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1. Introduction

This DoD BCRP HBCU Partnership Training project was designed to enhance Delaware State University 
(DSU) breast cancer research resources.  We have performed a multifaceted training of a cadre of DSU faculty 
to study breast cancer and establish an independent research program at DSU through a joint DSU – University 
of Pennsylvania (UPENN) research project focused on breast cancer risk disparity in minority populations. 
This introduction gives a brief overview of the training and research activities performed on this project, which 
are detailed in the body of the report.   

During Y1 and Y2, we focused on training and research.  In Y1, DSU faculty working on this project took 
various classes at UPENN, focused at Breast Cancer Epidemiology, Biology, and Imaging (detailed in Section 
2.1.1).  In addition to these didactic classes, we organized a DSU-UPENN Breast Cancer Basics Seminar Series, 
held bi-weekly at DSU (Section 2.1.2).  Regarding the research project, we have reviewed the database of 
anonymized clinical multimodality breast images (mammography, tomosynthesis, MRI, ultrasound, and PET), 
previously acquired within the NIH Program Project Grant supported clinical study at UPENN.  Goal of the 
review was to familiarize with standard DICOM format of medical images, and to develop a Matlab code for 
extracting and processing metadata from images (Section 2.2).  We have also we submitted applications and 
obtained the UPENN IRB and ACRIN approvals for the proposed transfer of mammography images from all 
minority women and their Caucasian controls from the ACRIN DMIST trial, to be used in our cancer risk 
disparity study (Section 2.2.1).   

In Y3, we continued our partnership on breast cancer training and research.  The bi-weekly DSU-UPENN 
Breast Cancer Basics Seminar Series has been continued at DSU.  In addition, DSU faculty attended a number 
of breast cancer related seminars at UPENN.  We have also continued with the transfer and analysis of 
requested images from the ACRIN DMIST database.  Specifically, we integrated the ACRIN data into a clinical 
MIRC database and started with the analysis of image based biomarkers of breast cancer risk (Section 2.2.1).  In 
addition, we worked on the refinement of the UPENN breast anatomy simulation method (Section 2.2.4).  Our 
new design of the software breast phantom and its GPU implementation, as well as the proposed partial volume 
representation, have been published in several conference and journal papers (listed in Chapter 4).  

In Y4 we finalized the ACRIN DMIST data transfer and resolved issues with various batch transfers.  We 
performed a preliminary query of the ACRIN data aimed at identifying the prevalence of women with 
incomplete visualization of the breast (Section 2.2.1).  A novel breast image registration method has been 
proposed to obtain a composite mammogram from several images with partial breast coverage, for the purpose 
of accurate breast density estimation (Section 2.2.3; publication listed in Chapter 4).  We developed a code to 
estimate the breast cancer risks using the demographic metadata from the ACRIN cases (Section 2.2.1).  We 
estimated mammographic breast density from ACRIN DMIST images using the software developed at the 
UPENN (Section 2.2.4).  We have continued with the refinement of the UPENN software breast phantom 
(Section 2.2.4, publications listed in Chapter 4). We have also designed a method to improve thickness control 
of the Cooper’s ligaments in the simulation algorithm by reducing “dents” on the ligaments’ surface (Section 
2.2.4).  We have submitted the first proposal from this project, NIH R01 on the continued development of the 
breast anatomy and imaging simulation (PIs:  Bakic and Pokrajac).  The proposal was scored at 41% but not 
funded. 

During the no-cost extension year, we have improved the use of the project database by constructing a web-
based data center (Section 2.2.1).  We have also completed the analysis of the ACRIN DMIST images.  By 
merging source data, converted data and computed data together to create a relational database and developing 
facilitating functions, we implemented various kinds of data selection requirements in terms of SQL statements, 
and apply further statistics routines to discover more hidden correlations among different quantities.  Our 
manuscript about cancer risk related results are being prepared for publication.  We also updated the breast 
imaging simulation pipeline and a computer demo of real-time simulation, and developed proof for 
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computational complexity of the simulation algorithm and demonstrated its asymptotic efficiency (section 2.2.4; 
publications listed in Chapter 4).  Finally, our proposal to NIH INBRE program, on the analysis and simulation 
of breast small scale tissue structures (PI: Pokrajac) was funded in February 2014.  The following sections 
(entitled based upon the original objectives from the grant Statement of Work) detail the performed work and its 
deliverables. 
 

2. Body 
 
(The following introductory paragraphs and the grant objectives – used as headings in the following text – were 
copied from the original grant proposal.) 
With this funded project, we will enhance DSU breast cancer research resources by:  improving our expertise in 
translational and clinical breast cancer research; developing methods for computing image-based biomarkers for 
breast cancer risk, as well as methods for biomarker analysis of risk disparity; developing a database of clinical 
biomarkers computed from images of minority women; refining the existing and developing novel data mining 
techniques to determine the relationship between risk and image-based biomarkers.  The improvement will 
support further growth of a sustained breast cancer research program at DSU and help establish us as a 
mid-Atlantic center for analysis of breast cancer risk and risk disparity among minority women.  

The specific objectives of this training program include: (1) extending the skills of a select cadre of DSU 
faculty, so that they may become accomplished, influential and competitive breast cancer researchers; (2) 
establishing an independent breast cancer research program at DSU by performing a joint DSU–UPENN 
research project focused on breast cancer risk disparity in minority populations; and (3) producing a corpus of 
high quality published work and develop a portfolio of independently funded research grants at DSU to support 
a sustained breast cancer research program. 

 
 

2.1 Objective 1 
Objective 1 (from SOW):  Extend the skills of a select cadre of Delaware State University (DSU) faculty, so 
that we may become accomplished, influential, and competitive breast cancer researchers. 
 

2.1.1  Specific Training for DSU Faculty  
Complementing Individual Scientific Backgrounds 

 
Fall 2009 Semester 
 
Fengshan Liu and Xiquan Shi took: 
 
BE 483-401 2009C. Molecular Imaging 
Course content includes:  Structure of an atom, electromagnetic radiation, electron orbitals, the nucleus; 
radioactive decay, interactions of radiation with matter, X-ray imaging instrumentation; interactions of x-rays 
with tissue, computed tomography, X-ray contrast media, ultrasound image, and magnetic resonance imaging 
(MRI). 
 
 
Dragoljub Pokrajac and Charlie Wilson took: 
 
EP 801 Fundamentals of Epidemiologic Study Designs  
 
This course is a series of lectures designed to teach basic principles of epidemiologic research design. Lectures 
include the following topics: definitions of epidemiology; measures of disease frequency; measures of effect 
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and association; epidemiologic study designs, both experimental and non-experimental; and an overview of 
analysis of epidemiologic studies. 

Spring 2010 Semester 

Xiquan Shi took: 

CAMB 512-001 2010A. Cancer Biology & Genetic: Cancer Biology and Genetics 
The course objective is to introduce the students to important and timely concepts in Cancer Biology and 
Cancer Genetics. The lectures are organized into four broad thematic groups: A) Cell-Autonomous Mechanisms 
(e.g., tumor suppressor and oncogene function, DNA repair pathways, senescence, apoptosis); B) Non Cell-
Autonomous Mechanisms (e.g., tumor microenvironment, hypoxia, angiogenesis); C) Organ Systems (e.g., 
pancreatic cancer, hematopoietic malignancies); and D) Therapeutic Approaches (e.g. protein kinase inhibitors, 
immunotherapy, radiation therapy). The organizers, along with faculty from the School of Medicine, the Wistar 
Institute and CHOP, with expertise in the corresponding areas provide lectures for the course. The students are 
expected to present, and participate in discussions of one or more key recent papers at Journal Clubs that are 
held at the end of each thematic group. There will be mid-term and final exams of short essays relevant to the 
lectures. 

Fengshan Liu and Dragljub Pokrajac took: 

BE545/CIS 537    Biomedical Image Analysis  
This course covers the fundamentals of advanced quantitative image analysis that apply to all of the major and 
emerging modalities in biological/biomaterials imaging and in vivo biomedical imaging. While traditional 
image processing techniques will be discussed to provide context, the emphasis will be on cutting edge aspects 
of all areas of image analysis (including registration, segmentation, and high-dimensional statistical analysis). 
Significant coverage of state-of-the-art biomedical research and clinical applications will be incorporated to 
reinforce the theoretical basis of the analysis methods. 

Graduate Courses taken at UPENN 

Spring 2011 Course 

Dr. Charlie D. Wilson took: 

GCB 535 Intro to Bioinformatics 

Course Description: The course provides a broad overview of bioinformatics and computational biology as 
applied to biomedical research. Course material will be geared towards answering specific biological questions 
ranging from detailed analysis of a single gene through whole-genome analysis, transcriptional profiling, and 
systems biology. The relevant principles underlying these methods will be addressed at a level appropriate for 
biologists without a background in computational sciences. This course should enable students to integrate 
modern bioinformatics tools into their research program. 

Spring 2010 Semester
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Xiquan Shi took: 

CAMB 512-001 2010A. Cancer Biology & Genetic: Cancer Biology and Genetics 
The course objective is to introduce the students to important and timely concepts in Cancer Biology and 
Cancer Genetics. The lectures are organized into four broad thematic groups: A) Cell-Autonomous Mechanisms 
(e.g., tumor suppressor and oncogene function, DNA repair pathways, senescence, apoptosis); B) Non Cell-
Autonomous Mechanisms (e.g., tumor microenvironment, hypoxia, angiogenesis); C) Organ Systems 
(e.g., pancreatic cancer, hematopoietic malignancies); and D) Therapeutic Approaches (e.g. protein kinase 
inhibitors, immunotherapy, radiation therapy). The organizers, along with faculty from the School of Medicine, 
the Wistar Institute and CHOP, with expertise in the corresponding areas provide lectures for the course. The 
students are expected to present, and participate in discussions of one or more key recent papers at Journal 
Clubs that are held at the end of each thematic group. There will be mid-term and final exams of short essays 
relevant to the lectures. 

Spring 2010 Semester 

Fengshan Liu and Dragoljub Pokrajac took: 

BE545/CIS 537 Biomedical Image Analysis 
This course covers the fundamentals of advanced quantitative image analysis that apply to all of the major and 
emerging modalities in biological/biomaterials imaging and in vivo biomedical imaging. While traditional 
image processing techniques will be discussed to provide context, the emphasis will be on cutting edge aspects 
of all areas of image analysis (including registration, segmentation, and high-dimensional statistical analysis). 
Significant coverage of state-of-the-art biomedical research and clinical applications will be incorporated to 
reinforce the theoretical basis of the analysis methods. 

Spring 2010 Semester 

Charlie Wilson took: 

GCB/CAMB 752 SEMINAR IN GENOMICS 
Recent papers from the primary genomics literature will form the core material for the course. Each 3-hr session 
will feature a major topic or set of related topics in Genomics, with student presentations (usually two per 
session) centered on papers selected within the topic area(s). While the “presenting” student will give a 10- 15 
min introduction to the paper and will show PowerPoint slides of the data in the paper, all students in the class 
are expected to have read and to be prepared to discuss the papers presented 

Spring 2011 Course 

Charlie Wilson took: 

GCB 535 Intro to Bioinformatics 

Course Description: The course provides a broad overview of bioinformatics and computational biology as 
applied to biomedical research. Course material will be geared towards answering specific biological questions 
ranging from detailed analysis of a single gene through whole-genome analysis, transcriptional profiling, and 
systems biology. The relevant principles underlying these methods will be addressed at a level appropriate for 
biologists without a background in computational sciences. This course should enable students to integrate 
modern bioinformatics tools into their research program
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o Augment the faculty training by frequent communications with collaborating mentors and other
renowned breast cancer researchers, by: (Y1-4) 

2.1.2 Biweekly DSU-UPENN Breast Cancer Seminar Series 

DSUPENN Breast Cancer Seminar Series 

DSUPENN Breast Cancer Seminar Series are organized to provide training in breast cancer research to DSU 
faculty including Fengshan Liu, Xiquan Shi, Charlie Wilson and Dragoljub Pokrajac and students at Delaware 
State University. Invited speakers of the biweekly seminar series include nationally renowned breast cancer 
researchers from UPENN Medical School, nearby hospitals and other institutions. 

Speakers: 
Invited speakers of the biweekly seminar series include nationally renowned breast cancer researchers from 
UPENN Medical School, nearby hospitals and other institutions. 

Before October 9, 2009: We named the seminar series as Biweekly DSU-UPENN Breast Cancer Basics 
Seminar Series. Contents including: Breast Cancer Risk Factors; The Biology of Breast Cancer (I, II and III); 
and Cancer Imaging.  

Date: July 10, 2009 
Seminar title: Inverse Cell Biology Overview 
Speaker: Charlie Wilson, DSU 
Description:  This presentation provided an introduction to the general components of animal cells and the  
specific types of cells found in breast tissue.  The basics of cell growth dynamics and changes associated with 
cancer were also addressed. The role of gene products from proto-oncogenes and tumor suppressor genes in 
cancer were discussed. 

Date: July 13, 2009 
Seminar title: Breast Cancer: Cells/Tissues/Types 
Speaker: Charlie Wilson, DSU 
Description:  The anatomy of the breast to include glandular and stromal components, lymph nodes, and 
anatomical relationship to other structures of the torso was presented. The basics of several types of imaging 
techniques were discussed and some mammograms of normal and cancerous breast were shown. The 
terminology for different types of breast cancer (lobular vs ductal; in situ vs invasive) was described as well as 
the criteria used by pathologist to assign a tumor grade. 

Date: July 15, 2009 
Seminar title: Breast Cancer: Epidemiology  
Speaker: Charlie Wilson, DSU 
Description:   This lecture looked at the risk factors associated with breast cancer, its incidence and mortality, 
and the role of BCRA1/2 in breast cancer development. 

Date: 8/12/09  
Seminar title: Inverse free boundary problem for a reaction-diffusion model of cancer growth 
Speaker: Yongzhi Xu, Department of Mathematics, University of Louisville 
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Description: The growth of cancer cell may be modeled by a reaction-diffusion equation with free boundary. In 
an earlier paper, we developed a free boundary model to describe the homogeneous growth inside a cylinder, a 
model mimicking the growth of ductal carcinoma in situ (DCIS). Assuming that we know the coefficients of the 
model, we analyzed the growth tendency of DCIS. The analysis and computation of the problem show 
interesting results that are similar to the patterns found in DCIS. In this talk we present some inverse problems 
related to the free boundary model of DCIS. Assuming that we know the solution of the free boundary problem 
in a section of the cylinder, along with the known initial, boundary and free boundary conditions, we consider 
the inverse problem of finding the coefficients and the solution in the cylinder. The motivation of this problem 
is to develop mathematical methods to diagnose growth tendency of DCIS from biopsy data. 

Date: Aug 18, 2009 
Seminar title: Screening for Breast Cancer 
Speaker: Shunli Zhang, MD, Kent General Hospital, Dover, DE 
Description: Breast cancer is the most common and second deadliest cancer in women.  The breast cancer 
mortality has been decreased significantly in recent years due to the screening tests.  Mammography, 
ultrasound, and magnetic resonance imaging are the three most commonly used screening tests.  Their 
principles, common imaging features, and guidelines are discussed.  

After October 9, 2009: After running the seminars for 5 months, we named the seminar series as “DSUPENN 
Breast Cancer Seminar Series”. A kick-off opening ceremony was held on October 9, 2009. The kick-off was 
well attended by 38 faculty members and students from DSU and UPENN. The DSU acting president Dr. 
Claibourne Smith attended the kick-off. All other seminars are well attended by an average of 22 faculty and 
students each seminar. 

Here is the opening ceremony program: 
______________________________________________________________________ 

DSUPENN Breast Cancer Seminar Series 
Opening Ceremony 

Applied Mathematics Research Center, DSU 
Department of Radiology, UPENN 

Date:   October 9, 2009 (Friday) 
Location:  BOA 309 
Time:  
3.00pm  Introducing the speaker, Dr. Predrag Bakic, UPENN 

Seminar talk by Dr. John Lynch from UPENN Medical School. 
4.00pm  Introduction to the seminar series   

Fengshan Liu, Applied Mathematics Research Center, DSU 
Andrew Maidment, Department of Radiology, UPENN 

4.15pm  Welcome speech   
 Claibourne Smith, Acting President, DSU 

4.30pm Reception 
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This seminar series is funded by US Army Medical Research as part of a Delaware State University (DSU) and 
University of Pennsylvania (UPENN) joint research project “Image Based Biomarker of Breast Cancer Risk: 
Analysis of Risk Disparity Among Minority Populations” (award number: W81XWH-09-1-0062). Invited 
speakers of the biweekly seminar series include nationally renowned breast cancer researchers from UPENN 
Medical School, nearby hospitals and other institutions.  
With this funded project, we will enhance DSU breast cancer research resources by:  improving our expertise in 
translational and clinical breast cancer research; developing methods for computing image-based biomarkers for 
breast cancer risk, as well as methods for biomarker analysis of risk disparity; developing a database of clinical 
biomarkers computed from images of minority women; refining the existing and developing novel data mining 
techniques to determine the relationship between risk and image-based biomarkers.  The improvement will 
support further growth of a sustained breast cancer research program at DSU and help establish us as a 
mid-Atlantic center for analysis of breast cancer risk and risk disparity among minority women.  

The specific objectives of this training program include: (1) extending the skills of a select cadre of DSU 
faculty, so that they may become accomplished, influential and competitive breast cancer researchers; (2) 
establishing an independent breast cancer research program at DSU by performing a joint DSU–UPENN 
research project focused on breast cancer risk disparity in minority populations; and (3) producing a corpus of 
high quality published work and develop a portfolio of independently funded research grants at DSU to support 
a sustained breast cancer research program. 

Date:   October 9, 2009 (Friday) 
Location:  BOA 309 
Seminar Title: Cell to Cell and Cell-ECM Adhesion in Cancer 
Speaker:  Dr. John Lynch, UPENN Medical School 
Description: Cell adhesion mechanisms are especially important for the development and function of normal 
epithelium in many tissues including the breast. Disruption of the normal cell-cell and cell-extracellular 
adhesion processes contributes to carcinogenesis by promoting cell proliferation and permitting cancer cell 
metastasis. We will discuss several common mechanisms by which cell adhesion processes are disrupted in 
carcinogenesis and how the promote cancer progression. 

Following this very successful opening lecture, we held 6 bi-weekly seminars to date, with another 5 scheduled 
by the end of Spring 2010 semesters.  All the seminars were very well attended; an average attendance was 18.  
Following is the list of speakers and topics presented at the seminar series.  

Date: October 23, 2009 
Location: ETV 131 
Title: Future Trends in Breast Imaging 
Speaker: Andrew D. A. Maidment, Ph.D., FAAPM, Associate Professor of Radiology, Chief, Physics Section, 
University of Pennsylvania 
Description: Medical radiography is undergoing a revolution towards quantitative tomographic imaging.  As 
currently practiced, quantitative imaging involves the extraction of quantifiable features from images; these 
features add to the clinical assessment of the severity, degree of change, or relative status of a disease or injury.   
The field of quantitative imaging includes the development, standardization, and optimization of anatomical, 
functional, and molecular imaging acquisition, data analyses, display methods, and reporting.  Current research 
is focused on the development and validation of precise image-derived metrics (image-based biomarkers) with 
physiologically relevant parameters, including treatment response to interventions and clinical outcomes.  
As with morphologic imaging, quantitative imaging is best performed tomographically; the removal of 
superimposed anatomy results in more accurate and precise quantification and localization.  There are two 
trends in tomographic x-ray imaging.  The first is the increased use of computed tomography (CT); the second 
is the development and implementation of tomosynthesis or limited-angle computed tomography.  Given that 
there has been significant attention paid to the high-doses associated with traditional CT, tomosynthesis is likely 
to become far more prevalent in the next decade. Finally, there is a revolution in radiographic contrast 
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agents.  Taking inspiration from nuclear medicine and optical imaging, we are seeing an increase in research 
into radiographic contrast agents.  These developments are made possible given recent advances in 
nanoparticles such as designer liposomes, polymersomes and nanospheres.  Both blood-pool and targeted 
contrast agents are under investigation. 
 
Date: November 6, 2009 
Location: ETV 131 
Title: Breast Cancer Epidemiology 
Speaker: Shannon Lynch, University of Pennsylvania 
Description: Breast cancer epidemiology is the study of the distribution and determinants of breast cancer in 
human populations.  In the early 1990s, breast cancer incidence and mortality rates were higher in the 
Northeastern United States and in California, prompting breast cancer advocates to unite and push a national 
breast cancer agenda.  Today, incidence rates and mortality rates of breast cancer are on the decline in the U.S., 
mostly due to advances in the prevention, screening, and treatment of breast cancer.  Risk factors or 
determinants of breast cancer will be reviewed, as well as the role of breast cancer treatment, stage, and disease 
type in affecting breast cancer survival.   Future directions in breast cancer research, including a focus on health 
disparities and environmental determinants of disease across critical periods of the human lifespan will be 
discussed. 
 
 
Date: Dec 18, 2009  
Location: ETV 131 
Title: Clinical Breast Imaging 
Speaker: Sara Gavenonis, University of Pennsylvania  
Description: This lecture will serve as a general overview of current breast imaging technologies, including 
mammography, ultrasound, and breast MRI.  The current discussion regarding screening mammography will 
also be reviewed.  Future directions in breast imaging research will be covered briefly. 
 
 
Date: January 21, 2010  
Location: ETV 131 
Title: Synopsis of Breast Pathology 
Speaker: Shunli Zhang, MD, Kent General Hospital, Dover, Delaware 
Description: Breast cancer is the 2nd most common malignant neoplasms in women and more than 44,000 
deaths occur each year in US.  Although the classification of breast neoplasms is very complicated, this lecture 
will cover 12 most common breast lesions, their pathological changes and the clinical significance.  The 
pathologists' role in treating breast cancer will also be discussed. 
 
Date: January 29, 2010 
Location: ETV 131 
Title: Surgical Approaches in Breast Cancer Treatment 
Speaker: Julia Tchou, M.D., Ph.D., University of Pennsylvania 
Description: It is an overview talking about various surgical techniques from diagnosis to treatment.  I will 
include discussion of breast conserving surgery vs. mastectomy and sentinel node biopsy in the talk. 
 
 
Date: Feb 19, 2010 
Location: ETV 131 
Title:  The Pathology of Breast Cancer 
Speaker:  Carolyn Mies, MD, Associate Professor, Department of Pathology and Laboratory Medicine, 
University of Pennsylvania 
Description: The presentation is designed to introduce the basic vocabulary &  histology of human breast 
cancer & to describe the pathologist's  role in estimating prognosis & guiding treatment. 
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Date: March 5, 2010 
Location: ETV131 
Title: Genetic Counseling and Testing for BRCA1 and BRCA2 Mutations in African American Women 
Speaker: Chanita Hughes Halbert, University of Pennsylvania 
Description: This presentation will describe research that is being conducted to improve decision-making about 
genetic testing for inherited breast cancer risk among African American women at increased risk for hereditary 
disease.  Research on psychological and behavioral outcomes following genetic counseling will also be 
discussed. 
 
 
Date: March 26 2010 
Location: ETV131 
Title: Treatment of Breast Cancer- The Medical Oncologist's Approach Multimodality 
Speaker: Keerthi Gogineni, University of Pennsylvania 
Description: I will be talking about the fundamentals of breast cancer, with a focus on the medical treatment of 
the disease. 
 
 
Date: April 9, 2010 
Location: ETV131 
Title: Breast Cancer Radiation Therapy Treatment Techniques 
Speaker: Timothy Zhu, University of Pennsylvania 
Description: We will present techniques typically used for radiation therapy for breast cancer, including 
conventional techniques, IMRT, brachytherapy, and other special techniques. 
 
 
Date: April 23, 2010 
Location: ETV131 
Title: Computer-aided diagnosis in mammography: from the desktop to the clinic 
Speaker: Robert Nishikawa, The University of Chicago 
Description: Computer-aided diagnosis (CAD) for mammography started over 25 years ago and over the years 
has been developed into a commercial product that is used routinely clinically.  In this talk I will describe the 
development of CAD and the current evidence of its clinical effectiveness. 
 
 
Date: May 7, 2010 
Location: ETV131 
Title: Multimodality Breast Imaging Biomarkers for Cancer Risk Estimation and Personalized Screening  
Invited Speaker:  Despina Kontos, University of Pennsylvania  
 
Description: Growing evidence suggests that increased parenchymal pattern complexity is associated with a 
higher risk for developing breast cancer. Currently, the most widely used methods to quantify parenchymal 
complexity rely on semi-automated techniques that estimate the percent of the dense tissue in mammograms. 
Although useful for breast cancer risk estimation, these methods are highly subjective and difficult to 
standardize, potentially limiting their applicability to the general population. Emerging tomographic breast 
imaging modalities offer the opportunity to develop novel imaging biomarkers for quantifying parenchymal 
pattern complexity that may ultimately result in more accurate measures to estimate breast cancer risk. This 
lecture will provide an overview of emerging techniques to perform parenchymal pattern analysis using imaging 
modalities such as digital breast tomosynthesis (DBT), magnetic-resonance imaging (MRI) and breast 
ultrasound (US). Improving breast cancer risk estimation using multimodality imaging biomarkers could be of 
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great clinical advantage for offering customizing screening recommendations, tailoring individual treatments, 
and forming preventive strategies, for women at a higher risk of breast cancer. 
 
 
Location: ETV131 
Title: Review of Breast Cancer Basics Multimodality 
Speaker: Sara C. Gavenonis, MD, University of Pennsylvania 
Description: This lecture is an overview of topics covered during the 2009-2010 seminar series.  The clinical 
“world” of breast cancer will be broadly reviewed, including epidemiology, anatomy, pathology, imaging, and 
current clinical oncology.  Current and future research directions will also be covered, with focus on breast 
imaging research.   
 
 
Date: January 17, 2013 
Location: ETV131 
Title: Task-based strategy for optimized contrast enhanced breast imaging: Analysis of six imaging techniques 
for mammography and tomosynthesis.  
Speaker: Lynda Ikejimba, PhD student, Medical Physics Graduate Program, Duke University. 
Description: Digital breast tomosynthesis (DBT) is a novel x-ray imaging technique that provides 3D structural 
information of the breast. Compared to 2D mammography, DBT minimizes tissue overlap potentially 
improving cancer detection and reducing number of unnecessary recalls. The addition of a contrast agent to 
DBT and mammography for lesion enhancement has the benefit of providing functional information of a lesion, 
as lesion contrast uptake and washout patterns may help differentiate between benign and malignant tumors. 
This study used a task-based method to determine the optimal imaging approach by analyzing six imaging 
paradigms in terms of their ability to resolve iodine at a given dose: contrast enhanced mammography and 
tomosynthesis, temporal subtraction mammography and tomosynthesis, and dual energy subtraction 
mammography and tomosynthesis. 
 
 
 
 

2.1.3 Additional training activities (seminars at UPENN, mentoring sessions, and communication) 
 
 
Fengshan Liu, Xiquan Shi, Charlie Wilson and Dragoljub Pokrajac attended the following UPENN Seminar. 
 
Title: Breaking Barriers: Caring for the Underserved and Undocumented 
  
Objectives: 
·         Discuss the limitations to healthcare encountered by a migrant population 
·         Understand the value of outreach in the development of the physician 
·         Describe our experience with providing healthcare to a migrant population 

 
Jack Ludmir, MD 
Professor and Chair, Department of Obstetrics and Gynecology, Pennsylvania Hospital 
Vice Chairman, Department of Obstetrics and Gynecology 
Director of Obstetrical Services, University of Pennsylvania School of Medicine 
President of Women and Children’s Health Services 
  

Date:              January 19, 2011 (Wednesday) 
Time:             12:00 - 1:00 PM 
Location:       Seminar Room 253, BRB II/III (Biomedical Research Building 421 Curie Blvd.) UPENN 
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o Augment the faculty training by frequent communications with collaborating mentors and other
renowned breast cancer researchers, by: (Y1-Y4) 

 DSU faculty traveled to UPENN to attend the above-mentioned seminars, and to meet with the collaborating 
mentors on the same trips. Meetings are always scheduled after the seminars at UPENN. UPENN collaborating 
mentors, particularly Andrew Maidment and Predrag Bakic come to DSU to organize and attend the DSUPENN 
Breast Cancer Seminar Series. Communications are made between the seminar speakers, the mentors and DSU 
faculty. 

• In the period January-June 2011, Among UPENN-DSU collaborative activities, Drs. Pokrajac,
Maidment and Bakic supervised two Penn graduate students during their course project for the CIS537
class on Biomedical Image Analysis.  The students have been working on the quantification and
characterization of simulated phantom shapes using geometrical methods.  The obtained results have
been published in the 2012 SPIE Medical Imaging conference paper (see Chapter 4).

• Fengshan	  Liu	  attended	  the	  2009	  Annual	  Health	  Research	  Conference	  Oct.	  13-‐14,	  Dover,	  DE	  on	  health
disparity.

• On August 2-5, 2011, Fengshan Liu and Charlie Wilson attended and presented at the Department of
Defense Breast Cancer Research Program “Era of Hope” Conference in Orlando, FL.
(https://cdmrpcures.org/ocs/index.php/eoh/eoh2011)

o The	  poster	   presentation	   entitled	   “Image	  Based	  Biomarkers	   of	   Breast	   Cancer	   Risk:	   Analysis	   of
Risk	   Disparity	   Among	  Minority	   Populations”	   (co-‐authored	   by	   Liu,	   F.,	   Bakic,	   P.R.,	   Pokrajac,	   D.,
Wilson,	   C.,	   Shi,	   X.,	   Kontos,	   D.,	   and	  Maidment,	   A.D.A.)	   summarized	   the	   training	   and	   research
activities	  performed	  to	  date	  on	  our	  DoD	  HBCU/MI	  PTA	  funded	  project.

• On October 6, 2011, Dr. Pokrajac presented at the Faculty of Sciences of the University of Nis, Serbia.
o The	  presentation	  entitled	  “Recursive	  Partitioning	  for	  Simulation	  of	  Breast	  Tissue,”	  (co-‐authored

by	  Pokrajac,	  D.	  and	  Bakic,	  P.R.)	  described	  the	  current	   results	   in	  simulation	  of	  breast	  anatomy
based	  upon	  the	  use	  of	  recursive	  partitioning.

• On October 19, 2011, DSU collaborators attended the semiannual Research Retreat at UPENN
o The	   agenda	   included	   a	   review	   of	   the	   research	   activities	   within	   the	   previous	   6	   months,	   and

discussion	  of	  the	  future	  activities,	  including	  the	  (i)	  Analysis	  of	  the	  ACRIN	  data;	  	  (ii)	  Preparation
of	  journal	  and	  conference	  publications	  from	  the	  DoD	  funded	  project;	  	  (iii)	  Potential	  future	  grant
proposals	  motivated	  by	  the	  results	   from	  this	  project;	  and	   	   (iv)	  Discussion	  of	   the	  simulation	  of
partial	  volumes	  in	  the	  software	  breast	  phantoms.

• On October 21, 2011, Dr. Pokrajac presented at the Medical Image Processing Group Seminar series at
the University of Pennsylvania, Philadelphia, PA.

o The	   presentation	   entitled	   “Novel	   Algorithm	   for	   Breast	   Anatomy	   Simulation	   Optimized	   for
Generation	  of	  High	  Resolution	  Software	  Phantoms,”	   (co-‐authored	  by	  Pokrajac,	  D.,	  Maidment,
A.D.A.,	   and	   Bakic,	   P.R.)	   focused	   on	   the	   new	   method	   for	   generation	   of	   software	   breast
phantoms.
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• On November 4, 2011, Mr. Feiyu Chen, a Ph.D. student at DSU, presented at the Mid-Atlantic 
Numerical Analysis Day, organized at Temple University, Philadelphia, PA. 

o The	   presentation	   entitled	   “Partial	   Volume	   Simulation	   in	   Software	   Breast	   Phantoms”,	   (co-‐
authored	  by	  Chen,	  F.,	  Pokrajac,	  D.,	  Shi,	  X.,	  Liu,	  F.,	  Maidment,	  A.D.A.,	  and	  Bakic,	  P.R.)	  described	  
the	   initial	   results	   in	   developing	   a	   partial	   volume	   representation	   of	   the	   breast	   anatomy	  
simulation.	  

 
 

• On December 2, 2012, Dr. Pokrajac attended a Medical Image Processing Group Seminar “Application 
of Multifractal Analysis in Signal and Image Processing” at the University of Pennsylvania, 
Philadelphia, PA, presented by Dr. Branimir Reljin, the University of Belgrade, Serbia.  

o The	  presentation	  described	  the	  results	  of	  using	  multifractal	  analysis	  in	  various	  signal	  and	  image	  
processing	  applications,	  including	  the	  analysis	  of	  digitized	  mammogram	  images.	  

 
• On December 27, 2011, Dr. Pokrajac presented at the Faculty of Electrical Engineering of the University 

of Nis, Serbia.  
The presentation entitled “Simulation of Breast Tissue using Recursive Partitioning Algorithm,” (co-
authored by Pokrajac, D. and Bakic, P.R.) described the new method for simulation of breast 
anatomy.    

 
• On January 27, 2012, Drs. Xiquan Shi, Fengshan Liu, and Dragoljub Pokrajac attended the Abramson 

Cancer Center Breast Cancer Program Scientific Retreat in Philadelphia, PA. 
The retreat agenda included the review of ongoing research within the Breast Cancer Program in the 
areas of basic science, breast cancer imaging, cancer risk assessment and prevention, and 
clinical/translational trials.  Discussed were also the future collaborations and program planning 
related to the breast cancer survivorship, breast cancer Biobank, and other programs, meetings, and 
presentations. 

 
• On February 4-9, 2012, Dr. Pokrajac and Mr. Chen attended and presented the Medical Imaging 

conference by the Society of Photo-Optical Instrumentation Engineers (SPIE) in San Diego, CA. 
The first presentation entitled “Partial Volume Simulation in Software Breast Phantoms” (co-
authored by Chen, F., Pokrajac, D., Shi, X., Liu, F., Maidment, A.D.A., and Bakic, P.R.) described 
the development and initial testing of the novel method for partial volume simulation in software 
breast phantoms.  

 
The second presentation entitled “Roadmap for Efficient Parallelization of Breast Anatomy 
Simulation” (co-authored by Chui, J.H., Pokrajac, D.D., Maidment, A.D.A., Bakic, P.R.) described 
the current results in parallel implementation of the method for breast anatomy simulation.  
 
The third presentation entitled “Shape Analysis of Simulated Breast Anatomical Structures”, (co-
authored by Contijoch, F., Lynch, J., Pokrajac, D.D., Maidment, A.D.A., and Bakic, P.R.) described 
the development of a method for fitting ellipsoids into the simulated breast anatomical structures in 
the software breast phantom.   

 
These 3 presentations were also published in the Physics of Medical Imaging, Vol. 8313, edited by 
N.J. Pelc, R.M. Nishikawa, SPIE: Bellingham, WA, 2012.  The published papers were included as 
appendices to this report.   

 

• On March 5, 2012, Dr. Pokrajac presented at the University of Belgrade, Serbia.   
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The presentation entitled “Breast Tissue Simulation with Recursive Partitioning Algorithm – Latest 
results,” (co-authored by Pokrajac, D. and Bakic, P.R.) described the new method for simulation of 
breast anatomy.   

• On March 30, 2012, Dr. Pokrajac presented at the Faculty of Electrical Engineering of the University of
Nis, Serbia – as a part of the Science Fair (sponsored by the U.S. Embassy in Serbia).

The presentation entitled “Mathematics in the Chest” presented in a more popular manner the current 
results in breast tissue simulation.   

• On July  8-11, 2012, Dr. Pokrajac and Mr. Chen attended and presented the IWDM 2012, the 11th
International Workshop on Breast Imaging, in Philadelphia, PA.

The first presentation entitled “Toward Breast Anatomy Simulation using GPU” (co-authored by J. 
Chu, D. Pokrajac, A. D. Maidment,  P. Bakic) described the development of highly-parallel GPU 
simulation of software breast phantoms.   

The second presentation entitled “Simulation of Three Materials Partial Volume 
Averaging in a Software  Breast Phantom” (co-authored by F. Chen, D. Pokrajac, X. Shi, F. Liu, A. 
D. Maidment,  P. Bakic) described the development of simulation for voxels containing three 
different materials in a software phantom. 

These two presentations are also published in Springer Lecture Notes  in Computer Science, 
 7361, edited by Gavenonis, Sara, Bakic, Predrag R. and Maidment, Andrew D.A., 2012. 

• On February 9-14, 2013, Dr. Pokrajac attended and presented the 2013 SPIE Medical Imaging
conference in Orlando, FL.

The first presentation entitled “Breast image registration by using non-linear local affine 
transformation” (co-authored by F. Chen, P.  Zheng, P. Xu, D. Pokrajac, P. R. Bakic, Andrew D. A. 
Maidment, F. Liu, X. Shi) discusses a novel method for registration of mammograms.  

The second presentation entitled “Two methods for simulation of dense tissue distribution in software 
breast phantoms,”   (co-authored by J. Chui, R. Zeng, D. Pokrajac, S. Park, K. J. Myers, A. D. A. 
Maidment, P. R. Bakic) described the comparison of two techniques for simulation of dense tissue 
distribution with the distribution from clinical images. 

These two presentations are also published in Proceedings of SPIE Volume 8668, 2013. 

2.1.4 Validate success of the faculty training program by semi-annual Mentorship Committee 
meetings for each DSU faculty, and annual teleconferences with and bi-annual visits by external 
Advisory Committee. 

On Wednesday, Nov. 3, 2010 at 3:30-4:30pm, a teleconference meeting of the DoD award Advisory Committee 
was organized by Drs. Maidment, Liu, and Bakic, and attended by all the DSU faculty supported on the grant, 
as well as Drs. Chanita Hughes and Timothy Rebbeck from UPENN.  The discussed issues include our progress 
on the grant, future research steps related to the genetic analysis project aims, as well as the long term aim of 
establishing a regional Breast Cancer Disparity Center at DSU.  

DSU faculty met with UPENN mentors on January 24, 2011 and August 9,  2010 to discuss the progress and the 
future work of each DSU faculty. 
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DSU Faculty Technical Trainings at UPENN by Dr. Despina Kontos and Dr. Yuanjie Zheng 
Drs. Pokrajac, Shi, and Wilson, and Ms. Fatima Boukari, a M.Sc. student at DSU, attended several training 
sessions on the use of the pipeline for the estimation of breast density and parenchymal texture from the ACRIN 
database of mammographic images.  The training sessions included:  

07/20/2011: Tutorial on the pipeline 
07/29/2011: Training on the pipeline, and presentation and overview of ACRIN database  
11/16/2012: Training on pipeline code, focus on breast density 
02/24/2012: Extensive pipeline training, focus on parenchymal texture 
03/06/2012: Training on MIRC database 
03/09/2012: Additional training on MIRC database 
 
 
 

• In August 2013, DSU graduate student, Dr. Feiyu Chen, defended his Ph.D. dissertation, “Simulation of 
Multimaterial Voxels in Medical Imaging Software Phantoms,” based upon the research funded by this 
grant.  Dr. Chen’s committee included Drs. Shi, Pokrajac, and Bakic.  The results from his dissertation 
were published in two conference and one journal paper (see Section 4).  

• In August 2013, Dr. Bakic presented an invited talk on the Real Time Simulation of Breast Anatomy, at 
the 2013 AAPM Imaging Symposium on the Virtual Tools for the Validation of 3D/4D X-ray Breast 
Imaging, held in Indianapolis, IN.  The related abstract was published in the July 2013 issue of Medical 
Physics.  The presentation included our joint research results on improving the realism accelerating the 
breast anatomy simulation.  The presentation also featured the activities of the AAPM Taskgroup 
TG234 on the Virtual Tools for Breast Imaging Validation.  (Drs. Pokrajac and Bakic are members of 
TG234.)   

• In December 2013, Dr. Maidment presented an Education Exhibit on the Role of Virtual Clinical Trials 
in Preclinical Testing of Breast Imaging Systems, at the 2013 RSNA Annual Meeting in Chicago, IL.  
At the same meeting, Dr. Bakic presented a scientific paper on the Automated and Optimized Software 
Platform for Virtual Clinical Trials.  Both presentations were co-authored by Dr. Pokrajac, and featured 
results of our joint research on the breast imaging simulation.  

• In February 2014, Drs. Pokrajac and Bakic attended the 2014 SPIE Medical Imaging conference in San 
Diego, CA to present a scientific paper on the Automated Simulation of Microcalcification Clusters in 
Software Breast Phantoms, as well as a Computer Demo of the Software Pipeline for Breast Imaging 
Simulation.   

• Dr. Pokrajac presented results on partial volume simulation and mathematical issues of the simulation 
algorithm on XIII Serbia Mathematical Congress, 2014. Also he gave invited talk on Faculty of 
Electronics, Mechanical Engineering and Ship building and at Kolarac Institution in May 2014. 
 
 
 
 
 
 

2.1.5 Sabbatical Leave to UPENN 

        Dr. Dragoljub Pokrajac took a Sabbatical Leave to UPENN for Fall 2011 semester to complete the 
submission of publications related to the development of the novel method for breast anatomy simulation, and 
for preparation of the grant applications to be submitted to the National Institute of Health (related to the RFA 
on the Continued Development of Biomedical Software (PAR-11-028): http://grants.nih.gov/grants/guide/pa-
files/PAR-11-028.html) 
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2.2 Objective 2 

 
Objective 2 (from SOW):  Establish an independent breast cancer research program at DSU by performing a 
joint DSU/Penn research project focused on breast cancer risk disparity in minority populations 
 
This section details our activities on the proposed research project.  A summary of the findings is listed in 
Chapter 3, and the related journal and conference publications in Chapter 4.  
 
During the last year we have analyzed the database of anonymized clinical images previously acquired within 
the NIH Program Project Grant supported clinical study at the University of Pennsylvania, focused on 
multimodality clinical breast imaging.  The study includes mammograms, digital breast tomosynthesis (DBT) 
images, breast MRI images, ultrasound images, and breast PET images of the same patient.  Goal of the analysis 
was to familiarize with standard DICOM format of medical images, and to write a Matlab code for extracting 
and processing metadata from images.   
 
Based on the extracted metadata, we utilized SQL to search for cases and images with particular desired 
properties.  As an example of the image database search task, we extracted images of patients having more than 
4 mammograms (more than 2 per view) per exam.  A standard mammographic exam involves 4 images (2 
views for each breast).  A larger number of images occur due to incorrect breast positioning, or for the breasts 
of larger size that needed more than one mammogram per view for complete coverage.  The latter is of interest 
for our DoD PTA project, as the incomplete breast visualization would prevent correct estimation of breast 
density.   
Our database search task was designed in order to investigate the prevalence of cases with large breast size 
preventing correct density estimation.  We performed the SQL database search of 657 patients with 
mammography exams, and after the visual confirmation of indicated images we found 85 (i.e., 13%) cases with 
large breast size.  Such prevalence suggests that we should develop a strategy for calculating breast density in 
cases with multiple mammograms per view due to the large breast size.  This strategy may include merging 
multiple images to produce a single mammogram (which can be used for density estimation) or developing a 
method for combining breast density values estimated from several mammograms of the same breast. 

 
 

 
2.2.1 Analysis of Mammographic Images and Clinical Metadata of All Minority Women and the Age-

Matched Caucasian Controls from the ACRIN DMIST Database 
 
 
A University of Pennsylvania IRB approval (ADD Protocol number) was obtained during the first 3 months of 
the project. After having obtained the IRB approval, we transferred ACRIN-DMIST data from MIRC and 
resolved issues with various batch transfers.  We have used all minority images from ACRIN-DMIST data and 
age-matched Caucasian controls [Reference]. The total number of patients was 11106 (5,553 minorities and 
5,553 Caucasians). During the transfer some of the studies from ACRIN data were reported as having ‘invalid’ 
images, related to problems with encoding in the MIRC database.  Some cases did not get merged in the correct 
MIRC folders.  Those cases were reviewed and if needed pushed manually to ensure correct uploading.  In 
addition, the DICOM import service periodically got interrupted, which required to restart the MIRC automatic 
importing service.  VB script problem: XML files from ACRIN Data occasionally did not get parsed correctly. 
 
We established a web-based data center for this project.  The functions of the data center include (1) allowing 
user to design relational database on the web by providing a GUI interface to the web databases, (2) accepting 
data input from user manually or from remote application programs,  (3) converting data from other data source 
format such as CSV file  which is a common format for clinical data (4) allowing user to compose various 
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queries to select data sets  from  various selection  caritas, (5) displaying data as web pages and export data to 
Excel spreadsheets for performing further data analysis.   
 
By merging source data, converted data and computed data together to create a relational database and 
developing facilitating functions, we can easily implement various kinds of data selection requirements in terms 
of SQL statements, execute them to retrieve datasets to apply further statistics routines to discover more hidden 
correlations among different quantifies. For  the “big data“ era,  such a web database  is in particular helpful  for 
clinic data analytics although it also can be used for generic purposes, for example,  it can be used to teach a 
college-level Database Management System course.  
 

 
Figure 1:     The overview of all database tables used for the project done  by using the Web Database Design 
Utility 
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Figure 2: Information extracted or/and  computed from Dicom images is kept in this 228-field table  
 

 
Figure 3:          The web service utilities  for managing web database and  converting clinic data to relational 
database tables 
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Figure 4:  The Routines for Accessing and Presenting Data  for composing  queries  to  implement various data 
selection schemes. 
 

 
Figure 5: The Rapid Web-based Correlation Analysis for  exploring  various possible correlations between 
random variables.  In this example, to explore the correlation between Average Density and Life-time Risk, 
click the first cell of the two columns to trig the context menu, and select Regression from the context menu. 
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We obtained 11106 records from the ACRIN 6652 (DMIST) study with digital images. The data include 
records for a sample of 5,553 minority participants and the equal number of Caucasian participants randomly 
drawn from the pool of age-matched controls. 
 
We have developed a code to estimate the breast cancer risks using the demographic metadata information from 
the ACRIN-DMIST cases.  The risk estimation is based upon the Gail risk model, currently used by the 
National Cancer Institute.  Our code has been developed as a wrapper script around the Java software for the 
Gail risk estimation (downloaded from the hughesriskapps.net).  The risk estimation method uses as input the 
patient's age, the age of the menarche, the age of the first live-birth, the number of biopsies, the number of first-
degree relatives with cancer; the information about previous biopsies with hyperplasia, and the race.  
 
This corresponding information was read from the metadata accompanying the ACRIN database of images.  In 
cases of missing information, we followed the instructions in the Gail risk model and used the “UNKNOWN” 
entry.   
 
We performed a preliminary query of the ACRIN-DMIST data aimed at identifying the prevalence of women 
with incomplete visualization of the breast.  Here is the summary of the results from this query: 

• The total number of uploaded cases with more than 4 Dicoms images is 3845; 267 of them are 
aggregated duplicates (files belong to the same patient but were divided in various folders);  

• The number of cases with multiple images (>4) and no aggregation is 3578; 
• About 30% of the cases have been checked manually to confirm partial visualization;  
• If the number of DICOMs is less than 9, partial visualization is present in about 10% of the cases; 
• Our estimation is that that about 500-550 out of 3845 cases have partial breast visualization which is 

approximately 5-8% of all cases. 
• There are 4406 patients who have four or less DICOM  images with MLO-position.  
 

We developed an array of quantitative image analytics for breast density estimation and parenchymal texture 
analysis in digital mammography (DM) and digital breast tomosynthesis (DBT) images. These tools have been 
validated both in screening and diagnostic populations. Our studies have pioneered the investigation of DBT 
texture analysis, indicating that DBT texture features are more informative than DM texture features in 
characterizing parenchymal pattern. These computational are used to perform the image analysis work involved 
for hypothesis testing in the specific aims proposed in this project. 
 

Breast density analysis: We developed a fully-automated breast percent density (PD%) estimation technique 
based on an adaptive multi-class fuzzy-c-means algorithm. Briefly, an edge-detection algorithm is applied to 
delineate the boundary of the breast and the Hough transform is applied to detect the boundary of the pectoral 
muscle. Following the segmentation of the breast, an adaptive multi-class fuzzy-c-means algorithm is applied to 
segment the glandular tissue, where classes are aggregated to the standard two-class dense vs. fatty paradigm 
using a logistic regression classification approach. Smoothing of the breast region is performed using a pixel-
neighborhood medial filter of 5x5 pixel size, shown that this size can provide a good compromise between the 
noise reduction and preserving texture characteristics.  

 
Parenchymal texture analysis: We developed a fully-automated software pipeline to perform quantitative 
analysis of breast tissue composition from multimodality digital breast images. The integrated image analytics 
consist of an initial image quality (IQ) test, in which a query/testing is performed in the DICOM header files of 
the digital images to validate acceptable dose and acquisition parameters (i.e., kVp, exposure, compression, 
etc.). Subsequently, the pipeline incorporates a preprocessing step with an option to create a regional tissue 
mask from which the imaging parenchymal pattern descriptors are extracted. 
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Figure 6: The flowchart of the image processing steps in our breast imaging biomarkers pipeline. 
 
We estimated breast densities mammograms from the ACRIN database, using the software developed at the 
University of Pennsylvania. Note that original ACRIN-DMIST data contains images from four manufacturers. 
In this study, we utilized only the data from one manufacturer. The total number of processed images (both 
MLO and CC views) was 24945. For the same images, we calculated risk estimation using the Gail model. 
Racial distribution of sampled patients is shown in Table below. 
 

Race Number of patients 
Caucasian 2496 (53.05%) 
African American 1753 (37.26%) 
Asian 239 (5.08%) 
Hispanic/Latino 217 (4.61%) 
Total minority 2209 (46.95%) 
TOTAL 4705 (100%) 

Table 1: Racial distribution of number of patients with estimated breast densities and breast areas 
 
The histogram of the estimated breast density is shown in Figure below.  We can see that it is most common 
that women’s breast density is around 25%, and it is unlikely a woman’s breast density is around 0%, 80% or 
100%.  
 

 
 
Figure 7:   The histogram of breast density computed from all 4406 MLO-position images.  
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Figure 8:   The histogram of breast density computed for African American. 

Figure 9   The histogram of breast density of women over 60 years old.  Sample size=1147. 

For each patient, we, for each breast (left or right) and for each view (CC or MLO) averaged the estimated 
breast density and breast area. We utilized the step-wise regression to determine the dependence of estimated 
breast density and the estimated breast area on demographics.  The dependence of estimated breast density on 
demographic variables and breast area is significant but R2 is very small. Race was determined as a significant 
variable (see figures below). 
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Figure 10: Step-wise regression to determine dependence of estimated breast density on race; CC view 
 

 
Figure 11: Step-wise regression to determine dependence of estimated breast density on race; MLO view 
 
 
 
 
 
 
 
 
 
Step-wise linear regression also indicates that the breast area depends on race. R2 was larger then when 
regressing average density. The regression model was significant (see Figures below). 
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Figure 12: Step-wise regression to determine dependence of estimated breast area on race; CC view 

 
Figure 13: Step-wise regression to determine dependence of estimated breast area on race; MLO view 

 
2.2.2 Analysis of risk prediction models 

 
For each patient from the dataset of 4705 patients (see Subsection 2.2.1), we, for each breast (left or right) and 
for each view (CC or MLO) averaged the estimated breast density and breast area. Based on this data, we 
wanted to test the hypothesis whether the estimated GAIL risk and estimated breast density are correlated. The 
results, shown below for CC view, indicate the correlation to be significant but small. Our conclusion is that the 
breast density can be added to a risk model (as a variable orthogonal to the existing demographic variables 
utilized). 
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Figure 14: Correlation between average estimated breast density and 5years risk estimated by GAIL 

model; CC view 
 

 
Figure 15: Correlation between average estimated breast density and lifetime estimated by GAIL 

model; CC view 

We performed a preliminary verification of this hypothesis.  From the considered dataset we extracted 
patients with performed biopsies (123 patients with negative biopsy results, the value of bxe25 
attribute=1, and 32 patients with positive biopsies results, bxe25=2). We performed logistic regression 
of biopsy result on estimated GAIL risks (lifetime risk, 5 years risk), and compared the classification 
results when the estimated breast density and the estimated breast areas are added as independent 
regressors. The results shown on Figure 16 below indicate that the accuracy of classification cannot be 
improved by adding the estimated image parameters on CC view images. The results on MLO view 
images, Figure 17 indicate that the prediction model could be improved by adding the estimated breast 
area as an independent variable. 
 



25

(a) (b)	  

 Figure 16: Logistic regression of biopsy results based on (a) GAIL lifetime and 5 years risk; (b) GAIL lifetime 
and 5 year risk and estimated breast density and area; 155 patients (total of 290 images with left and right 
orientation), CC view. 
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(a) (b)	  

 Figure 17: Logistic regression of biopsy results based on (a) GAIL lifetime and 5 years risk; (b) GAIL lifetime 
and 5 year risk and estimated breast density and area; 155 patients (total of 270 images with left and right 
orientation), MLO view. 

We have explored how the validity of hypothesis depends on age.  We find that in most age intervals, the breast 

density is positively but weakly correlated to the breast cancer risk, but in other intervals, the correlation is 

weakly negative, as shown in the Table 2. The linear regression coefficients indeed depend on the age heavily.  

In particular,  as shown in Figure 18, in the age interval 40-45 and 62-72, the positive correlation between breast 

density and breast cancer risk is much stronger than other age intervals.  
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Center 
of Age 

Interval 

Number 
of 

Patients 

Slope of 
Linear 

Regression 

Coefficients 
Of 

Determination 
36 113 0.032843 0.023696 
40 135 0.004559 7.67E-04 
41 139 0.001818 1.41E-04 
42 161 0.021103 0.014249 
43 146 0.010153 0.003441 
44 145 0.025072 0.023202 
45 192 0.005164 0.001121 
46 198 -0.0091 0.005601 
47 182 -0.00683 0.001798 
48 173 -0.01293 0.010095 
49 176 5.00E-04 1.17E-05 
50 175 0.00754 0.003063 
51 210 -0.01771 0.012417 
52 174 0.002875 3.99E-04 
53 219 -0.00871 0.003447 
54 176 -0.01311 0.007823 
55 171 -5.32E-04 1.64E-05 
56 158 0.016326 0.012772 
57 158 -0.01571 0.01192 
58 140 0.011876 0.006563 
59 131 0.014717 0.011779 
60 116 -0.0165 0.013812 
61 118 -0.00179 2.53E-04 
62 103 0.008103 0.003058 
64 169 0.009127 0.006134 
66 180 0.010356 0.011963 
68 135 0.014086 0.018304 
70 104 0.024838 0.097342 
72 121 -0.00443 0.002877 
76 109 -0.00644 0.010156 
82 53 -0.00736 0.017216 

 
Table 2. This table shows how much the breast density is correlated to the breast cancer risk in different age 

intervals 
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Figure 18  The slope of the linear regression varies with age. In the age interval 40-45 and 62-72, the correlation 

is positive.  

2.2.3 Mammogram	  Image	  Registration/Fusion	  

During the previous review of mammographic images from the UPENN clinical (“PPG”) database, we noticed 
that a number of women with large breasts had multiple mammographic views, each showing only a partial 
visualization of the breast.  The number of cases in the “PPG” database with such incomplete visualization was 
estimated to about 13% of all images.  A similar observation was made for the mammographic images from the 
ACRIN database used in this DoD funded research project, although with lower prevalence (5-8%).  Accurate 
estimation of breast percent density from mammographic images requires a complete visualization of the breast 
tissue.  For that purpose, as one of our research sub-aims, we have been developing a method for 
registration/fusion of multiple mammographic images of the large breasts. 

Individual images of a large breast have been acquired with different x-ray tube angles and using different 
mammographic compression force.  These variations may cause various deformations between individual 
images, including affine (due to the change in tube position) and  non-linear (due to the elastic properties of 
the breast).  Since the individual images capture different portions of the breast, it is needed to identify a 
common region of the breast tissue, visualized in both images.  The next step towards the fusion of common 
regions in two mammograms includes detection of correspondence (or fiducial) features in the two images.  
These fiducial features include edges, as detected at the breast skin outline and in the breast interior in 
mammograms, as well as the texture features within the breast interior.  We are currently in the process of 
selecting the appropriate features to be used to drive the registration method.   
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A novel breast image registration method is proposed to obtain a composite mammogram from several images 
with partial breast coverage, for the purpose of accurate breast density estimation. The breast percent density 
estimated as a fractional area occupied by fibroglandular tissue has been shown to be correlated with breast 
cancer risk. Some mammograms, however, do not cover the whole breast area, which makes the interpretation 
of breast density estimates ambiguous. One solution is to register and merge mammograms, yielding complete 
breast coverage. Due to elastic properties of breast tissue and differences in breast positioning and deformation 
during the acquisition of individual mammograms, the use of linear transformations does not seem appropriate 
for mammogram registration. Non-linear transformations are limited by the changes in the mammographic 
projections pixel intensity with different positions of the focal spot.  We propose a novel method based upon 
non-linear local affine transformations. Our algorithm requires that feature points be extracted prior to 
registration, and the result of registration will depend on the reliability and accuracy of the extracted features. 
Automatic identification and extraction of feature points is difficult due to the non-linear compression 
deformation and the lack of significant landmarks in mammograms. We observe the prominent features (such as 
ducts and blood vessels) from both images. The crossing points are determined upon visual similarity in both 
mammograms. Due to compression and different positions of the breast, the coordinates of those crossing points 
may be different in the two mammograms, but the orientation of feature and local curvature of crossing points 
are more likely to be preserved. We also select other features (end points and middle points) in a small 
neighborhood around the selected crossing points. Subsequently, the deformation between two sets of feature 
points can be estimated. Given two sets of feature points in two images that need to be registered, we assume 
the deformation between them can be approximated by affine transformation, which can be considered as a 
first-order approximation of the true transformation resulting from breast projection.  Finally, Shepherd 
interpolation is employed to compute affine transformations for the rest of the image area. The pixel values in 
the composite image are assigned using bilinear interpolation. We present preliminary results using the 
proposed approach applied to clinic mammograms taken from the ACRIN DMIST database of mammograms. 
This work is a part of a larger study of racial disparity in breast cancer risk. For that project, breast percent 
density and parenchymal texture of minority women and age-matched Caucasian controls from the ACRIN 
DMIST database are being compared.  To date, we have been able to achieve anecdotal results that support 
continued development and testing of this new method. The proposed method is robust, since the results of 
registration are similar regardless of the choice of the reference image. The observable features, especially the 
nipple and the boundary of skin, have good agreement. The results of the proposed method are comparable to 
the results of the diffeomorphic transform implemented using ANTs, an open source software package. 
Particularly, the textures of warped image are preserved in registered images, and the shape of registered image 
is similar as reference image. The registration error is smaller in the region of overlap (the upper part of the 
registered image), since we can extract the corresponding feature points only from this region. . The proposed 
transformation can be controlled locally. Moreover, the method is converging to the ground truth deformation if 
the paired feature points are evenly distributed and its number is large enough .In our future work, we plan to 
perform more extensive quantitative validation of the proposed algorithm on a series reference and warped 
images extracted from all the applicable images in the ACRIN DMIST database. Also, we will apply the 
technique to more images in the ACRIN DMIST database and develop statistical measures of the registration 
accuracy. 

Most recently, we have also introduced another new image registration method by using multivariate spline 
functions. Different from the product form splines used previously, the multivariate spline we used is non-
product form, which is much more flexible in application. That is, non-product form multivariate spline 
functions can be conveniently used to approximate real data locally. Actually, for the corresponding portions of 
an overlap part of two images, one can be locally treated as the image obtained by an affine transformation of 
the other. This indicates that we can partition two images into small parts and then register each small part onto 
its corresponding portion of the reference image. This is the basic idea of our spline image registration method. 
To facilitate the application with previous results, the range of multivariate spline function is taken as matrix 
variable. The basic idea of our method is as follow: we first translate one image, called reference image, into the 
output image, and then register others, called source images, to the output image by spline functions. Since 
quadratic is the lowest possible degree to construct smooth multivariate splines, we employ quadratic 
multivariate spline defined over Powell-Sabin type triangulations to image registration.  The experiment results
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show that, comparing previous methods, the registration outputs have better matching and keep more details 
with better fair looking. 

 
During this granting period Drs. Pokrajac and Bakic arranged several Skype teleconferences with the research 
lab of Dr. Aleksandar Peulic from the University of Kragujevac, Serbia, who continued the project previously 
performed by Dr. Feiyu Chen and Mr. Penglong Xu.  Also, Dr. Pokrajac met Dr. Peulic and his group at his 
research trip to Serbia in October 2013. Currently, Dr. Peulic is working on registration of mammographic 
images belonging to large breasts using ANTs software. The initial results indicate the possibility of good 
stitching of images belonging to the same breast. 
 
 

2.2.4 	  Breast	  Phantom	  Simulation	  and	  Analysis	  	  

  
We have originally proposed Exploratory study 2 on potential racial differences in genetic determinants of 
breast density.  That exploratory study has not been performed, partly due to Charlie Wilson’s health condition. 

Instead, we have performed an exploratory research on refining the computer simulation of breast anatomy and 
imaging, previously developed at UPENN.  This study has been instrumental in the development of the 
registration method needed in to perform fusion of mammograms with partial coverage in large breast size 
(Section 2.2.3).  This exploratory study has received significant attention in the breast cancer research 
community, as evident by related publications and the grant funding proposals.  
 

During the development of registration/fusion method (section 2.2.3), we have used simulated mammograms of 
the breast software phantoms developed at the University of Pennsylvania.  In preparation of this task, we have 
worked on the breast tissue modeling, to allow for faster generation of mammograms with the resolution 
comparable to the clinical images.  Images of the breast software phantom previously developed at the 
University of Pennsylvania sometimes include quantization artifacts due to the large voxel size.  Increasing the 
phantom voxel size (above 100-200 microns) requires a prohibitively long simulation.  
 
We have developed an efficient method for generating anthropomorphic software breast phantoms with high 
resolution.  The present method has been optimized for computational complexity to allow for fast generation of 
the large number of phantoms required in virtual clinical trials of breast imaging.  The new breast anatomy 
simulation method performs a direct calculation of the Cooper’s ligaments (i.e., the borders between simulated 
adipose compartments). The calculation corresponds to quadratic decision boundaries of a maximum a 
posteriori classifier.  The method is multiscale due to the use of octree-based recursive partitioning of the 
phantom olume.  The method also provides user-control of the thickness of the simulated Cooper’s ligaments 
and skin.   Using the proposed method we have generated phantoms with voxel size in the range of (25-
1000 µm)3/voxel.  Experimental and theoretical considerations show that the computational time increases with 
the square of the inverse voxel size (compared to at least cubic complexity of our previous region growing 
algorithm). This way we could achieve the voxel size in the order of the detector pixel size (~70µm). Note that 
the simulation of phantoms with voxel size of 50 µm or less was not feasible using the previous techniques.  
  
We designed methods to evaluate the achieved thickness control of the Cooper’s ligaments in the simulation 
algorithm. Also, we have proposed improved thickness control algorithm which is currently under development. 
  
Further modification to our simulation algorithm is proposed, in order to improve the quality of simulated 
projections generated using software breast phantoms. Anthropomorphic software breast phantoms have been 
used for quantitative validation of breast imaging systems. Previously, we developed a novel algorithm for 
breast anatomy simulation, which did not account for the partial volume (PV) of various tissues in a voxel; 
instead, each phantom voxel was assumed to contain single tissue type. As a result, phantom projection images 
displayed notable artifacts near the borders between regions of different materials, particularly at the skin-air 
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boundary. These artifacts diminished the realism of phantom images. One solution is to simulate smaller voxels. 
Reducing voxel size, however, extends the phantom generation time and increases memory requirements. We 
achieved an improvement in image quality without reducing voxel size by the simulation of PV in voxels 
containing more than one simulated tissue type. The linear x-ray attenuation coefficient of each voxel is 
calculated by combining attenuation coefficients proportional to the voxel subvolumes occupied by the various 
tissues. A local planar approximation of the boundary surface is employed, and the skin volume in each voxel is 
computed by decomposition into simple geometric shapes. An efficient encoding scheme is proposed for the 
type and proportion of simulated tissues in each voxel. We illustrated the proposed methodology on phantom 
slices and simulated mammographic projections. Our results show that the PV simulation has improved image 
quality by reducing quantization artifacts. A general case for simulation of the partial volume (PV) averaging in 
software breast phantoms is considered.  We studied results of simulated PV in a general case of voxels 
containing up to three materials.  Local planar approximations of boundary surfaces are employed.  The 
material proportions in each voxel are computed by decomposition into geometric shapes.  
  
A roadmap has been proposed to optimize the simulation of breast anatomy by parallel implementation, in order 
to reduce the time needed to generate software breast phantoms. The rapid generation of high resolution 
phantoms is needed to support virtual clinical trials of breast imaging systems. The proposed roadmap for 
efficient parallelization includes the following steps: (i) migrate the current code to a C/C++ platform and 
optimize it for single-threaded implementation; (ii) modify the code to allow for multi-threaded CPU 
implementation; (iii) identify and migrate the code to a platform designed for multithreaded GPU 
implementation. As the first step of the proposed roadmap we have identified a bottleneck component in the 
MATLAB implementation using MATLAB’s profiling tool, and created a single threaded CPU implementation 
of the algorithm using C/C++'s overloaded operators and standard template library. The C/C++ implementation 
has been compared to the MATLAB version in terms of accuracy and simulation time. A 520-fold reduction of 
the execution time was observed in a test of phantoms with 50-400 µm voxels. In addition, we have identified 
several places in the code which are to be modified to allow for the next roadmap milestone of the ultithreaded 
CPU implementation. Further, the development of a multithreaded GPU implementation is under way. 
  
Recent advances in high-resolution 3D breast imaging, namely, digital breast tomosynthesis and dedicated 
breast CT, have enabled detailed analysis of the shape and distribution of anatomical structures in the breast. 
Such analysis is critically important, since the projections of breast anatomical structures make up the 
parenchymal pattern in clinical images which can mask the existing abnormalities or introduce false alarms; the 
parenchymal pattern is also correlated with the risk of cancer. As a first step towards the shape analysis of 
anatomical structures in the breast, we have analyzed an anthropomorphic software breast phantom. The shape 
analysis was performed by fitting ellipsoids to the simulated tissue compartments. The ellipsoidal semi-axes 
were calculated by matching the moments of inertia of each individual compartment and of an ellipsoid. The 
distribution of Dice coefficients, measuring volumetric overlap between the compartment and the corresponding 
ellipsoid, as well as the distribution of aspect ratios, measuring relative orientations of the ellipsoids, were used 
to characterize various classes of phantoms with qualitatively distinctive appearance. A comparison between 
input parameters for phantom generation and the properties of fitted ellipsoids indicated the high level of user 
control in the design of software breast phantoms. The proposed shape analysis could be extended to clinical 
breast images, and used to inform the selection of simulation parameters for improved realism. The following 
subsections discuss in more detail some of the achievements in breast simulation. 
 

Development of novel phantom 
We designed and implemented the new software breast phantom in Matlab and analyzed its asymptotic 

spatial and temporal complexity. We experimentally evaluated temporal complexity by generating more than 
400 phantoms of different sizes, resolutions, thickness and shapes of the compartments. The phantoms were 
generated with various voxel sizes in the range of 25-10000 micrometers, see Figure below.  
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Figure 19: The same geometry of phantom simulated at (a) 400um; (b) 100um and (c) 25um resolutions 
(Medical Physics, 2012) 

The simulation time as function of the voxel size, number of compartments and thickness was approximated 
using the power regression. We also performed a visual comparison of the phantoms generated at different 
voxel size.  We experimentally demonstrated the power exponent (equal to the slope in the log-log graph) w.r.t. 
the voxel size of 2 in contrast to the slope larger than 3 for the old method, see Figure below. 

 
Figure 20: Experimental comparison of computational complexity of recursive partitioning and region 

growing algorithms (Medical Physics, 2012). 
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  This is reflected in a progressively faster simulation for phantoms with voxel size smaller that 200 
micrometers.  Specifically, we were able to generate phantoms at 50um and 25um resolutions which are not 
feasible by region growing. Generating phantoms with voxel size below 200 micrometers is of importance for 
reducing quantization artifacts in simulated phantom images, since clinical x-ray detectors currently produced 
with the pixel pitch down to 50 micrometers.  The visual comparison of the phantoms generated at different 
voxel size confirmed an improved quality of simulated anatomical structures, as reflected in reduced 
quantization artifacts, see Figure below. 

 

 
Figure 21: Synthetic mammographic projections through the compressed phantoms with voxel size of 200um 
and 333 compartments simulated (a) using the recursive partitioning algorithm; (b) using the region growing 
algorithm (Medical Physics, 2012). 
 

We provided a formal proof that the recursive partitioning algorithm has quadratic complexity in terms of 
the inverse linear voxel size, and that the algorithm is computationally optimal (hence, there cannot exist an 
algorithm with lower asymptotic computational complexity). 
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Simulation of compartment microstructure 
 
 We designed an implemented a further improvement of the simulation algorithm that can also simulate 
compartment microstructure, see Figure below. 
 

 
Figure 22: Simulation of tissue microstructure. Shown are sections of a software phantom (a) with and (b) 
without subcompartments with corresponding synthetic mammographic projections (c) and (d). (IWDM, 2014). 
 
The initial results, see Figure below, indicate that such a novel method can improve phantom realism. 
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Figure 23: Laplacian fractional entropy for different versions of phantoms (SPIE, 2014). 

 
Automated Insertion of Simulated Microcalcification Clusters into Software Breast Phantoms 
 
We designed and implemented a method for automatic insertion of calcification clusters in the phantom and 
evaluate different strategies for cluster positioning, 3D clusters of microcalcifications, extracted from 
reconstructed clinical images, are inserted at randomly selected positions out of a set of the candidate positions.  
The candidate positions are identified based upon the assumptions about the origin of microcalcifications.  
Directed placement is based upon the assumption that clusters may occur only in non-adipose tissue regions; 
undirected placement presumes that clusters may be found anywhere inside the breast.  In both cases, the 
candidate positions are identified by convolving a 3D rectangular hull (around the cluster) with phantom 
regions of non-adipose tissue (in case of directed placement) or with the breast interior (for undirected 
placement).  These two placement strategies were validated in a 2-alternative forced choices observer study 
with 3 clinical radiologists as observers.  Each observer reviewed 450 image pairs and indicated their preference 
between the directed and undirected placement, see Figure 20 below.   The study suggested observer’s 
preference for undirected placement.  More details are found in our 2014 SPIE talk.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24:  Flowchart of the method for automated insertion of simulated clusters into a software  phantom 
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Figure 25:  2-AFC observer study user interface for evaluation of calcification cluster insertion strategies (SPIE, 
2014). 
 
Partial volume simulation 
 
We developed a novel method to simulate voxels that contain multiple materials (e.g., skin and air. Skin and 
adipose tissue). We designed an efficient encoding scheme to treat different possible cases of such voxels, see 
Table below. 
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Case   p1   (6 bits)  p2 (6 bits)  Label 
(4 bits)  

1. Skin 0  0  0 
2. Air 0  pAir (=100)  0  
3. Cooper’s ligament  0  0  1  
4. Fat 0  0  2 
5. Dense   0  0  3  
6. Skin; air  0  pAir  0  
7. Skin; fat tissue  0  pSkin  2  
8. Skin; dense tissue  0  pSkin  3  
9. Skin; Cooper’s ligament pCooper 0  0 
10. Cooper’s ligament; fat  pFat  0  1  
11. Cooper’s ligament; 
dense  

0  pDense  1  

12. Skin, Cooper’s 
ligament and fat tissue 

pCooper pSkin  2  
 

13. Skin, Cooper’s 
ligament and dense tissue  

pCooper pSkin  3  
 

 
Table 3:  Encoding partial volume voxels 

 
For voxels containing skin and air, we used the linear approximation of skin/air boundary, as illustrate in Figure 
below. 

 
 
Figure 26: Partial volume approximation on skin/air boundary 
 
For voxels on ligament/compartment boundary (where the compartment can correspond to glandular or adipose 
tissue), we approximated the ligament/compartment boundary using the gradients,, see the figure below. 
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Figure 27:  Planar approximation of a boundary between Cooper’s ligament and a compartment (IEEE TMI, 
submitted) 

 
Specifically, the approximation is defined as                             
  
π1 : x − x1( ) ⋅N1 = 0 . 

Where: 

x1 = xc + sign Fij xc( )( ) D / 2−
Fij xc( )
∇Fij xc( )

#
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N1 = sign Fij xc( )( )∇Fij xc( ).  
xc is a voxel center, Fij(x)=0 is a median surface, N1 is a vector normal to a level set Fij(x)= Fij(xc) and x1 is a 
point on the normal at distance D/2 from the intersection of the normal and the median surface (D is a nominal 
thickness of a simulated ligament). 
 
For voxels containing two materials, the partial volume computation subsequently reduces to computing a 
volume of a cube below (or above) a plane. We considered all possible cases for plane/cube alignment (see the 
next figure). 
 
 
 
 
 
 
 
 

N1 
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                             s=1                                                                                   s=2       

                      
                             s=2                                                                           s=3 

 
                     s=4                                                                                      s=4 
 
Figure 28: Computing  partial volume of a cube below/above a plane using geometric primitives 
 
Then, depending on the number of cube vertices above a planar approximation, we executed the algorithm 
drafted below. 
 
Vi= PV_compute_2(Qi ,i =1,...nVertex,Δx,N, x0,nVertex ) 
// Inputs: Voxel vertices Qi,i=1,…,nVertex above plane π  (nVertex≤4!) 
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// voxel linear dimension ∆x  
// normal N and a point x0 specifying plane π . 
// Output: Partial volume Vi of the voxel above the plane π  
IF     nVertex==0 

RETURN 0.  //Partial volume is 0 
ELSEIF nVertex==1 //Volume is a right angle triangular pyramid. CASE A (see Fig. 28, s=1) 

COMPUTE nPoint=2*nVertex+1. //the number of intersections. 
COMPUTE intersections P, Q, R between π  and ei， the edges containing Q1. 
COMPUTE the distances between intersections and Q1. 
RETURN volume of a tetrahedron PQRQ1. //(the shaded tetrahedron in Fig. 28, s=1) 

ELSEIF nVertex==2 
DETERMINE the edge e containing Q1 and Q2  
IF N ⊥ e   //Volume is a triangular prism. CASE B1 

COMPUTE intersections P, Q between π  and edges containing Q1 (except e). 
RETURN volume of a prism defined with base PQQ1 and height e.  
//( the shaded prism in Fig. 28, s=2) 

ELSE         //Volume is a triangular cut pyramid. CASE B2 
COMPUTE nPoint=2*nVertex+1.  //the number of intersections. 
COMPUTE intersections P, Q, R, S, T between π  and each edge (or extension of edge) containing 
Q1 or Q2. 
RETURN volume difference b/w tetrahedra PQRQ1, PSTQ2. //	  (the	  shaded	  non-‐prism	  solid	  part	  in	  

Fig.	  28,	  s=2) 
ENDIF 

ELSEIF nVertex==3  //Volume is a ”double cut“ pyramid. CASE C        
COMPUTE nPoint=2*nVertex+1. // the number of intersections. 
COMPUTE intersections P, Q, R, S, T, U, W between π  and each edge (or extension of edge) 
containing Q1, Q2 or Q3.

RETURN volume difference b/w tetrahedra PQRQ1, PSTQ2, QUWQ3 . //(the	  shaded	  solid	  part	  in	  
Fig.	  28,	  s=3) 

ELSEIF nVertex==4       
      IF vertices Qi i=1,…,4 are coplanar //Volume is a prismoid. CASE D1 

COMPUTE intersections P,Q,R,S between π  and edges vertical to plane defined by Qi i=1,…,4. 
RETURN volume of prismoid Q1Q2Q3Q4PQRS. //(the	  shaded	  prismoid	  in	  Fig.	  28,	  s=4) 

ELSE         //Volume is a ”triple cut” pyramid. CASE D2 
COMPUTE nPoint=2*nVertex+1. //The number of intersections. 
COMPUTE intersections P, Q, R, S, T, U, W, Y, Z between π and each edge (or extension of edge) 
containing Q1, Q2, Q3 or Q4. 
RETURN volume difference b/w tetrahedron PQRQ2 and tetrahedra PSTQ1, QUWQ3, and RYZQ4. 

//(the	  shaded	  non-‐prismoid	  part	  in	  Fig.	  28,	  s=4) 

ENDIF 
ENDIF 

Algorithm 1: Algorithm for computation of partial volume of a voxel above a plane for different number of 
vertices above the plane (IEEE TMI, submitted) 

Note that this algorithm reduces the computation of partial volume to computation volume of a few primitives 
(such as prisms and tetrahedrons) that is computationally efficient. 
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For voxels containing three materials, we utilized a method based on the application of the Gauss-Ostrogradsky 
theorem that can easily be generalized to a multi-material case. Assuming the partial volume Vi contains a voxel 
vertex Q1, the volume is computed as: 

3

)( 2211321 dAdAxSSS
Vi

ππ ++Δ++
=  

 
where Δx is the length of the voxel side, S1, S2 and S3

 are surface areas of the boundaries of Vi belonging to the 
sides of the voxel that do not contain Q1 and Aπ1, Aπ2 are surface areas of the parts of the planar approximations 
that bound Vi. see Figure below. 
 

 
 
Figure 29: Computation of partial volume of voxels containing three materials using Gauss-Ostrogradsky 
theorem 
 
We developed and implemented a Monte-Carlo based method for validation of partial volume computation. We 
demonstrated that the application of partial volume effects can lead to reducing artifacts in simulated 
mammograms, see Figure below. 
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(a)                                                     (b) 
Figure 30: (a) Detail of a simulated projection of a 200um voxel phantom with no partial volume simulated; 
arrows indicate the artifacts; (b) Detail of the equivalent projection of a partial volume phantom (IEEE TMI, 
submitted). 

Software Pipeline for Breast Anatomy and Imaging Simulation 

We designed software pipeline that integrates breast simulation. The pipeline connects anatomy and imaging 
simulation components, necessary for the performance of virtual clinical trials, for preclinical validation of 
breast imaging systems.  The components are connected using the XML-based parsimonious data 
representation.  Optimized simulation algorithms and their GPU-based implementation allow very fast 
(practically real time) simulation, supporting virtual trials with very large number of simulated anatomies.  The 
pipeline design and simulation were discussed in our publications at 2013 AAPM, 2013 RSNA, and 2014 SPIE 
conferences.   

Figure 31: Flowchart of the Software Pipeline for Breast Anatomy and Imaging Simulation 

o Prepare peer-review publications on the results of the proposed research. (Y3-Y4)
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While working on the current research, we have prepared several publications about our results.  These 
publications are listed in the section on “Reportable Outcomes”.  

o Validate success of the research training program by annual teleconferences with and bi-annual visits
by external Advisory Committee. 

DSU faculty met with UPENN mentors on March 23, 2012, October 19, June 24, and January 24, 2011 to 
discuss the progress and the future work of each DSU faculty.  Among additional collaborative activities 
between the Penn and DSU, Dr. Pokrajac took his sabbatical leave from DSU to work with Dr. Maidment and 
Dr. Bakic in Fall semester of 2011. Their collaborative work has generated several journal papers and 
conference publications (see Reportable Outcomes).  They are also preparing to submit an NIH R01 grant 
proposal in Spring 2012 to the RFA on the Continued Development of Biomedical Software (PAR-11-028): 
http://grants.nih.gov/grants/guide/pa-files/PAR-11-028.html). 

Our manuscript about the simulation of partial volume is conditionally accepted.  Also, our manuscript on 
computational complexity of the recursive partitioning algorithm is accepted and published. In addition, two 
papers were accepted for the 2014 International Workshop on Breast Imaging (IWDM), held in Gifu, Japan in 
July 2014.  The papers describe our preliminary results on the simulation of small scale tissue structures by 
subdivision of phantom adipose compartments, as well as the preliminary results in the correlation between 
topological and textural properties extracted from clinical breast images.  Both properties have been previously 
related with the breast cancer risk, thus their correlation may offer an improved estimation of risk.  

o Validate success of the research training program by annual teleconferences with and bi-annual visits
by external Advisory Committee. 

On November 3, 2010, a teleconference meeting of the DoD award Advisory Committee was organized by Drs. 
Maidment, Liu, and Bakic, and attended by all the DSU faculty supported on the grant, as well as Drs. Chanita 
Hughes and Timothy Rebbeck from UPenn.  The discussed issues include our progress on the grant, future 
research steps related to the genetic analysis project aims, as well as the long-term aim of establishing a regional 
Breast Cancer Disparity Center at DSU.  

DSU faculty met with UPENN mentors on August 9, 2010, January 24, 2011, June 24, 2011, and  March 23, 
2012 to discuss the progress and the future work of each DSU faculty. 

2.3  Objective 3 

Objective 3 (from grant SOW):  Produce a corpus of high-quality published work and develop a portfolio of 
independently funded research grants at DSU to support a sustained breast cancer program 

Our results from the proposed research and 34 published journal and conference papers (listed in Chapter 4) 
have been used as the basis for preparing and submitting the following funding applications: 

• June 2012, NIH R01 proposal “Continued Development and Maintenance of Computer Simulation of
Breast Anatomy,” (D. Pokrajac, P. Bakic, A. Maidment) submitted to PAR-11-028:
http://grants.nih.gov/grants/guide/pa-files/PAR-11-028.html;
The application was scored at 41% but not funded.

• July 2013, a resubmission of the NIH R01 proposal “Continued Development and Maintenance of
Breast Anatomy and Imaging Simulation,” (D. Pokrajac, P. Bakic, A. Maidment);
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The application was scored at 40% but not funded. 
• November 2013, DoD Breakthrough Award proposal “Identification of Aggressive DCIS Cases by

3D Analysis of Reconstructed Digital Breast Tomosynthesis Images,” (P. Bakic, D. Pokrajac); 
The proposal was not funded.  

• October 2013, Delaware INBRE pilot proposal “Improving Realism of Software Breast Phantoms”
(D. Pokrajac);  
The proposal has been funded in the amount of $160,000 for the duration of 2014-2016. 

3. Important Findings

• We finalized ACRIN-DMIST data transfer on MIRC and resolved issues with various batch transfers
including 11,106 anonymized, previously acquired cases;

• We developed a program to estimate the breast cancer risks using the metadata for women from the
ACRIN database and the software implementation of the Gail risk model;

• We estimated breast densities for mammograms from the ACRIN database, using the software
developed at the University of Pennsylvania;

• We developed a web-based data center for this project, which includes database design and merge of
source data, converted data and computed data together into relational database tables

• We confirmed that the validity of the conjecture that breast density significantly depends on race
• We performed preliminary testing on improvement of breast density using the image based risk

descriptors

• We performed a preliminary query of the ACRIN data aimed at identifying the prevalence of women
with incomplete visualization of the breast;

• For the cases with only partial breast visualization, we have developed an image registration/fusion
method for the estimation of biomarkers;

• We developed an efficient method for generating anthropomorphic software breast phantoms with high
resolution;

• We proved computational complexity of the simulation algorithm and mathematically demonstrated its
asymptotic efficiency

• Updated the design of the software pipeline for real-time simulation of breast anatomy and imaging.
• We developed a computer demo of the real-time simulation of breast anatomy and imaging
• We developed and validated several modifications and novel features to breast anatomy simulation

methods, used for generating software breast phantoms, including: (1) a method to improve thickness
control of the Cooper’s ligaments in the simulation algorithm by reducing “dents” on the ligaments’
surface; (2) a method for insertion of simulated microcalcification clusters in the software breast
phantom; (3) a method for simulating the dense tissue distribution in the software phantom; (4) a method
to simulate small scale tissue structure; and (5) a method for reducing quantization artifacts in phantom
images by simulating partial volume in voxels containing several simulated tissue types.  The listed
novel features have resulted in further improvement of the image quality in synthetic breast images
generated using the software phantom.

• We performed preliminary analysis of the correlation between topological and textural properties
extracted from clinical breast images

• We developed preliminary algorithms for (1) modeling of ducts and (2) simulation of subcutaneous
tissue.

• We developed a fully-automated software pipeline to perform quantitative analysis of breast tissue
composition from multimodality digital breast images.

• A roadmap has been proposed to optimize the simulation of breast anatomy by parallel implementation,
in order to reduce the time needed to generate software breast phantoms;
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• As a first step towards the shape analysis of anatomical structures in the breast, we have analyzed an
anthropomorphic software breast phantom.  The shape analysis was performed by fitting ellipsoids to
the simulated tissue compartments.

4. Reportable Outcomes

• Xia, S., Liu, F., Maidment, A.D.A., Bakic, P.R.: "Refinements to the Deformation Model of An
Anthropomorphic Computer Generated Breast Phantom," Medical Physics 37: 3131, 2010.  (Presented
as a poster at the 2010 Annual Meeting of the American Association of Physicists in
Medicine, Philadelphia, PA.)

• Bakic, P.R., West, E., Sak, M., Gavenonis, S.C., Duric, N., Maidment, A.D.A.: "Comparison of 3D and
2D Breast Density Estimation from Synthetic Ultrasound Tomography Images and Digital
Mammograms of Anthropomorphic Software Breast Phantoms," SPIE Medical Imaging 2011.

• Liu, F., Bakic, P.R., Pokrajac, D., Wilson, C., Shi, X., and Maidment, A.D.A: “Image-Based Biomarkers
of Breast Cancer Risk: Analysis of Risk Disparity among Minority Populations”, Era of Hope Breast
Cancer Conference, Orlando,  Fl, August 2-5, 2011.

• Pokrajac, D., Maidment, A.D.A., Bakic, P.R.: "A method for Fast Generation of High Resolution
Software Breast Phantom," submitted for presentation at the 2011 Joint Annual Meeting of the
American Association of Physicists in Medicine and Canadian Organization of Medical Physicists,
Vancouver, BC.

• Chen, F., Pokrajac, D.D., Shi, X., Liu, F., Maidment, A.D.A., Bakic, P.R., “Partial Volume Simulation
in Software Breast Phantoms,” Proc. SPIE 8313, Medical Imaging 2012: Physics of Medical Imaging,
83134U, 2012.

• Chui, J.H., Pokrajac, D.D., Maidment, A.D.A., Bakic, P.R., “Roadmap for Efficient Parallelization of
Breast Anatomy Simulation,” Proc. SPIE. 8313, Medical Imaging 2012: Physics of Medical Imaging,
83134T, 2012.

• Contijoch, F., Lynch, J., Pokrajac, D.D., Maidment, A.D.A., Bakic, P.R., “Shape Analysis of Simulated
Breast Anatomical Structures,” Proc. SPIE. 8313, Medical Imaging 2012: Physics of Medical Imaging,
83134J, 2012.

• Chen, F., Pokrajac, D.D., Shi, X., Liu, F., Maidment, A.D.A., Bakic, P.R., “Simulation of Three
Material Partial Volume Averaging in Software Breast Phantom,” In Maidment A., Bakic P., and
Gavenonis S. (eds.), Breast Imaging (IWDM), Lecture Notes in Computer Science 7361, 149-156,
Springer-Verlag Berlin Heidelberg, 2012.

• Chui, J.H., Pokrajac, D.D., Maidment, A.D.A., Bakic, P.R., “Toward Breast Anatomy Simulation Using
GPU,” In Maidment A., Bakic P., and Gavenonis S. (eds.), Breast Imaging (IWDM), Lecture Notes in
Computer Science 7361, 506-513, Springer-Verlag Berlin Heidelberg, 2012.

• Pokrajac, D., Maidment, A.D.A., Bakic, P.R., “Optimized Generation of High Resolution Breast
Anthropomorphic Software Phantoms,” Medical Physics 39, 2290, 2012.
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• Bakic, P.R., Maidment, A.D.A., Chui, J.H., Avanaki, A.N., Marchessoux, C., Pokrajac, D.D, Espig, K.,
Kimpe, T., Xthona, A., Lago, M., Shankla, V.: “Automated and optimized imaging simulation platform
for virtual clinical trials of breast cancer screening.”  In Proc. of the Scientific Assembly and Annual
Meeting of the Radiological Society of North America, 2013.

• Bakic, P., Myers, K., Reiser, I., Kiarashi, N., Zeng., R.: “Virtual Tools for Validation of X-ray Breast
Imaging Systems,” Medical Physics, 40: 3133. 2013.

• Chui, J.H., Zeng, R., Pokrajac, D.D., Park, S., Myers, K.J., Maidment A.D.A., Bakic, P.R., “Two
Methods for Simulation of Dense Tissue Distribution in Software Breast Phantoms,” Proc. SPIE. 8668,
Medical Imaging 2013: Physics of Medical Imaging, 86680M, 2013.

• Chen, F., Zheng, P., Xu, P., Maidment, A.D.A., Bakic, P.R., Pokrajac, D.D., Liu, F., Shi, X., “Breast
image registration by using non-linear local affine transformation,” Proc. SPIE 8668, Medical Imaging
2013: Physics of Medical Imaging, 86684J, 2013.

• Maidment, A.D.A., Bakic, P.R., Chui, J.H., Avanaki, A.N., Marchessoux, C., Pokrajac, D.D, Espig, K.,
Kimpe, T., Xthona, A., Lago, M., Shankla, V.: “The role of virtual clinical trials in preclinical testing of
breast imaging systems.”  In Proc. of the Scientific Assembly and Annual Meeting of the Radiological
Society of North America, 2013.

• Abbey, C.K., Bakic, P.R., Pokrajac, D.D., Maidment, A.D.A., Eckstein, M.P., Boone, J.M., “Non-
Gaussian Statistical Properties of Virtual Breast Phantoms,” In Image Perception, Observer
Performance, and Technology Assessment, Proc. SPIE 9037, ed. by C. Mello-Thoms, M. Kupinski,
90370G, 2014.

• Bakic, P.R., Pokrajac, D.D.,  De Caro, R., Maidment, A.D.A, “Realistic Simulation of Breast Tissue
Microstructure in Software Anthropomorphic Phantoms,” In Fujita H., Hara T., Muramatsu, C. (eds.),
Breast Imaging (IWDM), Lecture Notes in Computer Science 8539, 348-355, Springer-Verlag Berlin
Heidelberg, 2014.

• Bakic, P.R., Pokrajac, D.D., Thomas, M., Skoura, A., Nuzhnaya, T., Megalooikonomou, V., Keller, B.,
Zheng, Y., Kontos, D., Gee, J.C., Cardenosa, G., Maidment, A.D.A., “Correlation Between Topological
Descriptors of the Breast Ductal Network from Clinical Galactograms and Texture Features of
Corresponding Mammograms,” In Fujita H., Hara T., Muramatsu, C. (eds.), Breast Imaging (IWDM),
Lecture Notes in Computer Science 8539, 658-665, Springer-Verlag Berlin Heidelberg, 2014.

• Shankla, V., Pokrajac, D.D., Weinstein, S.P., Conant, E.F., Maidment, A.D.A., Bakic, P.R.: “Automatic
insertion of simulated microcalcification clusters in a software breast phantom,” In Physics of Medical
Imaging, Proc. SPIE 9033, ed. by B. Whiting, C. Hoeschen, D. Kontos, 2014.

• T. Nuzhnaya, A. Skoura, G. Cardenosa, V. Megalooikonomou, D. Kontos, D. Pokrajac, P. Bakic, A.
Maidment,  “Correlation between topological descriptors of the breast ductal network extracted from
clinical galactograms and texture features of corresponding mammograms,” Proc. IWDM 2014.

• Petkovic, M., Bakic, P.R., Maidment, A.D.A., Pokrajac, D.D., “Asymptotic Number of Z3Δ Cells
Covering C(1) Surface on Uniform Grid and Complexity of Recursive-Partitioning Simulation of Septal
Tissue Regions,” Applied Mathematics and Computation 252-263, 2015.

• Chen, F., Bakic, P.R., Maidment, A.D.A., Jensen, S.T., Shi, X., Pokrajac, D.D., “Description and
Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms,”
conditionally accepted for publication in IEEE Transactions on Medical Imaging, 2015.
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Presentations: 

• Recursive Partitioning for Simulation of Breast Tissue, Faculty of Sciences, University of Nis, Serbia,
10/6/2011 (Pokrajac,  Bakic)

• Novel Algorithm for Breast Anatomy Simulation, Optimized for Generation of High Resolution
Software Phantoms, MIPG Seminar Series, University of Pennsylvania, 10/21/2011 (Pokrajac,
Maidment, Bakic)

• Simulation of Breast Tissue using Recursive Partitioning Algorithm, Faculty of Electrical Engineering,
University of Nis, Serbia, 12/27/2011 (Pokrajac, Bakic)

• Breast Tissue Simulation with Recursive Partitioning Algorithm – Latest results, University of Belgrade,
Serbia, 3/5/2012 (Pokrajac, Bakic)

• “Mathematics in the Chest”, Faculty of Electrical Engineering, Nis, Serbia, 3/30/2012 (Pokrajac;
Sponsored by American Embassy in Serbia)

• Partial volume simulation in software breast phantoms, Mid-Atlantic Numerical Analysis Day, Temple
University, Philadelphia, PA, November 4, 2011 (Chen, Pokrajac, Shi, Liu, Maidment, Bakic)

• D. Pokrajac made a presentation at the IWDM 2012, the 11th International Workshop on Breast
Imaging, in Philadelphia, PA. on July  8-11, 2012,  “Toward Breast Anatomy Simulation using GPU”
(co-authored by J. Chu, D. Pokrajac, A. D. Maidment,  P. Bakic)

• F. Chen made a presentation at the IWDM 2012, the 11th International Workshop on Breast Imaging, in
Philadelphia, PA. On July  8-11, 2012,  “Simulation of Three Materials Partial Volume
Averaging in a Software  Breast Phantom” (co-authored by F. Chen, D. Pokrajac, X. Shi, F. Liu, A. D.
Maidment,  P. Bakic)

• Breast Tissue Simulation with Recursive Partitioning Algorithm, Faculty of Electronics, Mechanical
Engineering and Ship building, Split, Croatia, May 21, 2014 (Pokrajac, Bakic, Maidment), invited talk

• Simulation of Breast Tissues using Computer Algorithms, Kolarac Institution, Belgrade, Serbia, May
30. 2014 (Pokrajac, Bakic, Maidment), invited talk

• Partial volume simulation in software breast phantoms, XIII Serbian Mathematical Congress, Vrnjacka
Banja, Serbia, May 23, 2014 (Pokrajac, Bakic, Maidment, Shi, Chen)

• Mathematical Issues in Software Breast Phantom Simulation, XIII Serbian Mathematical Congress,
Vrnjacka Banja, Serbia, May 23, 2014 (Pokrajac, Maidment, Petkovic, Bakic), invited talk

5. Conclusion

Supported by this DoD HBCU Partnership Training Award, our team of DSU and UPENN researchers have 
designed and successfully completing a breast cancer research training program for DSU faculty, and performed 
a broad set of research activities focused on the analysis of breast cancer imaging, cancer risk estimation from 
demographic and imaging based descriptors, mammographic image processing and registration, and simulation 
of breast tissue anatomy and imaging.  We have organized the well-attended bi-weekly DSU-UPENN Breast 
Cancer Seminar series during the Y1 and Y2.  Our research results have been presented in 34 conference and 
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journal publications. DSU’s rank was moved to number 13 of all HBCUs partly due to the recent research 
activities including this funded project by DoD. A total of five graduate and undergraduate students at DSU and 
UPENN have worked on this project; one Ph.D. dissertation (Chen) has been successfully defended.  Finally, in 
2014, our grant application to NIH-supported Delaware INBRE program was funded.  This award has helped 
significantly to establish the breast cancer research program at DSU, as well as to successfully apply for future 
research funding.  Through this recently approved funding, the DSU-UPENN research partnership, initiated 
through our DoD HBCU PTA award, will continue in the future!   

6. Appendices (New publications since the last annual report)

• Bakic, P.R., Pokrajac, D.D., Thomas, M., Skoura, A., Nuzhnaya, T., Megalooikonomou, V., Keller, B.,
Zheng, Y., Kontos, D., Gee, J.C., Cardenosa, G., Maidment, A.D.A., “Correlation Between Topological
Descriptors of the Breast Ductal Network from Clinical Galactograms and Texture Features of
Corresponding Mammograms,” In Fujita H., Hara T., Muramatsu, C. (eds.), Breast Imaging (IWDM),
Lecture Notes in Computer Science 8539, 658-665, Springer-Verlag Berlin Heidelberg, 2014;

• Petkovic, M., Bakic, P.R., Maidment, A.D.A., Pokrajac, D.D., “Asymptotic Number of Z3Δ Cells
Covering C(1) Surface on Uniform Grid and Complexity of Recursive-Partitioning Simulation of Septal
Tissue Regions,” Applied Mathematics and Computation 252-263, 2015;

• Chen, F., Bakic, P.R., Maidment, A.D.A., Jensen, S.T., Shi, X., Pokrajac, D.D., “Description and
Characterization of a Novel Method for Partial Volume Simulation in Software Breast Phantoms,”
accepted for publication in IEEE Transactions on Medical Imaging, 2015.
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Abstract. Mammographic texture has been reported as a biomarker of cancer 
risk.  Recent publications also suggest correlation between the topology of the 
breast ductal network and risk of cancer.  The ductal network can be visualized 
by galactography, the preferred imaging technique for nipple discharge.  We 
present current results about the correlation between topological and textural 
properties of clinical breast images.  This correlation was assessed for 41 ga-
lactograms and 56 mammograms from 13 patients.  Topology was character-
ized using feature extraction techniques arising from text-mining, validated 
previously in the classification of normal, benign, and malignant galactograms. 
In addition, we calculated 26 texture descriptors using an automated breast im-
age analysis pipeline.  Regression analysis was performed between texture and 
topological descriptors averaged over all images of the same patient.  These 
data demonstrate a correlation between topology and a subset of texture features 
with borderline statistical significance due to the limited sample size. 

Keywords: Texture analysis, topology descriptors, galactograms, mammo-
grams. 

1 Introduction 

Previously, we analysed the topological properties of the branching network of breast 
ducts as visualized by galactography, an x-ray imaging procedure of the contrast-
enhanced breast ductal network (1-3).  That analysis suggested a correlation between 
cancer risk and ductal network topology; this correlation also has been supported by 
evidence from murine cancer models (4).  Clinical visualization of breast ducts is, 
however, not routinely performed; galactography is indicated infrequently, and it 
mostly commonly reveals benign findings (5, 6).   
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On the other hand, texture descriptors of breast parenchyma are known to correlate 
with cancer risk (7-9).  Our work is motivated by a desire to determine whether there 
is an association between parenchymal texture descriptors and ductal topology.  Such 
an analysis would lead to improved models of breast anatomy, and may lead to a bet-
ter understanding of breast cancer risk.  Currently, breast cancer risk is estimated 
using patient demographic information and parenchymal texture features extracted 
from 2D mammograms.  The spatial arrangement of breast tissue is, however, three-
dimensional, stressing the need to understand the relationship between parenchymal 
structure and image texture.  

The UPenn X-ray Physics Lab has extensive experience with the simulation of 
breast anatomy and imaging (10, 11).  The development of the UPenn breast phan-
tom is predicated upon a set of anatomically justified elements.  To that end, we have 
chosen not to model the parenchymal texture by a random field with statistical proper-
ties similar to clinical data.  This development process has been incremental, and 
continues to this day.  For example, we have just recently begun to model the hierar-
chical organization of Cooper’s ligaments seen in breast histology slices.  A prelimi-
nary validation of a model of this small scale tissue detail, published separately in this 
proceedings, indicates good agreement with clinically estimated texture (12).   

This paper presents our current results about the correlation between the ductal to-
pology of clinical galactograms and the parenchymal textural properties of clinical 
mammograms from the same group of women.  Understanding the relationship be-
tween mammographic texture and spatial distribution of breast anatomy will help 
optimize and extend our fully automated software pipeline for breast anatomy and 
imaging simulation; ultimately, we would like to be able to simulate specific cohorts 
of women, stratified by age, risk, and other factors. 

2 Methods 

2.1 Topological Analysis of Galactograms 

In this paper, we analysed images of existing, anonymized clinical galactograms of 49 
women, obtained from Virginia Commonwealth University.  The data collection was 
performed after IRB review and was HIPAA compliant.  Clinical galactograms were 
digitized from film, and categorized based upon the visibility of the ductal network. 
Ductal trees were traced manually from galactograms, followed by Prufer encoding of 
the breadth-first labelled ductal tree nodes (3).  Then tf-idf significance weighting 
(3), originally used in text mining, was performed on the traced and encoded ductal 
trees.  After manually tracing the ductal networks, a subset of 41 galactograms from 
13 patients with well-defined ductal trees was selected for further processing and 
testing.   

2.2 Texture Analysis of Mammograms 

We measured 26 texture features in 56 digitized mammograms from the 13 selected 
patients imaged at Virginia Commonwealth University. Texture analysis was performed 
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using a fully automated software pipeline which extracted a large set of image features 
from the digitized mammograms (13). The pipeline calculates texture feature maps at 
points on a regular spatial lattice, determined by two parameters: the window size and 
the lattice distance.  Here we use a window size of 63 pixels, and a lattice distance of 31 
pixels.  The analysed features are organized into three groups, including (i) descrip-
tors of grey-level histograms, (ii) co-occurrence features, and (iii) run length features. 
These texture features have been used previously in breast cancer risk assessment 
studies (9).  For the correlation analysis, the texture feature maps were averaged over 
the whole breast region (excluding the pectoral muscle and air). 

2.3 Hypothesis Testing 

We tested the hypothesis that there is a correlation between mammographic texture 
features and ductal topology descriptors.  To that end, we have calculated the linear 
regression (14).  The goal was to predict values of texture features averaged over all 
mammograms of the same patient as a function of the topological properties estimated 
from the corresponding manually-traced ductal networks, averaged over all galacto-
grams of the same patient.  Prior to the regression analysis, we combined the tf-idf 
topological descriptors via principal component analysis (PCA).  The regression 
model considered the first 13 PCA components and the 26 texture features.  

2.4 Power Calculations 

It can be demonstrated that a small sample size (in this case 13 patients), could lead to 
large estimated p-values and hence rejection of valid linear regression models (large 
Type II error). To demonstrate the effect of sample size, we simulated an augmented 
dataset by bootstrapping (15).  The bootstrapping was performed by replicating data 
records, with added Gaussian noise, for each PCA attribute and response variable.  
The standard deviation of the noise was 50% of the estimated standard deviation of 
the attributes or response variables. 

3 Results and Discussion 

Fig. 1 shows an example of a clinical galactogram used in this study (Fig. 1(a)), and 
the corresponding manually-traced ductal tree (Fig. 1(b)).  The Prufer encoding and 
the tf-idf weights corresponding to the traced tree is also given (Fig. 1(c-d)).  The 
example shown illustrates a breast with a malignant finding.  Fig. 2 shows an exam-
ple of a clinical mammogram from the same woman (Fig. 2(a)) and the corresponding 
texture feature map (Fig. 2(b)).  Shown in this example, is a map of the entropy 
texture feature.   



Correlation between Topological Descriptors of the Breast Ductal Network 661 

(a) (b)

[ 1  1  3  4  6 10 10  6 11 16 16 11 17 24 24 17 25 34  
 34 47 50 50 47 25  4  7 12 18 26 26 18 27 38 38 49 49  
 27 12  7 13 20 28 28 20 29 29 13 21 30 30 21  3  5  5]

(c) 

[0.00 0.11 0.45 0.36 0.40 0.50 0.71 0.00 0.50 0.77 
 1.04 0.77 0.97 1.11 0.83 0.00 0.00 1.04 1.55 1.27 
 1.45 1.19 0.00 0.00 1.27 0.00 0.00 0.00 0.00 0.00 
 0.00 1.27 0.00 0.00 1.66 1.55 0.00 0.00 1.55 0.00 
 0.00 1.45 0.00 2.04 2.19 1.66 0.00 1.90 0.00 0.00 
 2.19 0.00 0.00 0.00 0.00 1.55 0.00 0.00 0.00 3.36] 

(d) 

Fig. 1. Illustration of the topological descriptors of the breast ductal network. Shown are: 
(a) a clinical galactogram with malignant finding; (b) the corresponding manually-traced ductal 
tree; (c) the Prufer encoding; and (d) the tf-idf weights corresponding to the ductal tree.  
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Fig. 2. The clinical mammogram of the patient from Fig. 1 (left) and the corresponding map of 
the entropy texture feature (right) 

Fig. 3 shows the regression analysis results.  A borderline statistical significance 
was observed for three texture features (features 9-11, p-values between 0.05 and 
0.1); three additional features (features 17, 20, 24) had p-values between 0.1 and 0.15. 
It is likely that statistical significance was not achieved due to the limited sample size; 
thus, we are prevented from drawing a definitive conclusion about the correlation 
between texture and topology.  The observed results, however, suggest a possible 
correlation between topological descriptors and several texture features.  The boot-
strap analysis of a hypothetically enlarged dataset with a sample size of 26 suggests 
that a statistically significant regression (at a significance level of 0.05) could be 
achieved between various texture features and topological descriptors.  Fig. 3 shows 
the p-values from the bootstrap analysis.  

The potential for inter-correlation between individual texture features was ac-
counted for by applying PCA before performing the regression analysis, as PCA uses 
orthogonal transformations to convert the original data into a set of linearly uncorre-
lated variables.  The bootstrap analysis performed in this paper to estimate the effect 
of sample size, assumed the noise in the enlarged data set to have a standard deviation 
equal to 50% of the standard deviation in individual sample data. 

The results presented in this paper are based upon an initial analysis of 13 patients. 
We are currently analysing a larger set of clinical breast images; we expect to double 
the sample size in the near future.  If the linear dependence between the texture and 
topology is confirmed (as suggested from our initial analysis and supported by boot-
strapping), texture descriptors could be used as a proxy for topology, since the ductal 
network is not routinely visible in clinical images.  Identifying texture features, or 
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combinations of texture features, which have the strongest correlation with topology 
could improve the understanding of texture-based risk biomarkers.   

If, however, the increased sample size does not confirm the correlation between to-
pology and texture, it could suggest that topology may carry risk-related information 
independent from texture descriptors.  This could potentially lead to an improvement 
in the accuracy of breast cancer risk estimation techniques, assuming a clinically fea-
sible method for the visualization and characterization of breast ducts (e.g., MRI or 
tomosynthesis) is available. 

Fig. 3. p‐value for the regression of individual texture features (averaged over all mammograms 
of the same patient) as a function of principal component analysis (PCA) components for the 
topological descriptors (tf‐idf weights, averaged of all the traced ductal networks of the same 
patient). Shown are the results of the initial analysis of 13 patients, as well as the bootstrap 
results modelling a dataset of 26 cases. 

It is worth noting the limitations of the current study.  First, the ductal trees ana-
lysed in this paper were manually-traced from digitized galactograms.  The manual 
tracing was performed by one person (a third-year medical student with experience in 
breast imaging).  We believe that manual tracing did not compromise the analysis. 
In our previous study of ductal topology, we observed relatively low variations (a 
root-mean-square fractional error on the order of 2%) in estimated topological fea-
tures due to manual tracing (2).   
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Additional potential limitations include the use of average texture descriptors, and 
the inter-correlation between individual descriptors of texture (or topology). In this 
paper, the regression analysis was performed using texture features averaged over 
the breast region in each mammographic image. These average values may suppress 
the differences in feature histograms calculated over mammographic images. In the 
future, we may repeat the analysis based upon other histogram moments, or using 
the full histogram as the texture descriptor.   

4 Conclusion 

We have performed a regression analysis between topological descriptors of the 
breast ductal network extracted from previously acquired, anonymized clinical galac-
tograms, and texture descriptors estimated from corresponding clinical mammograms. 
Ductal networks were extracted from galactograms by manual tracing. The texture 
features were estimated using a fully automated image analysis pipeline. Initial analy-
sis of clinical images from 13 women suggests correlation with borderline signifi-
cance for a subset of texture descriptors. The identified subset of texture descriptors 
could hypothetically be used as proxy for ductal topological properties. Analysis of a 
larger number of clinical cases is ongoing. 
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Marko D. Petković a,⇑, Predrag R. Bakic b, Andrew D.A. Maidment b, David Pokrajac c

a University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia
b Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
c Computer and Information Sciences Department, Applied Mathematics Research Center, CREOSA Center, Delaware State University, Dover, DE 19901, USA

a r t i c l e i n f o a b s t r a c t
Keywords:
Octree
Cð1Þ-surface
Recursive partitioning
Medical image simulation
The exact asymptotic computational complexity for a problem of indexing cells on a uni-
form grid intersecting with a union of Cð1Þ surfaces has been proven. The computational
complexity of the recursive partition indexing algorithm, utilized for simulation of septat-
ed tissues, is derived and the algorithm is demonstrated as being asymptotically optimal.

� 2014 Published by Elsevier Inc.
1. Introduction

Octrees (e.g., [1–3]), a 3D spatial indexing technique, have successfully been used in various applications in imaging and
computer graphics. For example, octrees are utilized for efficient data representation in fast interactive rendering of isosur-
faces [4], rendering of medical data [5,6], 3D surface-based thinning algorithms [7] and compression of complex isosurfaces
[8]. Recent parallel applications of octrees include [9,10].

The need for preclinical validation and optimization of medical imaging systems or image analysis methods has recently
led to the development of a recursive partitioning based simulation technique (e.g., [10–15]). In this technique, an organ of
interest is specified using a system of scalar fields in 3D space. Various anatomic constituents of the organ (compartments,
septal regions separating compartments, skin, etc.) are modeled by indexing voxels or groups of voxels using octrees. The
recursive partitioning stops when the linear dimension of a cubic subdomain is equal to the prespecified size or when the
cubic subdomain contains material of a single type.

The use of octree-based recursive partitioning in breasts simulation has led to a number of significant accomplishments.
The GPU implementation allows for near real-time modeling of the breast; software phantoms are generated at a rate of 7
breasts/minute using a voxel resolution of 50 micrometers [10]. In addition, the method makes it possible to simulate the
breast, in whole or in part, at the cellular level [11]. Use of the accelerated simulation at high spatial-resolution provides
an avenue for realistically modeling of breast microstructures [16,17]. These accomplishments enable the simulation of clin-
ical trials on a per patient basis. These virtual clinical trials have become a feasible option for conducting preclinical testing of
novel breast imaging systems [18]. The successes arising from simulation of the breast anatomy support the extension of
octree-based recursive partitioning to the simulation of other septated tissues (e.g., cortical bone, lung parenchyma), as well
u (A.D.A.
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Notation

B lattice (coordinate) box
K number of partition functions
L octree depth
/i functions that partition box Bð0Þ (shape functions)
Bð0Þ initial cubic box
BðlÞ set of initial cubic box subdivisions with side length DðlÞ

Bkl cell of a 2D lattice; projection of B onto xy plane
BðlÞ set of all boxes BðlÞ

dimbðXÞ box-counting dimension of bounded set X
g node of the octree
g:U set of shape functions associated with node g
g:B cubic subdomain associated with node g
Dð0Þ side length of Bð0Þ

DðlÞ Dð0Þ=2l – side length of BðlÞ

Uð0Þ set of shape functions
Z3D;Z2D 3D and 2D coordinate lattice with unit size D
pL total number of octree nodes up to level L
ul number of nodes at level l with subvolumes intersecting S
v l number of nodes at level l of an octree
Ck; k ¼ 1;2; . . . ;K subdomains of Bð0Þ, compartments
NXðDÞ;NSðDÞ;NcðDÞ number of boxes from Z3D intersecting with a bounded set X;S; c
PðSÞ NSðDÞD2

Cð1ÞðXÞ set of all continuously differentiable functions, defined on the set X
lðXÞ lebesgue measure of the set X
Fk;l normalized maximal value of function f on Sxy \ Bkl

Fk;l normalized minimal value of function f on Sxy \ Bkl

R union of rectangles Ri

Ri rectangle on Sxy

S union of all boundaries Sij; a surface
Sij boundary of subdomains Ci and Cj

Sxy;Sxz;Syz projections of surface S on coordinate planes; Sxy also denotes rectangle on plane xy
SR surface induced by R
MS maxðx;yÞ2Sxy

@f
@x ðx; yÞ þmaxðx;yÞ2Sxy

@f
@y ðx; yÞ þ 2

c finite union of Cð1Þ curves; A set with box-counting dimension <2
dS; dX boundaries of S;X
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as various porous materials [19]. To support the widespread application of this method and fully exploit the benefits, espe-
cially for multi-scale simulation tasks, a better understanding of its theoretical computational complexity is needed. This is
the motivation for our work.

Note that the problem considered in [11] can be reduced ultimately to the problem of indexing voxels intersecting with a
union of 3D Cð1Þ surfaces. The computational complexity of a recursive partitioning algorithm for approximation of 3D implicit
polynomial surfaces was discussed in [20]. In that paper, using a concept of �-entropy (the minimal number of closed balls of
radius � covering the surface), an upper bound for the algorithm complexity was proven. However, the problem of the lower
bound of the problem, as well as the computational complexity of the similar, but not equivalent, problem discussed in [11]
has remained open. Observe that experimental results [10,11] have indicated that the computational complexity of the recur-
sive algorithm proposed to solve the problem is quadratic w.r.t. the reciprocal linear dimension of a voxel. This has led to the
hypothesis that the asymptotic complexity of the algorithm is quadratic. Further, we wanted to examine the hypothesis that the
algorithm is computationally optimal, which warrants determination of the lower bound of the complexity.

In this paper, we formally restate the considered problem and the recursive partitioning algorithm in Section 2. In Sec-
tion 3, we demonstrate a quadratic computational complexity of the indexing algorithm. In addition, we demonstrate that
the influence of the overhead introduced by recursive partitioning of the domain does not increase the asymptotic complex-
ity of the algorithm. In Section 4, we formally prove the asymptotic number of uniform 3D cubic cells covering a finite union
of Cð1Þ surfaces, which is the main result in Section 3.

2. Recursive partitioning indexing algorithm

Consider a cubic box Bð0Þ � R3 and functions /i 2 Cð1ÞðBð0ÞÞ; i ¼ 1;2; . . . ;K (hereafter referred to as shape functions).
Define
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mdðxÞ ¼ min
16j6K

/jðxÞ:
The shape functions partition Bð0Þ into K subdomains C1;C2; . . . ;CK defined by
Ck ¼ x 2 Bð0Þ j /kðxÞ ¼mdðxÞ
n o

; k ¼ 1;2; . . . ;K:
In other words, the set Ck is set of all points x 2 Bð0Þ such that /kðxÞ is smallest among all values /jðxÞ for j ¼ 1;2; . . . ;K . These
subdomains Ck are hereafter referred to as compartments. Note that compartments Ck provide a suitable generalization of
Voronoi diagrams. Denote by Si;j the common boundary of Ci and Cj (1 6 i < j 6 K). Note that Si;j may be an empty set if
Ci and Cj do not have a common boundary. Furthermore, denote by S the union of all boundaries, i.e.,
S ¼
[

16i<j6K

Si;j ð1Þ
It is obvious that all Si;j are Cð1Þ surfaces implying that S is a piecewise Cð1Þ surface. We consider the following problem of
indexing the boundaries of the compartments.

Assume that each side of the initial box Bð0Þ with side length Dð0Þ, is divided into a total 2l equal parts. The entire box is
therefore divided into a total of 23l subboxes of unit size DðlÞ ¼ Dð0Þ=2l. Denote the set of all such subboxes by BðlÞ.

Problem 1 (BoxApprox). For a fixed L 2 N, find all subboxes B 2 BðLÞ of Bð0Þ having non-empty intersection with S. In other
words, find all subboxes B 2 BðLÞ having non-empty intersection with at least two compartments Ck.

Note that S is a bounded surface. By an appropriate shift of the coordinate system, we obtain that all subboxes B 2 BðLÞ are
coordinate boxes of a Z3DðLÞ coordinate lattice (i.e., a coordinate lattice with a unit size DðLÞ). Hence, we need to determine the
set of all coordinate boxes B of Z3DðLÞ having non-empty intersection with S.

A recursive partitioning algorithm to resolve this problem, which in addition indexes compartments, has been proposed
[11]. The algorithm maintains an octree corresponding to Bð0Þ. Each node g at the level l of the octree is associated with a
cubic subdomain g:B 2 BðlÞ of interest. Also, for each node the set g:U of shape functions is kept such that
g:U ¼ /i j /iðxÞ ¼mdðxÞ; for some x 2 g:Bf g:
in a breadth-first fashion [21]. Nodes at each level of the tree are successively examined; if g:B does not intersect S (i.e., g:U is
a one element set) the node is not further split. Otherwise, the node is split into eight nodes g1;g2; . . . ;g8 of the subsequent
tree level lþ 1 and the corresponding values gk:B and gk:U are determined. The recursive partitioning procedure continues
until the tree depth L is reached. The algorithm from [11] can be conceptualized using the pseudocode notation, shown in
Algorithm 2.1. Note that the function SplitVolume extracts a kth subvolume gk:B from a given volume g:B. The function Refine-
ShapeFunctions determine which shape functions gk:U are associated to a subvolume gk:B, based on the shape functions g:U
associated to a node g.

Algorithm 2.1.RecursivePartitionIndexingðBð0Þ; Uð0Þ; L; KÞ

Require: Root volume Bð0Þ, shape functions Uð0Þ ¼ f/1ðxÞ;/2ðxÞ; . . . ;/KðxÞg; and the depth L of the octree

1: Root:B :¼ Bð0Þ

2: Root:U :¼ Uð0Þ

3: for level l :=0 to L-1 do
4: for each octree node g at level l
5: if jg:Uj > 1 then
6: Split the node g into identical-sized, level lþ 1 subnodes gk; k ¼ 1; . . . ;8
7: for k :¼ 1 to 8 do
8: gk:B :¼ SplitVolumeðg:B; kÞ
9: gk:U :¼ RefineShapeFunctionsðgk:B;g:UÞ
10: end for
11: end if
12: end for
13: end for
14: for each leaf node g in the tree do
15: return g:B;g:U
16: end for
3. Computational complexity

In this section, we provide the computational complexity of Problem 1 and Algorithm 2.1. Denote by NXðDÞ the number of
boxes from lattice Z3D (i.e., a coordinate lattice with unit size D) having non-empty intersection with bounded set X � R3.
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3.1. Asymptotic complexity of problem 1

The computational complexity of Problem 1 is determined by the number NSðDðLÞÞ of cubes BðLÞ 2 BðLÞ. Recall that
DðLÞ ¼ Dð0Þ=2L where Dð0Þ is the size of initial bounding box Bð0Þ.

The following theorem, utilized in the rest of this Section, is proven in Section 4.

Theorem 3.1. Assume that S � R3 is a bounded, piecewise Cð1Þ surface. Then NSðDÞD2 ! const when D! 0.
The Theorem 3.2 below directly gives the asymptotic computational complexity of the Problem 1.

Theorem 3.2. The asymptotic computational complexity of Problem 1 is Hð22LÞ. In other words, the number NSðDðLÞÞ of all
subboxes BðLÞ 2 BðLÞ having non-empty intersection with S is asymptotically Hð22LÞ.
Proof. It is easy to see that S defined by (1) is piecewise Cð1Þ surface, since all /iðxÞ; i ¼ 1;2; . . . ;K are Cð1Þ functions. The state-
ment of the theorem now follows from Theorem 3.1. h
3.2. Asymptotic complexity of recursive partitioning algorithm

Denote by v l, the number of nodes at level l of the tree. Let ul denote the number of nodes intersecting the surface S at
level l of the tree. Denote by pL, the total number of nodes of the octree on levels 1;2; . . . ; L. As demonstrated in [11], function
SplitVolume has Oð1Þ complexity. Also, function RefineShapeFunctions has OðKÞ complexity. Hence, the computational com-
plexity of the Algorithm 2.1 is OðpLÞ.

The number of nodes ul in the level l of the tree containing the compartment boundaries is equal to the number NSðDðlÞÞ of
cubes with linear dimension DðlÞ ¼ Dð0Þ=2l containing the boundaries. Fig. 1 visualizes the octree we are considering. Black
nodes depict the tree nodes containing compartment boundaries (intersecting the surface S). Gray nodes contain only com-
partments. Note that ul is the number of black, while v l is the number of both black and gray nodes at level l.

Our main tools in the proof of an asymtotic formula for pL are Corollary 3.1 (following directly from Theorem 3.1) and
Lemma 3.1.

Corollary 3.1. There exists a constant C and a sequence xl ! 0 ðl! þ1Þ such that ul=4l ¼ C þxl.
Lemma 3.1. Assume that dl is any sequence such that dl ! 0 when l! þ1. Denote by
Fig. 1.
only co
cL ¼
dL�1

4
þ dL�2

42 þ � � � þ
d0

4L :
Then cL ! 0 when L! þ1.
Proof. Fix � > 0 and denote by L0 the number such that jdlj < � for every l > L0. For each L > L0 holds
Visualization of the octree. Black nodes depict the tree nodes containing compartment boundaries (intersecting the surface S). Gray nodes contain
mpartments. The number of black nodes at level l and the total number of nodes at the level l are denoted with ul and v l , respectively.
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jcLj 6
dL�1

4 þ
dL�2

42 þ � � � þ dL0

4L�L0

��� ���þ dL0

4L�L0 þ
dL0�1

4L�LL0þ1 þ � � � þ d0

4L

��� ���
6 � 1

4þ 1
42 þ � � � þ 1

4L�L0þ1

� �
þ 1

4L�L0 dL0 þ
dL0�1

4 þ � � � þ
d0

4L0

��� ���
¼ � 1�4�ðL�L0þ1Þ

3 þ 4�ðL�L0 ÞhðL0Þ
where
hðL0Þ ¼
XL0

l¼0

4�ldL0�l

�����
�����
does not depend on L. It is possible to choose sufficiently large L, so that 4�ðL�L0 ÞhðL0Þ < 2�=3 and subsequently jcLj < �. This
completes the proof of lemma. h

However, pL is directly proportional to the computation complexity of Algorithm 2.1 and equal to
pL ¼ v0 þ v1 þ � � � þ vL ¼ 1þ 8ðu0 þ u1 þ � � � þ uL�1Þ:

According to Corollary 3.1:
pL ¼ 1þ 8Cð40 þ 41 þ � � � þ 4L�1Þ þ 8ðx0 þx141 þ � � � þxL�14L�1Þ

and hence
pL

4L ¼ 4�L þ 8C
1� 4�L

3
þxL�1

4
þxL�2

42 þ � � � þ
x0

4L�1 :
According to Lemma 3.1 we get
lim
L!þ1

pL

4L � 8C
1� 4�L

3

�����
����� ¼ 0
implying that
lim
L!þ1

pL

4L ¼
8C
3

) pL ¼ Hð4LÞ: ð2Þ
According to this subsection (especially (2)), the following theorem holds:

Theorem 3.3. The computational complexity of Algorithm 2.1 is Hð4LÞ.
4. Asymptotic number of Z3 cells covering a piecewise Cð1Þ surface

Formal proof of Theorem 3.1 is provided stepwise in this section. From this point forward, let S represent an arbitrary
(piecewise) Cð1Þ surface and D > 0 is a real number.

4.1. Statement of the problem

Let S � R3 be the surface and denote by Sxy;Syz and Sxz its projections to the xy; yz and xz coordinate planes. Assume that
S can be represented as the graph of the function defined on Sxy, i.e.,
S ¼ ðx; y; f ðx; yÞÞ j ðx; yÞ 2 Sxy
� �

ð3Þ
where f : Sxy ! R is Cð1Þ function and Sxy is compact. Also assume that the boundary of S is a finite length curve.
Recall that, by NXðDÞ we denote the number of boxes from lattice Z3D (i.e., a coordinate lattice with unit size D) which

have non-empty intersection with bounded set X � R3. Also for the bounded set X � R2, denote by lðXÞ the (Lebesgue) mea-
sure of the set X. Further, denote by NXðDÞ the number of squares from corresponding Z2D lattice in a plane that has non-
empty intersection with X � R2.

The following definition of the box-counting dimension dimbðXÞ of the bounded set X � R3 is well-known (see for exam-
ple [22]):
dimbðXÞ ¼ lim
D!0
� log NXðDÞ

log D
: ð4Þ
It is also well-known (see for example [22]) that the box-counting dimensions of the surface S is equal to dimbðSÞ ¼ 2. This
means that for each � > 0, there is D� > 0 such that NSðDÞD2 2 ðD�;D��Þ holds for each D < D�. However, it does not automat-
ically imply that NSðDÞD2 converges to some constant C (when D! 0). Even more, it does not even imply that NSðDÞD2 is
bounded either from the top or from the bottom. In the rest of this Section we show that NSðDÞD2 converges (when
D! 0) and we find its limit value.
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4.2. Preliminary results

Assume that S does not pass through any node of lattice Z3D. Without loss of generality, assume that Sxy lies in the first
quadrant of the xy coordinate plane. Denote by Bkl ¼ ½kD; ðkþ 1ÞD� � ½lD; ðlþ 1ÞD� and
�Fk;l ¼ max
ðx;yÞ2Sxy\Bkl

f ðx; yÞ=D
� �

; Fk;l ¼ min
ðx;yÞ2Sxy\Bkl

f ðx; yÞ=D
	 

for every k; l 2 N0 such that Bkl have non-empty intersection with Sxy. The following propositions directly follow from con-
tinuity of f.

Proposition 4.1. The number of coordinate boxes with the base Bkl having non-empty intersection with S is equal to �Fk;l � Fk;l.
Hence,
NSðDÞ ¼
X

Bkl\Sxy–;
ð�Fk;l � Fk;lÞ: ð5Þ
Proposition 4.2. If X � R2 is compact then
lim
D!0

NXðDÞD2 ¼ lðXÞ:
Proposition 4.3. If c � R3 is any set with box-counting dimension less than 2, then NcðDÞD2 ! 0 when D! 0.
Proof. Assume that d ¼ dimbðcÞ. According to (4), we get NcðDÞ 6 D�d�� for some � < 2� d and D < D�. Hence
NcðDÞD2
6 D2�d�� ! 0; D! 0:
This completes the proof. h
Corollary 4.1. If c � R3 is a finite union of Cð1Þ curves, then NcðDÞD2 ! 0 when D! 0.
Proof. It is well-known (see for example [22]) that dimbðcÞ ¼ 1. Now the statement of the corollary follows directly from the
previous proposition. h

Denote by dS the boundary of a surface S and by dX the boundary of a compact set X � R2. In what follows, we always
assume that the boundary of every surface is a piecewise Cð1Þ curve.

Proposition 4.4. If S ¼ S1 [ S2 [ � � � [ Sm, where Si and Sj may have only boundary points in common (in other words
Si \ Sj � dSi [ dSj) then
0 6
Xm

i¼1

NSi ðDÞ � NSðDÞ 6 ðm� 1ÞNcðDÞ
where c ¼ [m
i¼1dS

i. If NSi ðDÞD2 ! Li when D! 0 for every i ¼ 1;2; . . . ; m, then NSðDÞD2 !
Pm

i¼1Li when D! 0.
Proof. Denote by s ¼
Pm

i¼1NSi ðDÞ. Assume that a coordinate box B intersects S but not c. Then, there is exactly one i such that
B intersects Si. Those boxes are counted once in s. On the other hand, if B intersects c, it might intersect more than one sur-
face Si. Those boxes are counted at most m times in s. Therefore, the difference
Xm

i¼1

NSi ðDÞ � NSðDÞ
gives the number of all additional counts of boxes, which are at most ðm� 1ÞNcðDÞ.
The second part follows from the fact that dSi is a piecewise Cð1Þ curve, implying that c is finite union of such curves and

NcðDÞD2 ! 0 according to Corollary 4.1. h

Denote by Nint
S ðDÞ the number of boxes B which intersect S but not dS. In the same sense, denote by Nd

SðDÞ ¼ NdSðDÞ the

number of boxes having non-empty intersection with dS. It is obvious that NSðDÞ ¼ Nint
S ðDÞ þ Nd

SðDÞ. Moreover, if B intersects
S but not dS, then its projection Bkl on the xy plane intersects Sxy but not dSxy. Therefore Bkl �

RR
Sxy and from Proposition 4.1

it holds that
Nint
S ðDÞ ¼

X
Bkl�intSxy

�Fk;l � Fk;l

� �
: ð6Þ
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Lemma 4.1. Assume that Sxy is compact with non-empty interior and denote by
MS ¼ max
ðx;yÞ2Sxy

@f
@x
ðx; yÞ þ max

ðx;yÞ2Sxy

@f
@y
ðx; yÞ þ 2: ð7Þ
Then
Nint
S ðDÞ 6 MS � NSxy ðDÞ:
Proof. Assume that Bkl � Sxy. Since f is continuous and Bkl is compact, there exist points ðx0; y0Þ; ðx1; y1Þ 2 Bkl \ Sxy where
f ðx; yÞ attains its minimum and maximum values, respectively, i.e., Fk;l ¼ bf ðx0; y0Þ=Dc and �Fk;l ¼ df ðx1; y1Þ=De. According to
the Lagrange theorem, there exists ðx0; y0Þ on the line connecting ðx0; y0Þ and ðx1; y1Þ, such that
�Fk;l � Fk;l 6
f ðx1 ;y1Þ�f ðx0 ;y0Þ

D þ 2

6 ½@f
@x ðx0; y0Þ

x1�x0
D þ @f

@y ðx0; y0Þ
y1�y0

D � þ 2

6
@f
@x ðx0; y0Þ þ

@f
@y ðx0; y0Þ þ 2 6 MS :
The number of boxes Bkl � Sxy is less than or equal to NSxy ðDÞ and hence it is valid:
Nint
S ðDÞ 6 MSNSxyðDÞ:
This completes the proof. h
4.3. Main result

Assume now that S can be represented in the same way as in (3), but taking Sxz and Syz respectively as the domain of the
function f. In other words, assume that
S ¼ fðx; f xzðx; zÞ; zÞjðx; zÞ 2 Sxzg ¼ fðf yzðy; zÞ; y; zÞjðy; zÞ 2 Syzg:
It can be easily seen that f ð�x; �Þ and f ð�; �yÞ are bijections. Indeed, if z ¼ f ð�x; y0Þ ¼ f ð�x; y1Þ, for some ð�x; y0Þ; ð�x; y1Þ 2 Sxy, then
ð�x; y0;�zÞ 2 S and ð�x; y1;�zÞ 2 S which implies that y0 ¼ y1 ¼ f xzð�x;�zÞ. Assume that @f=@xðx0; y0Þ ¼ 0 for some ðx0; y0Þ 2 intSxy. Con-
sider the function f ð�; y0Þ in the neighborhood of ðx0; y0Þ. It has a local minimum in x0 which means that it is not a bijection.
Therefore, @f=@x – 0 and hence it does not change its sign on Sxy. The same holds for @f=@y. Without loosing generality, we
may assume that both partial derivatives are positive on Sxy.

In what follows, we show the proof of the following theorem.

Theorem 4.1. The following is valid
lim
D!0

NSðDÞD2 ¼ PðSÞ ¼ lðSxyÞ þ lðSyzÞ þ lðSxzÞ ð8Þ
where the limit is taken over those values D such that S do not contain any node of the lattice Z3D.
First we prove the theorem for rectangular Sxy.

Lemma 4.2. Assume that Sxy is rectangle ½xmin; xmax� � ½ymin; ymax�. Then (8) is valid.
Proof. Without loss of generality, assume that xmin 2 ½0;DÞ. If the latter is not true, then translate the surface by the vector
ðbxmin=DcD;0;0Þ. In the same way, assume that ymin 2 ½0;DÞ. Let m ¼ bxmax=Dc and n ¼ bymax=Dc. Furthermore, define
xk ¼
xmin; k ¼ 0
kD; k ¼ 1;2 . . . ;m

xmax; k ¼ mþ 1:

8><
>:
and analogously yl for l ¼ 0;1; . . . ;nþ 1. According to Proposition 4.1, we have
NSðDÞ ¼
Xm

k¼0

Xn

l¼0

ð�Fk;l � Fk;lÞ: ð9Þ
Note that Bkl � Sxy for k ¼ 1;2; . . . ;m� 1 and l ¼ 1;2; . . . ;n� 1. Since f ðx; yÞ is monotonically increasing function of both x
and y, we conclude that
Fk;l ¼ f ðxk; ylÞ=Db c
�Fk;l ¼ f ðxkþ1; ylþ1Þ=D

 �
¼ Fkþ1;lþ1 þ 1

k ¼ 1; . . . ;m� 1;
l ¼ 1; . . . ; n� 1:
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Replacing this in (9) yields
NSðDÞ ¼ mnþ
Xm

k¼0

ð�Fk;n � Fk;0Þ þ
Xn

l¼0

ð�Fm;l � F0;lÞ � ð�Fm;n � F0;0Þ: ð10Þ
Now consider Sxz. Due to the continuity and monotonicity of f, it can be written in the form
Sxz ¼ ðx; zÞjx 2 ½xmin; xmax�; z 2 ½f ðx; yminÞ; f ðx; ymaxÞ�f g:

Thus, it is evident that the number of boxes of Z2D having non-empty intersection with Sxz \ ð½xk; xkþ1� � RÞ is equal to
�Fk;n � Fk;0 ¼ df ðxkþ1; ymaxÞ=De � bf ðxk; ymaxÞ=Dc:
Therefore, the first sum in (10) is equal to NSxz ðDÞ. The same way, the second sum is NSyz ðDÞ. According to these, we now have
NSðDÞD2 ¼ mnD2 þ NSxz ðDÞD
2 þ NSyz ðDÞD

2 � ð�Fm;n � F0;0ÞD2: ð11Þ
Since jxminj < D (by assumption from the beginning of the proof), we get
jxmax � xmin �mDj 6 jxmax �mDj þ D 6 2D
and similarly jymax � ymin � nDj 6 2D. Hence, the limit of the first term in (11) is lðSxyÞ ¼ ðxmax � xminÞðymax � yminÞ, when
D! 0. Proposition 4.2 implies that the second and third term in (11) tend to lðSxzÞ and lðSyzÞ respectively. Finally, the forth
term can be bounded as
ð�Fm;n � F0;0ÞD2
6

f ðxmax; ymaxÞ
D

� f ðxmin; yminÞ
D

þ 2
� �

D2
and hence tends to 0. This completes the proof of the Lemma 4.2. h
Proof (Proof of the main theorem). Since Sxy is compact, it can be approximated by the union of rectangles
Ri #Sxy; i ¼ 1;2; . . . ; m having only boundary points in common, such that
lð�SxyÞ <
�

12MS
; �Sxy ¼ Sxy n R; R ¼ [m

i¼1Ri
and PðSÞ � PðSRÞ < �=3, where � > 0 is arbitrary and
SR ¼ fðx; y; f ðx; yÞÞjðx; yÞ 2 Rg
is a surface induced by the union of the rectangles R. The same way, define SRi
and Sc where c ¼ [m

i¼1dSRi
[ dS. Furthermore,

let �S ¼ S n SR. Note that d�S ¼ dSR [ dS# c. According to Lemma 4.2 and Proposition 4.4, there exist D1 > 0 such that
NSR ðDÞD
2 � PðSRÞ

��� ��� 6 �
3

for all D 6 D1. Furthermore, according to Proposition 4.4 we have
jNSðDÞD2 � NSR ðDÞD
2j 6 N�SðDÞD2 þ mNcðDÞD2

6 Nint
�S ðDÞD

2 þ ðmþ 1ÞNcðDÞD2:
The last inequality holds since d�S# c and hence Nd
�SðDÞ ¼ Nd�SðDÞ 6 NcðDÞ. The first term can be bounded (Lemma 4.1) by:
Nint
�S ðDÞD

2
6 M�S � N�Sxy

ðDÞD2
6 MS � N�Sxy

ðDÞD2:
Here we used that M�S 6 MS since the maximum is taken over the larger set (see (7)). According to Proposition 4.2, we can
choose D2 > 0 such that jN�Sxy ðDÞD

2 � lð�SxyÞj 6 �=ð12MSÞ for all D 6 D2. Then
jN�Sxy
ðDÞD2j 6 �

12MS
þ l �Sxy

� �
6

�
6MS
and
Nint
�S ðDÞD

2
6 M�S

�
6MS

6
�
6
:

Corollary 4.1 yields that there exists D3 > 0 such that NcðDÞD2 < �=ð6ðmþ 1ÞÞ for all D 6 D3. Putting everything together,
we get
jNSðDÞD2 � NSR ðDÞD
2j 6 �

3
:

Finally
jNSðDÞD2 � PðSÞj 6 jNSðDÞD2 � NSR ðDÞD
2j þ jNSR ðDÞD

2 � PðSRÞj þ jPðSRÞ � PðSÞj 6 �
for every D < minfD1;D2;D3g. This completes the proof of the theorem. h
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4.4. Extensions on arbitrary (piecewise) Cð1Þ surfaces

Theorem 4.1 implies that NSðDÞD2 tends to PðSÞ when D! 0, if S is a graph surface of the Cð1Þ function f defined on the
compact Sxy. Moreover, assumption is that S can be also represented as the graph surface on Syz and Sxz.

Note that any Cð1Þ surface can be divided on finitely many graph surfaces. Also, each graph Cð1Þ surface can be divided on
finitely many surfaces that can be represented as graph surfaces on all three projections.

In that sense, every Cð1Þ surface S can be divided on finitely many Cð1Þ surfaces Si; i ¼ 1;2; . . . ;m satisfying the conditions
assumed in the previous section. According to Proposition 4.4 and Theorem 4.1, we conclude that
lim
D!0

NSðDÞD2 ¼
Xm

i¼1

PðSiÞ:
Therefore, the following Corollary holds, which is equivalent to Theorem 3.1.

Corollary 4.2. Let S be a union of a finite number of Cð1Þ surfaces. Then,
lim
D!0

NSðDÞD2 ¼ C
where C is a constant.
5. Discussion and conclusion

In this paper, we considered the problem of indexing cells on a uniform grid intersecting with a union of a finite number
of Cð1Þ surfaces. As a main result, we prove that the problem has quadratic asymptotic complexity in the reciprocal linear size
of a grid cell. Also, we demonstrated that a practical recursive partitioning algorithm [11] that indexes the grid cells inter-
secting with the surfaces achieves the problem complexity bound and therefore is asymptotically optimal. We believe this
opens the venue for further application of the algorithm in multi-scale simulation.

Note that in [11], a statistical analysis of the algorithm complexity was performed. There, execution time of multiple runs
of the algorithm implementation was regressed as a function of a power of a reciprocal linear size of a grid cell. Using the t-
test, the hypothesis that the power coefficient of the regression model is 2 could not be rejected with significance a ¼ 0:05
(see e.g., [23] for details on regression models estimation and inference). These results are consistent with the theoretical
considerations presented in this paper.

Work continues on generalization of the main result when the indexed surface has a box-counting dimension different
from 2.
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NOMENCLATURE 11 
a :=distance of the simulated nipple point from the chest wall. 12 

Ai  i=1,2 := surface areas of the boundary of Vi belonging to planes 1 and 2. 13 

b := half of the uncompressed phantom thickness. 14 

c’:=vertical phantom dimension measured above the nipple level. 15 

c”:= vertical phantom dimension measured below the nipple level. 16 

Ci, i=1, …, K := simulated tissue compartments. 17 

d := thickness of skin. 18 

di i=1,2 := the distance between a vertex and planes.  19 

D := thickness of the simulated Cooper’s ligaments. 20 

fi(x), i=1, …, K := compartment shape functions. 21 

Fij(x)  :=difference of the compartment shape functions fi(x) and fj(x). 22 

fM(x)  := shape function defining the outer surface of the simulated skin layer. 23 

fm(x)  := shape function defining the inner surface of the simulated skin layer. 24 

 ெோ := the mean square error estimation of Monte Carlo method using repetition. 25ܧܵܯ

 ெௌ:= the mean square error estimation of Monte Carlo method based on sample means. 26ܧܵܯ

 :=the mean square quantization error. 27ܧܵܯ

nPoint:= the number of intersections between plane and edge(ext).  28 

nVertex, nVertex1, nVertex2:= the number of vertices above plane. 29 

nVolume :=  Number of geometrical shapes need to be computed. 30 

N, N1,N2 := The normal vectors of approximated planes. 31 

NMC := Number of generated random points of Monte Carlo approach within a voxel. 32 

NMCI := the number of points that are inside the measured volume. 33 

Nrepeat  := the number of repetitions of the Monte Carlo method applied on each voxel. 34 

p0 ,p1 ,p2 ,pi  := The percentages of different material in the voxel. 35 

Pi, i=1,…, 8:= Vertices of Voxel V. 36 

P, Q, R, S, T, U, W, X, Y, Z := Intersections between approximation plane and voxel edges. 37 

PV  :=  The sub-volume of voxel V above plane/planes.  38 

PVj , j=1, …, T:= the true value of the partial volume in voxel j. 39 

PVA,j , j=1, …, T:= the linear approximation of the partial volume in voxel j. 40 

PVM, j , j=1, …, T := Approximation of the partial volume in voxel j using certain method M. 41 

PVMC, j , j=1, …, T:= Approximation of the partial volume in voxel j using Monte Carlo. 42 

PVMCR,j, j=1, …, T:= Estimation of PVj using Monte Carlo repetition in voxel j. 43 

Page 1 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



PVMCR,ij, i=1,… Nrepeat ; j=1, …, T:= Approximation of the  i-th repetition of the Monte Carlo 44 

method applied on j-th voxel. 45 

q :=number of bits to discretize percentage of a partial volume. 46 

r0, rs := parameters related to compartment orientation and size. 47 

s := subsampling factor for naïve reference method; also, a parameter of intersections. 48 

Si , i=1,2,3 := surface areas of the boundary formed by the voxel sides. 49 

t  := The parameter of intersections. 50 

T  := the total number of partial volume voxels. 51 

V			:=  The symbol for a 3D voxel. 52 
|ܸ| := The volume of voxel V. 53 
| ܸ| := The subvolume of material i in the voxel V. 54 

x0, x1, x2= The fixed points on approximating planes. 55 

xc:= The center of voxel V. 56 

xm, xM:= Two vertices of the voxel,  such that one of them inside the skin and another one 57 

outside of skin, (used to compute x0). 58 

∆x := linear dimension of voxel V. 59 

∆x′ := linear dimension of voxel V for naïve reference method. 60 

ε := difference between partial volumes computed by M and by linear approximation. 61 

εA:= the error of linear approximation. 62 

εM := the error of method M. 63 

εMC := the error of Monte Carlo. 64 

εMCR,ij:= the estimate of the error of i-th repetition of the Monte Carlo approach on j-th voxel. 65 

   := The X-ray attenuation in the voxel V. 66ߤ

   := The X-ray attenuation of material i in the voxel V. 67ߤ

ૈ, ૈଵ,	ૈଶ:= The linear approximations of boundarie between different materials. 68 

ોଵ, ોଶ, ોଷ:= Planes corresponding to voxel sides. 69 
 70 

Abstract 71 

A modification to our previous simulation of breast anatomy is proposed to improve the quality 72 

of simulated x-ray projections images.  The image quality is affected by the voxel size of the 73 

simulation.  Large voxels can cause notable spatial quantization artifacts; small voxels extend the 74 

generation time and increase the memory requirements.  An improvement in image quality is 75 

achievable without reducing voxel size by the simulation of partial volume averaging in which 76 

voxels containing more than one simulated tissue type are allowed.  The linear x-ray attenuation 77 

coefficient of voxels is, thus, the sum of the linear attenuation coefficients weighted by the voxel 78 

subvolume occupied by each tissue type.  A local planar approximation of the boundary surface 79 

is employed.  In the two-material case, the partial volume in each voxel is computed by 80 

decomposition into up to four simple geometric shapes.  In the three-material case, by 81 

application of the Gauss-Ostrogradsky theorem, the 3D partial volume problem is converted into 82 

one of a few simpler 2D surface area problems.  We illustrate the benefits of the proposed 83 

methodology on simulated x-ray projections.  An efficient encoding scheme is proposed for the 84 

type and proportion of simulated tissues in each voxel.  Monte Carlo simulation was used to 85 

evaluate the quantitative error of our approximation algorithms.   86 

Keywords:  Digital mammography, anthropomorphic breast phantom, partial volume simulation, 87 

Monte Carlo. 88 
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I. Introduction 89 

This study is motivated by a desire to improve the quality of synthetic images generated using 90 

software anthropomorphic breast phantoms.  Software breast phantoms have received increasing 91 

attention for their use in preclinical validation of breast imaging systems and image analysis 92 

methods.  Preclinical validation in the form of virtual clinical trials can improve the validation 93 

efficacy by identifying the most promising parameter settings to be assessed in a focused clinical 94 

trial.  There are various designs of software breast phantoms, including phantoms developed 95 

using the rules for simulating anatomical structures [1-11]  and phantoms based upon individual 96 

clinical 3D breast images [12-17].  97 

98 

The software anthropomorphic phantoms developed at the University of Pennsylvania have been 99 

used in various applications, including the validation and optimization of digital breast 100 

tomosynthesis (DBT) reconstruction methods [18-20], DBT image denoising methods [21, 22], 101 

ultrasound tomography (UST) reconstruction and segmentation methods [23, 24], analysis of 102 

power spectra descriptors in simulated phantom DBT images [10, 25, 26], analysis of texture 103 

properties in phantom digital mammography (DM) and DBT images [27, 28], and analysis of 104 

tumor detectability in DBT [29-31].  Physical versions of the 3D anthropomorphic software 105 

phantom have also been produced [32-36].   106 

107 

The current method for simulating breast anatomy [11] assumes that each voxel contains a single 108 

tissue type; this may cause notable artifacts due to abrupt attenuation transitions at the borders 109 

between regions of different simulated materials.  The realism of the resulting phantom images is 110 

thus reduced.  The realism can be improved by using a smaller voxel size.  Reducing the voxel 111 

size, however, extends the phantom generation time and increases memory requirements.  It 112 

should be possible to improve image quality without reducing voxel size by explicitly accounting 113 

for voxels containing more than one simulated tissue type.   114 

115 

Partial volume (PV) averaging can help reduce the quantization artifacts on boundaries of 116 

regions with different simulated materials.  In PV averaging, voxels containing more than one 117 

simulated tissue type are allowed; thus, the linear x-ray attenuation coefficient of voxels is the 118 

sum of the linear attenuation coefficients weighted by the voxel subvolume occupied by each 119 

tissue type.  The software phantoms in this study have been generated based upon the recursive 120 

partitioning of the phantom volume using octrees [11].  Previously, we reported about the 121 

development of a PV technique for selected tissue boundaries in our software breast phantoms 122 

[37, 38].  In our 2012 SPIE paper, PV simulation was introduced in phantom voxels containing 123 

up to two different simulated tissue types [37].  First, the PV of each voxel occupied by different 124 

materials was computed, and the linear attenuation coefficient values assigned as the linear 125 

combination of attenuations weighted by the PV occupied by each material in the voxel.  These 126 

PVs could be also used to calculate the proportion of different materials accurately, both in 127 

individual voxels and the whole phantom.  The same report discussed an encoding technique to 128 

accomplish efficient storage of the material composition.  The initial results were illustrated 129 

using synthetic projections through phantoms with PV simulated on the skin-air boundary only.   130 

 131 

In our 2012 IWDM paper [38], we proposed an extension to the PV simulation method to 132 

include voxels with three simulated materials.  The PV was computed based upon a planar 133 

boundary approximation in voxels with multiple simulated tissue types.  The improvement of 134 
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image quality was qualitatively validated.  The results were shown in the form of slices and 135 

simulated X-ray projections of phantoms with and without PV, assuming a parallel beam of 136 

monoenergetic x-rays without scatter. 137 

138 

Our current work is focused upon PV simulation of software phantoms generated based upon 139 

rules for simulating anatomical structures [7, 9, 11, 39].  PV simulation has been implicitly used 140 

to generate phantoms based upon computed tomography (CT) images of mastectomy specimen 141 

[13, 15, 17] or clinical breast CT data [14, 40].  These PV simulations arise naturally, because all 142 

raw volumetric images include partial volumes, as various tissues may contribute to the signal 143 

acquired in a single image voxel.  In the simulation based upon mastectomy CT data [13, 15, 144 

17], the values of each reconstructed breast CT image voxel were scaled into a value from 0.01 145 

to 0.99.  The scaled values were interpreted as percentage of adipose tissue contained in the 146 

voxel.  The scaling method resulted in phantom images more similar to the original CT data, as 147 

compared to the method based upon the segmentation into discrete tissue types.  The scaling 148 

helped to preserve some of the fine tissue structure which would be lost when using the 149 

segmentation; however, it resulted in noisier images.  The software phantoms developed using 150 

clinical CT data [14, 40] were designed by initially segmenting the CT data into voxels 151 

corresponding to skin, adipose tissue, and fibroglandular tissue.  To improve realism, it was 152 

found to be necessary to segment the fibroglandular tissue into multiple classes based upon CT 153 

image intensity level; these classes were associated with different adipose-to-dense tissue 154 

volumetric ratios.   155 

156 

In this paper, we formulate the details of a PV simulation in the general case with up to three 157 

tissue types simulated in a voxel.  A qualitative validation of the proposed method is performed 158 

in the slices through phantoms with PV simulated at different tissue interfaces.  In addition, a 159 

direct validation is provided by the analysis of the difference between the PV estimates obtained 160 

with the proposed method vs. Monte Carlo estimates of PV.  Finally, we present results from a 161 

qualitative analysis of phantom projections simulated using a polyenergetic divergent x-ray beam 162 

approximation without scatter.   163 

164 

II. Partial Volume Simulation Method 165 

II.A. Breast Phantom Generation  166 

Breast phantoms in this work were generated utilizing the approach described in [11]. The 167 

simulated anatomy consists of compartments Ci i=1,…,K and Cooper’s ligaments L, which 168 

separate the compartments from each other.  The distribution, orientation and shapes of the 169 

compartments as well as the shape of the Cooper’s ligaments are determined by pre-specified 170 

shape functions fi , i=1,…,K.  The proposed approach utilizes octrees to split the phantom 171 

volume V recursively.  The recursive partitioning procedure begins with the root node, which is 172 

always flagged for splitting.  For each level of the tree, we generate the nodes at the next level by 173 

recursively splitting the nodes flagged for splitting.  The flagged nodes contain more than one 174 

material type.  The recursive partitioning procedure continues until an individual node of the tree 175 

belongs to a single type (non-partial volume nodes) or until the maximal tree level is reached. 176 

The nodes corresponding to the maximal tree level correspond to the voxels.  The breast outline 177 
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and skin boundary are simulated with ellipsoidal surfaces, corresponding to the phantom volume 178 

vertically above and below the nipple level.  The number of compartments K, the shape 179 

functions, the skin thickness d and target thickness D of the Cooper’s ligaments, and the voxel 180 

size Δx are input parameters of the algorithm. 181 

 182 

II.B. Different cases of phantom voxels containing multiple materials  183 

For realistic cases where Δx ൏ D/√3, Δx ൏ d/√3,	the phantom voxels can be categorized as 184 

follows (see Fig. 1(a)):  185 

A. Voxels, containing a single material: (1) skin; (2) air; (3) Cooper’s ligament; (4) adipose 186 

tissue; and (5) fibroglandular dense tissue. 187 

B. Partial volume voxels: 188 

a. Voxels containing two materials (with one bounding surface):  (6) skin and air;189 

(7) skin and adipose tissue; (8) skin and dense tissue; (9) skin and Cooper’s190 

ligament; (10) Cooper’s ligament and adipose tissue; (11) ligament and191 

fibroglandular dense tissue192 

b. Voxels containing three materials (with two bounding surfaces): (12) skin,193 

ligament, and adipose tissue; and (13) skin, ligament, and dense tissue.194 

195 

196 

    (a)     (b) 197 

Figure 1:  (a) Taxonomy of material combinations in a voxel. (b) The concept of PV simulation; 198 

V denotes the voxel volume and Vi is the sub-volume occupied by dense tissue.  199 

200 

201 
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The effective linear x-ray attenuation in a voxel which contains more than one simulated 202 

material, Fig. 1(b), can be calculated as: 203 

ii iii iV pV
V    1 ; %100

V

V
p i

i
, (1) 204 

where |V| is the voxel volume, |Vi| is the subvolume of material i with the linear x-ray attenuation 205 

μi, and pi is the percentage of the material i in the voxel.  206 

207 

For efficient storage of the voxel material composition, we propose a representation of material 208 

types and percentages of the materials using a two-byte binary word. Since a voxel size smaller 209 

than the thickness of the skin or Cooper’s ligaments is assumed, it is sufficient to consider 210 

combinations of up to three materials in a voxel. Thus, it suffices to store percentages of two 211 

materials p1 and p2. The percentage p0 of the other material can be calculated by subtracting the 212 

stored percentages from 100%, i.e., 213 

p0= 100 – p1 – p2. (2) 214 

The interpretation of percentages p0, p1, and p2 is specified by a four-bit voxel label, see Table 1. 215 

The percentages p1 and p2 are stored as two records, q=6 bits each.  The choice of q is supported 216 

in our results (below); other values of q could be used with this schema as necessary. Using this 217 

representation schema, it is possible to encode all partial volume cases from the taxonomy 218 

discussed above, see Table 2.  For example, consider the case when the label=0 (skin/air 219 

boundary).  Here, p1 corresponds to Cooper’s ligament tissue (with a constant value 0 in air/skin 220 

voxels), while p2 corresponds to air (the ratio |V-Vi|/|V|).  The percentage p0 of skin, can be 221 

calculated from Eq. (2).  The proposed representation also covers the cases when a voxel is 222 

comprised of a single material (e.g., a voxel belonging entirely to skin would have label 0 and 223 

p1=p2=0).  224 

 225 

Table 1:  Encoding partial volume material percentages using four-bit label 226 

Label p0  p1  p2  

0 skin  ligament air 

1 ligament fat dense 

2 fat  ligament skin 

3 dense  ligament skin 

227 

 228 

Table 2:  Encoding taxonomy of voxels 229 

Case p1   (6 bits) p2 (6 bits) Label 
(4 bits) 

1. Skin 0 0 0

2. Air 0 pAir (=100) 0 

3. Cooper’s ligament 0 0 1

4. Fat 0 0 2
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5. Dense 0 0 3

6. Skin; air 0 pAir  0 

7. Skin; fat tissue 0 pSkin  2 

8. Skin; dense tissue 0 pSkin  3 

9. Skin; Cooper’s ligament pCooper 0 0 

10. Cooper’s ligament; fat pFat 0 1

11. Cooper’s ligament; dense 0 pDense  1 

12. Skin, Cooper’s ligament and
fat tissue 

pCooper pSkin  2 

13. Skin, Cooper’s ligament and
dense tissue 

pCooper pSkin  3 

230 

The rest of this section discusses use of linear approximation to compute partial volumes pi in 231 

two- and three-material partial volume voxels. 232 

233 

II.C. Partial volume computation for two material voxels 234 

For voxels containing two materials, we compute a planar approximation of the boundary surface 235 

separating the materials.  Subsequently, we calculate the portions of the voxel volume split by 236 

the planar approximation.  Here we discuss the planar approximations for voxels containing skin 237 

(Cases 6-9) and voxels on ligament-compartment boundaries (Cases 10-11), followed by the 238 

computation of the voxel’s volume above the plane. 239 

240 

II.C.1. Voxels containing skin (Cases 6-9; see Table 2) 241 

We assume that the outer and the inner surface of the skin (skin/air and skin/tissue boundaries), 242 

are defined by functions fM (x) and fm (x) as follows, respectively [11]. 243 

     

     

2 2 2

2 2 2

2 2 2

2 2 2
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For Peer Review

Here we discuss in detail the computation of the partial volume for voxels containing skin and air 246 

(case 6). Other cases can be treated similarly (with function fM (x) appropriately replaced with247 

fm (x)).  Since fM (x) is known in a closed form, the volume |Vi| can be exactly calculated; 248 

however, this calculation is computationally inefficient.  Instead, the function fM (x)  is 249 

approximated by a tangent plane  which reduces the considered problem to computation of the 250 

voxel volume below a pre-specified plane.  The tangent plane  on the surface ( )=1Mf x is placed 251 

at a point x0 inside the voxel V.  The point x0 satisfies ( )=1Mf x and is on the line segment between 252 

the points xm and xM.  The points xm and xM are calculated such that xm =arg  min
V

fM (x) , 253 

xM =arg  max
V

 fM (x).  Points x on the tangent plane  satisfy: ሺܠ െ ሻܠ ∙ ۼ ൌ 0, where ∙ denotes 254 

the scalar product and ۼ ൌ  255 (See Fig. 2) 0ܠ is the gradient vector at the point	ሻܠfெሺ

Figure 2: Local approximation of skin boundary (defined by fெሺܠሻ ൌ 1) by a tangent plane. 256 

257 

II.C.2. Voxels containing Cooper’s ligaments and compartmental tissue (Cases 10-11; see 258 

Table 2) 259 

The planar approximation for the boundary between the Cooper’s ligaments and adipose tissue 260 

or dense tissue (cases 11 and 12) can be obtained as follows.  Without loss of generality, 261 

consider adipose compartments Ci and Cj with corresponding shape functions fi and fj.  A 262 

Cooper’s ligament between the compartments is the locus of points within a distance D/2 from a 263 

median surface Fij(x)= fi(x)- fj(x)=0, see Fig. 3.  Consider a voxel V with center xc. We define a 264 

planar approximation ૈ of the boundary between the Cooper’s ligament and the compartment 265 

Cj as 266 
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π1 : x  x1  N1  0 . (5) 267 

Here, N1 is a vector normal to a level set Fij(x)= Fij(xc) at xc. x1 is a point on the normal at 268 

distance D from the intersection of the normal and the median surface, such that:  269 

x1  xc  sign Fij xc   D / 2
Fij xc 
Fij xc 















Fij xc 
Fij xc 

,

N1  sign Fij xc  Fij xc .
   (6) 270 

  (6)271 

272 

273 

Figure 3:  Planar approximation of a boundary between Cooper’s ligament and a compartment. 274 

275 

II.C.3 Calculation of the volume above a planar approximation of two materials boundary 276 

In this section, a fast and exact method is proposed to determine the fraction |Vi| of the voxel’s V 277 

volume located above the plane  (a case when Vi is below the plane is reduced to this case by 278 

changing the direction of the normal vector of the plane).  The first step of the method is to 279 

determine the number nVertex  of voxel vertices above the plane.  The voxel vertices Pi 280 

above the plane  specified by a normal N and containing a point x0 satisfy: 281 

(Pi  x0) N  0 (7) 282 

Depending upon nVertex, |Vi| is computed using fundamental geometric shapes (e.g., prisms, 283 

prismoids or tetrahedrons, see Fig. 4).  Note that if nVertex>4 computation of |Vi| is reduced to 284 

computation of the complementary volume to the partial volume of V below the plane, see 285 

Algorithm A1 (Appendix 1).  The detailed algorithm for computation of partial volume of a 286 

voxel V above a given plane is specified in Algorithm A2 287 

288 

N1
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289 
a       b    c 290 

291 
d      e     f 292 

Figure 4: Different cases of sub-volume. 293 

The Algorithm A2 is very efficient.  Observe that the considered partial volume problem reduces 294 

to 6 cases (Fig. 4).  In each case, a small number of intersections (up to 9) between the plane  295 

and voxel’s edges (their extensions) need be calculated, see Table 3, followed by computation of 296 

a volume of a geometric primitive.   297 

 298 

Computation of intersections is also fast.  To compute an intersection Q between an edge 299 

(extension of edge) containing vertices Pi and Pj and the plane , it is sufficient to resolve the 300 

system: 301 

Q=Pi  t(Pi Pj )

(Q x0) N=0
 302 

which results in the parameter t specified by: 303 

t  
(Pi  x0) N
(Pi P j ) N

.     (8) 304 

Since the vertices Pi and Pj differ in only one coordinate, this requires computation of only one 305 

scalar product ( (Pi  x0) N). 306 

The value of parameter t depends on the position of Q. If Q is located between Pi and Pj, then307 

0<t<1.  308 

To compute intersection between  and other edges (extensions) we may proceed as follows.  309 

For an intersection R=Pi  s(Pi Pj ) between the plane and edge (extension of edge) containing 310 

Pj and Pk, it is sufficient to compute 311 
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s  
(Pk  x0) N
(Pk Pj ) N


(Pi Pk ) N (Pi  x0) N

(Pk P j ) N
312 

which does not require computation of additional scalar products since Pi-Pj only contains one 313 

non-zero coordinate.    314 

 315 

The advantage of this procedure is that we can easily compute the partial volume without 316 

considering the shape of the boundary (interface) and the number of intersections between the 317 

plane and voxel.  The cases are distinguished based on nVertex, that can be obtained easily. 318 

319 

 320 

Table 3：  Number of vertices above the planar approximation of the material boundary 321 

(nVertex), number of intersections between the approximation and the voxel edges or edge 322 

extensions (nPoint) and number of volumes of geometrical primitives to be computed 323 

(nVolume), for different cases of  Algorithm A2 (see Appendix 1).  324 

325 
Case A Case B1 Case B2 Case C Case D1 Case D2 

nVertex 1 2 3 4 

nPoint 3 4 5 7 4 9 

nVolume
s

1(tetrahedron) 1(prism) 2(tetrahedron) 3(tetrahedron) 1(prismoid) 4(tetrahedron) 

 326 
II.D. Partial volume computation for three material voxels (Cases 12, 13; see Table 2) 327 

For a voxel V containing three materials we construct a planar approximation for each bounding 328 

surface (Fig. 5). The results of the approximation are planes π1: (x  x
1
) N

1
 0  and π2:

 
329 

(x  x
2
) N

2
 0 .  Here, π1 and π2 are linear approximations of the inner skin boundary and the 330 

ligament’s boundary, respectively. The partial volume |Vi| of interest is subsequently calculated 331 

as the volume of a portion of the voxel V that is below/above the planes. For example, the partial 332 

volume Vi corresponding to the adipose tissue in Fig. 5 is computed as a volume of a part of the 333 

voxel that is both above planes π1 and π2. 334 
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For Pe

335 

Figure 5: An illustration of a three material voxel containing skin, Cooper’s ligament and 336 

adipose tissue and planar approximations 1 and 2 of the tissue boundaries. 337 

Given the planar approximations 1 and 2 of the material boundaries, we compute the partial 338 

volume |Vi| using the divergence (i.e., Gauss-Ostrogradsky) theorem [41, 42] .  Without loss of 339 

generality, we consider the volume Vi that is above both planes 1 and 2 (other cases can be 340 

treated by changing directions of vectors specifying 1 and 2).  The divergence theorem can be 341 

stated as the following integral equation: 342 

(F )dV  (F N)SV
i

 dS . (9) 343 

The left side is a volume integral of a vector field F(x) over the partial volume Vi, the right side 344 

is the surface integral over the boundary of the volume Vi, and N is the outward pointing unit 345 

normal vector of the boundary.  Note that the volume Vi is bounded by planes 1 and 2 and at 346 

most 6 sides of the voxel. 347 

The application of the divergence theorem depends on whether there is a voxel vertex Q1 above 348 

both planes 1 and 2.  Assume that such a vertex Q1 exists. By choosing F(x) = x, Eq. (9) 349 

reduces to: 350 

 1 2 3 1 1 2 23 iV S S S x A d A d            (10) 351 

where Si, i=1,…,3 are surface areas of the boundary formed by the voxel sides 1 ,2 and 3  that 352 

do not contain the vertex Q1;  and A1 and A2 are surface areas of the boundary of Vi belonging to 353 

planes 1 and 2 and d1  (Q1 x1) N1, and d2  (Q1x2) N2  are distances of the vertex Q1 to planes 354 

1 and 2 (see Fig. 6).  Subsequently, the PV is calculated as: 355 

3

)( 2211321 dAdAxSSS
Vi

 
 .    (11) 356 
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357 

Figure 6: Partial volume Vi of the voxel V above planes 1 and 2 and containing vertex Q1.  S1, 358 

S2 and S3 (here S3=0) are surface areas of parts of the volume boundary belonging to voxel sides 359 

1, 2 and 3 that do not contain the vertex Q1. 360 

361 

If there is no vertex Q1 of V above both planes 1 and 2, it is still possible that |Vi|>0.  As 362 

illustrated in Fig. 7, this is the case when the sets of vertices above 1 and 2 are both non empty. 363 

In such a case, partial volume can be computed as the difference of partial volumes above one of 364 

the planes (e.g., plane 1), calculated using Algorithm A1) the partial volume above 1 and below 365 

2 (calculated by changing the direction of the normal vector N2).  366 

367 
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Figure 7: Illustration of a case when there is no vertex of a voxel V above both planes 1 and 2 368 

but the partial volume is larger than zero. The volume Vi is the intersection of V1 and V2. 369 

 370 

The Algorithm A3 (Appendix 1) for computation of voxel partial volume above two planes is 371 

also very efficient.  The 3D partial volume problem is converted into the computation of the 372 

linear combinations of a few 2D polygon areas.  The polygon's vertices are chosen from the 373 

vertices of the voxel; the intersections of an edge of voxel and the plane; or the intersections of 374 

two planes on a voxel side ો, ݅ ൌ 1,2,3 .  The intersection of an edge of the voxel and the plane 375 

can be solved using Eq. (8). 376 

III. VALIDATION TECHNIQUES 377 

We have performed two validations of the proposed technique.  First, we tested to what extent 378 

the proposed technique of linear approximation was capable of adequately representing the true 379 

values of partial volumes.  This was performed by quantitative validation of the algorithm.  380 

Second, we evaluated the improvement of image quality by visual assessment of simulated 381 

images of phantoms with PV.  382 

III.A. Accuracy assessment of the PV computation 383 
 384 

The goal of qualitative validation of the proposed algorithm for PV approximation is to estimate 385 

the expectation of the squared error, i.e., E(εA
2), where, for each partial volume voxel j, the 386 

estimation error is defined as: 387 

εA,j= PVj-PVA,j. (12) 388 

Here PVA,j is the partial volume in voxel j obtained using the proposed method (a linear 389 

approximation) and PVj is the true value of the partial volume, where (see Section II) both PVj  390 

and PVA,j belong to a range [0, 1].  However, a practical problem is that the true partial volumes 391 

PVj are not directly observable, hence εA,j  cannot be directly computed.  392 

Consider a reference method M that can estimate the partial volume PVெ, for each voxel j.  At 393 

voxel j, we can only directly observe the difference εj between partial volumes computed by 394 

method M and by the linear approximation:  395 

εj=PVM,j-PVA,j. 396 

We can easily obtain that: 397 

εj= εM,j+ εA,j (13)398 

where:  399 

εM,j=PVM,j-PVj (14)400 

From Eq. (13): 401 

 E(εA
2)= E(ε2)-E(εM

2)- 2 E(εM εA).     (15) 402 
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Note that the definition of E(εA
2) guarantees that both sides of Eq. (15) are always non-negative.403 

Also, note that the expectations are calculated over one particular phantom. In order to use a 404 

reference method M to estimate E(εA
2) using Eq. (13), one should be able to estimate the squared405 

error of the reference method, E(εM
2).  Also, the errors of the proposed approximation and the 406 

reference method should be uncorrelated, i.e., E(εM εA)=0. 407 

A naïve choice for the reference method M is estimation of the PV based on subsampling.  Let P 408 

be a considered partial volume phantom (with linear voxel dimension Δx).  Consider a non-409 

partial volume phantom P’ that simulates an identical anatomy as P, with linear voxel dimension 410 

Δx’= Δx/s where s is an integer subsampling factor.  For each voxel j, the partial volume can be 411 

estimated as the fraction of the corresponding voxels from P’ that contain the material of interest.  412 

Unfortunately, the subsampling method is not suitable as a reference method.  First, in this 413 

method, E(εM
2) cannot be easily estimated.  Second, errors of the proposed approximation and414 

the reference method are correlated (e.g., εM is larger when the boundaries between different 415 

materials are more non-linear, i.e., where εA is larger).  Finally, the method may not be feasible, 416 

since the computation of a phantom P’ for large s may be computationally prohibitive. 417 

418 

To overcome these difficulties, we propose to utilize a Monte Carlo approach  [43] which gives 419 

us the opportunity to compare the precision of our PV approximation with a reference method 420 

based on Monte Carlo simulation.  For each partial volume voxel j, we estimate PVMC,j as follows.  421 

We generate NMC random points x within a voxel and determine the number NMCI of points that 422 

are inside the measured partial volume.  Note that for voxels from cases 6-9 (see section 2.3.1) 423 

this includes computing functions fM (x)  ( fm (x) )  (Eq. (3, 4). For PV voxels containing 424 

ligament tissue (cases 10-13) we, in addition, need to determine the exact distance between x and 425 

the median surface (see Section 2.3.2); this can be done, e.g., using the algorithm described in 426 

[44].  The partial volume is subsequently obtained as  427 

PVMC,j=NMCI/NMC. (16) 428 

The error of the Monte Carlo method is defined as: 429 

εMC,j=PVMC,j-PVj   (17) 430 

As shown in the Appendix 2, Eq. (A8), E(εMCεA)=0. 431 

Therefore, from Eq. (15) we obtain: 432 

E(εA
2)= E(ε2)-E(εMC

2). (18) 433 

E(ε2) can be estimated using the sample mean square error (MSE): 434 

E(ε2)  ~ MSEtotal=
ଵ


∑ ߝ

ଶ
ୀଵ  ,  (19) 435 

where T denotes the total number of partial volume voxels.  The following subsection discusses 436 

estimates MSEMC of E(εMC
2).  According to Eq. (18), (19) we estimate E(εA

2) as:437 

MSEA= MSEtotal -MSEMC. (20) 438 
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Note that the computed partial volumes are quantized using q bits.  Hence, E(εA
2) is bounded by439 

the quantization error.  Under the assumption that PVெ, are uniformly distributed within each 440 

quantization interval [45], the quantization error ܧܵܯ	is approximated as: 441 

ܧܵܯ ൌ 	
ଵ

ଵଶሺଶ౧ିଵሻమ
 .  (21) 442 

III.A.1. Estimation of MSE of Monte Carlo approach 443 

To ensure reliability of the validation, we utilize two techniques to estimate MSE of Monte Carlo 444 

approach.  The first technique repeats the Monte Carlo process for each voxel in order to assess 445 

the true value of εMC. The second technique is based on estimation of sample means of 446 

computed PVMC and completely avoids estimation of εMC. 447 

1) MSE of Monte Carlo based on estimating εMC448 

Consider voxels belonging to one specific case of partial volume (e.g., two-material voxels on 449 

the ligament-compartment boundary).  For each partial volume voxel of a particular phantom, we 450 

repeat the estimation of PV using the Monte Carlo approach Nrepeat times.  Denote the obtained 451 

estimates in the i-th repetition of the Monte Carlo method applied on j-th voxel as PVெோ, 452 

(i=1,…,Nrepeat, j=1…T). The idea of this approach is to obtain the estimate of the true partial 453 

volume by averaging these estimates. 454 

Since the MC estimation is unbiased (see Eq. (A1)), we can use the following estimate of the 455 

true partial volume PVj for the j-th voxel: 456 

PVMCR, j =
1

Nrepeat

PVMCR,iji1

NRepeat (22) 457 

Based on this, the estimate εெோ,	of the error of the i-th repetition of the Monte Carlo approach 458 

on j-th voxel is:  459 

MCR,ij =PVMCR,ij PVMCR, j  (23) 460 

Therefore, the MSE of MC can be estimated as: 461 

MSEMCR  1

TNrepeat

2
MCR,iji1

NRepeat
j1

T

  1

TNrepeat

(PVMCR,iji1

NRepeat
j1

T

  PVMCR, j )
2    (24) 462 

In practice, it may be more computationally efficient to utilize the following formula: 463 

MSEMCR  1

TNrepeat

[ PVMCR,ij
2

i1

NRepeat
j1

T

  1

Nrepeat

( PVMCR,iji1

NRepeat )2]
                       (25)

 464 

2) Estimation based on sample means of PVMC465 

Here we demonstrate that an estimate of E(εMC
2) can be obtained by estimating E(PVMC) and466 

E(PVMC
2) .  Note that this approach does not require knowledge of true values of PVj at each467 

voxel nor the availability of distribution p(PV). 468 
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From Eq. (17) follows: 469 

ሺPVଶሻܧ ൌ ሺPVெܧ
ଶ ሻ െ ெߝሺܧ

ଶ ሻ െ ெPVሻߝሺܧ2 (26) 470 

which due to Eq. (A5) in the Appendix 2 reduces to: 471 

ሺPVଶሻܧ ൌ ሺPVெܧ
ଶ ሻ െ ெߝሺܧ

ଶ ሻ.  (27) 472 

Using Eq. (A7) and Eq. (A4), from Eq. (27) we obtain: 473 

ெߝሺܧ
ଶ ሻ ൌ

ଵ

ேಾିଵ
൫ܧሺPVெሻ െ ሺPVெܧ

ଶ ሻ൯. (28) 474 

We estimate ܧሺߝெ
ଶ ሻ  using ܧܵܯெௌ  computed by utilizing sample means of Monte Carlo 475 

estimations of the partial volume and of the squared partial volume as: 476 

  =ெௌܧܵܯ
ଵ

ిିଵ
ቀ
ଵ


∑ ܲ ெܸ

െ
ୀଵ

ଵ


∑ ܲ ெܸ

ଶ
ୀଵ ቁ (29) 477 

III.B. Image quality improvement after PV simulation  478 
All the simulations were implemented using Matlab (64-bit, MathWorks, Natick, MA).  479 

Phantoms were simulated on a computer with  two Intel Xeon 5650 Six Core Processors  (Intel, 480 

Inc., Santa Clara, CA) working at  2.53 GHz with 128 GB RAM (1333 MHz DDR III ECC ) and 481 

utilizing one core per phantom.  We used Matlab version v7.13(R2011b). 482 

483 

We generated 450ml phantoms (approximately a B cup bra size), [46] with ellipsoidal outline 484 

semiaxes a=b=c’’=5cm, c’=12cm, (see Eqs. (2) and (3)).  The voxel size were 100m and 485 

200m.  The number of compartments was K=333 [11]. 486 

487 

We specified the skin thickness d =1.5mm based upon reports in the literature and the target 488 

thickness of the Cooper’s ligaments D=0.6mm [47, 48].  There are no explicit quantitative 489 

reports in the literature on the measured thickness of Cooper’s ligaments in clinical data.  We 490 

assumed the thickness was smaller than 1 mm, as observed from subgross breast histological 491 

sections (e.g., the sections shown in [39]).  Also, we varied the relative random compartment 492 

orientation r and the relative compartment size, r௦  [49]. 493 

494 

Mammographic images of the phantom are simulated using (i) a finite-element model of 495 

mammographic breast compression, and (ii) simulation of the x-ray projections through the 496 

compressed phantom.  The deformation model is implemented using Abaqus (version 6.6, DS 497 

Simulia Corp., Providence, RI), and is based upon a finite element model of breast compression 498 

proposed by Ruiter et al. [50].  The deformation model assumes the volume of the simulated 499 

breast tissue is preserved.  With that assumption, a 450 ml phantom described in Section II.B 500 

corresponds to a compressed phantom with a size of 20 cm in the vertical direction, 5 cm in the 501 

lateral direction, and approximately 6.5 cm in the chest wall-nipple direction.  Mammographic 502 

projections of the compressed phantom are simulated assuming a polyenergetic x-ray acquisition 503 

model without scatter.  The quantum noise was simulated by a random Poison process, 504 

corresponding to the standard radiation dose of a clinical mammographic projection.  The linear 505 
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x-ray attenuation coefficients of the simulated tissues were selected using their energy 506 

dependence as listed in the NIST X-ray Mass Attenuation Tables [51].  The simulated 507 

acquisition geometry uses a source–detector distance of 70 cm, a detector element size of 70 μm, 508 

and a 24 cm × 30 cm field-of-view, corresponding to the Hologic Selenia Dimensions full-field 509 

digital mammography system (Hologic, Bedford, MA).  510 
511 

IV. RESULTS 512 

IV.A. Qualitative evaluation 513 

Fig. 8 illustrates the PV simulation in a 450ml software breast phantom with 200m voxels, 514 

relative compartment orientation, ݎ	 ∈ ሾ0.5,2ሿ	 and relative compartment size, r௦ ∈ ሾ0.5,2ሿ .  515 

Shown is the segmentation of phantom detail into air and voxels containing one, two or three 516 

materials.  517 

518 

519 

(a) 520 

521 

(b) 522 
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523 

(c) 524 

Figure 8: (a) Various cases of PV voxels simulated by the proposed method in a slice of a 450ml 525 

software breast phantom, with 200m voxels.  Color-coded percentage of the skin (b) or 526 

Cooper’s ligaments (c) have been computed in phantom voxels from (a). 527 

528 

Fig. 9 shows simulated x-ray projections of phantoms with and without simulated PV. The 529 

simulated acquisition assumed a polyenergetic x-ray beam and divergent x-ray beam.  The 530 

projections correspond to three phantoms with identical distributions of compartments: a 531 

phantom with 200m voxels and no PV (Fig. 9(a)); a 200m phantom with simulated PV (Fig. 532 

9(b)); and a phantom with 100m voxels and no PV (Fig. 9(c)). Fig. 9(d) contains magnified 533 

detail of Fig. 9(a). Corresponding magnified details of Fig. 9(b) and Fig. 9(c) are shown in Fig. 534 

9(e) and Fig. 9(f), respectively. Fig. 10 illustrates the effect of simulating PV with respect to the 535 

skin, two-material voxels, and three-material voxels.   536 

537 
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Review
538 

(a)              (b) (c) 539 

540 

(d)              (e)   (f)      541 

Figure 9: Simulated projections of:  (a) a phantom with 200μm voxels and no PV; (b) the 542 

phantom from (a) with simulated PV; (c) the same phantom generated at 100 μm voxels and no 543 

PV; (d) A magnified detail from Fig. (a) (white arrows indicate stair-step quantization artifacts); 544 

(e) the corresponding detail from Fig. (b); and (f) the corresponding detail of Fig. (c). 545 
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546 

          (a) (b) (c)      547 

Figure 10: Illustration of the effect of PV in simulated projections of phantoms.  Shown is the 548 

contribution of (a) two-material voxels containing skin (cases 6-9; Table 2) (white arrows 549 

indicate ripple artifacts); (b) two-material voxels containing ligaments (cases 10 and 11); and (c) 550 

three-material voxels (cases 12 and 13).   551 

552 

IV.B. Quantitative validation 553 

For quantitative validation of the proposed method, we utilized the Monte Carlo method, as 554 

described in Section III.A.  The number of points per voxel for the Monte Carlo simulation was 555 

varied (NMC ∈{63,  500}).   The number of repetitions was Nrepeat=100. Table 4 contains the MSEA 556 

for PV of skin, PV of ligaments in two material voxels and PV of ligaments in three material 557 

voxels, using the 200m phantom shown in Fig. 8. MSEA is computed using the Monte Carlo 558 

method with NMC=63 random points, using both methods discussed in section III.A.1.  The 559 

corresponding estimated ܧܵܯெோ 	ெௌܧܵܯ , are also shown.  Since we used q=6 bits for 560 

representation of a partial volume percentage, the approximate quantization error, obtained using 561 

Eq. (21), was MSEq =2.09e-5. 562 

563 
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Table 5 lists the numbers of two-material voxels containing skin (cases 6-9; see Table 2) and 564 

ligaments (cases 10 and 11), three-material voxels (cases 12 and 13), as well as the average 565 

execution times for one PV voxel using the linear approximation and the Monte Carlo method 566 

with NMC=63.  Note that total execution time for the PV computation using the linear 567 

approximation was about 37 times less than with the Monte Carlo method (NMC=63). 568 

 569 
Table 4: MSEA, MSEMC obtained using repetitions, and sample means for three types of voxels; 570 

Monte Carlo method uses NMC=63 points per PV voxel 571 

572 

Estimation method Two material: 
Skin 

Two material: 
ligaments 

Three material: 
ligaments 

 ெௌ            1.797e-03 1.772e-03 1.574e-03ܧܵܯ
 ெோ 1.779e-03 1.754e-03   1.562e-03ܧܵܯ

MSEA 
Sample 
means 

2.007e-05 4.323e-04 2.931e-04 

Repetition 3.797e-05 4.528e-04 3.058e-04 

 573 
Table 5: The numbers of different types of voxels and the average execution times per PV voxel 574 

for the proposed method and for the Monte Carlo simulation 575 

576 

Voxel type Two material: 
Skin 

Two material: 
ligaments 

Three materials 

Number of 
Voxels 

1,597,042 6,435,881 87,610 

 A
ve

ra
ge

 
ex

ec
ut

io
n 

ti
m

e 
pe

r 
P

V
 v

ox
el

 
(m

s)
 

Linear 
approximation 

0.556 0.380  4.75 

Monte Carlo 
(NMC=63) 

 0.371 21.6    22.1 

577 

Table 6 contains MSEA for PV of skin, PV of ligaments in two material voxels and PV of 578 

ligaments in three material voxels, on 200m phantom shown in Fig. 8. MSEA is computed using 579 

the Monte Carlo method with NMC=500 random points with the sample mean method.  The 580 

corresponding estimated  ܧܵܯெௌ  are also shown.  Note that estimation of ܧܵܯெோ  was not 581 

computationally feasible (the computation of ܧܵܯெோ would require excessively large 582 

computational time). 583 

 584 

Table 6: MSEA, MSEMC obtained using the sample means method for three types of materials; 585 

Monte Carlo method uses NMC=500 points per PV voxel 586 

587 

Estimation method Two material: 
Skin 

Two material: 
ligaments 

Three materials 

 ெௌ            2.260e-04   2.229e-04    1.984e-04ܧܵܯ
MSEA 3.604e-05 4.487e-04 2.918e-04 

588 

589 
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To determine the influence of ligament boundary non-linearity on the accuracy of the proposed 590 

PV estimation, we generated four 200m phantoms corresponding to the classes discussed [49].  591 

We varied the relative compartment orientation r0, and the relative compartment size, rs, as 592 

shown in Table 7.  593 

 594 

Table 7:  Values of the input parameter defining relative compartment orientation, r0, and the 595 

relative compartment size, rs, used for the generation of the four analyzed classes of phantoms.  596 

597 

rs

r0 
1 [0.01, 100] 

1 Class 1 Class 2 

[0.25, 4] Class 3 Class 4 

 598 

Table 8 contains MSEA, MSEMC obtained using the sample means method for three types of 599 

materials on four phantoms with different non-linearity of ligament boundaries specified by 600 

different ranges of rs and r0 (See Fig. 11); Monte Carlo method uses NMC=63 points per PV 601 

voxel. 602 

603 

604 

605 

606 

607 
(a)         (b) 608 

609 
                             (c)                                                                                (d) 610 

Figure 11: Coronal cross-sections through sample phantoms from the four analyzed classes: (a) 611 

Class 1 (b) Class 2; (3) Class 3; (d) Class 4 (see Table 7). 612 

613 
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Table 8: MSEA, MSEMC for four phantoms with different non-linearity of ligament boundaries 614 

specified by different ranges of rs and r0. The Monte Carlo method uses NMC=63 points per PV 615 

voxel. 616 

617 

Class 1 Estimation 
method 

Two material: Skin Two material: 
ligaments 

Three materials 

 ெௌ            1.796e-03     1.764e-03    1.591e-03ܧܵܯ
MSEA 1.983e-05    4.141e-05    2.571e-05 

a) rs=1, r0=1618 

Class 2 Estimation 
method 

Two material: Skin Two material: 
ligaments 

Three materials 

 ெௌ            1.796e-03 1.754e-03 1.573e-03ܧܵܯ
MSEA 2.297e-05 3.698e-04 1.165e-04 

b) rs in [0.01, 100], r0=1619 

620 

Class 3 Estimation 
method 

Two material: Skin Two material: 
ligaments 

Three materials 

 ெௌ            1.797e-03    1.814e-03    1.594e-03ܧܵܯ
  1.528e-05    1.037e-03     3.305e-04ܧܵܯ

c) rs =1, r0 in [0.25, 4]621 

Class 4 Estimation 
method 

Two material: Skin Two material: 
ligaments 

Three materials 

 ெௌ               1.796e-03    1.786e-03    1.578e-03ܧܵܯ
MSEA 2.171e-05    2.144e-03     5.388e-04 

d) rs in [0.01, 100], r0 in [0.25, 4]622 

623 

V. Discussion 624 

Fig. 8 suggests that the simulation of all 13 cases of PV voxels is qualitatively correct.  The 625 

voxels containing two materials are detected at the boundaries of two materials (e.g., skin, 626 

compartment).  The three material voxels are detected where the skin meets Cooper’s ligaments 627 

and a compartment. Computed percentages (PVs) of skin and ligaments gradually decrease when 628 

departing from the inside of the skin (ligaments) (Fig. 8(b), 8(c)). 629 

630 

In Fig. 9(e), for a phantom with simulated PV, the equivalent x-ray attenuations of voxels on 631 

skin/air and ligaments/fat tissue boundaries were lower than the x-ray attenuation of dense tissue, 632 

hence the quantization artifacts were reduced and Cooper’s ligaments and skin appeared thinner 633 

and their boundaries smoother in the projection (as compared to the phantom without PV, Fig. 634 

9(d)).  This is confirmed by the difference between projections of phantoms with two material 635 

PV voxels and with PV voxels containing skin (Fig. 10(b)).  636 

637 
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In Fig. 9(e), the characteristic stair-step quantization artifacts on tissue boundaries were 638 

noticeably reduced with simulated PV.  Simulation of two-material voxels with skin leads to 639 

reduction of ripple artifacts due to sudden change of attenuation at the skin boundary. (Fig. 640 

10(a)).  Note that here we represent linear x-ray attenuation coefficient of a PV voxel as a 641 

weighted average of the attenuation coefficients of materials contained in the voxel (instead of 642 

using a single material attenuation coefficient).  Hence, the proposed method can reduce aliasing 643 

due to improved sampling of a continuous phantom.  Comparison of Figs. 9(e) and 9(f) indicates 644 

similar appearance of a phantom with PV simulated at a larger voxel size (200μm) to a phantom 645 

simulated at a smaller voxel size(100μm) with no simulated PV.  Note that a Cooper’s ligament 646 

in the lower central portion of Fig. 9(e) with simulated PV appears thinner, even when compared 647 

with a smaller voxel size phantom without PV (Fig. 9(f)).  Hence, the application of PV may lead 648 

to an improvement in image quality without reducing voxel size. In comparison to noticeable 649 

quality improvement of simulation of two-material PV voxels, the simulation of three-material 650 

voxels leads to a relatively smaller improvement in image quality, by removing high-frequency 651 

artifacts (see Fig. 10(c)). 652 

653 

The estimated accuracy of the PV computation (MSEA) is better when using the proposed 654 

approximation, than using the MC with 63 points, as indicated in Table 4.  For skin, the accuracy 655 

of approximation is close to the approximate quantization error MSEq (calculated in the 656 

beginning of Section IV.B.)  The statistically insignificant discrepancy (2.09e-5 vs. 2.007e-5) 657 

could be explained by error in estimating MSEMC.  Note that using NMC=63 points per voxel in 658 

Monte Carlo estimation corresponds to 6-bits resolution of the obtained PV estimates—the same 659 

as the resolution due to discretization of the approximation.  660 

661 

Comparison of Table 4 and Table 6 shows that the estimate of MSEA is stable (i.e., does not 662 

change much) with increasing NMC.  Hence, the use in practice of relatively small NMC (=63) to 663 

estimate MSEA is justified. When NMC was increased, MSEMC decreased (as expected from Eq. 664 

(29)) and became comparable to MSEA on two-material and three-material ligament voxels.  665 

Observe, however, that this comparable accuracy is achieved at the expense of additional 666 

computational time.  Hence, our proposed approximation method is preferable for both fast and 667 

accurate estimation of PV.  668 

669 

For a phantom with very linear ligament boundaries (Fig. 11(a)), MSEA is very close to MSEq 670 

(see Table 8a).  In this case, the linear approximation clearly has better accuracy than MC with 671 

63 random points.  As we can see, when r0=1 but relative compartment sizes vary in [0.01, 100] 672 

(Fig. 11(b)), the boundaries of ligaments are non-linear but relatively smooth.  Hence, the MSE 673 

of the linear approximation of two- or three-material ligaments are smaller than for the MSE of 674 

the Monte Carlo (see Table 8b).  Fig. 11(c) shows that when r0 is allowed to vary in [0.25, 4] but 675 

relative compartment size is rs=1, the phantom’s ligament boundaries are less linear.  As a 676 

consequence, MSEA for ligament voxels are larger than in the previous case (Fig. 11(a) and 677 

11(b)).  Nevertheless, linear approximation still has smaller error than MC.  Fig. 11(d) shows 678 

that when r0 vary in [0.25, 4] but relative compartment sizes rs vary in [0.01, 100], ligament 679 

boundaries are very non-linear.  As a result, now MSEA for ligaments is larger than MSEMC.  In 680 

contrast, the volumes of three-material voxels are bounded by relatively smooth skin surface (in 681 

addition to non-linear ligament surface), and in such cases linear approximation outperforms MC. 682 
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A better approximation (e.g., quadratic) may still be needed if the surfaces separating different 683 

volumes are not linear, since the linear approximation on the ligament boundaries is not exact.  If 684 

the boundaries are highly non-linear, computation of the PV effect using the Monte Carlo (MC) 685 

method may be a better choice (since MC provides a controllable approximation error) on fast 686 

enough hardware/implementation. 687 

688 

Our algorithms for two and three materials are very efficient.  In the two-material case, 689 

Algorithm A1 can be used to compute partial volume by solving one inner product and the 690 

volume of a few geometric primitives.  In the three-material case, Algorithm A3 has converted 691 

the 3D volume problem into a 2D area problem using the Gauss-Ostrogradsky theorem.  692 

Moreover, Algorithm A3 can be used for any number of materials, but for two-material cases, 693 

Algorithm A1 is faster.   694 

695 

The obtained average execution times of PV estimation per voxel, Table 5, are platform and 696 

implementation dependent.  Using the Monte Carlo method for two-material voxels containing 697 

skin (cases 6-9) is relatively straightforward resulting in smaller average execution times than 698 

using our implementation of the proposed algorithm.  Note that while being conceptually simple, 699 

estimation using the Monte Carlo method of voxels containing ligament tissue relies upon 700 

computation of distance from the median surface which is resource intensive (it reduces to 701 

numerical solution of the polynomial equation of 6-th degree [44]).  Since PV with two-materials 702 

containing ligaments (cases 10-11) are predominant in the considered phantom, the total time to 703 

compute partial volumes using the linear approximation was much smaller than using the Monte 704 

Carlo method with NMC=63 points.  Therefore, using the linear approximation should be faster 705 

than the Monte Carlo method.  On the other hand, unlike the linear approximation, where the 706 

accuracy depends on the linearity of the material boundaries, the accuracy of the Monte Carlo 707 

method can be controlled (by choosing large enough NMC, see Eq. (29)).  Hence, if the accurate 708 

computation of partial volumes separated by highly non-linear surfaces is necessary, or if the 709 

application/platform (e.g., parallel platforms) where the Monte Carlo method is efficient are 710 

available, the Monte Carlo may be a method of choice for computing partial volumes.  The 711 

determination of smallest NMC, for a given MSEMC is part of our work in progress. 712 

713 

Note that for realistic cases of non-linear ligament boundaries the estimated MSEA of two-714 

material voxels containing ligaments and of three-material voxels were larger than the 715 

quantization error MSEq when q=6 bits are used.  Hence, it is sufficient to use 6 bits to represent 716 

partial volumes computed using the proposed linear approximation. Note that in [38] we 717 

proposed using 7 bits per partial volume.  718 

 719 

Observe that the proposed scheme reserves 4 bits to encode material type; currently we utilize 2 720 

bits. In this way, we have the potential to include more material types and their combinations 721 

(e.g., lesions, calcifications, ducts, etc). 722 

723 

Note, finally, that we have proposed three techniques to estimate MSEMC, and experimentally 724 

confirmed their similar behavior in the proposed application.  The third technique is based upon 725 

the estimation of sample means of computed PVMC, which avoids the estimation of εMC.  This 726 

technique does not require knowledge of true values of PVj at each voxel nor the availability of 727 

distribution p(PV), and could be thus potentially used in other estimation problems. 728 
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VI. Conclusions 729 

We have developed a method for simulating PV in software breast phantom voxels, which 730 

contains multiple simulated tissues.  The percentage of simulated tissues was estimated using a 731 

planar approximation of the boundary between different tissue regions, based upon the 732 

segmentation into geometric primitives and the Gauss-Ostrogradsky theorem.  A quantitative 733 

assessment of the planar approximation using Monte Carlo estimation of computed PV showed 734 

satisfactory accuracy of the proposed method.  A qualitative comparison of simulated 735 

mammographic projections confirmed that the PV simulation can improve the image quality by 736 

reducing the quantization artifacts.  A future work would involve human or model observer 737 

studies to quantify the image quality improvement.  738 
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Appendix 1:  Pseudocode of algorithms for computing partial volume of a voxel above a 749 

plane and above two planes 750 

751 
Vi=PV_2( x,Pi ,i 1,...,8,N,X0)752 

// Inputs:voxel linear dimension ∆x; voxel vertices Pi,i=1,…,8753 
// a plane normal N; a point x0 on the plane;754 
// Output: Partial volume Vi of the voxel above the plane755 
COMPUTE nVertex756 
IF nVertex>4757 

DETERMINE voxel vertices Qi,i=1,…,8-nVertex  satisfying (Qi  x0) N≤0758 

 RETURN 3x -PV_compute_2(Qi ,i 1,...8nVertex,x,N,x0,  8 nVertex )759 

ELSE760 
DETERMINE voxel vertices Qi,i=1,…,nVertex  satisfying (Qi  x0) N  0761 

RETURN PV_compute_2(Qi ,i 1,...nVertex,x,N,x0, nVertex );762 
763 

Algorithm A1: Conceptual algorithm for computing partial volume of a voxel above a given 764 

plane 765 
766 
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Vi= PV_compute_2(Qi ,i 1,...nVertex,x,N, x0,nVertex )767 

// Inputs: Voxel vertices Qi,i=1,…,nVertex above plane  (nVertex≤4!)768 
// voxel linear dimension ∆x769 
// normal N and a point x0 specifying plane .770 
// Output: Partial volume Vi of the voxel above the plane 771 
IF nVertex==0772 

RETURN 0.  //Partial volume is 0 773 
ELSEIF nVertex==1 //Volume is a right angle triangular pyramid. CASE A (see Table 3) 774 

COMPUTE nPoint=2*nVertex+1. //the number of intersections. 775 
COMPUTE intersections P, Q, R between  and ei， the edges containing Q1. 776 
COMPUTE the distances between intersections and Q1. 777 
RETURN volume of a tetrahedron PQRQ1. //(See Fig.4(a)) 778 

ELSEIF nVertex==2779 
DETERMINE the edge e containing Q1 and Q2  780 
IF N  e //Volume Vi is a triangular prism. CASE B1  781 

COMPUTE intersections P, Q between  and edges containing Q1 (except 782 
e). 783 
RETURN volume of a prism defined with base PQQ1 and height e.  784 
//(See Fig. 4(b)) 785 

ELSE  // volume is a triangular cut pyramid CASE B2 786 
 COMPUTE nPoint=2*nVertex+1.  //the number of intersections. 787 
COMPUTE intersections P, Q, R, S, T between  and each edge (or      788 
extension of edge) containing Q1 or Q2. 789 
 RETURN volume difference b/w tetrahedra PQRQ1, PSTQ2.//See Fig. 4(c) 790 

ENDIF 791 
ELSEIF  nVertex==3  //”double cut“ pyramid. CASE C.792 

COMPUTE nPoint=2*nVertex+1. // the number of intersections. 793 
COMPUTE intersections P, Q, R, S, T, U, W between  and each edge (or 794 
extension of edge) containing Q1, Q2 or Q3.795 
RETURN volume difference b/w tetrahedra PQRQ1, PSTQ2, QUWQ3 .//See Fig.4(d) 796 

ELSEIF  nVertex==4797 
      IF vertices Qi i=1,…,4 are coplanar //The volume Vi is a prismoid.  798 

//CASE D1 799 
COMPUTE intersections P,Q,R,S between  and edges vertical to plane 800 
defined by Qi i=1,…,4. 801 
RETURN volume of prismoid Q1Q2Q3Q4PQRS.  //See Fig.4(e) 802 

ELSE  //”triple cut” pyramid. CASE D2 803 
COMPUTE nPoint=2*nVertex+1.  //The number of intersections. 804 
COMPUTE intersections P, Q, R, S, T, U, W, Y, Z between  and each 805 
edge (or extension of edge) containing Q1, Q2, Q3 or Q4. 806 
RETURN volume difference b/w tetrahedron PQRQ2 and tetrahedra PSTQ1, 807 
QUWQ3, and RYZQ4.  //See Fig. 4(f))  808 

ENDIF 809 
ENDIF810 
 811 
Algorithm A2: Algorithm for computation of partial volume of a voxel above a plane for 812 

different number of vertices above the plane 813 

814 
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Vi=PV_3( x,Pi ,i 1,...,8,x1,N1,x2,N2)815 

// Inputs: voxel linear dimension ∆x;816 
// voxel vertices Pi, i=1,…,8817 
// plane normals N1,N2 of planes 1, 2; points x1, x2 on the planes 818 
// Output: Partial volume Vi of the voxel above the planes 1, 2819 

820 
COMPUTE nVertex as the number of vertices Pi satisfying (Pi  x1) N1  0and (Pi  x2) N2  0.821 
IF    nVertex==8 822 

RETURN x3823 
ELSEIF  nVertex~=0824 

RETURN PV_compute_3( x,x1,N1,x2,N2,Pi ,i 1,...,8).825 
    ELSE 826 

 COMPUTE nVertex1 and nVertex2, the number of vertices above 1 and 2. 827 
IF nVertex1* nVertex2~=0 828 

 // there is no vertex above both planes, but there is a vertex above each plane. 829 
RETURN PV_2( x,Pi ,i 1,...,8,N1,x1)-PV_compute_3( x,x1,N1,x2,-N2,Pi ,i 1,...,8). //(See Fig.830 
7)  831 

ELSE 832 
    RETURN 0. 833 

ENDIF 834 
ENDIF835 

836 
837 

Vi=PV_compute_3( x,x1,N1,x2,N2,Pi ,i 1,...,8)838 

// Inputs: voxel linear dimension ∆x;839 
// plane normals N1,N2 of planes 1, 2; points x1, x2 on the planes 840 
// Voxel vertices Pi,i=1,…,8 such that at least one vertex is above both planes 1, 2841 
// Output: Partial volume Vi of the voxel above the planes 1, 2842 
CHOOSE any vertex of the voxel above the two planes, denoted by Q1.843 
FOR each voxel side σi, i=1,…,8  that does not contain Q1844 

DETERMINE the set S  of points above or on 1 and 2 belonging to one of the 845 
following sets: intersections between edges of σi and planes 1, 2;846 

intersections between 1, 2 and σi; vertices belonging to σi.847 
COMPUTE iS  as the area of convex polygon with vertices from S. 848 

COMPUTE the distances jd  between Q1 and π j , j 1,2.849 

FOR each plane π j , j 1,2850 

COMPUTE a set Sౠ belonging to one of the following sets: intersections between 851 

π j  and the voxel edges that are above or on πk ,k  j ; intersections of 1, 2 and 852 

the surface of the voxel.  853 
COMPUTE jA  as the area of a convex polygon with vertices from Sౠ. 854 

RETURN Vi= 1

3
[(S1 S2  S3)x  A1d1 A2d2];855 

856 
Algorithm A3: Algorithm for computation of partial volume of a voxel above two planes 857 

858 

859 

Appendix 2: Some properties of Monte Carlo estimation of partial volume 860 

Page 30 of 34

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Observe that the true value of a partial volume PV is the probability that a randomly chosen 861 

point during the Monte Carlo computation of partial volume is within the volume of interest.  862 

Hence, the count of points (NMCI in Eq. (16)) follows a Binomial distribution with expectation 863 

Nେ ∙ PV	and variance Nେ ∙ PV ∙ ሺ1 െ PVሻ [43]. From this and Eq. (16), (17), follows: 864 

E(εMC|PV)=0                (A1) 865 

E(ε2
MC|PV)=

	ሺଵିሻ

ి
    (A2) 866 

Note that it is suitable to treat the true value of the partial volume, PV, as a random variable 867 

(since it varies throughout the phantom in fashion unknown to the algorithm for PV estimation).  868 

Using the conditional expectation E(ε2
MC|PV), the expectation E(ε2

MC)of the error of the 869 

Monte Carlo method can be expressed as [43]: 870 

ெߝሺܧ
ଶ ሻ ൌ  ெߝሺܧ

ଶ |PVሻሺPVሻ݀PV
ଵ


 (A3) 871 

By combining Eq. (A2) and (A3) we can easily obtain: 872 

ெߝሺܧ
ଶ ሻ ൌ 

ሺଵିሻ

ి
ሺPVሻ݀PV ൌ

ଵ



ଵ

ి
൫ܧሺPVሻ െ  ሺPVଶሻ൯       (A4) 873ܧ

Also, similarly, using Eq. (A1) we can obtain: 874 

ெߝሺܧ ∗ PVሻ ൌ  ெ|PVሻߝሺܧ ∙ PV ∙ ሺPVሻ݀PV
ଵ


ൌ 0 (A5) 875 

ெሻߝሺܧ ൌ  ெ|PVሻߝሺܧ ∙ ሺPVሻ݀PV
ଵ


ൌ 0 (A6) 876 

Due to Eq. (A6), 877 

E(PV)=E(PVMC) .  (A7) 878 

Note that PVA is a function of PV (in the ideal case, PVA=PV!) and therefore εA= εA(PV).  879 

Due to Eq. (A1): 880 

ሻߝெߝሺܧ ൌ ெ|PVሻߝሺܧ ሺPVሻ݀PVߝ ൌ 0 (A8) 881 

i.e., the approximation error and the error of Monte Carlo method are not correlated.  Note that 882 

Eq. (A8) holds for linear and non-linear approximation methods. 883 

884 

885 
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