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1.0 SUMMARY 
Among other achievements, we made progress toward the following goals: (1) finding a 
classification of locally definable quantum states (those without symmetries or long-range 
entanglement), (2) elucidating the properties of three-dimensional quantum codes (in particular 
those which admit no string-like logical operators. (3) characterizing symmetry-protected 
fermionic phases, (4) proving the stability of topological phases of matter with respect to generic 
perturbations. 

2.0 INTRODUCTION 
Recent advances in quantum information theory have ignited a quest for a “grand unified theory” 
of quantum many-body physics. This quest, if successful, may yield far-reaching answers to the 
following questions: What many-body quantum states can be ground states of physically 
realizable Hamiltonians? What universal features of these states are robust when the Hamiltonian 
is slightly deformed? How is this classification modified when the Hamiltonian is required to 
respect certain symmetries? How are bosonic systems different from fermionic systems, and how 
are interacting systems different from free systems? What properties of many-body quantum 
entanglement distinguish one quantum phase from another?  

Aside from their fundamental importance, these questions relate to the AFRL/DARPA mission 
because of their implications for future quantum technologies. For example, new quantum phases 
of matter may lead to better ways to protect quantum information from damage caused by 
decoherence, and to process it reliably using imperfect hardware. Further theoretical progress 
may also elucidate the complexity of quantum simulation tasks, pointing toward a better 
characterization of which simulation problems are likely to be hard for classical computers, yet 
feasible for quantum computers. 

One central goal of this project has been to understand topological properties of quantum phases, 
describe them by a suitable mathematical structure, and classify them. We also investigated the 
classification of quantum phases that are protected by global symmetries, studied properties of 
quantum codes with local check operators in three dimensions, and investigated the structure of 
quantum entanglement in gapped quantum phases. 

The participants in this project were: 

Faculty: Alexei Kitaev, John Preskill 
Postdocs: Andrew Essin, Zhengcheng Gu, Spiros Michalakis, Fernando Pastawski, Beni Yoshida 
Students: Michael Beverland, Jeongwan Haah, Isaac Kim, Alex Kubica, Sujeet Shukla 

3.0 METHODS, ASSUMPTIONS AND PROCEDURES 

3.1 Locally definable states 

Superconductors, topological superconductors, and integer quantum Hall phases can all be 
realized in systems of noninteracting (“free”) fermions. In 2009, Kitaev used K-cohomology to 
completely classify all gapped phases of free fermions in any dimension, and in 2010 Fidkowski 
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and Kitaev showed that interacting spins or fermions in one dimension can be classified using 
the cohomology of the system’s symmetry group. The remaining challenge is to generalize this 
classification to systems with interactions in two or more dimensions.  

The general classification problem is quite difficult, but a complete understanding of quantum 
states without long-range entanglement may be within reach. Such states may be called ``locally 
definable'' because they are uniquely specified by the reduced density matrices on small 
subsystems. A major goal of our work has been to classify such states. One may anticipate a 
close connection with the theory of “anomalies” in relativistic quantum field theory, with 
possible differences due to the lack of Lorentz symmetry.  

3.2 Fractal topological order 

We say a quantum system is topologically ordered if the information encoded in the system’s global state 
is inaccessible to local observers. What are believed to be topologically ordered states of two-dimensional 
matter have been studied in the laboratory (fractional quantum Hall states, for example), but less is known 
about the possible types of topological order in three dimensions.  

In 2011, Preskill’s student Jeongwan Haah discovered a novel mathematical model exhibiting three-
dimensional topological order. Haah’s model can serve as a robust quantum memory, such that logical 
errors in its stored quantum information arise only if noise excites the system enough to surmount an 
energetic barrier which grows logarithmically with the system size. Although Haah’s model is translation 
invariant, it nevertheless behaves like a spin glass; though the system supports pointlike quasiparticles, 
the propagation of the particles is impeded. Movement of a single particle requires a complex self-similar 
(fractal) process, in which many additional particles are successively created and annihilated. Another 
goal of our work has been to place the Haah model in context, better understand its properties, and 
explore related models exhibiting exotic topological order in three dimensions.  

4.0 RESULTS AND DISCUSSION 

4.1 Classification of three dimensional topological superconductors 

Kitaev has classified three-dimensional time-reversal invariant fermionic systems with short-
range entanglement, also known as topological superconductors [14]. The system is 
characterized by an by an integer invariant ν, the number of gapless fermion species residing on 
the two-dimensional surface of the three-dimensional bulk sample. Kitaev showed that (for time-
reversal invariant systems such that T2 = -1) when ν is a multiple of 16 a gap can be opened by a 
suitable perturbation that preserves T symmetry and produces no long-range entanglement, and 
that in that case the bulk phase can be adiatically transformed to a trivial phase.  

More generally, Kitaev formulated a definition of quantum phases with short-range 
entanglement: a state is short-range entangled if we can combine the state with a suitably chosen 
conjugate state, and then map the combined state to a trivial product state using a constant depth 
quantum circuit. He proposed a topological classification of all such phases in any dimension, 
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which can be reduced to the computation of a topological invariant of the system. In the three-
dimensional case this computation can be carried our explicitly [Fig. 1]. 

Fig 1. Analysis of topological obstructions protecting gapless fermions at surface of topological 
superconductor. 

4.2 Renormalization group flow of three-dimensional code states 

Haah studied the renormalization group flow of three-dimensional code states, in order to better 
understand the long-range entanglement of these states [17], and in particular used the 
renormalization group to investigate the quantum memory model discovered earlier by Haah. He 
defined a block spin procedure for these codes, which maps the ground state of a local 
Hamiltonian HA on a lattice with spacing a to two uncoupled ground states of Hamiltonians HA 
and HB on a lattice with spacing 2a. Furthermore, applying the block spin transformation to the 
ground state of HB yields two copies of that ground state.  

These results clarify the origin of the extensive ground-state degeneracy of Haah’s model, as 
well as providing new tools for performing entanglement renormalization in topologically 
ordered systems, and finding tensor network descriptions of highly entangled states. Studying the 
dependence of degeneracy on system size reveals that the ground states of HA and HB represent
distinct phases of matter.  

4.3 Summary of other results (synopsis of publications) 

Here, briefly summarized, are some of the other outcomes of this project. 

Isaac Kim derived of a new entropic inequality, which generalizes strong subadditivity to an operator 
setting [1]. Kim explored some of the consequences of his new inequality, deriving in particular new 
universality properties for the entanglement spectrum for a subsystem of the ground state of a local 
Hamiltonian [2,3]. 
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Kitaev et al. showed that the ground state energy of a gapped local one-dimensional quantum 
system can be computed in subexponential time [4].  

Michalakis et al. studied Markovian dynamics governed by local Lindblad operators, showing 
that local observables and correlation functions are stable with respect to generic local 
perturbations if the mixing time scales logarithmically with the system size [6].  

Yoshida constructed three-dimensional models which are topologically ordered but cannot be 
described by conventional topological quantum field theory because of the fractal structure of the 
quantum ground state [5].  

Gu used braiding statistics to classify the two-dimensional symmetry protected topological 
phases with Ising symmetry [7].  

Kim related entanglement entropy to topological storage of quantum information [8]. 

Michalakis et al. showed that a particle-like excitation spectrum is a characteristic property of 
gapped translation-invariant local systems, and that topologically ordered projective entangled 
pair states are robust with respect to local perturbations [9,12], (see Fig. 2). 

Fig. 2. Verifying local topological quantum order in tensor network states. 

Haah studied the algebraic properties of three-dimensional quantum code states [10]. 

Gu et al. described a simple fermionic version of the toric code model which illustrates many 
features of fermionic exactly solvable models and fermionic topologically ordered states. Their 
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work shows how topological phases of matter are richer for fermionic systems than for their 
bosonic counterparts [13]. 

Pastawski studied the time needed to prepare D-dimensional topologically ordered states using 
Markovian open system dynamics, showing that the time scales like the diameter of the system 
[15,16].  

Michalakis et al studied information flow in quantum systems with long-range interactions, 
deriving a limiting flow velocity, which has since been verified in ion trap experiments [18,19].  

Kubica and Yoshida developed a novel real-space renormalization group scheme which 
accurately estimates the correlation length exponent scaling exponent near criticality of higher-
dimensional quantum Ising and Potts models in a transverse field [20]. 

Yoshida showed that the storage time of a classical or quantum memory can be enhanced even 
though the memory is disordered by thermal fluctuations [21].  

Yoshida and Kubica studied the quantum Ising model on a fractal lattice, showing that the 
universality class of the quantum phase transition is not uniquely determined by the symmetry 
and spatial dimension of the system [22]. 

Pastawski and Yoshida proved a no-go theorem for self-correcting quantum memory, showing in 
particular that a three-dimensional stabilizer Hamiltonian with a locality preserving 
implementation of a non-Clifford gate cannot have a macroscopic energy barrier [23].  

Beverland et al. studied code automorphisms induced by locality-preserving unitary 
transformations, finding these logical operations are very limited in codes supporting non-abelian 
anyons [24].  

Essin et al. developed a new numerical method for detecting symmetry enriched topological 
phases [25].  

5.0 CONCLUSIONS 
This project has illuminated fundamental properties of quantum phases of matter that can be 
realized as ground states of local Hamiltonians or fixed points of stochastic processes. We 
formulated a classification of three-dimensional phases with short-range entanglement, 
characterized quantum states that can be prepared by dissipative processes, described the logical 
quantum gates that can be performed by locality preserving transformations, and clarified the 
properties of topologically ordered systems at nonzero temperature. 
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