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ABSTRACT

The admissible region is defined as the set of physically acceptable orbits (i.e., orbits with negative energies). Given
additional constraints on orbital semi-major axis, eccentricity, etc, the admissible region is further constrained,result-
ing in the constrained admissible region (CAR). Based on known statistics of the measurement process, in this paper
we replace hard constraints with a probabilistic representation of the admissible region. This results in the probabilis-
tic admissible region (PAR) that can be used for orbit initiation in Bayesian tracking. While this is a general concept
that is applicable to any measurement scenario, we will illustrate the idea using a short-arc, angles-only observation
scenario.

1. INTRODUCTION

As new optical sensors come online and more and more optical observations become available for space objects
previously too small or too far away to detect, the space surveillance community is presented with the computationally
challenging problem of generating initial orbit solutionsfor a large number of short-arc line-of-sight observations. In
order to perform any kind of probability-based analysis with these orbit solutions, we require an accurate representation
of their uncertainty. Properly characterizing the uncertainty will allow us to more efficiently deal with large sets
of sparse data by enabling the use of rigorous probabilistictechniques to, for example, perform data association,
determine collision probabilities, or initialize a Bayesian estimation scheme. This paper deals with the problem of
characterizing uncertainty in a constrained admissible region (CAR) approach to initial orbit determination (IOD).

The admissible region approach has been previously used in the asteroid tracking community by Milani et al. [1, 2]
to deal with the problem of identifying asteroids based on very short arc observations. Specifically, they referred to a
region in the plane of possible ranges and range-rates defining those values for which a given line-of-sight observation
produces an orbit solution that satisfies certain criteria.This concept has been extended in the SSA community by
authors including Tommei [3,4], Milani [ 5], Farnocchia [6], Rossi, Maruskin [7], Scheeres, Alfriend, Fujimoto [8,9],
Gronchi [10], Dimare, Schildknecht, Jehn, DeMars [11,12], Jah, Schumacher, and Siminski [13,14] to deal with the
problem of tracking space objects in Earth orbit, for which the CAR refers to a region in the range, range-rate plane
which produces orbit solutions with orbit elements satisfying some specified bounds. In previous work, Schumacher,
Wilkins, and Roscoe [15,16] extended this concept to include regions in the range, range plane satisfying orbit element
bounds for pairs of observations. Hussein et al. [17] applied probabilistic techniques to determining the admissibility
of an uncertain candidate orbit in the CAR using both Unscented Transform (UT) and Monte Carlo (MC) methods.
Worthy and Holzinger [18] incorporated measurement uncertainty into the admissible region approach for uncorrelated
detections.

An unresolved topic in the SSA literature is how to best sample the CAR to perform data association or track initiation.
For example, Tommei, Milani, and Rossi [3] use a Delaunay triangulation approach, while DeMars and Jah [12] (along
with a number of other authors) use a uniform distribution approximated as a Gaussian Mixture Model (GMM).
Simiski et al. [13, 14] use an Iso-Energy grid method to discretize the CAR along lines of equal energy (i.e., semi-
major axis). The goal of the present work is to define a probabilistic form for the CAR to be used for initializing a
Bayesian tracking scheme. Based on known statistics of the measurement process and assumed statistics in the semi-
major axis and eccentricity, the probabilistic admissibility region (PAR) can be determined using a MC method. This
resulting PAR which is made of a set of particles can then be converted to a GMM using the Expectation-Maximization
(EM) algorithm [19,20].
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The paper is organized as follows. In Section2., we review how the deterministic CAR is constructed. In Section
3., we describe how to construct the PAR from known measurementand RSO population statistics. In Section4., we
describe how to derive an MC representation of the PAR and in Section5. we describe how to convert this particle
cloud into a GMM using a versatile and robust EM algorithm called the FJ-EM algorithm. We provide a numerical
example in Section6. and conclude the paper in Section7.

2. THE ANGLES-ONLY DETERMINISTIC CONSTRAINED ADMISSIBLE REG ION

In this section we introduce the deterministic CAR for short-arc, angles-only optical observations. In the next section
we introduce the PAR. The starting point is a series ofn short-arc right ascension and declination observations(αi, δi)
taken at measurement timesti, i = 0, . . . , n − 1, with epoch∗ at t0. Following the second-order polynomial-in-time
least squares procedure described by Maruskin, Scheeres, and Alfriend [7], one can obtain an estimate of theoptical

attributable vector (α̃0, ˙̃α0, δ̃0,
˙̃
δ0) at t0 (we omit details here for brevity). For the rest of this paperwe will drop the

tilde and subscripts for ease of notation.

We now review how to construct the CAR from these estimates ofthe angles and their rates. We mostly follow the
notation and derivation given by DeMars and Jah [12] (with minor corrections). Letr be the inertial position of the
object,q be the inertial position of the ground station andρ be the inertial position of the object with respect to the
station. Hence, we have following position and velocity relationships

r = q+ ρ (1)

and

ṙ = q̇+ ρ̇. (2)

Using spherical coordinate system with respect to the ground station,ρ and its inertial time derivative can be expressed
as

ρ = ρuρ

ρ̇ = ρ̇uρ + ρα̇ cos δuα + ρδ̇uδ, (3)

whereuρ, uα anduδ are the spherical coordinate system’s basis unit vectors and are given by

uρ = (cosα cos δ, sinα cos δ, sin δ)

uα = (− sinα, cosα, 0)

uδ = (− cosα sin δ,− sinα sin δ, cos δ).

The position and velocityr andṙ are related to the two-body energy via the equation

E =
‖r‖

2

2
−

µ

‖r‖
(4)

After expressingr andṙ in terms of the parameters(α, α̇, δ, δ̇, ρ, ρ̇) this equation, it can be shown, is given by

ρ̇2 + w1ρ̇+ F (ρ)− 2E = 0 (5)

where

F (ρ) = w2ρ
2 + w3ρ+ w4 −

2µ
√

ρ2 + w5ρ+ w0

∗Other epochs can be considered as well. For example, the mid-point of the arc may reduce error.
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and where the parameterswi (i = 0, . . . , 5) are given by

w0 = ‖q‖
2

w1 = 2q̇ · uρ

w2 = α̇2 cos2 δ + δ̇2

w3 = 2α̇ cos δ(q̇ · uα) + 2δ̇(q̇ · uδ)

w4 = ‖q̇‖
2

w5 = 2q · uρ

Given a value forE , one can solve for the corresponding curve inρ−ρ̇ space. The curve corresponding toE = 0 defines
theadmissible region inside which all orbits with negative energy (E < 0) exist. It is often the case, furthermore, that
we have additionalinequality constraints that one can impose in order to further limit theset of possible orbits with
negative energy. Two important such constraints are constraints on semi-major axis,a, and eccentricity,e.

For the purpose of the discussion in the next section on the PAR, we will considerequality constraints on the semi-
major axis and eccentricity. Given a fixeda, E in Eq. (5) can be replaced with

E = −
µ

2a
(6)

resulting in

ρ̇2 + w1ρ̇+ F (ρ) +
µ

a
= 0. (7)

Energy, is related to eccentricity (and orbital angular momentum) by [21]

E = −
µ2

2 ‖h‖
2 (1− e2). (8)

However, note that the angular momentumh is related to the parameters(α, α̇, δ, δ̇, ρ, ρ̇). One can show thath can be
expressed as

h = h1ρ̇+ h2ρ
2 + h3ρ+ h4 (9)

where (note that our expressions here differ from those of DeMars and Jah [12])

h1 = q× uρ

h2 = uρ × (α̇ cos δuα + δ̇uδ)

h3 = uρ × q̇+ q× (α̇ cos δuα + δ̇uδ)

h4 = q× q̇.

Therefore, the magnitude squared of the angular momentum isgiven by

‖h‖
2
= c0ρ̇

2 + P (ρ)ρ̇+ U(ρ), (10)

where

P (ρ) = c1ρ
2 + c2ρ+ c3

U(ρ) = c4ρ
4 + c5ρ

3 + c6ρ
2 + c7ρ+ c8,

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.



and whereci (i = 0, . . . , 8) are given by

c0 = ‖h1‖
2

c1 = 2h1 · h2

c2 = 2h1 · h3

c3 = 2h1 · h4

c4 = ‖h2‖
2

c5 = 2h2 · h3

c6 = 2h2 · h4 + ‖h3‖
2

c7 = 2h3 · h4

c8 = ‖h4‖
2

Substituting Eq. (10) into Eq. (8), which in turn gets substituted into Eq. (5), one obtains

a4ρ̇
4 + a3ρ̇

3 + a2ρ̇
2 + a1ρ̇+ a0 = 0, (11)

whereai (i = 0, . . . , 4) are functions ofρ ande and are given by:

a0 = F (ρ)U(ρ) + µ2(1− e2)

a1 = F (ρ)P (ρ) + w1U(ρ)

a2 = U(ρ) + c0F (ρ) + w1P (ρ)

a3 = P (ρ) + c0w1

a4 = c0.

For given values ofa ande, in addition to the attributable variables(α, α̇, δ, δ̇) one can then solve the two nonlinear
equations Eq. (7) and Eq. (11) for the unknownsρ and ρ̇. It is doubtful, however, that there exists a closed form
solution to these equations.

3. PROBABILISTIC ADMISSIBLE REGION

The general goal is to obtain the probabilistic characterization of the uncertainty in the variables(ρ, ρ̇) given knowledge
of the statistics of the angles-only measurement process. In other words, we would like to obtain a probability density
function (pdf)p(ρ, ρ̇) that characterizes the PAR.We do so as follows. Firstly, notice that one can view the least squares
solution for(α, α̇, δ, δ̇) from the short-arc, angles-only measurements as a mapping through which one can map the
uncertainty in measurements to uncertainty in(α, α̇, δ, δ̇) at epoch. Let that pdf be denoted byp(α, α̇, δ, δ̇). Further
assume that we have a probabilistic assessment of the distribution over the semi-major axis,a, and the eccentricity,e,
with pdfsp(a) andp(e), respectively. We assume that the semi-major axis and the eccentricity are independent of each
other and both from(α, α̇, δ, δ̇)∗. Distributions ina ande can be obtained from any known information and physics
of the RSO population. In other words, the joint distribution in (α, α̇, δ, δ̇, a, e) is given by:

p(α, α̇, δ, δ̇, a, e) = p(α, α̇, δ, δ̇)p(a)p(e).

Using Eq. (7) and Eq. (11) one can mapp(α, α̇, δ, δ̇, a, e) to obtainp(ρ, ρ̇).

Such an uncertainty map is impossible to achieve in closed-form, even when the measurement process is Gaussian.
This is due to the nonlinearity present in Eq. (7) and Eq. (11). Therefore, in the present paper we will use the Monte
Carlo method to obtain a particle representation of the uncertainty in (ρ, ρ̇). Note that the mapping of Gaussian
measurements to angles and angle-rates via the least squares mapping retains Gaussianity. In other wordsp(α, α̇, δ, δ̇)
will be Gaussian under the assumption of a Gaussian measurement noise model. While in the next section we will
assume that the measurement process is Gaussian, the Monte Carlo procedure described in the next section still holds
as long as we can sample the pdf that describes the measurement process. If we are not able to sample the distribution,
approximate MC methods, e.g., importance sampling, can be employed instead.

∗In general, this is not true. The measurement process statistics are dependent on the orbital geometry, e.g.,a ande.
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4. A MONTE-CARLO REPRESENTATION OF THE PAR

Assuming that we know the observation process noise characteristics, Based on the discussion presented in the pre-
vious section, one can in principle map the uncertainty in the angles-only measurement process to the uncertainty in
their rates given the

It is assumed that the sensor noise characteristics are known. For the sake of simplicity, we assume that the measure-
ment noise is Gaussian with means(µα

i , µ
δ
i and covariances(Σα

i ,Σ
β
i ) for right ascension and declination, respectively,

at timeti, i = 0, . . . , n−1. Following a batch least squares method [22], the measurements(αi, δi), i = 0, . . . , n−1,
and their statistics can be mapped to a Gaussian distribution in (α0, α̇0, δ0, δ̇0). Clearly, we can sample this distribu-
tion for the MC analysis. Let the particles in these variables be denoted by{(α(j)

0 , α̇
(j)
0 , δ

(j)
0 , δ̇

(j)
0 )}, j = 1, . . . , N ,

whereN is the chosen number of particles to represent the uncertainty cloud. Note that by our assumption that the
semi-major axis and eccentricity are independent of the angles and the angle-rates, sampling of the the latter vari-
ables can be done by directly sampling fromp(α0, α̇0, δ0, δ̇0). Likewise, samplep(a) directly to obtain semi-major
axis particles{a(j)}, andp(e) to obtain eccentricity particles{e(j)}, j = 1, . . . , N . Notice that due to the statistical
independence property, the ordering of the particles inside each of the three sets{(α(j)

0 , α̇
(j)
0 , δ

(j)
0 , δ̇

(j)
0 )}, {a(j)} and

{e(j)} is irrelevant, but each particle from each set has to be uniquely and consistently matched with one from each of
the other two sets to obtain joint particles{Y(j)} = {α

(j)
0 , α̇

(j)
0 , δ

(j)
0 , δ̇

(j)
0 , a(j), e(j)}, j = 1, . . . , N .

Next, each particleY(j) can now be inserted in Eq. (7) and Eq. (11) to obtain a particleZ(j) = (ρ(j), ρ̇(j)) in range,
range-rate space. The resulting set of particles{Z(j)} = {(ρ(j), ρ̇(j))} is then the desired particle cloud that represents
the PAR.

5. CONVERTING THE PAR MC PARTICLE CLOUD INTO A PAR GMM

While an MC particle cloud is a faithful representation of thetrue uncertainty (within the bounds of the assumptions
made in the procedure described above), it is difficult to perform many analytical computations (e.g., filtering using
GMM techniques) with it in closed-form. This motivates the need to convert the PAR particle cloud into a PAR GMM,
to name one important analytical model. This has been done previously by DeMars and Jah [12], where the CAR was
modeled using a uniform distribution and a GMM approximation of the uniform distribution was proposed. Now that
we have a non-uniform PAR, one needs to resort to more generalmethods for representing the PAR using a GMM.
The standard procedure in the probabilistic inference literature is the EM method that can convert a sample (i.e., a
particle cloud) into a GMM [19]. We will not describe the details of the method here. Instead we refer the reader
to the algorithm in Ref. [20], which is a robust and versatile algorithm called the FJ-EM. The method allows for the
user to specify a maximum number of GMM components and it selects the number of components that best represent
the particle cloud. The user is also not required to choose a good initial guess of the components. In other words,
the method does not require a careful initialization of the algorithm (other EM algorithms do require a very careful
initialization.)

As an illustration, consider the 2000 particle cloud generated from the four component planar GMM with weights:

wi = 0.25, i = 1, 2, 3, 4,

means:

µ1 = [10.0 0.0]
T

µ2 = [−10.0 0.0]
T

µ3 = [0.0 10.0]
T

µ4 = [0.0 − 10.0]
T

and covariances:

Σi =

[

2.0 0.0
0.0 2.0

]

, i = 1, 2, 3, 4.
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The generated particle cloud was then fed into the FJ-EM algorithm and the following 5-component GMM initial
guess was used for initializing the algorithm:

w0
1 = 0.1

w0
2 = 0.4

w0
3 = 0.2

w0
4 = 0.2

w0
5 = 0.1

µ
0
1 = [1.0 0.0]

T

µ
0
2 = [−1.0 0.0]

T

µ
0
3 = [0.0 1.0]

T

µ
0
4 = [−1.0 − 1.0]

T

µ
0
5 = [−5.0 − 5.0]

T

Σ0
i =

[

1.0 0.0
0.0 1.0

]

, i = 1, 2, 3, 4, 5.

The algorithm resulted in the following set of GMM weights:

wf
1 = 0.25

wf
2 = 0.24849

wf
3 = 0.26156

wf
4 = 0.23995

wf
5 = 0.0

where we notice that one component has been eliminated. The final set of means were found to be

µ
f
1 = [9.96428 0.02116]

T

µ
f
2 = [−9.87450 − 0.02471]

T

µ
f
3 = [0.03449 10.06634]

T

µ
f
4 = [0.04656 − 9.96678]

T

and the final set of covariances were found to be

Σ
f
1 =

[

1.92951 0.02156
0.02156 1.92172

]

Σ
f
2 =

[

2.10782 −0.04989
−0.04989 1.92587

]

Σ
f
3 =

[

1.89439 0.05116
0.05116 2.35834

]

Σ
f
4 =

[

1.99178 0.01623
0.01623 1.85653

]

The resulting GMM is graphically shown in Figure1 against the particles. Note that a component has a weight of zero
(i.e., eliminated) resulting in an effective number of components of 4. While the true values of the weights, means and
covariances were not recovered exactly, the error in these parameters is quite small. In the next section, we implement
the FJ-EM algorithm in the PAR analysis, converting the particle cloud in theρ− ρ̇ space into a GMM representation
of the PAR.
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Fig. 1. An example showing the original means (equally weighted) that generated the shown
particle cloud. The cloud was then fed into the FJ-EM algorithm that generated the GMM
approximation shown. The FJ-EM algorithm was able to very accurately reconstruct the true
GMM that generated the particle cloud.

6. SIMULATION RESULTS

In this section we provide a numerical example that demonstrates the above ideas. We consider an orbit with the orbital
element values shown in Table1 at the initial simulation time. Using the Socorro, NM, ground sensor, 9 right ascension
and declination observations were collected at the rate of one observation every 20 seconds. The measurement noise
is assumed to be Gaussian with an angular standard deviationof 2 arcsec for both right ascension and declination.

Table 1. Orbital Elements of the True Orbit

Orbital Element Value

Semimajor Axis (km) 26 571.
Eccentricity 0.2
Inclination (deg) 55.0
Perigee (deg) -120.0
Right Ascension of the Ascending Node (deg) -13.24
Initial True Anomaly (deg) 110.0

The 9 measurements and their statistics are then used to obtain the (Gaussian) statistics for the attributable vector at
epoch using the method of Maruskin et al. [7]. Because each of the measurement statistics is assumed Gaussian and
the batch least-squares solution preserves Gaussianity, the attributable vector was found to have the following mean:









µα

µα̇

µδ

µδ̇









=









−0.32184
3.37094

1.33430e−4

8.08795e−5








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and covariance:








6.21086e−11 −1.45300e−12 0.0 0.0
−1.45300e−12 5.27577e−14 0.0 0.0

0.0 0.0 6.21086e−11 −1.45300e−12

0.0 0.0 −1.45300e−12 5.27577e−14









.

The reason the covariance matrix has a block form is that the right ascension and declination angular measurements are
independent. Semi-major axis is assumed be uniformly distributed between 10,000 km and 50,000 km. Eccentricity
is assumed to be uniformly distributed between 0.0 and 0.4.

For each particleY(j), Eq. (7) can be used to construct a curve in theρ − ρ̇ space corresponding to the sampled
a(j) value. Repeating for all particlesY(j) we obtain a “cloud” of semi-major axis curves (which we shallcall the
“a-curves”). Figure2 shows the cloud generated from a set of 500 particlesY(j). Likewise, Eq. (11) can be used to
construct a cloud ofe(j) curves (which we shall call the “e-curves”), shown in Figure3. Recall that there is exactly
onea-curve that corresponds to onee-curve. The intersection (if an intersection exists) of these two sets of curves
results in the particle cloud in theρ− ρ̇ space (we do not plot the particles, but show the curves and their intersections
in Figure4).
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Fig. 2. The “cloud” of a-curves.
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Fig. 3. The “cloud” of e-curves.

We selected a relatively small number of particles above to demonstrate the non-uniformity of thea- ande-curves
(otherwise, the plot is too dense to be able to see the distribution of the curves). Using a sample of 4000 particles
instead of500 we get theρ − ρ̇ particle cloud sown in Figure5. The figure also shows the GMM approximation of
the particle cloud generated from the FJ-EM algorithm. For the initial GMM we grid theρ − ρ̇ space into a set of 10
ten grid points along each direction, for a total of 100 grid points). This grid defines the means of the initial GMM.
All components had the same weight of1/100 = 0.01 and all have the same covariances with a standard deviation of
one-tenth of an earth radius in theρ direction and 200 meter per second in theρ̇ direction. The generated GMM had
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Fig. 4. The “cloud” of a- and e-curves overlaid on top of each other.

a total of 38 non-zero components (using a threshold of 0.0001 for the weights). As can be seen, the GMM seems to
reflect the cloud rather faithfully. This GMM can now be used along the lines suggested by DeMars and Jah [12] in a
Bayesian filtering scheme.
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Fig. 5. The particle “cloud” in ρ− ρ̇ space at its FJ-EM-based GMM approximation.

7. CONCLUSION

In this paper we used a Monte Carlo approach to show how to construct a probabilistic admissible region inρ − ρ̇
space. The PAR, as shown, is clearly non-uniform. We also proposed to use the FJ-EM algorithm to convert the
particle cloud into a GMM representation of the PAR. This GMMcan then be used to initialize a Bayesian filter. In
this paper we addressed the situation where only two constraints exist (semi-major axis and eccentricity). Current
work focuses on allowing additional constraints, such as a minimum constraint on perigee.
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