MI lead to the conclusion that the predicted limits of the respective variables are not

unrealistically large.
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Figure 5.3. Post-Failure Range of the Pitch Rate Under Stabilator Failure

Table 5.2. Performance of Flight Envelope Prediction Under Aileron Failure

ERV Nominal Range Post-Failure Range |PR, % REI,% MI, %

p [-0.94, 1.08] [-0.77, 1.01] 9994 5.6 12

p [2.95, 3.1] [-2.98, 2.94] 99.98 1.5 0.0
Table 5.3. Performance of Flight Envelope Prediction Under Rudder Failure

ERV [Nominal Range [Post-Failure Range PR, % [REI,% MI, %

r [-0.064, 0.062] [-0.047, 0.047] 100.0 0.0 7.8

rp  [-0.117,0.126] [-0.114, 0.104] 100.0 [0.0 10.4

5.6.3. Flight Envelope Assessment Under Sensor Failure
Table 5.4 presents the predicted post-failure flight envelope ranges under the roll rate sensor
failure. The failure consists of a 5°/sec bias in the roll rate sensor output. Two different
verification tests have been performed covering the entire altitude and Mach ranges of the
nominal tests. The results show alterations of the ranges of roll rate and roll acceleration, as
expected. The verification points are all within predicted ranges for all variables considered with
only insignificant exceedance in the roll attitude angle, as reflected by the corresponding REI

value. The relatively low values of M7 show that the predicted limits of the respective variables
are not unrealistically large.
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Table 5.4. Performance of Flight Envelope Prediction Under Roll Rate Sensor Failure

ERV [Nominal Range Post-Failure Range PR, % REI,% MI, %
p [-0.94, 1.08] [-0.82, 1.1] 100.0 0.0 15.3
pp [29531]] [-1.8, 3.13] 100.0 0.0 15.5

Listed in Table 5.5 are the predicted post-failure flight envelope ranges under the pitch rate
sensor failure. The failure consists of a’5°/sec biasin the pitch rate sensor output. Four different
verification tests have been performed covering the entire altitude and Mach ranges of the
nominal tests. The results show alterations of the ranges of pitch rate and pitch acceleration, as
expected. The high values of PR show that the majority of the verification points are within the
predicted ranges for all variables considered. Although the values of REI for the pitch
acceleration and pitch attitude angle are relatively high, very few verification points exceed the
corresponding predicted limits, as indicated by the corresponding PR values. The relatively low
values of MI lead to the conclusion that the predicted limits of the respective variables are not
unrealistically large.

Table 5.5. Performance of Flight Envelope Prediction Under Pitch Rate Sensor Failure

ERV [Nominal Range [Post-Failure Range PR, % REI,% MI, %
q [-0.225,0.183] [-0.364, 0.153] 99.8 8.7 13.0
gp [0.383,0.386] [-0.417,0.37] 99.9 309 6.0

The predicted post-failure flight envelope ranges under the yaw rate sensor failure are listed
in Table 5.6. The failure consists of a 5°/sec bias in the yaw rate sensor output. Four different
verification tests have been performed covering the entire altitude and Mach ranges of the
nominal tests. The results show alterations of the ranges of yaw rate and yaw acceleration, as
expected. Although a rudder failure would be expected to affect sideslip capability, this effect is
not captured because the sidedlip range considered for normal operation was already limited
within the capability under failure of such low severity. The verification points are al within
predicted ranges for all variables considered with only insignificant exceedance as reflected by
REI. The simultaneous occurrence of non-zero values of REI and MI reflect the situation when
one limit of the predicted range is exceeded and the other is not reached during the verification
tests. The relatively low values of MI lead to the conclusion that the predicted limits of the
respective variables are not unredlistically large.

Table 5.6. Performance of Flight Envelope Prediction Under Y aw Rate Sensor Failure

ERV [Nominal Range [Post-Failure Range PR, % [REI,% MI, %
r [-0.064, 0.062] [-0.08, 0.0477] 100.0 1.0 10.7
rp  [-0.117,0.126] [-0.093, 0.128] 100.0 4.8 5.8

B [-9.6, 9.8] [-9.6, 9.8] 100.0 0.7 16.9

5.6.4. Flight Envelope Assessment Under Structural Damage

The predicted post-failure flight envelope ranges under a wing damage affecting 15% of the
left surface are listed in Table 5.7. Two verification tests have been performed covering the
altitude and Mach number ranges of the nominal tests. The results show alterations of the ranges
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of pitch rate, pitch acceleration, roll rate, and roll acceleration, as expected. Note that the
reduced range of Mach and altitude considered when building the self is not affected by this
failure. The verification points are well within the predicted ranges for all variables considered.
Only very few points exceed the predicted ranges by small relative amounts, as captured by REI.
The relatively low values of M1 lead to the conclusion that the predicted limits of the respective
variables are not unredlistically large.

Table 5.7. Performance of Flight Envelope Prediction Under Wing Damage

ERV [Nominal Range [Post-Failure Range PR, % REI,% MI, %
H [2012, 9929] [2012, 9929] 99.7 1.8 9.0
M [0.526, 0.95] [0.526, 0.95] 999 22 10.3
p [-0.94, 1.08] [-1.12, 0.51] 999 43 7.6
pp [29531]] [2.97, 2.9] 999 25 0.0

q [-0.225, 0.183] |[-0.05, 0.064] 100.0 |0.0 1.2
qp [-0.383,0.386] [—0.091, 0.072] 99.8 9.7 3.7

Table 5.8. presents the predicted post-failure flight envelope ranges under a horizontal tail
damage affecting 60% of the left surface. One verification test has been performed covering an
atitude range between 6,000 m and 10,000 m and a Mach number range between 0.7 and 0.9.
The results show alterations of the ranges of pitch rate, pitch acceleration, roll rate, and roll
acceleration, as expected. Note that the reduced range of Mach and altitude considered when
building the self is not affected by this horizontal tail damage. The verification points are well
within the predicted ranges for all variables considered. Only very few points exceed the
predicted ranges by small relative amounts, as captured by REI. Relatively large values of MI are
recorded, which seem to indicate that the maneuvers performed were not as aggressive as for the
nomina conditions. Note that the ranges of Mach and altitude for the verification test were
limited, explaining the large values of MI for these two variables.

Table 5.8. Performance of Flight Envelope Prediction Under Horizontal Tail Damage

ERV [Nominal Range [Post-Failure Range PR, % REI,% MI, %
H [2012, 9929] [2012, 9929] 99.0 20 40.3
M [0.526, 0.95] [0.526, 0.95] 985 0.8 35.5
q [-0.225, 0.183] [-0.327, 0.165] 100.0 |0.0 38.2
qp [-0.383,0.386] |[-0.37,0.355] 100.0 |0.0 9.1

p [-0.94, 1.08] [-0.925, 1.09] 100.0 |0.0 18.1
pp  [29531]] [-2, 3.13] 100.0 0.0 24.5

5.6.5. Flight Envelope Assessment Under Propulsion System Failure
Table 5.9 presents the predicted post-failure ranges of relevant variables with left engine
throttle locked at idle. Corresponding nominal ranges and the three performance metrics are also
included. One verification test has been performed covering an atitude range between 6,000 m
and 10,000 m for Mach numbers between 0.7 and 0.9. The results show aterations of the ranges
of the longitudinal and vertical acceleration, and roll rate, as expected. Note that the reduced
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range of Mach and altitude considered when building the self is not affected by this failure. The
verification points are well within predicted ranges for all variables considered. Only few points
exceed the predicted ranges by small relative amounts, as captured by REI. The relatively large
values of MI are the result of the verification test not completely covering the maneuver range of
the self-generating data. In particular, the verification test does not include maneuvers between
2,000 m and 6,000 m or for Mach numbers between 0.5 and 0.7.

Table 5.9. Performance of Flight Envelope Prediction Under Engine Failure

ERV |Nominal Range Post-Failure Range PR,% REI,% MI, %
ax [-0.344, 0.597] [-0.344, 0.353] 999 438 20.4
a: [2.46, 3.05] [-2.46, 2.16] 99.6 10.3 104
r [-0.0637, 0.0621] [-0.0637, 0.0393] 999 K3 21.5
H [2012, 9929] [2012, 9929] 950 34 50.0
M [0.526, 0.95] [0.526, 0.95] 100.0 0.0 54.1
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Chapter 6

Investigation of Immunity-based Accommodation of Aircraft Subsystem
Abnormal Conditions

6.1. Immunity Approaches for AC Accommodation
The immunity-based AC accommodation can be approached based on two concepts. First,
the biological feedback that establishes a balance between the activation and suppression of the
antibodies generation can be converted into an adaptive mechanism augmenting a baseline
controller?®2L,  For the biological system, it can be considered that the activation aTh of the
helper T-cells is governed by the balance between the amount of antigens a(?) and the action of
antibodies u generated previoudly at -+ and whose antiseptic action is modeled by a function

F7; therefore:
alTh(t)=a(t)—-F;(u(t—1)) (6.1

The delay r models the time needed for the antibodies to mature and function. The generation
of the helper T-cells (77, ) depends on the activation aTh:

F
d2>0

6.2
daTh (62)

Ty(t)=Fy(aTh(t)),

The production of the B-cells is the result of the combined effects of helper T-cells and
suppressor T-cells:

B(1)=F3(Th(t)=Ts(1))) (6.3)

The suppressor T-cell generation depends on the balance between the amount of antigens and
antibodies and the rate at which the currently matured antibodies were generated u'(t—7):

Ty(t)= K Fy(u'(t-7))aTh(t) (6.4)
Finally, the antibodies are generated by activated B-cell; therefore:
u(t)=Fs(B(t)) (6.5)

The immune system mechanisms are not completely understood; therefore, the parameters of this
model, the functions F; through Fs5, r and K, must be determined heuristically, which is not

trivial. The block diagram of the immune system feedback model is presented in Figure 6.1.
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Figure 6.1. Block Diagram of the Immune System Feedback Model

The second conceptual approach for using the AlS paradigm for control purposes relies on
the assumption that the classification capabilities of the AlS can be extended?? and used not only
to detect the problem (AC) but also to select or find the solution, which is mitigating the AC
effects. The control action is considered as a mapping between control variables and controlled
variables under specific performance requirements or constraints. Therefore, if the AlSisto be
used for control purposes, both control and controlled variables must be part of the feature set. If
that is the case, the AIS framework provides the relationship between the control and controlled
variables for the normal conditions and for those AC for which detailed structuring of the non-
self is available. Alternatively, the control variables associated with the adaptive immune
feedback system and with the best compensation performance under specific upset conditions
may be differentiated into memory cells, which can mount a faster and more aggressive
secondary response in future encounters with the same AC.

Let us assume that we try to control variable y using the control variable x, which are both
part of the feature set. Let us also assume that structuring of the non-self is available such that a
mapping between x and y is established under AC. For any desired value of the controlled
variable y4, corresponding clusters ¢« can be determined/extracted from the structured non-self as
illustrated in Figure 6.2. Further processing of the clusters cr is necessary to produce
compensatory commands xc»a. These commands can be typicaly obtained by considering
additional dimensions of the feature hyper-space, which may eventually result in one command
detector, let us say cx. An operator may still be needed to convert the command detector/cluster
into a numerical value x4, which can be formulated as:

Xemd =O(ck ) (6.6)
Depending on the resolution of the non-self (in other words, the size of the

detectors/compensators) the operator O(*) can simply represent the center of the compensator or
amore involved computation providing values inside the compensator.
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Figure 6.2. Failure Accommodation Based on Structured Non-Self
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6.2. The Humoral Immune Mechanism for Abnormal Condition Accommodation

6.2.1. General Control Architecture

A novel approach for direct adaptive control laws was investigated based on the humoral
immune mechanism. Specifically, the proposed adaptive element is used to augment a baseline
controller providing improved capabilities for handling subsystem ACs. The general block
diagram of the humora immune mechanism is presented in Figure 6.3. Three control
architectures have been considered and compared in this study: a baseline controller (without
adaptation), baseline controller augmented with ANN, and the baseline controller augmented
with the artificial immune system-based mechanism.

Forgein Antigen
.
+
B - cells Proliferation of . }- Y _ Yl
£ X antibodies o -(‘r}_ —_— e
. B A
e
Thymus Ts-cells
Q/*
T hel Free-Th
per + I :
activates B cells. ==| Free Antigens
®)—
Th-cells

Figure 6.3. Humoral Immune System Representation

The baseline controller relies primarily on a model reference architecture that uses the pilot
stick inputs to generate desired angular rate and angular acceleration commands that are then
used to produce compensating commands based on a proportional-integral-derivative (PID)
approach in conjunction with approximate non-linear dynamic inversion (NLDI). The structure
of the baseline control architecture?® is presented in Figure 6.4.

A second architecture considered here consists of the baseline control laws augmented with
ANN. The neura networks are used in conjunction with the output from the PID compensation,
the states of the aircraft and the reference angular rates and accelerations®®, as shown in the

control architecture of Figure 6.5. The input to the ANN is x= [V Hafoaog U, ]T , Where V' is

the aircraft velocity, H isthe altitude, « isthe angle of attack, and # isthe sidedlip angle. These
four inputs are the same on all three channels. For the longitudinal channel, @ =q, while for the

lateral and directional channels,#=[r7]. Only on-channel variables are considered for “r and

_ _ (3 Us) A
U, . Findly, U, isdefinedas U, = I-e with 7, the previous output of the ANN.

1+e(7 Vo)
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Finally, the AlS is used to augment the PID part of the control laws. The augmented form
of the controller using the AlS paradigm leads to the following expression in its discrete version:

u(k) =k, [1+Zk—_fl+kd z

;1j[1—nf<Au<k))]e<k) (6.7)

The function that expresses the change in concentration of the B cells will be given by:

2

2 2
e[Au(k) la +e—[Au(k) la

S (Au(k)) =1- (6.8)

where a is another parameter that will modulate the adequate response of the system under
abnormal conditions.

Pilot Stick input

Angular rate
command

l [p(wﬂ ’qroﬂ! 2 j::a-'” ]
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Reference

— PID é_. . =f"(x,u) | el
compensation ﬂ; W
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States
X

[P_. q. "'] Angular rates

Figure 6.4. General Block Diagram of the Baseline Controller
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Figure 6.5 Genera Block Diagram of the Baseline controller (PID+NLDI) Augmented with
ANN
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The following relationships are satisfied by definition for the parameters &, ki, and k« and #:
(kp, ki, ka) > 0, and >0 (6.9)

Since the control laws perform negative feedback control action if O <pf/Au(k)] < 1, and positive
feedback control action if 1 <yf/Au(k)], an upper limit of the factor » keeps the control system
stable. Assuming the existence of parameters ko, kio, and ka0, which ensure the stability of the
control system with the conventional PID controller, the stability condition of the immune
control agorithmis given by:

0<k, <kpy, O<k,<k,, 0<k,<k, (6.10)

and O<p<— L foralk (6.11)
sup /TAu(k)]

Consequently, if the parameter » satisfies Eq. (6.11), the control system is guaranteed within the
stable state of the conventional PID controller. The inner loop controller scheme based on the

immune augmentation is shown in the Figure 6.6.
Tunable

r====1 ulk)

k)
p KT »lm}e{ﬁ

Y z-1

1
o K1)
ol . e
1

: Au(k)

Figure 6.6. Block Diagram of the PID-AlS-based Adaptive Mechanism

Parameters in red in Figure 6.6 must be tuned to modulate a proper response of the AIS on
each channel. There will be atotal of nine tunable parameters for the AIS for the roll, pitch, and
yaw angular rates channels:

AISp [Kp177p1a |
K s, [Kq’nq’a ] (6.12)
KA]S :[ r’nr’ar]

Figure 6.7 illustrates the control scheme architecture of the baseline controller extended with the
AlS.
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Figure 6.7. Baseline Controller Augmented with AlS-based Mechanism

6.2.2. Analysis of AIS Compensation Performance

In order to obtain quantitative assessments of the performance of the different control
architectures, specific performance metrics were defined in terms of the total pilot input activity,
angular rate tracking errors, and the total amount of work required by each of the control
surfaces. Extensive simulation tests were performed using both a desktop setup as well as the
motion-based flight simulator. The nine parameters of the AIS augmentation have been
optimized using an evolutionary agorithm.

The comparison between the different control configurations shows that, in general, the
baseline controller augmented with the AIS has better failure rejection capabilities than the

baseline + ANN. Both augmented sets of control laws perform better than the baseline (see
Figure 6.8).

Average Pl for Mine failures Desktop Simulation

0824
08k . By
0.657
06+ \\
04} “\-
0zL \ )
0

e Baseline [ BaselinesNN =—— Baseline+A1S

Figure 6.8. Resultsof Average Pl for Different ACs
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The level of performance improvement isillustrated in Figure 6.9 and 6.10 showing attitude
responses in roll and pitch, respectively, when attempting to keep constant wing level and
constant heading after a left stabilator high magnitude failure is injected at 2 seconds. These
results are also supported by Figure 6.11 where the pilot activity history is plotted against time
for the different control architectures considered. It can be seen that the pilot is required to
exercise less activity controlling the aircraft when the AlSis part of the control architecture.
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Figure 6.11. Total Pilot Activity Under High Magnitude Stabilator Failure

On the average, the AIS augmentation achieves better tracking errors with similar level of
control activity. Figure 6.12 shows the average Pl for angular rate tracking errors over all
failuresfor the three control architectures.

It should be noted that the design complexity and processing requirements of the ANN
makes the AlS more desirable from the point of view of implementation and efficiency in terms
of hardware task execution time, as well. A simple test was designed and executed in order to
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compare the required hardware time for each of the approaches. The test was repeated for a
thousand simulations on a computer with characteristics listed in Table 6.1. The average results
are presented in Table 6.2. Figures 6.13 presents the histogram of the task execution time and
Figure 6.14 presents the time per simulation versus for al simulation performed. The
computational efficiency of the AlS version of the control laws can be easily inferred from these
results.

Average Pl all failures Tracking Error

08 .............. ........................................................................

Feay] Baseline [ Baseline+MN =— Baseline+AIS

Figure 6.12. Average Performance Index for Tracking Error

Table 6.1. Computer Characteristics for Execution Time Assessment

Computer Specifications Simulation setting
N of
Model Dell XPS L501X simulations 1000
Intel Corei5 @ Discrete, fixed
Processor 2.67GHz Solver step
Ram Sampling
memory 6 GB time 0.02 seconds

Table 6.2. Task Execution Time Assessment
Time to run a hundred seconds
simulation
T mean AIS 0.1652 seconds
T mean NN 0.3463 seconds
Ratio AIS:NN 2.09
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6.3. Structured Self/Non-self for Control

The SNSA for control attempts to use the AIS aready built for ACDIE purposes. It should
be noted that two scenarios can be envisioned within the AIS paradigm for control. The first
scenario, assumes that substantial information about the failure and its compensation is available
and aready stored in the AIS. This can be achieved by memorizing the dynamic fingerprint of
the AC during first encounter situations, by generating and recording pilot compensation during
actual or simulated failures. The second scenario involves an unknown failure that requires a
specific new compensation. It is expected that compensation can be produced by properly
composing bits of information within the self and non-self.

Within this project, a preliminary investigation has been performed with the objective of
assessing the possibility of extracting useful control/compensation information out of properly
structured AIS. This genera feasibility study was performed using data collected from the
motion-based flight simulator a normal and failure conditions for two simple maneuvers:
uniform symmetric climb/descent and coordinated turn. The failures considered were actuator
locked (stab, aileron, and rudder) and pitch rate sensor bias. Several simplifying assumptions
were made for this first step. The information about which subsystem failed, what part of
subsystem is affected, and what is the nature and magnitude of the failure must be available.
Figure 6.15 illustrates the concept of extracting pilot compensatory commands followed by
implementing those commands to the same aircraft, which will be referred to as accommodation.
In order to solve the accommodation problem, a set of specific steps must be accomplished as
illustrated in Figure 6.16.

Pilot Pilot .
A ft
S‘EP 1 Fomiiands q ircra
lExlractiDn
Accommodation
System
Accommodation Pilot )
Step 2
ep System — Commands ™= Aircraft

Figure 6.15. Failure Accommodation Definition
6.3.1. Formulation of Mathematical Model
A set FF of flight features must be selected such that the dynamic fingerprint of the aircraft

operation is accurately captured at normal and abnormal conditions. FF can be defined as a
vector with Nf components:

FF ={feat;, feat, ,...,feath} (6.13)
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where feat; (j=1,2, ..., Ny represents the feature (e.g. roll rate, velocity). An input to the pilot
(or mission objectives) can be defined as a matrix REF whose rows are represented by vectors
REF, of length Ny

REF, = [dfy, dfs, ..., dfy] (6.14)

Each element df; of the vector REF, represents a desirable value of the corresponding feature in
set FF. Duration of the flight is defined by the number of time samples¢s. Consequently, matrix
REF consists of #s rows.

Defining a Mathematical
Model

Update l

Generating the AIS
Memory Cells

Update 1

Matching Algorithm Simulation Environment
> Design and Development Preparation

Update l

Practical Implementation

|

RESULTS

l

Post-processing Analysis

i

el

Figure 6.16. Accommodation Problem Main Components

An outcome of pilot's performance is a matrix PF. Every row in this matrix is represented by a
vector PF, of length Ny

PE, = [pf1, pfa ---»Pfo] (6.15)

where each element pf; of the vector PF, represents a value of the corresponding feature of set
FF obtained from pilot performance. Matrix PF consists of zs rows as well. Pilot generated
control commands are defined by matrix PC. Every row in this matrix is represented by a vector
PC, of length Ncc, where N.. isthe number of control commands:
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PC, = [ctrly, ctrly, ..., ctriy_] (6.16)

where element ctrl; of the vector PC, represents a control command provided by pilot at each
time sample during flight. Matrix PC consists of zs rows. The vector of measured in-coming
values of features at every time sample is defined as INC,. The length of the vector is V.

INC, = [ify, ify, -, ifw,] (6.17)

Each element if; of the vector INC. represents an in-coming value of the corresponding feature of
set FF.

6.3.2. Generating AIS Memory

There is a certain flight path that the aircraft should follow. There are also specific flight
conditions that the aircraft should maintain during the flight (e.g. constant atitude, constant
velocity). These parameters define the task and are considered as the input to the pilot+aircraft
system. After being informed or making the decision about this flight path and about the specific
flight conditions, an experienced pilot intends to execute the task as accurate as possible. An
aircraft following the desirable flight path under the commanded flight conditions will be
assimilated to a healthy organism. Every value of in-coming flight variable that aters from the
desirable value during the pilot performance will be defined as invading entity/antigen. The
control commands provided by the pilot that are trying to bring the aircraft to the desirable state
will be defined as immune system antibodies. This process is an analogy to the immune system
being affected by a disease for the first time. The adaptive immune system fights back and
generates antibodies, which eventually eliminate the disease. The recorded and saved flight data
will define a set of created artificial memory cells (B-cells, T-cells, and antibodies) and antigens.

The set of antigens is defined as the difference between in-coming data and reference input
(pilot mission at each time sample zsc.

AG, = REF, — INC, (6.18)
AG, = [df; —ify,df, —ify, ..., dif - ifo] (6.19)

Depending on flight scenarios, the content of the antigen cell might be extended to include not
only values of differences but actual values of incoming features as well:

AG, = [dfy — ify, w  dfwy = ifupr ifes o, ifus] (6.20)

These additional features are selected depending on the specific task and prescribed maneuver.
The collection of 4G, vectors over the entire flight time defines the matrix AG. The overal
number of time samples during the flight is zs, consequently matrix AG has s rows.

The immune system memory has information about the T-cells and B-cells produced during
the prior infection encounters, and antibodies that were used to suppress these antigens. Within
the AIS paradigm, T-cells together with B-cells will be assimilated to a difference between pilot
features data and reference input data. The set of T-cells and B-cells for a specific time sample
tsc isavector TB, defined by subtraction of elements of vector PF, from corresponding elements
of vector REF.

140



TB, = REF, — PF, (6.21)

TB, = [dfi —pfi.df; —Pf2 -, dif - Pfo] (6.22)
Similarly to AG, vector, a TB, vector might need an extension and include some actual values of
features obtained from pilot performance:
TB, = [dfy = pf1, -, Afng — Dfnp Df1s o Pfng] (6.23)
The additional features for 7B, should be the same as for 4G,. The collection of 7B, vectors over
the entire flight time defines the matrix 7B. The overall number of time samples during the
flight is s, consequently, matrix 7B has ts rows.
The set of antibodies for a specific time sample tsc is a vector 4B, defined by the
corresponding vector from matrix PC.
AB, = PC, (6.24)
The collection of 4B, vectors over the entire flight time defines matrix AB. Considering al
definitions and notations in this section, the generic structure of the AIS memory is presented in
Figure 6.17.
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REF PF B Memory
Pilot controls — I Antibodies I
PC | a8 [

Figure 6.17. AIS Memory Structure
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6.3.3. Matching Algorithm
At each time sample, an in-coming antigen 4G, is compared to the sets of T-cells and B-
cells from matrix 7B. Once the “best match” is found, a corresponding set of antibodies ABy is
retrieved from matrix AB. As aresult, control commands are obtained dictating the behavior of
the aircraft. The “best match" is a row vector 7B, (from matrix 7B) which is most similar to an
in-coming antigen vector AG,. Let vector ERR be the difference between 4G, and 7B.:

ERR = AG, — TB, (6.25)

Then sum S can be defined as follows:
S =Y. abs(ERR(D)) (6.26)

where ERR(i) is an element of vector ERR. Therefore, arow vector 7B, that leads to the lowest
value of S is defined as the “best match”. It should be noted that more sophisticated matching
algorithm may be used to improve performance. For higher performance, one should take into
consideration the current state and the state in which aircraft had been before (i.e. several time
samples before). Once the number of the states prior to current is defined, the sum will be
calculated accordingly:

N . .
S = X5 sene 2iy abs(ERR(D) j (6.27)

where tsc is the current time sample, and M is the size of the floating time window over which
matching is investigated.

6.3.4. Example Results Using the Structured Self/Non-self for Control

A). Simulation Scenarios

The flight scenarios, lasting between 2 and 4 minutes, were designed to include steady state
flight conditions and moderate maneuvers. These flight scenarios were first simulated under
nomina flight conditions. They were repeated under various failure conditions for both
design/development and validation purposes. Only one failure at a time is injected. Two
simplified maneuvers were considered, one in the vertical plane of symmetry (climb) and one on
the lateral-directional channel with longitudinal coupling (coordinated turn).

The symmetric climb maneuver (Figure 6.18) consists of steady state symmetric flight at
6050 m and Mach 0.75 for 30 seconds, uniform climb to 6900 m at Mach 0.75, and steady state
symmetric horizontal flight for 1 minute at the destination altitude (6900 m) and Mach 0.75. The
coordinated half turn maneuver (Figure 6.19) consists of steady state symmetric flight at 6050 m
and Mach 0.75 for 30 seconds and coordinated half turn at constant bank angle while
maintaining atitude and velocity.

Two types of failures were considered: |eft actuator locked at +4 degrees and roll rate sensor
step bias. Failure injection time for al the testsis T=15 s. Sensor noise and mild atmospheric
turbulence are included in the simulation.
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Figure 6.18. Symmetric Uniform Climb Figure 6.19. Coordinated Half Turn

B). System Implementation
For the climbing flight scenario, the following set of flight features FF was selected: aircraft
velocity V, roll rate p, pitch rate ¢, yaw rate r, atitude H, and pitch angle 6.

FF ={V,p,q,7,H,6} (6.28)
The pilot generated commands are the following: longitudinal channel stick displacement de,
lateral channel stick displacement da, directional channel pedals displacement dr, and throttle
displacement dt. Therefore:

PC = {de,da,dr,dt} (6.29)

The antigen vector AGy will consist of elements that represent the differences between the
desired and actual values of corresponding feature. However, antigen vector has to be extended
by including additional elements that represent the actual values of certain features. The
additional features for the extension of antigen vector are: bank angle ¢, pitch angle 6, yaw angle
v, pitch rate ¢, and dtitude H. The flight duration time is 7=130s, consequently, the overall
number of time samples is ts=6500. The number of time samples used prior to the current
moment in the matching algorithm is selected to be N:i=4.

For the coordinated half turn maneuver, the following set of flight features FF was selected:
aircraft velocity ¥, roll rate p, pitch rate ¢, yaw rate r, atitude H, and bank angle ¢. Therefore:

FF ={V,p,q,7,H, ¢} (6.30)

The pilot generated commands are the same as in the climb maneuver. The additional features
for the extension of antigen vector are: bank angle ¢, pitch angle 6, yaw angle v, and roll rate p.
The flight duration time is T=215s, consequently, the overall number of time samples is
ts=10750. The number of time samples used prior to the current moment in the matching
algorithm is selected to be Nt=4.

C). Simulation Results for Symmetric Climb

Figure 6.20 presents the variation of aircraft altitude during the symmetric flight under
nominal conditions. The generated altitude was very accurately reproduced and is very close to
the dtitude of pilot performance. Thereisalittle deviation at the end of the flight; however, the
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drifting down trend is preserved. Figure 6.21 presents the longitudinal channel control
commands. The outcomes of the failure accommodation system almost coincide with the pilot
performance.
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Figure 6.20. Aircraft Altitude at Nominal Figure 6.21. Longitudina Channel Commands

Figure 6.22 presents the aircraft altitude variation under locked stabilator. A small decrease
of altitude can be noticed at around 7=20s due to the stabilator failure. Figure 6.23 illustrates
the longitudinal channel commands. Notice that the pilot workload on the longitudinal channel
has significantly increased, in comparison with nominal conditions flight. Small insignificant
inaccuracies can be observed.
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Figure 6.22. Aircraft Altitude Figure 6.23. Longitudina Channel Commands

Figure 6.24 illustrates the lateral channel commands. Although the failure affects mostly the
longitudinal channel, pilot workload on the lateral channel is larger. The generated commands
amost coincide with the pilot input. Figure 6.25 presents the variation of the lateral position in
Earth axes. Although the stabilator failure mostly affects the longitudinal channel, a coupling
with lateral channel takes place. Therefore, because of the bank angle ¢ alteration (see Figure
6.26), the aircraft slightly deviates from the straight forward trajectory.

Figure 6.27 illustrates the trajectory of symmetric climb under a roll rate sensor failure.
Traectory has been accurately ssmulated and followed the pilot's outcome. A small delay in
climbing process can be noticed. Also, the altitude deviates from the desired vaue in the final
stage of the flight. Longitudinal channel commands have been generated accurately during the
sensor failure flight as presented in Figure 6.28. The generated commands followed the pilot
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trend, including the beginning of the flight when the failure was injected. Several inaccuracies
can be observed during the climb maneuver; however, they did not have a significant effect on
aircraft altitude variation.
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Lateral channel commands extraction was not as successful as the one for the longitudinal
channel (see Figure 6.29). Generally, the plot exhibits visual inaccuracies in the command
extraction. However, it can be noted that at the initial stage of the flight, the commands that
were dedicated to overcome the injected failure have been generated very accurately. A bank
angle offset results, as presented in Figure 6.30, with an integral effect eventually producing a
lateral deviation from the straight flight.
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D). Simulation Results for Coordinated Half-Turn

Figure 6.31 presents the trajectory of the coordinated half turn in the horizontal plane under
nomina conditions. The entire maneuver was generated successfully without any significant
differences from the pilot performance outcome.
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Figure 6.31. Coordinated Turn Flight Trajectory Under Nominal Conditions

Figure 6.32 presents the lateral channel commands. A short command at the beginning of

the flight was produced to reach the desirable bank angle ¢ (see Figure 6.33). Since it is a
nominal conditions flight, for the rest of the flight, no commands on this channel were needed.
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Figure 6.34 presents the longitudinal channel commands. When the aircraft is banked at a
constant angle it tends to lose altitude; that is why the pilot must provide certain longitudinal
commands to maintain the vertical position. This task is dlightly more demanding because
constant lateral input has to be preserved as well. Longitudina command reproduction is not as
neat and accurate; however, it follows the pilot trend.
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Figure 6.33. Aircraft Bank Angle Figure 6.34. Longitudina Channel Commands

Figure 6.35 illustrates the aircraft altitude variation. Although the generated longitudinal
commands were dlightly inaccurate, the aircraft altitude is well maintained and does not differ a
lot from the pilot performance outcome.

Figure 6.36 presents the flight trgjectory in the horizontal plane under stabilator failure when
performing a coordinated turn. An excellent duplication of pilot performance can be observed.
Longitudinal channel commands are presented in Figure 6.37. There is a considerable input
signal at the beginning of the flight that has been provided to mitigate the failure. The generated
simulation provided that signal as well. During the rest of the time, the commands are extracted
very accurately, with several inaccuracies at the end.
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Lateral channel control commands are presented in Figure 6.38. Because of the coupling,
the pilot had to provide some commands on the lateral channel as well right after the failure was
injected. Over the entire flight, the commands have been extracted precisely: the lines almost
coincide. Generated bank angle ¢ dictated by the latera commands also follows the pilot
performance outcome accurately (Figure 6.39). little peak is observed at the beginning of the
flight due to the failure; however, the value has been brought back close to zero by pilot
compensation.

Figure 6.40 illustrates the flight trgectory in the horizontal plane for a coordinated turn
executed under roll rate sensor bias. Generated trgjectory follows the pilot trend; however, the
generated curve has a smaller radius of turn as compared to the one from the pilot performance
outcome due to the inaccuracies in reproducing lateral channel commands. Figure 6.41 presents
the lateral channel commands provided during the flight ssmulation. The commands have not
been extracted as accurately as for actuator failures, however, they behave similarly to pilot
generated commands with a small delay and several inaccuracies of small magnitude. Figure
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6.42 illustrates the commands on the longitudina channel. Similarly to the lateral channel, the
command extraction is not as accurate as for actuator failure; however, the smilar trend can be
observed in the behavior. These inaccuracies on longitudinal and lateral channels can be
explained by excessive amount of the pilot workload and rapid change of stick displacement
during the flight. For the flight with alarge pilot workload and very intensive stick commands, a
more advanced matching algorithm might be needed for obtaining higher performance results.
Also, there is a delay between pilot input and aircraft response which becomes more critical
when abrupt maneuvers are involved. Under such conditions, this delay should be better taken
into account. One possible solution could be to increase the time window over which the
matching algorithm is applied.
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Chapter 7

| ntegrated Schemefor Aircraft Subsystem Abnormal Conditions Detection,
| dentification, and Evaluation

7.1. Integrated ACDIE Scheme Using the Structured Self/Non-self Approach

Based on the AIS paradigm and aHMSS strategy, the SNSA was developed and implemented
for aircraft subsystems ACDIE. All phases of the ACDIE process have been integrated in one
single architecture, that starts with the generation of antibodies (detectors) and continues with
structuring of the non-self for identification and evaluation purposes, as well as providing the
necessary information for AC accommodation. Flight data from the WVU 6-DOF flight
simulator were initially used to define a large set of 2-dimensional self/non-self projections as
well as for the generation of antibodies and identifiers designated for health assessment of an
aircraft under upset conditions. As shown in Figure 7.1, this represents the first step in the
complex ACDIE process. Selecting the predefined set of features or characteristic variables for
the definition of the self/non-self isacritica component of the AlS-based methodology.

During “detection” phase, the process of declaring a generic failure in one or more of the
aircraft sub-systems is performed. A detection logic is also designed for real time operation to
ensure that high detection rates and low false alarm rates are achieved. Once a failure has been
detected, the “identification” phase starts. The identification phase determines which sub-system
has failed by analyzing which of the detectors has been activated through a positive selection-
type scheme. In this phase, all the detectors are labeled in a previous offline process (SNSA) in
order to assign specific detectors to particular categories of failures. This off-line process or
“structuring” consists of outlining which non-selves are activated under a specific failure.
Depending on the complexity of the targeted systems, the identification process can determine
which subsystems have failed (i.e. actuator, sensor, structural, etc.). The evaluation phase can be
divided into two steps, namely direct evaluation and indirect evaluation. Furthermore, the direct
evaluation phase can be classified into qualitative and quantitative evaluation. The direct
gualitative evaluation phase isolates and determines the specific subsystem that has failed. The
guantitative evaluation phase determines the severity or magnitude of a failed subsystem. The
indirect evaluation phase determines the effect on the flight envelope maneuverability and
performance of the system after a failure has affected the system. Finally, once the failure has
been detected and properly identified, the best solution to compensate such failure is executed
using active or passive accommodation tasks that have been previously stored in the immune
memory.
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7.2. Integrated ACDIE Scheme Using the DC M echanism-based Approach
Figure 7.2 shows a top-level block diagram of the online ACDIEA scheme using the
artificial DC mechanism. The measured data (i.e., feature values) are first normalized over a
moving time window using the same normalization used in generating the self and non-self. The
normalized data are then projected on the corresponding projections (sub-selves) to generate the
discrimination matrices that are used as input to the artificial DC mechanism for detection. Once
a falure is detected, the features-pattern vector is computed based from the F, matrices of all

migrated DCs (stimulatory and regulatory DCs) and compared with the libraries of reference
patterns to identify the failed subsystem and evaluate the type of the failure and its severity
simultaneously.
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Chapter 8

Demonstration of the Integrated Scheme for Aircraft Subsystem Abnormal
Conditions Detection, Identification, and Evaluation

8.1. Implementation of the Integrated Scheme for Aircraft Subsystem Abnormal
Conditions Detection, | dentification, and Evaluation
The integrated aircraft subsystem ACDIE scheme was implemented and tested with
Matlab/Simulink 2010a (32-bit). Figure 8.1 shows the top level Simulink model using the
SNSA, where the “immunity-HMS’ block detail is shown in Figure 8.2. The top level Simulink
model of the integrated scheme using the DC mechanism is illustrated in Figure 8.3 and the DC
mechanism block detail is shown in Figure 8.4.
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Figure8.1. Top-level Simulink Model of the Integrated Aircraft ACDIE Using the Structured
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Both of the models deliver their outcome to a GUI at each time step. Figure 8.5 shows the
interface displaying the current ACDIE outcome for a flight test under failure of the left wing.
The implementation of the integrated scheme has two components. One allows the scheme to
run in conjunction with the aircraft smulation. The other allows feeding previously obtained
simulation data into the ACDIE scheme for faster testing and analysis.

,

Abormal Flight Conditions

00:01:36.40

Failed Subsystem: Left Wing
Failure Severity: Medium
Detection Time: 00:00:40.78

Detection Rate: 95.90 %

Stabilator Aileron Rudder Throttle Wing Vertical Tail Horizontal Tail Roll Pitch Yaw Engine
Rate | Rate G
Left | Right | Left Right | Left  Right | Left | Right | Left | Right = Left | Right = Left | Right |geacor scacor Seneor Left | Right
Ident. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 o0 EIIXM oo 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Type 1 00 00 00 00 0.0 00 0.0 oo |EIIXMM oo 00 0.0 00 00 0.0 00 00 00 00
Type 2 00 00 00 00 00 00 0.0 00 0.0 00 00 00 00 00 0.0 0.0 00 00 00
Low 00 00 00 00 00 0.0 00 00 0.0 0.0 0.0 00 0.0 0.0 00 0.0 0.0 0.0 00
Medium | 0.0 00 0.0 0.0 0.0 00 0.0 oo EIIXM oo 0.0 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0
High 00 00 00 00 00 00 00 00 0.0 00 0.0 00 00 00 00 0.0 00 00 00

Figure 8.5. ACDIE Outcome Visualization Interface

The ACDIE outcome visualization interface has four components:

1. A header displaying the current flight condition and the current sample time. If the
current flight condition is normal, the header will be “Normal Flight Conditions’ in
green. If the current flight condition is abnormal, the header will be “Abnormal Flight
Conditions” in red.

2. Four-line text on the left of the interface showing brief information about the failure
(failed subsystem, its severity, detection time, and detection rate).

3. An arcraft image displaying the current status of aircraft’s flight condition. When the
ACDIE outcome carries information about the failed subsystem, the image dynamically
highlights the failed subsystem.

4. A table displaying the percentage rates of the identified subsystems, types of the failure,
and severity of thefailure.

The interface computes the detection, identification, and evaluation rates for all received
ACDIE outcomes. However, the interface cannot update its contents when it receives two
successive outcomes in a short time interval. Therefore, a predefined “ update rate” representing
the number of graphical update milliseconds was introduced in the configuration of the interface.
For example, when the interface is configured with an “update rate” of 100, it will only update
its graphical contents every 100 millisecond, while it keeps computing the ACDIE rates for any
ACDIE outcome it receives.
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8.2. Demonstration of the Integrated Schemefor Aircraft Subsystem Abnormal Conditions
Detection, I dentification, and Evaluation Through Simulation

The integrated ACDIE scheme was tested for 10 additional demonstration flight tests with
different failed subsystems, failure types, and failure magnitudes. In these tests, the both the DC
mechanism approach and the SNSA were used. Table 8.1 lists the detection rates as well as the
path of the flight test (points in the test envelope of Figure 1.22) and the detection time. The
failure wasintroduced at 40 s. The false darm rate was zero for all tests. These example results
were obtained through direct recorded data input and through on-line simulation input.

Table 8.1. Detection Results for a Set of Demonstration Tests

Subsystem Failure Failur_e Path D_etection Detection
Affected by AC | Type Magnitude Time Rate (%)
L eft Stabilator locked 8° 145 40.68 99.9
Left Wing damaged 15% 167 40.62 99.9
Pitch Sensor bias 10° 189 40.72 99.9
Right Aileron locked 8° 165 40.72 99.9
Right Wing damaged 6% 189 40.88 99.9

Roll Sensor bias 10° 145 41.68 98.9

Y aw Sensor bias 3° 167 41.12 99.9

L eft Stabilator locked 6° 1B 40.28 100.0
Left Wing damaged 10% 1B 40.28 100.0
Roll Sensor bias 10° 1B 45.58 100.0

Table 8.2 presents the identification rates for the same tests listed in Table 8.1, whereas the
corresponding failure type and severity evaluation rates are presented in Tables 8.3 and 8.4,
respectively. Note that the evaluation rates are computed with respect to the number of points
for which correct identification was obtained.

Table 8.2. Identification Results for the Demonstration Tests

I dentified Subsystem
Text # Left | Right Lgft R@ght L eft Right L eft Right Lgft Right

Stab | Stab | Aileron | Aileron | Rudder | Rudder | Throttle | Throttle | Wing | Wing
Left Stabilator | 100.0 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Left Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.7 |13
Pitch Sensor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Right Aileron | 0.0 0.0 0.0 98.8 0.0 0.0 0.0 0.0 0.0 0.0
Right Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.9
Roll Sensor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Yaw Sensor 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Left Stabilator | 99.9 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Left Wing 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 99.8 |00
Roll Sensor 0.0 0.0 0.0 0.0 0.0 12.7 0.0 0.0 0.0 0.0
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Table8.2. - Cont'd

Identified Subsystem
e Leit | Right | o0 [ R T Roil | pitch | vaw | Left | Right
V Tail | V Tail , , Sensor | Sensor | Sensor | Engine | Engine
Talil Talil
Left Stabilator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Left Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Pitch Sensor 0.0 0.0 0.0 0.0 0.0 1000 |0.0 0.0 0.0
Right Aileron 0.0 0.0 0.0 0.0 0.0 0.0 0.0 12 0.0
Right Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Roll Sensor 0.0 0.0 0.0 0.0 1000 | 0.0 0.0 0.0 0.0
Y aw Sensor 0.0 0.0 0.0 0.0 0.0 0.0 100.0 | 0.0 0.0
Left Stabilator 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0
Left Wing 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Roll Sensor 0.0 0.0 0.0 0.0 87.0 0.3 0.0 0.0 0.0
Table 8.3. Failure Type Evaluation Results for the Demonstration Tests
Evaluated Type

Test Typel | Type2

Left Stabilator 100.0 0.0

Left Wing 100.0 0.0

Pitch Sensor 100.0 0.0

Right Aileron 100.0 0.0

Right Wing 100.0 0.0

Roll Sensor 100.0 0.0

Y aw Sensor 100.0 0.0

L eft Stabilator 100.0 0.0

Left Wing 100.0 0.0

Roll Sensor 100.0 0.0

Table 8.4. Failure Severity Evaluation Results for the Demonstration Tests

Evaluated Severity

Test Low Medium High
L eft Stabilator 0.0 0.0 100.0
Left Wing 0.0 100.0 0.0
Pitch Sensor 0.0 0.0 100.0
Right Aileron 1.2 0.0 98.8
Right Wing 99.9 0.0 0.1
Roll Sensor 0.0 0.0 100.0
Y aw Sensor 0.0 0.0 100.0
L eft Stabilator 0.0 100.0 0.0
Left Wing 0.0 100.0 0.0
Roll Sensor 0.0 0.0 100.0
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Figures 8.6 and 8.7 show the ACDIE outcome visualization window for demo tests under
normal flight conditions and a 15% damage of the left wing, respectively.

e FDIE Qutcome Visualizer v2.0 - Copyrig Dia Al Azzawi 2014, West Virginia University

Normal Flight Conditions
00:05:53.60
Failed Subsystem:
Failure Severity:
Detection Time:

Detection Rate:

Stabilator Aileron Rudder Throttle Wing Vertical Tail Horizontal Tail Roll Pitch Yaw Engine
Rate = Rate G
Left | Right | Left Right | Left  Right | Left | Right | Left | Right = Left | Right | Left | Right |goaeor Sencor Sereor Left | Right

ident. | 00 0.0 00 00 0.0 00 0.0 0.0 0.0 0.0 0.0 0.0 00 0.0 00 | 00 | 00 | 00 00
Type1 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00 | 00 | 00 00
Type2 | 00 00 00 00 00 00 00 00 00 0.0 00 00 00 0.0 00 | 00 | 00 | 00 00
Low 00 00 00 00 00 00 0.0 00 00 0.0 00 00 00 0.0 00 | 00 | 00 | 00 00
Medium | 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0 0.0 0.0 00 0.0 00 | 00 | 00 | 00 0.0
High 00 00 00 00 0.0 00 0.0 00 00 0.0 00 0.0 00 0.0 00 | 00 | 00 | 00 00

Figure 8.6. Demonstration Results for aNominal Flight

-
S FDIE Qutcome Vi

Abormal Flight Conditions |

00:05:55.20

Failed Subsystem: Left Wing
Failure Severity: High
Detection Time: 00:00:40.64

Detection Rate: 100.00 %

Stabilator Aileron Rudder Throttle Wing Vertical Tail Horizontal Tail Roll Pitch Yaw Engine
Rate | Rate G
Left | Right | Left Right | Left  Right | Left | Right | Left | Right = Left | Right | Left | Right |goasor Seacor Serewr Left | Right

ident. | 00 00 00 00 0.0 00 0.0 00 00 0.0 00 0.0 00 | 00 | 00 | 00 00
Type1 | 00 00 00 00 00 00 00 00 00 00 00 0.0 00 | 00 | 00 | 00 00
Type2 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00 | 00 | 00 00
Low 00 00 00 00 00 00 0.0 00 00 00 00 0.0 00 | 00 | 00 | 00 00
Medium | 0.0 0.0 0.0 0.0 0.0 00 00 0.0 0.0 0.0 00 0.0 00 | 00 | 00 | 00 0.0
High 00 00 00 00 0.0 00 0.0 00 00 0.0 00 0.0 00 | 00 | 00 | 00 00

Figure 8.7. Demonstration Results for a 15% Damage of the Left Wing
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8.3. Demonstration of the AIS AC Detection Through Flight Testing Using a UAV
Resear ch Platform

8.3.1. Flight Test Scenario

An initial performance analysis of the proposed ACDIE solution has been assessed through
flight tests. A set of two nomina flights that included figure-8-maneuvers as well as control
surface doublets in all three axes were performed in order to capture the dynamics of the test
aircraft. The platform used for this experimentation was the Skywalker RC aircraft instrumented
with an APM 2.5 micro controller. The RC aircraft was flown manually by a pilot on the ground
and the maneuvers were implemented in a sequential order. The nominal flight tests consisted of
the following stages:
Manual flight until an altitude of 80 meters
Trim flight at constant speed
Figure 8 maneuver
Elevator Doubl et
Figure 8 maneuver
Aileron Doublet
Figure 8 maneuver
Rudder Doubl et
. Figure 8 maneuver
The flight test sequence was performed twice and the data were saved into a flash memory for
later processing. The data was recorded at a rate of 50Hz and included angular rates, linear
accelerations, neural network angular rate estimations, reference model commands, Euler angles,
atitude, stick inputs and velocity. A total of 21 features were recorded, which generate a total of
210 self/non-self 2-D projections. The reduced flight envelope limits of the Skywalker as well as
the length of the flights yield a reduced amount of data points. This should be taken into
consideration during the generation of projectionsin order to obtain proper coverage of the self.

For validation purposes, four different types of failures were injected into the system at |ater
flights in order to capture the dynamic fingerprint of abnormal conditions on the test platform.
The failures investigated included low and high magnitude aileron failures. The failures were
injected manually by the pilot through a PWM signal sent from an RC transmitter. Once a
failure was injected, the sequence of maneuvers presented above was attempted by the pilot.
Table 8.5 presents the injected failuresin the system.

CoNou~wWNPE

Table 8.5. FailuresInjected in Flight Tests
Failure#1 Left Aileron Locked at WingsLevel Trim
Failure#2 Right Aileron Locked at Wings Level Trim
Failure#3 Left Aileron Locked at Trim during Bank Turn
Failure#4 Right Aileron Locked at Trim during Bank Turn

8.3.2. Test Platform
The RC airplane chosen for experimentation was the “New Skywalker 1880”. This platform
offers a stable and low-cost system that is able to satisfy the needs of the flight tests. Figure 8.8
shows the actual system used for the flight tests. This platform was used in previous projects for
which system identification techniques were performed. The physical characteristics of the
system are presented in Table 8.6.
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Figure 8.8. Skywalker 1880 RC

Table 8.6. Skywalker Dimensions and Mass Properties

Wing Area (m?) 0.41143
Wing MAC (m) 0.22647
Wingspan (m) 1.88

Horizontal Tail Span (m) 0.5626
Horizontal Tail MAC (m) 17.1
Vertical Tail Span (m) 0.244
Vertical Tail MAC (m) 195
Total Length (m) 1.183
Weight (Kg) 0.9525

The Skywalker 1880 was equipped with a set of analog and digital sensors that provide
essential variables for the generation of Selves and Non-selves. Primarily, the onboard
microcontroller isan APM 2.5 with an “Atmel ATMEGA 2560” processor. The APM 2.5 board
includes embedded sensors such as an IMU, magnetometer and a 4MB data flash chip as well as
digital and analog ports for GPS, telemetry and a pitot tube sensor. Figure 8.9 shows the APM
and the setup inside the fuselage of the Skywalker.

Figure8.9. Onboard APM 2.5
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The Ardupilot Mega (APM) 2.5 is an out-of-the-shelf low-cost autopilot solution produced
by 3D Robotics. Its dimensions are approximately 66x40 mm. and with the enclosure it weighs
approximately 20 grams. It uses an 8-bit, 16Mhz “Atmel AT Mega 2560” processor which has
54 digital 1/O pinsfor which 14 can be used for PWM signals.

The InvenSense MPU-6000 inertial sensor is a 6-axis motion tracking device. It combines a
3-axis gyroscope and a 3-axis accelerometer in a 4x4x0.9mm QFN footprint and it
communicates through a serial interface in an IC2 protocol.

The MEAS Switzerland MS5611 Barometric Pressure Sensor offers a high resolution
atimeter sensor with SPI and 12C bus interfaces up to 20MHz. It offers a factory calibrated
sensor with aresolution of 10 cm. and its dimensions corresponds to a 5x3x1mm QFN footprint.

The data flash card used is a 4Mb chip embedded in the APM 2.5 board. Previous efforts
have shown that recording 20 floating point parameters at 50Hz allows recording approximately
17 minutes of flight.

The MediaTek MT3329 is a 66 channel single chip solution with a binary output protocol
with an update rate of 10Hz. Its sensitivity can be up to -165dB tracking, a position accuracy of
less than 3meters and USB/UART interfaces. Its dimensions are 38x16x7.8mm and it weighs
9.45g.

The Freescale MPXV7002DP Differential Pressure Sensor was connected directly to a
miniature pitot tube located on the right wing. Its maximum rating for pressure is 2kPa at 60°C.
This sensor provides true air speed measurements that are used for the definitions of selves.

The Spektrum DX7s RC transmitter and receiver is a 7-channel, 2.4 GHz remote control
device used for manual control of the aircraft and control of aileron failuresin the system. Five
channels were used for the control of ailerons, rudder, throttle, and elevator and a sixth channel
commanded the aileron to lock at a given position.

The power source chosen for the system was a G6 Pro Lite Thunder Power 5 cell LiPo
18.5V battery.

The electric motor chosen for the Skywalker was a 1000Kv RPM Turnigy brushless motor.
Its maximum current is 38A and it has a maximum power of 665W. Its weight is approximately
130g and its size is 35x42mm with a shaft diameter of 5mm.

8.3.3. Simulink Models

The onboard microcontroller has the ability to be targeted through Simulink and the APM
2.0 Block set for Simulink. This feature provides a great advantage for any effort involving low
cost autopilots and sensor fusions boards. Several Simulink models including model reference
control, artificial neural networks and Kalman filter models, were designed in Simulink and later
loaded into the APM 2.5 board for flight test implementation. Figure 8.10 shows the top level of
the Simulink model loaded into the APM 2.5 board.

In general, the Simulink model allows the APM board to read several sensors embedded in
the board while recording flight test data in real time. Once the data is recorded in the flash
memory, it can be downloaded and processed off-line for the generation of projections. Most of
the features are obtained from the sensors embedded in the onboard computer. On the other
hand, the bank and pitch angles as well as the ANN and model reference control outputs are
generated by separate Simulink models. The following sections will briefly describe the
Simulink models for the mentioned systems.

It is possible to auto-generate code through the Run-On-Target-Hardware tool in the
Simulink environment into the APM 2.5 board. The APM 2.0 Simulink blockset allows users to
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read data from the sensors embedded in the board, command PWM signals to servos and to run
guidance, navigation and control algorithms. This library allows users to read the sensors
embedded in the microcontroller. Therefore, a Simulink model that reads the data from such
sensors was generated and loaded into the onboard computer. Figure 8.11 shows a sample model
of the sensors.

Kalman Filter

(=51
5
=
L-L“ .
APM 2.5 S Flight Data
Sensors bt Manager
Model Beference
&
Artificial Neural Networks
Figure 8.10. Simulink Model Top Level
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Figure—8.11. Simulink Sensor Model
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In previous efforts, the Skywalker 1880 platform was used as an autonomous platform. For
this effort, a sensor fusion solution was developed. A discrete Kalman filter was designed in
Simulink in order to determine bank and pitch angles of the platform. The Kaman filter
received inputs from a complementary filter that integrated data from the gyroscopes and the
accelerometer. The Kalman filter demonstrated excellent performance and accuracy in the
estimation of the desired Euler angles. Based on these characteristics, the estimator was included
in the Simulink model with the objective to generate important variables for the definition of
Self/Non-self projections. Figure 8.12 shows a Simulink model with the basic architecture of the
Kaman filter implementation.

2 . xhatmitus ] Prmins_k
xhatmins

@3 b FaR

1, Jacobn Calcustion

Figure 8.12. Kaman Filter Architecture

A model reference controller and ANNs were incorporated into the system in order to
generate features for the definition of self/non-self. The ANN used was an ADALINE network,
which requires eight variables as input. The Simulink model presents a relatively complex
architecture that will not be shown in detail for ssmplicity.

8.3.4. Flight Test Results
Two nomina flights and four failure flights were performed. A total of 38 different
channels were recorded into the flash memory. Out of those, only 18 were selected for the
definition of projections. Table 8.7 presents the features that were recorded and selected for

self/non-salf definition.

Table8.7. Self/Non-self Features for Flight Testing

p NN, ¢

q NN, 6

r NN, d,
Pre f Ay da
Qref Ay d,

Tre f a; dT

153 projections were tested against flight test data in order to determine the detection
performance of the generated selves. The selves analyzed the data from four different failure
flights. The analysis determined that 30 different self projections were able to capture the
dynamic fingerprint of abnormal conditions. Table 8.8 presents these projections.
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Table8.8. Skywalker Self Projections

Self# | Features | Self# | Features
1 pref: qref 16 pref' %
2 pref; rref 17 pref' %
3 pref: p 18 rref' Ay
4 Pref, 4 19 p,dg
5 PrefT | 20 q,d,
6 Press NN, | 21 T,y

7 Pres, NN, |22 | NN, d,
8 pref'NNr 23 NNq:da
9 Pref,Qx | 24 Ay, P
10 Pref, Ay 25 a,, 0
11 Dref @z | 26 a,,d,
12 Prefs dqe |27 a,, dr
13 Prefde | 28 0,d,
14 | Prefdr |29 ®,d,
15 | Presdr |30 dgy,d,

The selected projections obtained an average 21.11% and 30.68% DR for ailerons stuck at wings
level trim and ailerons stuck during a bank maneuver respectively. These detection rates may
seems to be low. However, they should be considered in conjunction with the expected 0 FA
rate. Table 8.9 presentsthe DR and FA rate of a sample set of projections.

Table 8.9. Detection Rate and False Alarm Rate for 4 Failures

Right Aileron | Right Aileron | Left Aileron ll:gfctked Aileron
L ocked L ocked L ocked
at WingsLeve at Bank Maneuver | at WingsLevel at Bank
Maneuver
Self# FA DR FA DR FA DR FA DR
1 0.00 25.6 0.00 28.7 0.00 124 0.00 23.8
12 0.00 25.1 0.00 34.8 0.00 19.2 0.00 34.1
13 0.00 325 0.00 36.4 0.00 31.6 0.00 39.3
15 0.00 24.6 0.00 44.1 0.00 14.8 0.00 25.5
22 0.00 10.2 0.00 15.6 0.00 11.3 0.00 30.5
30 0.00 20.6 0.00 23.3 0.00 26.2 0.00 32.2
Average | 0.00 23.1 0.00 30.5 0.00 19.2 0.00 30.9

The individual selves present a low DR; however, if they are integrated into a single
detection mechanism the DR improves greatly. For example, if the 30 selves selected are used
for failure detection, then the DR percentage improves to 71.9% and 90.7% for ailerons stuck at
wings level trim and ailerons stuck during a bank maneuver, respectively. This configuration is
able to obtain a significant improvement in DR but it also increases the FA rates approximately
to 5.2%. For this reason, other configurations were tested in order to obtain an acceptable
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tradeoff between DR and FA. Two more configurations of selves were tested. The second
configuration utilizes only the 6 selves shown in Table 8.9. This configuration obtained an
average of 43.3% and 58.3% DR for ailerons stuck at wings level trim and ailerons stuck during
a bank maneuver respectively, with FA rates of approximately 1% for both cases. The third
configuration of selves utilizes only projections that have 0% FA rate for each failure
disregarding FA for other types of failures. This configuration guarantees that the FA rate will
be low and it also offers the possibility to use this method for identification purposes. The third
configuration presents an average of 59.6% and 77.3% DR for ailerons stuck at wings level trim
and ailerons stuck during a bank maneuver, respectively and less than 0.5% FA. Table 8.10
presents a summary of these results.

Table 8.10. Detection Rates and False Alarmsfor 3 Configurations of Selves

R. Aileron Locked | R. Aileron Locked | Left Aileron Locked | Left Aileron Locked
at Wings at at at
L evel Bank Maneuver WingsLevel Bank Maneuver

Self # | FA DR FA DR FA DR FA DR

1 52 74.3 1.54 90.0 4.3 69.4 2.33 914

2 0.52 47.2 0.12 60.2 1.0 39.4 0.02 56.3

3 0.3 61.2 0.0 80.9 0.2 58.0 0.0 73.6

It should be noted that the four failures investigated in flight test are considered to be low
magnitude, which makes them more difficult to detect. Because the locked position of the
control surface is close to trim, no significant dynamic failure effects are noticeable until pilot
input is provided. The DR is computed over the entire period of time that the failure is active,
disregarding the presence of pilot input. This approach produces conservative low DR values as
presented in Table 8.10. This effect is increased by the short duration of the flight at failure
conditions, which is approximately 20 seconds.

Table 8.9 shows that single projections can only obtain a maximum of 30.9% detection rate.
Nevertheless, when the projections are integrated as a single mechanism the DR increases greatly
(see Table 8.10). This occurs because each projection at certain time periods of the flight test
only captures abnormal dynamics when excited by certain maneuvers and commands. On the
other hand, integrating several projections allows the mechanism to capture abnormal dynamic
fingerprints at different periods of time during the flight tests. Figures 8.13-8.15 show the
detection activity of single projections and Figures 8.16-8.17 shows the detection activity when
the projections are integrated into a single mechanism. The value of 1 represents that a detector
was been activated and alternatively a value of 0 determines that none of the detectors have been
activated. The first 5 seconds are nominal flight test conditions while the remainder of the time
corresponds to flight test data under an upset condition.
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Figure 8.13. Sdf #1 Detector Activity for Left Aileron Locked at Bank Maneuver
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Figure 8.14. Self #17 Detector Activity for Left Aileron Locked at Bank Maneuver
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Figure 8.15. Self #18 Detector Activity for Left Aileron Locked at Bank Maneuver
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Figure 8.16. Method 2 Detector Activity for Left Aileron Locked at Bank Maneuver
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Aircraft Subsystem ACDIE Scheme — Simulink Implementation

(on DVD)
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System Requirements

Operating System:  Windows XP SP3, Windows Vista SP2, Windows 7, Windows 8

0S Architecture: Xx64 (64-bit)

Processor: Intel® Core™ @ 1.7GHz or higher

Memory: 8 GB RAM or more

Hard Drive: 4 GB free hard disk space or more

Prerequisites: e Microsoft® .NET™ Framework 4 or later (included with the installer)

e MATLAB®/SIMULINK® R2010a or later (32-bit only)



Installing “AlS Aircraft FDIE”

Installing the “AlS Aircraft FDIE” is straightforward. Run the AISAircraftFDIEInstaller.exe
file on the DVD and follow the instructions that appear on the installer interface.

NOTE: Enter the provided serial number when the installer asks you for one.

ATS Aircraft FDIE Setup

Welcome to AIS Aircraft FDIE Setup

® Collecting information

< Preparing installation Welcome to the Wizard for AIS Aircraft FDIE Setup.
< Installing
&' Finalizing installation

nstall AIS Aircraft FDIE on your computer.
confinue.




AIS Aircraft FDIE Setup

Customer Information

- Collecting information

< Preparing installation Please enter your customer information
Installing

~ ' Finalizing installation

User Name:

QOrganization:

AIS Airaraft FDIE i}

Installation Folder

Collecting information

Preparing installation This is the folder where AIS Aircraft FDIE will be installed.

Installing

nstall in this folder, didk «t". To install to & rent folder, enter it below or dick

T
B
Finalizing installation

Folder:

C:'Program Files\WYU FDIEVAIS Aircraft FDIE),

Volume Disk Size Available Reguired  Difference
Installation drives

éC: 244 GB 167 GB 3,50 GB
Unused drives

(=10 221GB 103 GB




Ready to Install

®  Collecting information
Preparing installation
< Installing

4 Finalizing installation

AIS Aircraft FDIE Setup

Installing AIS Aircraft FDIE

Collecting information
Preparing installation
Installing

&' Finalizing installation

Configuring AIS Aircraft FDIE...
Done

Computing space requirements. ..
Done

Validating install. .. Done
Configuring AIS Aircraft FDIE...
Done

Updating component
registration... Done

Creating folders,.. Done
Copying new files...

The Setup Wizard is ready to begin the AIS Aircraft FDIE installation.

ant to re or change any o
el” to exit the wizard,

Tested with MOTUS® Fidelity motion-based flight simulator




AIS Aircraft FDIE Setup

AIS Aircraft FDIE Setup Complete

Collecting information
Preparing installation Click the "Finish" button to exit the Setup Wizard.
Installing

Finalizing installation

 readme file

Erm e T

To uninstall or repair the installation, run the AISAircraftFDIEInstaller.exe file again
and choose the desired operation.

AIS Aircraft FDIE Setup

Modify, Repair or Remove installation

0 Collecting information

< Preparing installation Welecome to ATS Aircraft FDIE Maintenance Wizard.

< Installing

J' Finalizing installation Please choose the maintenance operation you wish to perform and dick "Mext™,

Y I% © Modify

‘; Change state of current installation - add or remove program

q.ﬁ] ] in the most recent installation state - fixes missing or
o hortcuts and registry entries,

X 1 S Aircraft FDIE from your computer,

After installing the “AlS Aircraft FDIE,” the installation folder should appear as shown below.
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Organize » Include in library = Share with + Burn MNew folder

4.7 Favorites .

Bl Desktop l ' L ~ -
4 Downloads _‘\:
= £
! | 3 K

5l Recent Places
) Flight Tests Self Builder Self Viewer Selves-MonSelves  Selves-NonSelves
4 Libraries
> 3 Documents
> J? Music
> =] Pictures l "
> B Videos | d'
>“3‘ H Simulations Source Code Al5Config AxComReglb FDIEVisualizer SelfViewer
omegroup

P j':':EjComputer b ‘r" \'_; ‘?f'* \'_; ‘?’-' "_;
I e Local Disk (C) 1 e - % = s
+ y Local Disk (D) " o o) el

> 22 CD Drive (F) SimDemo AISDCxE6.dlI Fl5Visualizer.dll  HtmiRenderer.dll  libiompSmd.dll  MathNet.Numeri

cs.dll
>'&hj Metwork

O 0O @

gy e -

MathMNet.Mumeri zlib.net.dll AISDCxE6.tb Config
cs.MEL.dll

22 items

The installation folder contains the following components:

1. Demos folder containing a set of demo flight tests, each in its own folder. The name of each
folder has the pattern Subsystem FailureType FailureMagnitude. For example,
the folder LeftStabilator 1 6 contains .mat data files for a flight test under the left
stabilator failure, moving and locked (type 1 failure) at 6°.

2. Flight Tests folder containing a set of flight tests used in the development of the different AIS
components. The name of each folder has the pattern
Subsystem FailureType FailureMagnitude FlightPath. For example, the
folder LeftAileron 1 2.5 123 contains .mat data files for a flight test under the left
aileron failure, moving and locked (Type 1 failure) at 2.5°. Flight tests are categorized in folders
representing the different categories of the subsystems (actuators, sensors, aileron, wing, etc.).

3. Self Builder folder containing a 64-bit Se1fBuilder.exe tool for building the selves and
nonselves, a 64-bit AISConfigé64 . exe tool for configuring the SelfBuilder tool, and a
64-bit AxComReg64 . exe tool for registering the ATSDCx64 .d11 COM Interop library.

4. Self Viewer folder containing MATLAB script files for the Sel fViewer analysis tool.

5. Selves-NonSelves folder containing .mat data files of the selves and nonselves generated at
West Virginia University using the Raw Data Set Union Method.

6. Selves-NonSelves-ERAU folder containing . mat data files of the selves and nonselves generated
at Embry-Riddle Aeronautical University using the Cluster Set Union Method.

8



7. Simulations folder containing implementations of the DC mechanism approach and the
Structured Nonself approach with MATLAB/Simulink 2010a (32-bit).

8. Source Code folder containing C# code projects for the DC mechanism library and other helper
tools.

9. AlSConfig.exe: A tool for configuring the different parameters needed for the building the selves
and nonselves, the DC mechanism, and the FDIE Visualization tool.

Data Processing Self

Frequency (Hz): |60 = Percent Margin: |15 = Tolerance: 0.0001_
Math Provider: Math Threading: Number of Clusters: 3000
[Naﬁve '] [Muh‘ﬁﬂreading ~ Minimum Size: 0.005_

Dendritic Cells Mon-Self
Number of Dendritic Cells: (20 = Window Size: |50 = Mumber of Intial Detectors: 50_
Migration Threshold Lfe Minimum Radius: 0.002_
From: 10 [+ Te: [30 & From: (31 |2 To: (50 [ Number of Inserted Detectors: 1000
Mumber of Moved Detectors: 10_
FDIE Visualizer Initial Cloning Distance: 05
IP Address: 127.001 Port Mumber: 11000 Moving Decay: 15_
Update Rate (milisecond): 100 = Number of herations 500_
Logging and Notification Maximum Mumber of Detectors: 500_
Log File:  C:\Program Files"WVU FDIEVAIS Aircraft FDIE\Self Builder\SelfBui Owerlapping Threshold: 0i__
Email Recipient: Mumber of Mearest Cloned Detectores: 1_
dizazzawi@mix.wvu edu Mumber of Mearest Moved Detectores: 1_
Mumber of Initial Cloned Detectors 1_
Cloning Decay: 10_

10. AxComReg64.exe: A tool for registering/unregistering the ATSDCx86.d11 library. By default,
the installer usually registers this library automatically. Check the main installation folder to see
if it contains the file AISDCx86 . t1b or not. If this file exists, then the library registration was
successful. If not, then run AxComRegé64 .exe, click the Browse... button to select the
ATISDCx86 .d11 file, then click the Register button.

4 ActiveX COM Registrar (x86) - Copyright € Dia Al Azzawi 2014, West Virginia University

Lo i

‘ Register ‘ ‘ Urregister ‘

11. FDIEVisualizer.exe: A tool for visualizing the FDIE outcome from the simulation models. This
tool will run automatically by the simulation models.



12. SelfViewer.exe: A tool for viewing and analyzing the 2D selves/nonselves. Be patient when
running this tool for the first time as it takes few minutes to respond after doing extensive check
and validation of the installed MATLAB versions that are compatible with the tool. After it
responds, select the MATLAB version you want to run the SelfViewer with and click OK. This will
launch the selected MATLAB command window which, in turn, runs the Self Viewer v2.1 tool.

Run with MATLAE version:
[C:\Progmrn Files (x86)\MATLAB\R2010a"bin"matlab exe (version 7.10)

g
B} AIS Self Viewer v2.1 - Dia Al Azzawi, West Virginia University, 201
File  View L

EIEIESS
Diata Falder: Flight Test Data Folder:
C:\Program Files (xB8)W\W/U FDIEVAIS Aircraft Failure - Actuator - Aileron - Leftaileron_1_2.5 123 |
Flntﬂlghttestdatﬁ || use ERAU data Plot data fram: to Mumbered Projection: | 1. pref-gref -

[ Show Post-Failure Flight Envelope Reduction Subsystem:  Lefi Stabiator Failure Severity: | Low

Rall Rate Command, [radis)

—— . {17 093 068 043 0192 0053 0298 054 079 103 128,
1. pref - 1. pref -
2. gref 2. gref Self
3. rref 3. rref Man-Self
4. p 4 1p asgr + Test Data || 2198
5. NNg 5. NNg
6. MNP 8. NNr
7. MQEE 7. MQEE 08 012
8. OQEE 8. OQEE
9. DQEEP 9. DQEEp
10. DQEEq 10. DQEEq
11. DQEEr 11. DQEEr o 07 0.0734
12,V 12V 5 -
13. alpha 13. alpha £ =
14. beta 14. beta S g o027 &
15. p 15. p (SN : =
16. q 16.q 3 g
171 17.r & =
18 psi 18. psi = 0a -0.0192 g
19. theta 19. theta = (]
20, phi 20. phi % @
21.H 21.H & w©
22 pact 22 pdet % 0.4 -0.0854 E
23, qdot 23. qdot c b=
24, rdot 24, rdot 5] o
25, ax 25, ax Bk 0112
126. ay 26. ay
27 az 27. az
28, latCmd 28, latCmd
29 logCmd 20, logCmd 02 -0.158
30. dirCmd 30. dirCmd
31, thremd 21. thremd
32 M i 3ZM R 01 -0.204

u] 1 1 L -0.25

1 | 1
0 0.1 02 03 0.4 05 06 07 0.8 09 1
Morrmalized Roll Rate Comrmand

13. SimDemo.exe: A tool for the running the demo flight tests automatically. See “Running the Demo
Flights Using Automatically” below.
14. A set of Dynamic Link Libraries (DLLs) and a Config.xml configuration file.
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1.

Running the Demos with SimDemo

To run the demo flights automatically, run SimDemo . exe tool, which takes few minutes to
load the FDIE Simulation Demo window for the first time run.

Demo Simulation Model: Run with MATLAB version (choose OMNLY 32-bit):
[ FightWing_1_6 | [WVU GEN 2- DC and Real-Time SNSA ] [C:\Program Files §<86}\MATLAB\R20102 \bin'win32\MATLAB exe_{version 7.10) -

Select the demo flight you want to run, the simulation model to run the demo with, and the
MATLAB version (32-bit only) to run the selected simulation. Click the Run button.
In the Main Window, click the Initialize button and wait until the FDIE Outcome
Visualizer wv2.0 is loaded. Then select Flight Scenario that corresponds to the
selected demo in the FDIE Simulation Demo window (see the above figure). Finally, select
Scenario #4 in the Simulation Scenario options then click the OK button.

—
—




Normal Flight Conditions

4. Inthe Pilot Input Window, select A11 Pre-Recorded optioninthe Pilot Input
group, and enter LOG_CMD, LAT CMD,DIR_CMD, and THR_CMD, respectively, in the textboxes
of the Data Files Names group then click the OK button.

5. The next window is specific to the category of the selected flight demo. In this example, the
Structural Damage Menu window is loaded since the selected demo was a structural
damage one. Select the Mass & Aerodynamic Alteration option from the Failure
Scenario group then select the Right Wing option from the Damaged Surface group
and enter40 inthe Failure Time textbox, 0.06 (i.e., 6%)inthe Mass Alteration textbox,
0.075 in the CL textbox, 0.075 in the CD textbox, and 0.15 in the Cm textbox, then click the OK
button. NOTE: Other windows specific to the category of the selected demo will be described
later in this chapter.
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6. Inthe Scenario #2 window, selectthe (NLDI + A+EMRAN NN) “Frozen” PTNN values
- EMRAN-based AFDI scheme then click the OK button.

|
|
|
|
|
|

7. Inthe Scenario #2 window, select the (NLDI + A+EMRAN NN) “Frozen” PTNN values
- EMRAN-based AFDI scheme then click the OK button.
8. In the next window, select one the FDIE schemes and click the OK button.
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9. (lickthe Start Simulation button on the toolbar of the simulation model to start the demo
and monitor the FDIE Outcome Visualizer tool asthe simulation is running.

File Edit View Simulation Format Tools Help

DBEE +BR|et|on b sk e - S&Bes REES®

ASEMRAN
AFDI
‘Constant Derivatives

k4

Warisble selection
for SFDIA and control

=|u v o Sensors

wind &
urbulence
—»E

[

Noise

‘Sensors Failures

EEmEms

- M e
fang > Actustors F15
Ll - -’_::\—Pwd Surfaces 2 W o omics 1 gynamics
sens ::l
=5 he
Input GENZ Contraller Output
TR Decouple Control Surfaces
—E
Pilot1 o[ Thiottie
Maqbar |
Collective Canard
Sensors g Switch part

> qEE T
Throttle [
- IEI Stick g
— [Ca— [EF S 4
Eamas] ot
M BT » Immunity-HWS ‘safdi_param o

-_plb_y SAVING DATA1 resl_par B

Data Manager AFDI
]
30
-
530

Ready

R4
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Windows and Parameters Specific to Selected Flight Scenarios:

1. Nominal Flights: There is no specific window for this group.

2. Control Surface (Actuator) Failure:
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The following table lists the options and values for each of the installed demos that the user must

specify:

Demo

Selections/Values

LeftStabilator 1 _6

Choose Locked Surface,Locked at | nposed Defl ection,
and Left Stabil ator.

Enter 40 in the Fai | ur e Ti ne textbox, 6 in the Def | ecti on at
Fai | ur e textbox.

LeftStabilator_1_8

Choose Locked Surface,Locked at | nposed Defl ection,
and Left Stabil ator.

Enter 40 in the Fai | ur e Ti ne textbox, 8 in the Def | ecti on at
Fai | ur e textbox.

RightAileron_1_8

Choose Locked Surface,Locked at | nposed Defl ection,
and Ri ght Ai |l eron.

Enter 40 in the Fai | ur e Ti ne textbox, 8 in the Def | ecti on at
Fai | ur e textbox.
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3. Sensor Failure:

The following table lists the options and values for each of the installed sensor failure demos that
the user must specify:

Demo Selections/Values

Choose Large Step Bias and Rol| Rate.
Roll_1_LsB10 Enter 40 in the Fai | ure Ti e textbox.

Roll_LSB_1B Choose Large Step BiasandRol |l Rate.
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Enter 40 in the Fai | ure Ti nme textbox.

ChooseLarge Step BiasandPitch Rate.

Pitch_1_LSB10 Enter 40 in the Fai | ure Ti me textbox.
Choose Large Step Bi as and Yaw Rat e.
Yaw_1_LSB3 Enter 40 in the Fai | ure Ti e textbox.

4. Structural Damage:

18



The following table lists the options and values for each of the installed structural damage demos
that the user must specify:

Demo Selections/Values
Choose Mass & Aerodynam c AlterationandRi ght W ng.
RightWing_1_6 Enter 40 in the Fai | ur e Ti e textbox, 0.06 in the Mass

Al t er at i on textbox, 0.075 for CL, 0.075 for CD, and 0.15 for Cm

LeftWing_1_10

Choose Mass & Aerodynam c AlterationandLeft Wng.
Enter 40 in the Fai | ur e Ti ne textbox, 0.1 in the Mass
Al t er at i on textbox, 0.1 for CL, 0.1 for CD, and 0.1 for Cm

LeftWing_1_15

Choose Mass & Aerodynamic AlterationandLeft Wng.
Enter 40 in the Fai | ur e Ti ne textbox, 0.15 in the Mass
Al t er at i on textbox, 0.18 for CL, 0.18 for CD, and 0.2 for Cm
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4

Running the Demos Inside MATLAB

Running the demos without the SimDemo tool and directly from MATLAB requires configuring
MATLAB only for the first time before running any demo. Follow these steps to configure MATLAB to
run the installed simulations smoothly:

1.

8.

Run MATLAB and check if it has already been configured to use a compiler for compiling C/C++
files. If not, type mex —set up in the MATLAB’s Command W ndow and follow the setup a
C/C++ compiler.

Change the working directory to the “AlS Aircraft FDIE” installation directory

[installation root]\WU FDIE\AIS Aircraft FD E\Si mul ati ons\ WU
GEN 2 - DC and Real - Ti nre SNSA\ f dm ann8\ sour ce

In the command window, run the command mex dcsgl 2. ¢ to compile this file. The compiler
will generate a binary file named dcsgl 2. mexw32 in the same directory.

Repeat Step 3 for to compile the filesenr an8. c andvrnul t . c.

Move all the compiled .mexw32 files to the parent (ann8) directory so that they appear next to
their. dl | files.

Redo Steps 2 to 5 for the directory

[installation root]\WU FDIE\AIS Aircraft FDIE\Sinul ati ons\ WU
GEN 2 - DC and Real - Ti ne SNSA\ fdm snxl \ source

for the files VRMULT. C, VRPI NV. C, VRSVD. C, and VRTRSP. C.

Click the Set Pat h... menu item from the Fi | e menu.

Click the Add wi t h Subf ol der s...button and browse to the folder

[installation root]\WU FDIE\AIS Aircraft FDIE\Sinulations\WU
GEN 2 - DC and Real - Ti me SNSA\fdm

and click OK.

Click Save then Cl ose to exit the Set Pat h window.

Once MATLAB is configured as described above, you can run the simulations from now on by
following these two simple steps:

1.

2.
3.

Change the working directory to the folder corresponding to the flight demo you want to run.
For example, if you want to run the LeftStabilator_1_6 demo, you should change MATLAB’s
working directory to

[instal |l ation root ]\ WuU FDI E\ Al S Aircraft
FDI E\ Denos\ Left Stabil ator _1 6

In the command window, type WVU_GEN2 and click enter.

Follow the same instructions described previously to interact with simulation interfaces.
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