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ABSTRACT

The admissible region is defined as the set of physicallymabée orbits (i.e., orbits with negative energies). Given
additional constraints on orbital semi-major axis, ecaeity, etc, the admissible region is further constrainegult-

ing in the constrained admissible region (CAR). Based omknstatistics of the measurement process, in this paper
we replace hard constraints with a probabilistic represtent of the admissible region. This results in the probsdbil

tic admissible region (PAR) that can be used for orbit itibiain Bayesian tracking. While this is a general concept
that is applicable to any measurement scenario, we wibtilate the idea using a short-arc, angles-only observation
scenario.

1. INTRODUCTION

As new optical sensors come online and more and more optisEreations become available for space objects
previously too small or too far away to detect, the spacesillemce community is presented with the computationally
challenging problem of generating initial orbit solutidios a large number of short-arc line-of-sight observatidns
order to perform any kind of probability-based analysiswiitese orbit solutions, we require an accurate represemtat
of their uncertainty. Properly characterizing the undatyawill allow us to more efficiently deal with large sets
of sparse data by enabling the use of rigorous probabilistbniques to, for example, perform data association,
determine collision probabilities, or initialize a Bayasiestimation scheme. This paper deals with the problem of
characterizing uncertainty in a constrained admissild@®re(CAR) approach to initial orbit determination (I0D).

The admissible region approach has been previously uséetiadteroid tracking community by Milani et al, P]

to deal with the problem of identifying asteroids based ary @hort arc observations. Specifically, they referred to a
region in the plane of possible ranges and range-rates nigfimbse values for which a given line-of-sight observation
produces an orbit solution that satisfies certain critefiais concept has been extended in the SSA community by
authors including TommeB[ 4], Milani [5], Farnocchia §], Rossi, MaruskinT], Scheeres, Alfriend, Fujimotd[9],
Gronchi [L0], Dimare, Schildknecht, Jehn, DeMarkl[12], Jah, Schumacher, and SiminskB[14] to deal with the
problem of tracking space objects in Earth orbit, for which CAR refers to a region in the range, range-rate plane
which produces orbit solutions with orbit elements satigfysome specified bounds. In previous work, Schumacher,
Wilkins, and Rosco€l[s,16] extended this concept to include regions in the range gatane satisfying orbit element
bounds for pairs of observations. Hussein et®l] ppplied probabilistic techniques to determining the ashihility

of an uncertain candidate orbit in the CAR using both Unstransform (UT) and Monte Carlo (MC) methods.
Worthy and Holzinger8] incorporated measurement uncertainty into the admissdgion approach for uncorrelated
detections.

An unresolved topic in the SSA literature is how to best sartipd CAR to perform data association or track initiation.
For example, Tommei, Milani, and Ros8] Lise a Delaunay triangulation approach, while DeMars ahd18 (along

with a number of other authors) use a uniform distributiopragimated as a Gaussian Mixture Model (GMM).
Simiski et al. L3,14] use an Iso-Energy grid method to discretize the CAR alongsliof equal energy (i.e., semi-
major axis). The goal of the present work is to define a prdistibiform for the CAR to be used for initializing a
Bayesian tracking scheme. Based on known statistics of #asurement process and assumed statistics in the semi-
major axis and eccentricity, the probabilistic admisgipilegion (PAR) can be determined using a MC method. This
resulting PAR which is made of a set of particles can then beerted to a GMM using the Expectation-Maximization
(EM) algorithm [19, 20].
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The paper is organized as follows. In Sectnwe review how the deterministic CAR is constructed. In Bect
3., we describe how to construct the PAR from known measurearghRSO population statistics. In Sectibnwe
describe how to derive an MC representation of the PAR ancati@h5. we describe how to convert this particle
cloud into a GMM using a versatile and robust EM algorithmezhthe FJ-EM algorithm. We provide a humerical
example in SectioB. and conclude the paper in Sectién

2. THE ANGLES-ONLY DETERMINISTIC CONSTRAINED ADMISSIBLE REG ION

In this section we introduce the deterministic CAR for skand, angles-only optical observations. In the next sactio
we introduce the PAR. The starting point is a series ehort-arc right ascension and declination observations);)
taken at measurement timgs: = 0,...,n — 1, with epochi at¢,. Following the second-order polynomial-in-time
least squares procedure described by Maruskin, Scheakg\|miend [7], one can obtain an estimate of tbgtical

attributable vector (ay, &o, 0o, 50) atty (we omit details here for brevity). For the rest of this pawerwill drop the
tilde and subscripts for ease of notation.

We now review how to construct the CAR from these estimatedb@fangles and their rates. We mostly follow the
notation and derivation given by DeMars and Ja#] [(with minor corrections). Let be the inertial position of the
object,q be the inertial position of the ground station gmdbe the inertial position of the object with respect to the
station. Hence, we have following position and velocitytieinships

r=q+p 1)
and
r=q-+p. 2

Using spherical coordinate system with respect to the gfatation,p and its inertial time derivative can be expressed
as

p = pu,
p = pu, + péccos du, + p5u5, 3)
whereu,,, u, andus are the spherical coordinate system’s basis unit vectatsisngiven by

u, = (cos ccos d, sin a cos 9, sin J)
u, = (—sina, cos o, 0)

u; = (—cosasind, —sin asin d, cosd).

The position and velocity andr are related to the two-body energy via the equation

£ = M _ (4)
2 ixl

After expressing: andr in terms of the paramete(s,, ¢, 0, 5, p, p) this equation, it can be shown, is given by
P2+ wip+ Fp) — 28 =0 ©)

where
2p

V P+ wsp 4w

*Other epochs can be considered as well. For example, the ritgiche arc may reduce error.

F(p) = wap® + wsp + wy —
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and where the parameters (i = 0, ..., 5) are given by

2
wo = ||q|
wy = 2q-u,
wy = &% cos? § + 62
w3 = 26 cos 6(q - uy) + 26(q - us)
2
wy = |4

ws = 2q - u,

Given a value fo€, one can solve for the corresponding curvgirp space. The curve correspondingte- 0 defines
theadmissible region inside which all orbits with negative energy & 0) exist. It is often the case, furthermore, that
we have additionalnequality constraints that one can impose in order to further limitgaeof possible orbits with
negative energy. Two important such constraints are caingtron semi-major axis, and eccentricitye.

For the purpose of the discussion in the next section on the, R4 will considerequality constraints on the semi-
major axis and eccentricity. Given a fixed€ in Eqg. 6) can be replaced with

__
E= o (6)
resulting in
§2+wip+ Flp) + = =o. (7)

Energy, is related to eccentricity (and orbital angular reatam) by pP1]

2

__Hk )
&= 2||h||2(1 e”). (8)

However, note that the angular momenthris related to the paramete(s, ¢, ¢, 5, p, p). One can show that can be
expressed as

h =h;p+hyp* +hgp+hy 9)
where (note that our expressions here differ from those d&e and Jah12])

h; =qxu,

hy =u, x (&cosdu, +5u5)

h3 = u, X 4+ q x (& cos du, + duy)
hy =qxq.

Therefore, the magnitude squared of the angular momentgives by
Ih][* = cop® + P(p)p + U(p), (10)
where

P(p) = c1p® + cap+c3
U(p) = cap® + csp® + cap® + crp + cs,
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and where:; (i =0, ..., 8) are given by

co = [hf?

Cc1 — 2h1 . h2

Cy = 21’11 . hg

C3 = 2h1 . h4

ca = |[ho|?

Cs = 2h2 . h3

¢ = 2hs - hy + || hs?
C7r = 2h3 . h4

cs = ||ha®

Substituting Eq.10) into Eq. @), which in turn gets substituted into Ed)( one obtains
asp* + asp® + azp® + arp+ ag =0, (11)
wherea; (i = 0,...,4) are functions op ande and are given by:
F(p)U(p) + 1*(1 — e?)
F(p)P(p) + w1l (p)
U(p) coF'(p) +wiP(p)
P(p) + cowr

a4 = Co.

+
+

For given values ofi ande, in addition to the attributable variablés, &, ¢, 5) one can then solve the two nonlinear
equations Eq.7) and Eq. 11) for the unknownsp and p. It is doubtful, however, that there exists a closed form
solution to these equations.

3. PROBABILISTIC ADMISSIBLE REGION

The general goal is to obtain the probabilistic characéion of the uncertainty in the variablés p) given knowledge

of the statistics of the angles-only measurement procesgther words, we would like to obtain a probability density
function (pdf)p(p, p) that characterizes the PAR.We do so as follows. Firstlycedhat one can view the least squares
solution for (e, &, 8, 4) from the short-arc, angles-only measurements as a magmioggh which one can map the
uncertainty in measurements to uncertaintydnd, d,9) at epoch. Let that pdf be denoted b, ¢, d, ). Further
assume that we have a probabilistic assessment of thebdistn over the semi-major axig, and the eccentricity;,
with pdfsp(a) andp(e), respectively. We assume that the semi-major axis and tengicity are independent of each
other and both fronta, ¢, 0, 5)*. Distributions ina ande can be obtained from any known information and physics
of the RSO population. In other words, the joint distribuatia («, &, 6, S,a, e) is given by:

pla, &,6,8,a,€) = p(a, &,6,8)p(a)p(e).
Using Eq. ¥) and Eq. 11) one can map(«, ¢, 8, 6, a, €) to obtainp(p, p).

Such an uncertainty map is impossible to achieve in closetsfeven when the measurement process is Gaussian.
This is due to the nonlinearity present in E@) &nd Eq. 11). Therefore, in the present paper we will use the Monte
Carlo method to obtain a particle representation of the daicgy in (p, ). Note that the mapping of Gaussian
measurements to angles and angle-rates via the least squapping retains Gaussianity. In other wopds, ¢, J, 5)

will be Gaussian under the assumption of a Gaussian measnterise model. While in the next section we will
assume that the measurement process is Gaussian, the Motdef@cedure described in the next section still holds
as long as we can sample the pdf that describes the meastignoesss. If we are not able to sample the distribution,
approximate MC methods, e.g., importance sampling, camipdoyed instead.

*In general, this is not true. The measurement process statist dependent on the orbital geometry, e.gnde.
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4. A MONTE-CARLO REPRESENTATION OF THE PAR

Assuming that we know the observation process noise claaistats, Based on the discussion presented in the pre-
vious section, one can in principle map the uncertainty ahgles-only measurement process to the uncertainty in
their rates given the

It is assumed that the sensor noise characteristics arerkrieov the sake of simplicity, we assume that the measure-
ment noise is Gaussian with medns', 1.2 and covarianceg-¢, Ef) for right ascension and declination, respectively,
attimet;, i = 0,...,n— 1. Following a batch least squares meth@d][ the measurementsy;, d;),7 =0,...,n—1,

and their statistics can be mapped to a Gaussian distribirtia, ¢, 8o, d9). Clearly, we can sample this distribu-
tion for the MC analysis. Let the particles in these varialile denoted b\](a((f), aéj)ﬁéj),ééj))}, j=1,...,N,
where N is the chosen number of particles to represent the uncgrtelioud. Note that by our assumption that the
semi-major axis and eccentricity are independent of théeargnd the angle-rates, sampling of the the latter vari-
ables can be done by directly sampling frfav, cv, 6o, 4o ). Likewise, sample(a) directly to obtain semi-major
axis particles{a?)}, andp(e) to obtain eccentricity particleg=(")}, 7 = 1,..., N. Notice that due to the statistical
independence property, the ordering of the particles ine#th of the three sefsa(gj), dé]), 5(()]), Séj))}, {a¥} and
{e\9)} is irrelevant, but each particle from each set has to be ehjcqand consistently matched with one from each of
the other two sets to obtain joint particlg®) } = {a$), 4,500 65 a) @} j=1,... N.

Next, each particle’”) can now be inserted in Eq7)and Eq. (1) to obtain a particleZ/) = (p\4), p)) in range,
range-rate space. The resulting set of parti¢fg&)} = {(p), p(9))} is then the desired particle cloud that represents
the PAR.

5. CONVERTING THE PAR MC PARTICLE CLOUD INTO A PAR GMM

While an MC particle cloud is a faithful representation of thee uncertainty (within the bounds of the assumptions
made in the procedure described above), it is difficult tdgger many analytical computations (e.g., filtering using
GMM techniques) with it in closed-form. This motivates theed to convert the PAR particle cloud into a PAR GMM,
to name one important analytical model. This has been danéqusly by DeMars and Jah?], where the CAR was
modeled using a uniform distribution and a GMM approximatid the uniform distribution was proposed. Now that
we have a non-uniform PAR, one needs to resort to more gemathlods for representing the PAR using a GMM.
The standard procedure in the probabilistic inferencealitee is the EM method that can convert a sample (i.e., a
particle cloud) into a GMM 19]. We will not describe the details of the method here. Indtea refer the reader

to the algorithm in Ref.20], which is a robust and versatile algorithm called the FJ-Hie method allows for the
user to specify a maximum number of GMM components and icsetée number of components that best represent
the particle cloud. The user is also not required to chooseod @nitial guess of the components. In other words,
the method does not require a careful initialization of tlgoathm (other EM algorithms do require a very careful
initialization.)

As an illustration, consider the 2000 particle cloud getestérom the four component planar GMM with weights:
w; =0.25, i =1,2,3,4,
means:

[10.0 0.0]"
[—10.0 0.0]"
(0.0 10.0]"
p, = [0.0 —10.0]

Ky =
Ko =
K3 =
T

and covariances:

20 00 .
2i_[0.0 2‘0}@_1,2,3,4.
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The generated particle cloud was then fed into the FJ-EMrigtgo and the following 5-component GMM initial

guess was used for initializing the algorithm:

wd =0.1
wd = 0.4
w) = 0.2
wd = 0.2

w) = 0.1

1.00.0]"

=
8 [~
pd =10.01.0"
O
By = [~
s = [~

»0 —

1.0 0.0
0.0 1.0

1.00.0)"

1.0 —1.0"
5.0 —5.0]"

The algorithm resulted in the following set of GMM weights:

w] =0.25

wl = 0.24849
wl = 0.26156
I =0.23995

wl =0.0

}71':1,2,3,4,5.

where we notice that one component has been eliminated. fidlesét of means were found to be

Hs—

=
= [-
[
[

9.96428 0.02116] "
9.87450 — 0.02471]"
0.03449 10.06634] "

u4 = 10.04656 — 9. 96678]

and the final set of covariances were found to be
E{ _ 1.92951
0.02156

sf _ [ 210782
27 | —0.04989

;[ 1.89439
¥ = { 0.05116

;[ 199178
¥ = { 0.01623

The resulting GMM is graphically shown in Figuteagainst the particles.

0.02156
1.92172

—0.04989
1.92587

0.05116
2.35834

0.01623
1.85653

Note that a component has a weigletrof z

(i.e., eliminated) resulting in an effective number of caments of 4. While the true values of the weights, means and
covariances were not recovered exactly, the error in thassnpeters is quite small. In the next section, we implement
the FJ-EM algorithm in the PAR analysis, converting theipkrtloud in thep — p space into a GMM representation

of the PAR.
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Fig. 1. An example showing the original means (equally weidghd) that generated the shown
particle cloud. The cloud was then fed into the FJ-EM algorihm that generated the GMM
approximation shown. The FJ-EM algorithm was able to very acurately reconstruct the true
GMM that generated the particle cloud.

6. SIMULATION RESULTS

In this section we provide a numerical example that dematestithe above ideas. We consider an orbit with the orbital
element values shown in Tadleat the initial simulation time. Using the Socorro, NM, grawsensor, 9 right ascension
and declination observations were collected at the rateefaiservation every 20 seconds. The measurement noise
is assumed to be Gaussian with an angular standard devidtibarcsec for both right ascension and declination.

Table 1. Orbital Elements of the True Orbit

Orbital Element Value
Semimajor Axis (km) 26 571.
Eccentricity 0.2
Inclination (deg) 55.0
Perigee (deg) -120.0
Right Ascension of the Ascending Node (deg) -13.24
Initial True Anomaly (deg) 110.0

The 9 measurements and their statistics are then used tio thea(Gaussian) statistics for the attributable vector at
epoch using the method of Maruskin et al].[Because each of the measurement statistics is assumedi@aand
the batch least-squares solution preserves Gaussidmtgitributable vector was found to have the following mean:

Lo —0.32184
pa | 3.37094

pus | | 1.33430e™%
s 8.08795¢ "
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and covariance:

6.21086e ' —1.45300e 2 0.0 0.0
—1.45300e"1%  5.27577e ™ 0.0 0.0
0.0 0.0 6.21086e ! —1.45300e 2
0.0 0.0 —1.45300e 1% 5.27577¢ "

The reason the covariance matrix has a block form is thaighéascension and declination angular measurements are
independent. Semi-major axis is assumed be uniformlyiliged between 10,000 km and 50,000 km. Eccentricity
is assumed to be uniformly distributed between 0.0 and 0.4.

For each particleyV), Eq. (7) can be used to construct a curve in fhe- p space corresponding to the sampled
a) value. Repeating for all particleg’) we obtain a “cloud” of semi-major axis curves (which we stualll the
“a-curves”). Figure2 shows the cloud generated from a set of 500 part@l€s. Likewise, Eq. 11) can be used to
construct a cloud of?) curves (which we shall call the=“curves”), shown in Figur8. Recall that there is exactly
onea-curve that corresponds to omecurve. The intersection (if an intersection exists) ofstéwo sets of curves

results in the particle cloud in the— p space (we do not plot the particles, but show the curves aidititersections
in Figure4).

—— SMA Curves
0.8 O True Values ||
065 1
S o4
>
3 02
g
©
@
o -0.
(=
2
g 04~
-062
-0.8
= i i i
3 35 4 45 5
Range, R
e
H “ ”
Fig. 2. The “cloud” of a-curves.
0.25 T T T T
. ECC Curves
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35 3.75 4 4.25 4.5 4.75
Range, R,

Fig. 3. The “cloud” of e-curves.

We selected a relatively small number of particles aboveetmahstrate the non-uniformity of the and e-curves
(otherwise, the plot is too dense to be able to see the disizibof the curves). Using a sample of 4000 particles
instead o500 we get thep — p particle cloud sown in Figurd. The figure also shows the GMM approximation of
the particle cloud generated from the FJ-EM algorithm. Rerihitial GMM we grid thep — p space into a set of 10
ten grid points along each direction, for a total of 100 gradngs). This grid defines the means of the initial GMM.
All components had the same weightlgfl00 = 0.01 and all have the same covariances with a standard devidtion o
one-tenth of an earth radius in thalirection and 200 meter per second in fhdirection. The generated GMM had
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Fig. 4. The “cloud” of a- and e-curves overlaid on top of each other.

a total of 38 non-zero components (using a threshold of @ ®0the weights). As can be seen, the GMM seems to
reflect the cloud rather faithfully. This GMM can now be usézhg the lines suggested by DeMars and Jef in a
Bayesian filtering scheme.

e

- Particles
< GMM

Range Rate, ( W/R )1/2

Fig. 5. The particle “cloud” in p — p space at its FJ-EM-based GMM approximation.

7. CONCLUSION

In this paper we used a Monte Carlo approach to show how tarembs probabilistic admissible region in— p
space. The PAR, as shown, is clearly non-uniform. We alspgs®ed to use the FJ-EM algorithm to convert the
particle cloud into a GMM representation of the PAR. This GM&h then be used to initialize a Bayesian filter. In
this paper we addressed the situation where only two contstraxist (semi-major axis and eccentricity). Current
work focuses on allowing additional constraints, such asramum constraint on perigee.
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