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DEVICE-TO-DEVICE COMMUNICATION
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As networks become more distributed, the bulk of the communication is being
carried out between end-users or devices. The distributed nature of the com-
munication poses novel challenges for efficient operation of such networks and
requires design considerations that are fundamentally different from those of
classical point-to-point communication systems. This thesis studies two such
design issues, (1) delay management and (2) security, and attempts to under-
stand the information-theoretic limits of distributed communication with re-
gard to these issues.

First, the tradeoff between delay and partial reconstruction in peer-to-peer
(P2P) networks is studied, i.e., the number of messages a peer must obtain
to reconstruct a given fraction of the data. Using a binary erasure version of
the multiple descriptions (MD) problem to model the P2P network, the thesis
presents coding schemes based on systematic MDS (maximum distance separa-
ble) codes and random binning strategies that achieve a Pareto optimal delay-
reconstruction tradeoff. The erasure MD setup is then used to propose a layered
coding framework for MD, which is then applied to vector Gaussian MD and
shown to be optimal for symmetric scalar Gaussian MD with two levels of re-
ceivers and no excess rate at the central receiver.

Second, delay-reconstruction tradeoffs are studied for a more decentralized

network in which peers are allowed to encode and generate their own mes-



sages based on their current partial knowledge of the file, and a coding scheme
based on erasure compression and Slepian-Wolf binning is presented. The cod-
ing scheme is shown to provide a Pareto optimal delay-reconstruction tradeoff
for the case of symmetric peers (i.e., each peer generates packets of the same
rate). In the process of characterizing the aforementioned tradeoff, an improved
outer bound on the rate region of the general multi-terminal source coding prob-
lem from information theory is also established. It is further shown that in the
case of asymmetric peers, the aforementioned coding scheme is not optimal.
Third, lossy compression is studied from the viewpoint of security. An ad-
versarial lossy source coding problem is considered in which a source is en-
coded into n packets, any ¢ of which may be altered in an arbitrary way by
Byzantine adversaries. The decoder receives the n packets and, without know-
ing which packets were altered, seeks to reconstruct the original source to meet
a distortion constraint. A layered architecture for this problem is examined,
which separates lossy compression from coding for adversarial errors. This ar-
chitecture is shown to be optimal for binary sources with Hamming distortion
and Gaussian sources with quadratic distortion, yet suboptimal in general.
Finally, an adversarial n-encoder lossless source coding problem with mul-
tiple sources is considered in which the number of packets corrupted by ad-
versaries is unknown to the honest entities in the network. It is shown that
this problem is equivalent to an instance of the symmetric MLD (multi-level di-
versity) coding problem with n sources and n encoders, in which there are no
adversaries but the decoder may receive only a subset of the n messages and

reconstructs a subset of the n sources.
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CHAPTER 1
INTRODUCTION

Modern-day networks are constantly and rapidly growing in size. Not only
an appreciably larger amount of data is being transferred over vast geographic
distances, but users are also expecting improved QoS, leading to more stringent
requirements on delay, error rates, and dropped packets. The sheer size of the
networks and the amount of traffic has led to a push in building distributed
architectures to increase efficiency and reduce cost. Distributed systems pro-
vide a number of advantages over centralized systems; they are, for instance,
more scalable as the number of users grows and require only partial knowl-
edge of the network. However, while centralized point-to-point communication
has been relatively well-studied and its fundamental limits well-understood,
we still lack an understanding of many fundamental problems in decentralized
communication. For instance, how do we best allocate network resources in
distributed /cloud storage systems? How do sensors in a distributed sensor
network communicate efficiently while meeting power constraints? What are
the communication requirements to meet performance and QoS guarantees in
decentralized networks and how are they different from those in centralized
networks? What security and privacy issues can arise in distributed systems
and how do they affect communication? In this thesis, we focus on two such
design issues, delay and security, and attempt to understand the information-

theoretic limits of communication with regard to these issues.
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1.1 Delay-reconstruction Tradeoffs in Content-sharing Net-

works

Typically, content is distributed from servers to clients via transmission of pack-
ets over a network. For the purposes of sharing content, e.g., a file, participants
can act as both server and client by both uploading and downloading packets to
and from other participants, as is the case in gossip communication or peer-to-
peer architectures (e.g., [1, 2, 3]). One metric that is widely used to measure the
performance of file sharing systems is the average amount of time a user must
spend in the network, i.e., the average time taken to download the whole file.
There are two schools of thought about how to build such a system; one is to
divide the file into a number of pieces which are then circulated among partic-
ipants without any coding. Participants therefore acquire a partial copy of the
file as soon as they download their first packet. Such a strategy is susceptible
to the coupon collector problem; the initial few packets can be acquired rapidly,
but it takes much longer to collect the final few packets [4] which significantly
increases the overall download time per participant. The delay performance of
BitTorrent, a prominent P2P architecture based on this school of thought, has

been thoroughly analyzed [5]-[8].

A competing school of thought is to first encode file pieces using random lin-
ear network coding [9] or rateless fountain codes. P2P protocols based on foun-
tain codes have been considered in [11, 18], and random linear network cod-
ing has been employed in P2P technology in [12]-[15]. The advent of fountain
codes [16]-[19] has been one of the most important recent advances in coding

for packet networks. Fountain codes operate by generating a virtually infinite
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number of encoded packets such that the original source can be reconstructed
from any sufficiently large subset of these packets. Fountain codes are capacity
achieving and universal for the class of binary erasure channels, and they have
the additional advantage of being rateless in the sense that the number of pack-
ets to be produced at the encoder can be decided in real time. Fountain codes
also obviate the need for feedback from the receiver to the transmitter, and they

have low encoding and decoding complexity.

Fountain codes can eliminate the coupon collector problem [10, Sec. 2], but
they suffer from poor intermediate performance. In the extreme case, it is not
possible to reconstruct any portion of the original source until all of it can be re-
constructed. In contrast, for feedback-based retransmission schemes for the era-
sure channel, each received packet reveals some of the original source. A user-
perceived delay is therefore introduced with fountain codes; if, for instance,
users are downloading a movie, then they must wait for all of the movie to be

downloaded before they can begin watching it.

A fundamental question that arises is whether it is possible to mitigate this
user-perceived delay via partial reconstruction of the source without increas-
ing the overall transmission time. In particular, assuming that the code remains
capacity achieving over erasure channels, how much of the source can be re-
constructed from a given number of received encoded packets? We distinguish
between two types of partial reconstruction: “in-order” reconstruction refers to
sequential reconstruction in which earlier parts of the source are reconstructed
before the latter parts. While many network applications require in-order recon-
struction, “out-of-order” reconstruction may be sufficient for others. It is suffi-

cient for files that are not organized linearly, for example, such as an unsorted
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database. Videos with out-of-order reconstruction could be played by interpo-
lating over the missing portions. This playback would be at a lower quality, but
it could still be useful, say for determining whether the downloaded file is the

desired one.

Methods for improving the intermediate performance of fountain codes,
assuming out-of-order reconstruction, have been investigated in [20]-[22] in a
coding-theoretic setting. The source is encoded into a large number of packets
such that any £ suffice for reconstructing the source. Intermediate performance
is then characterized by the fraction of the original source string that can be
reconstructed when m encoded packets are received, where 0 < m < k. An
upper bound on this fraction is provided in [20], and lower bounds, based on
the designing of suitable output degree distributions for various values of m,
that perform close to the upper bound are provided in [20]-[22]. This enhanced
intermediate performance comes at the cost of an increased overall transmis-
sion time, however, i.e., the codes are no longer capacity achieving. Moreover,
as mentioned in [22], designing degree distributions to boost intermediate per-
formance for a particular value of m exacerbates intermediate performance for

other values of m.

In this work, we take a more information-theoretic approach and address
the issue of optimal partial reconstruction without increasing the overall trans-
mission time. We model the source as a bit string that is encoded into n packets.
We impose the constraint that the receiver be able to reconstruct a fraction 1 — D
of the source from any % packets, and we require that the sum rate of these
packets equal the minimum rate for which this is possible. We then ask what

fraction of the source block can be reconstructed from m packets, where m < k,
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allowing for out-of-order reconstruction. For this setup, we provide a coding
scheme based on MDS codes that yields significant partial reconstruction while
meeting the aforementioned constraints, and is provably Pareto optimal in m
for 1 < m <k and any n and k, and absolutely optimal for certain values of m,

n and k.

Our source coding problem can be viewed as a binary erasure version of the
multiple descriptions (MD) problem [23]-[32]. Multiple description coding is a
technique in which a source is encoded into several messages that are sent to
the decoder, only a subset of which are assumed to reach their destination. The
decoder uses them to reproduce the source, with the fidelity of the reproduction
depending on which packets are received. The problem considered in this work
amounts to an MD problem with distortion measured using the erasure distortion
measure [33, p. 338]: the decoder’s reproduction of the source may contain era-
sures but not errors, and the fraction of erasures in the reproduction is defined
to be its “distortion” with respect to the original. In the terminology of multiple

descriptions, our rate constraint is called a “no excess rate” condition [25].

It is worth noting that the erasure version of the MD problem has some
unique virtues. The erasure distortion measure is universal in that it can be
reasonably employed for a wide array of digital data sources. This sidesteps
the difficult question of how to measure distortion for complicated, real-world
data sources such as video. The binary erasure MD problem with no excess
rate and no distortion for every k out of n messages is particularly relevant to
peer-to-peer networks, since it can be used to study the tradeoff between the
performance of fountain codes and a competing technology: BitTorrent [3]. For

large n and small &, our MD problem mimics rateless fountain codes, since out
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of a large number of descriptions, only a relatively small number must be re-
ceived (collected) in order to reconstruct the source with a specified distortion.
For k£ = n, the MD problem resembles BitTorrent, where all of the relevant pack-
ets must be received to allow for complete reconstruction of the source. Bit-
Torrent provides good intermediate performance but suffers from the “coupon
collector” problem: the initial packets can be acquired quickly at the receiver,
but it takes much longer to obtain the last few packets. By varying n and k in
the binary erasure MD model, the middle ground between fountain codes and
BitTorrent can be explored. Our results suggest that choosing n to be an integer

multiple of k would provide some of the advantages of both technologies.

The erasure MD problem could also serve as a starting point for the design
of practical codes for network rate distortion. In the theoretical development
of modern channel codes such as LDPC, many of the code designs and per-
formance characterizations were first established for the erasure channel [34].
Finally, the erasure MD problem yields results that are more positive in nature
than those of other MD instances. In particular, for many sources, the no excess
rate assumption necessarily yields poor intermediate performance (e.g., [24]): if
a coding scheme is near-optimal for k receptions, it often yields high distortion
for m < k receptions. For the binary erasure MD problem, however, we shall
see that it is possible to obtain good intermediate performance under no excess

rate.



17

1.1.1 Results

We shall henceforth use the terms packets, messages, and descriptions inter-
changeably. We focus on binary erasure MD with no excess rate for every k out
of n descriptions, i.e., any subset consisting of & messages, has a total rate of
R(Dy,), where Dy, is the distortion constraint when k& messages are received. We
consider symmetric descriptions, i.e., the rates of the n descriptions are the same
and the distortion constraint depends only on the number of messages received.
In fact, no excess rate implies symmetric descriptions for £ < n: if every k out
of n descriptions have sum rate R(D;,), then each rate must be R(Dy)/k. We ex-
amine two distortion criteria; a worst-case distortion criterion, which measures
the reconstruction fidelity by the maximum of the per-letter distortion over all
source sequences, and an average-case distortion criterion, which measures the
reconstruction fidelity by the average of the per-letter distortion over all source
sequences. The average-case criterion is the standard criterion used in the liter-
ature. The worst-case criterion is less commonly used but it has the advantage
of being universal in the sense that it is insensitive to the source distribution,

which in practice is often unknown. Our main contributions are:

1. proposing, for all n and k, coding schemes for both worst-case and
average-case distortion criteria and characterizing their achievable distor-
tion region when m < k descriptions are received at the decoder. The
scheme for worst-case distortion is a zero-error coding scheme based on
MDS (maximum distance separable) codes. The scheme for average-case dis-
tortion is based on random binning and can be viewed as a concatenation

of (n,1) and (n, k) source-channel erasure codes [29].

2. providing, for both worst-case and average-case distortion criteria, a tight
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lower bound on the distortion when a single message is received at the
decoder. For worst-case distortion, the lower bound holds for all n and &.
Moreover, we show that the MDS coding scheme is Pareto optimal in the
achievable distortions Dy, ..., Dy for all n and k, and, for certain ranges
of n and £, is also absolutely optimal when more than one message is re-
ceived at the decoder. For average-case distortion, our lower bound holds,
modulo a closure operation, for all n and k satisfying (1 — %)k < % In ad-
dition, for n > 3 and k£ = 2, we provide a lower bound on the optimal
single-message distortion that differs by exactly 1/n from the distortion
achieved by the random binning scheme. Our results for the special case
in which there is no distortion for & messages (i.e., any k¥ messages allow
the decoder to construct the original source sequence completely) have

appeared in [35] (average-case distortion) and [36] (worst-case distortion).

. proposing a coding scheme, based on the binary erasure MD coding
schemes, for vector Gaussian MD and showing that it is optimal for scalar
Gaussian MD with two levels of receivers and no excess rate for the cen-
tral receiver. The scheme involves quantizing the vector Gaussian source
according to a given quadratic distortion constraint and then transmit-
ting the quantized version over the n channels according to the aforemen-
tioned binary erasure coding schemes. This demonstrates how the binary
erasure coding schemes can be used as part of a more general, layered
coding scheme for multiple descriptions with a generic source distribu-

tion and arbitrary distortion metric.
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1.1.2 In-Order Reconstruction

Several prior works have considered the problem with in-order reconstruction.
Albanese et al. [38] propose a coding method that involves assigning a prior-
ity level to messages and encoding them into packets. A message can be de-
coded from any subset of packets; however, the priority level of a message de-
termines the minimum number of packets required to reconstruct that message.
This amounts to in-order reconstruction, because messages with higher priority
must be reconstructed before messages with lower priority. The in-order recon-
struction problem can also be viewed as an instance of symmetric multilevel
diversity coding (MLD) [39]. Comparing these results with those in this work
shows that guaranteeing in-order reconstruction requires significantly higher
rates. Walsh et al. [40] study the rate-delay tradeoff for in-order reconstruction
in multi-path networks where time-ordered source packets arrive out of order
at the destination. The channel between the transmitter and receiver is there-
fore different from the packet erasure channel considered here, since any packet
sent by the transmitter eventually arrives at the receiver, albeit not in the order
it was transmitted in. The authors introduce delay mitigating codes with the aim
of minimizing delay at the receiver when the source bits are reconstructed in

order from encoded packets arriving out of order.

1.2 Decentralized Encoding

We next focus on delay-reconstruction tradeoffs in P2P networks with decen-
tralized encoding, i.e., peers generate coded packets based on their own par-

tial copies of the file. Within this context, we address the question posed in
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Section 1.1: if we assume optimal decentralized encoding and that the packets
might be received in any order, then how much of the file can be reconstructed

from a given number of received packets?

Since the centralized version of the problem was addressed by posing it as a
multiple description problem, it is natural to study the decentralized version
by posing it as an instance of multiple descriptions with distributed encod-
ing, which in the literature is actually called the robust CEO problem [47]. In
the CEO problem, n encoders observe independently corrupted versions of a
source and then transmit encoded messages, based on their partial knowledge
of the source, to a decoder that attempts to reconstruct the source from the n
messages to meet a distortion constraint. There is no communication among
the encoders, as shown in Figure 3.1. In the robust variant of the problem, the
encoders behave as in the CEO problem, but instead of using all n messages to
reconstruct the source, the decoder must reconstruct it from any subset of the n

messages subject to different distortion constraints for each subset.

We employ a particular instance of the robust CEO problem that we call the
binary erasure robust CEO problem. In this instance, the source to be commu-
nicated is binary and i.i.d. uniform. The encoders observe this binary source
passed through independent binary erasure channels. Thus, some of each en-
coder’s file is missing, but none of it is incorrect. Moreover, when the decoder
reconstructs the file, it is not permitted to introduce errors, although it is allowed
to output an erasure for any source bit about which it is uncertain. The “distor-
tion” is the fraction of erasures in its reconstruction. In turn, the decoder could
then create new coded packets from its reconstruction and distribute them to

other peers. Although we focus on the case in which the source is binary, we

10
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expect that most of the analysis will carry over to uniform sources over larger
alphabets, which could be used to model audio samples, transform coefficients,

video frames, or BitTorrent pieces.

The binary erasure robust CEO problem lends itself to a natural coding
scheme in which individual encoders (peers) perform vector quantization of
their observed partial source sequences using erasure test channels, followed
by Slepian-Wolf binning. This is a particularization of the general scheme pro-
posed in [47]. We first consider the case of symmetric peers and we show, using
very different techniques from those used in the centralized case [36], that this
coding scheme achieves a delay-reconstruction tradeoff that is Pareto optimal
over a range of received messages. The same problem for Gaussian sources
and quadratic distortion measure has been considered in [48] and an achievable
information-theoretic rate region has been derived. Optimality results for the

symmetric case of the Gaussian problem have been presented in [49].

In the process of proving our result, we also establish a new outer bound for
the general multi-terminal source coding problem that improves upon the outer
bound of Wagner and Anantharam [44]. We further show that if we relax the
symmetry assumptions about the encoders, then the coding scheme is no longer

optimal, even for a simple setup with two encoders.

1.3 Lossy Source Coding with Byzantine Adversaries

While the rapid growth of modern-day communication networks makes them
increasingly useful, it also makes them increasingly difficult to protect against

attacks. This is especially true of those networks, such as peer-to-peer systems,

11
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in which the nodes are controlled by different entities. In the case of peer-to-
peer networks, malicious users could sabotage the file-sharing process by in-
tentionally transmitting a corrupted version of the file. Similar problems can

potentially arise in ad-hoc networks and distributed storage systems.

There has been considerable work on how to protect transmitted information
against malicious users within the context of channel- and network-coding, and
a number of significant results are available. Yeung and Cai [53] show that if
z unit-capacity edges in an acyclic multicast network are subject to random or
adversarial errors, then the network capacity is C' — 2z, where C' is the network
capacity when all edges are error-free. Thus if an adversary controls z edges, it
effectively removes 2z edges from the original adversary-free network (see also
[54]-[59] and the references therein). This is reminiscent of the Singleton bound,
and we refer to it as the “factor-of-2” rule. The factor-of-2 rule was also shown
to hold for lossless source coding: it is well known that if a source X is to be
losslessly communicated via n packets, then the sum rate of those packets must
be at least H(X). Kosut and Tong [60] have shown that if ¢ of the n packets can
be altered in arbitrary ways by adversaries, then every n — 2¢ packets must have
sum rate at least H(X). Thus ¢ traitors effectively remove 2¢ packets from the

original adversary-free problem, i.e., the factor-of-2 rule obtains.

In the context of peer-to-peer systems, often the ultimate goal is to commu-
nicate a file approximately rather than reliably. Codes and fundamental lim-
its for this problem are less well understood (but see [61]-[62]). One natural
approach to this problem is to perform separate compression and adversarial
error-protection. That is, one combines rate-distortion-optimal lossy compres-

sion with network codes that are optimal for the adversarial model at hand.
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We show that this approach is optimal in some cases but suboptimal in
general, even for networks with one sender, one receiver, and no intermediate
nodes. Specifically, we consider the problem in which a source is compressed
to form n packets, any ¢ of which can be altered in an arbitrary way. The de-
coder receives the n packets and, without knowing which packets were altered,
must estimate the source to meet a given distortion constraint. We show that
separate compression and adversarial error correction achieve rate-distortion
performance governed by the factor-of-2 rule, and that this is optimal for bi-
nary sources with the Hamming distortion measure and Gaussian sources with
the mean square error distortion measure. These two optimality results hinge
on a combinatorial result of Kleitman [66] on the maximum size of subsets of
Hamming space with a given diameter, and the Brunn-Minkowski inequality,

respectively.

We then show by means of a counterexample, involving a binary source with
erasure distortion, that separation is not optimal in general. We consider a 3-
encoder problem with one traitor such that one encoder has rate ® < 1, while
the other two have rate 1 and can therefore transmit the source sequence exactly.
We determine the optimal distortion for this problem as a function of R and
show that separation cannot achieve it. We note that while source-channel sep-
aration has long been known known to fail in many scenarios (e.g., [63, 64, 65]),
the reason that it fails here seems to be fundamentally different from the stan-

dard examples.
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1.4 Organization of the Thesis

Chapter 2: We study delay-reconstruction tradeoffs in P2P networks. We for-
mulate the n-channel binary erasure MD problem in Section 2.1. Sections 2.2
and 2.3 are devoted to our results for worst-case distortion and average-case
distortion, respectively. In Section 2.4, we describe the layered architecture for
MD and present our results for vector Gaussian multiple descriptions.

Chapter 3: We study delay-reconstruction tradeoffs in P2P networks with de-
centralized encoding. In Section 3.1, we formulate the binary erasure robust
CEO problem more precisely and describe our coding scheme. In Section 3.2
we consider the symmetric version of the binary erasure robust CEO and show
that the above coding scheme provides a Pareto optimal delay-reconstruction
tradeoff. In Section 3.3, we consider an asymmetric, two encoder version of the
problem and show that the coding scheme is not optimal.

Chapter 4: We formulate the lossy source coding problem with Byzantine ad-
versaries. In Section 4.2, we present the separation-based coding scheme for
general sources and arbitrary distortion measures and show that it achieves the
factor-of-2 rule. In Sections 4.3 and 4.4, respectively, we prove that our scheme
is optimal for uniform binary sources with Hamming distortion and Gaussian
sources with squared error distortion. In Section 4.5, we show that the factor-
of-2 rule is pessimistic for binary sources and erasure distortion.

Chapter ??: We study lossless source coding with multiple sources and an un-
known number of adversaries and show its equivalence to the symmetric MLD

problem.
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CHAPTER 2
ERASURE MULTIPLE DESCRIPTIONS

2.1 Notation and Problem Formulation

We use uppercase letters to denote random variables, bold letters to represent
vectors and script letters to denote their ranges. Realizations of random vari-
ables are denoted by lowercase letters, and realizations of random vectors are
denoted by bold lowercase letters. A superscript appearing with a vector (e.g.,
X') indicates the length of the vector. Matrices are also represented in boldface.
Let {X;}°, be a memoryless uniform binary source, with the random variables
X, taking values in the alphabet X = {4, —}. Let X be the reconstruction space
{+, —,0}, where 0 denotes the erasure symbol, with an associated distortion

measure d : X x X — {0,1, 00} such that

oo otherwise.

\

The above per-letter measure is known as the erasure distortion measure [33,
p- 338]. An encoder is a function fi(l) X {1, ,Mi(l)}. A decoder is a function

g,(é) et M, ,gl) } — X!, where K is the set of descriptions received.

Let N = {1,..., n}. The n-channel multiple descriptions problem, illustrated
in Figure 2.1, can be formulated as follows. There are n encoders. Encoder
fi(l), i € N, encodes and transmits a description of a length-/ source sequence

X! over channel i. The receiver either receives this description without errors or

it does not receive it at all. Excluding the case where none of the descriptions is

15



26

received, the receiver may receive 2" — 1 different combinations of the n descrip-
tions. Thus it can be represented by the 2" — 1 decoding functions g,(é), K CN,
IC # 0. Based on the set of descriptions received, the receiver employs the cor-
responding decoding function to output a reconstruction of the original source
string subject to a distortion constraint. We consider symmetric descriptions,
i.e., each description has the same rate and the distortion constraint depends

only on the number of descriptions received.

We measure the fidelity of the reconstruction using two distortion criteria: a
worst-case distortion criterion, under which distortion is measured by taking the
maximum of the per-letter distortion over all source sequences, and an average-
case distortion criterion, under which distortion is measured by taking the aver-
age of the per-letter distortion over all source sequences. We define achievability
for the two criteria as follows. Let Xk = ¢({f"(X!) : k € K}) be the recon-

struction sequence corresponding to the source sequence X'.

Definition 1 (Worst-case distortion). The rate-distortion vector (R, D1, ..., D,) is
achievable if for some [ there exist encoders fi(l), i € N and decoders g,(cl), K CWN,

K # 0, such that
1 0 :
R > 7 log M, for all i, and

l
1 N
Dz s, e [7 Zd<>] '

We use RD,.st to denote the set of achievable rate-distortion vectors.

Definition 2 (Average-case distortion). The rate-distortion vector (R, D1, ..., D,,)

is achievable if for some [ there exist encoders fi(l), i € N and decoders g,(é), KCWN,
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K # 0, such that!

1
R > 7 log Mi(l) forall i, and

!
1 ~
D, > E |- E d(X;. X .

k= KI:%CS\EIC [l — (Xt, ’C’t)]

We use RD,,, to denote the set of achievable rate-distortion vectors and
@avg to denote its closure. We describe our results for worst-case distortion
in the next section and for average-case distortion in Section 2.3. For both dis-
tortion criteria, we consider the case where there is no excess rate for every k out
of n descriptions, i.e., kR = R(Dy) = 1 — Dy, where R(-) is the Shannon rate-
distortion function. Thus R = (1 — Dy)/k. We shall henceforth use Ry(Dy) to de-
note (1—Dy,)/k. Our goal is to characterize the achievable distortions Dy, ..., D,

for both distortion criteria.

Channel 1

Encoder 1

Channel 2

Encoder 2 >

/ Decoder

Source X Channel 3 —*
Encoder 3 > Reconstruction

Channel n
Encoder n >

Figure 2.1: The n-channel multiple descriptions problem

It should be pointed out that the & = n case is particularly simple. Let
D;, i € N be the distortion constraint when the receiver receives i messages. No
excess rate for n descriptions dictates that the sum-rate of the n messages is ex-
actly (1 — D,,), which in turn implies that the rate of each message is (1 — D,,)/n.

The problem then reduces to characterizing the optimal Dy, ..., D,. Consider

! All logarithms and exponentiations have base 2 unless explicitly stated.

17



28

a coding scheme that takes a source string of length / and erases the last [D,
bits. The remaining /(1 — D,,) bits are divided into n disjoint parts, each con-
sisting of /(1 — D,,)/n bits. Encoder i transmits the /(1 — D,,)/n bits in the i
part to the decoder over the i*" channel, with erasures in place of the remaining
[ —1(1— D,)/n bits. Thus upon reception of any k descriptions, the decoder can
reconstruct kl(1 — D,,)/n bits of the original source string. Clearly, this scheme
achieves D, = 1 — k(1 — D,,)/n under both the worst-case and average-case
distortion criteria. Moreover, for any code that achieves the rate-distortion vec-
tor (1 — D,,/n,Dy,...,D,), every description has rate (1 — D,,)/n and therefore
the point-to-point rate distortion function dictates that any set of k message can

reveal no more than a fraction k(1 — D,,)/n bits of the original source string.

Thus
1
1 . k(1 — D,)
B, T [z 2 d@tvf'@ﬁ] 21- 2
and
l
1 5 k(1 — D,)
Z E > s T/
Iglmai{kE [l — d(Xt’XK’t>] =1 n
Thus the aforementioned coding scheme achieves the optimal Dy, ..., D,, under

both the worst-case and average-case distortion criteria.

We use the insight obtained from the & = n case to construct codes for the
more complicated case in which k£ < n. No excess rate for a particular set of
k descriptions requires that the information transmitted over those k channels
be independent. Since we impose no excess rate for every size-k subset of de-
scriptions, the information transmitted over any k£ channels must be mutually
independent. The coding scheme for & = n ensures that this condition is met
by dividing an erased version of the source string into n disjoint (and therefore
independent) parts and transmitting them uncoded over the n channels. This

strategy of sending independent uncoded bits works as long as the bits trans-
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mitted over each channel are disjoint. In particular, if R;(Dy) = (1-Dy)/k < 1/n
(equivalently, D, > 1 — k/n), the source string can always be divided into n dis-
joint, equal parts, each containing a fraction Ry (Dy) of the total number of bits.
If Dy < 1— k/n, however, then R;(D;) > 1/n and it is not possible to divide
the source string into n disjoint parts each containing a fraction Ry(Dy) of the
total number of bits, since each part must then contain more than 1/n of the
total number of bits. Transmitting uncoded bits, therefore, will be optimal for a
rate up to 1/n only; in order to achieve a rate larger than 1/n, additional infor-
mation about the source must be transmitted along with each description, and
this information must be mutually independent for every set of k descriptions.
Random binning schemes can be designed in order to convey independent in-
formation about the source to the decoder such that any k messages reveal the
source string to a specified distortion. Such schemes, however, suffer from the
“cliff effect”; nothing can be reconstructed from fewer than & messages, and
once k messages have been received, additional messages provide no reduction

in distortion at all.

By using a hybrid of these two approaches, i.e., transmission of uncoded
bits and random binning, we can achieve an incremental reduction in distortion
with each additional message while still satisfying the necessary independence
conditions. With fewer than k messages, the decoder can partially reconstruct
the source string using the uncoded bits alone. With k or more messages, the
decoder can use the random binning component to decode the source string to
a specified distortion Dy, and can then use the uncoded bits in the messages
to further reduce distortion. The resulting distortion therefore decreases lin-
early with the number of messages received, with a sudden downward jump at

k when additional information about the source can be decoded from the bin-
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ning. Figure 2.2 depicts how the achievable distortion varies with the number
of descriptions received at the decoder when D, = 0. We provide outer bounds
on the distortion region which show that such a hybrid scheme is optimal in a

number of scenarios.

1o..

Distortion
()

: o e
1 2 3 k-1 kk+1 n

Descriptions received

Figure 2.2: The achievable distortion region for D, = 0. The achievable dis-
tortion decreases linearly with the number of descriptions received up to k — 1
descriptions, and drops abruptly to zero upon reception of k or more descrip-
tions.

The threshold D), = 1 — k/n plays an important role in our coding scheme. If
Dy, > 1 — k/n, then transmission of independent uncoded bits over the n chan-
nels as described above is sufficient. If D, < 1—k/n, then in addition to sending
uncoded bits, we also send coded information. For the worst-case distortion
measure, we describe this scheme in detail in Section 2.2.1, using MDS codes
to realize the coding. Achievability for average-case distortion follows from the
achievability result for worst-case; however, an alternative proof is included in
Appendix A.8 that does not rely on MDS arguments by using random binning
instead. The optimality results for the two distortion criteria are different, with

our results for worst-case distortion being the stronger of the two.
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2.2 The Worst-case Distortion Criterion

We begin by presenting a zero-error coding scheme based on systematic MDS
codes that works for finite blocklengths. The scheme consists of two parts—
uncoded bits and an MDS-code component. With each message, the encoder
sends uncoded bits along with an encoded version of the source, using an (n, k)
systematic MDS code for the encoding. The decoder outputs the bits revealed
by the systematic part of the MDS code as the source reconstruction if less than
k descriptions are received. If k or more descriptions are received, the decoder
uses the uncoded bits and the bits revealed by the systematic part of the MDS
code to decode the encoded erased version by applying an MDS decoding al-
gorithm. The following subsection discusses the achievable distortion region of

the MDS coding scheme.

2.2.1 An Achievability Result

Definition 3. Given n, k < n, and Dy, € [0, 1], define

R = (Ri(Dy),1 — Ri(Dy), ..., 1 — (k — 1)Ri(Dy), Dy,

Dk — Rk(Dk) . Dk — (Tl — k)Rk(Dk)), and

1 —k—1
1_k— Dka (%) Dk7

n —

(n )Dk,...,(nik>Dk,o).

Theorem 1. Let Dy, be a rational number in the interval [0, 1]. For any nand k < n, if

R= <Rk(Dk),1

Dy, >1— £ then R € RDyorst- If Dy < 1 — E, then R € RDyoprst-

Proof. Casel: D, > 1 — % Dj rational
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Since Dy, is rational, there exists a positive integer I such that I’ Ry, (Dy,) is a pos-
itive integer. Choose a blocklength | = anl’, where « is any positive integer.
Observe a length-I source sequence X!, and divide X' into n disjoint parts such
that each part contains [ /n = al’ bits. (The division is the same regardless of the
source realization.) Label the parts X;, i € N. Choose [Ry(Dy) bits from each
of the n parts (since Dy, > 1 — %, IRy (Dy) < % and therefore [ Ry (D) bits can be
chosen from each part). Denote by Y, the set of [R, (D) bits chosen from X;.

Transmit Y; uncoded over the i** channel.

The decoding is trivial. If m descriptions, say (Y7, ..., Y,,), are received, out-
put X! as the reconstruction of X, where X! is such that the m/Ry(D;) bits cor-
responding to (Y3, ...,Y,,) are non-erased and the other (I — m{R;(D},)) bits are
erasures. Since the reconstruction sequence has I — miRy(D},) erasures regard-
less of the source sequence, the worst-case distortion D,, is (I — miRy(Dy))/l =
1 — mRy(Dy). When k descriptions are received, the worst-case distortion is

1 — kRy(Dy) = Dy. Thus R € RDyops:.

Case II: D, < 1 — £, D, rational
For this case, we present an achievability scheme based on MDS (maximum dis-

tance separable) codes®. Let m be the smallest integer such that 2™ > n and

mnk(n—k)

S D—F is an integer (such an m exists because Dy, is rational). Define ¢ = 2™,

and construct a g-ary MDS code of length ¢ — 1 and dimension k. By repeatedly
puncturing this (¢ — 1, k) MDS code, we obtain a punctured MDS code of size
(n, k) [42, p. 190]. The punctured coordinates are revealed to the decoder. Let G,

be the generator matrix of the punctured (n, k) MDS code, and assume without

2A (n,k) MDS code is a linear code that satisfies the Singleton bound, i.e.,, the Hamming
distance between any two codewords is at least n — k + 1. Reed-Solomon codes, for instance,
are MDS codes.
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loss of generality that G, is systematic, i.e.,, G is of the form [I;|A], where I is
the k x k identity matrix and A is a k x n — k matrix over the finite field GF(g).
Construct matrices Go, . . ., G,, by shifting the columns of G; to the right, i.e., G,
is the matrix formed by shifting the columns of G, by 7 — 1 places, with the last
i — 1 columns of G; wrapping around. In particular, if G; = [Ix|a; . .. a,], where

ai,...,a, are the columns of A, then G; = [a,_i10...an|lk|ar ... an_ii1].

Encoding: The encoding procedure is illustrated in Figure 2.3. Let X' be the

observed source string, of length [ = Tlnk(Tnk bits. Divide X' into n disjoint
parts, each of length n(";k+k) bits. (The division is done the same way regard-

less of the source realization.) Let X;, i« € N denote the last % bits of the i

part. Construct an erased version X,' by replacing the last ‘2= bits in each of the
n parts by erasures. Thus X! has [(1— %) = mnk bits. Each of the n parts of X!
has mk bits and can therefore be treated as a concatenation of £ binary strings of
length m, such that each of these binary strings is the binary representation of
an element in GF(g). Thus each of the n parts of X! can be mapped to a vector of
length & in GF(q). Label these vectors Z;, j € N. Let Y; = Z;G;, j € N. Thus
the Y; are length-n vectors in GF(q). Let Y}; = Z;g;; denote the i"* element of Y

(here g;; is the i"" column of G;). Transmit (X;,Y}; : j € ) over the i"* channel.

Decoding: Suppose c < k descriptions are received at the decoder. Let M C
N denote the set of indices of the received descriptions. Assume without loss
of generality that i € M. Thus the decoder receives X; and Y;; = Z;g;; : j € N.
Thus % bits are revealed to the decoder via X;. Now for a fixed i, exactly
k of the G;, j € N, (in particular, G; 41, ..., G;) will have their " column
in the systematic part. Thus one symbol from k of the Z;, j € N, can be de-

coded. By mapping these decoded symbols to their binary representations, the

23



34

1 2 3 n
I l k I k I I k I
| |
(7’2 G’B C;n

-l A |

[IITT] ITT] Lengthnvectors [TITT1

ith element ith element
| Packet 1 | | Packet 2 | | Packet i |

Figure 2.3: The MDS encoding procedure.

decoder can obtain a partial reconstruction of X'. Let X; represent the recon-
structed source bits due to the i description. Output (X; : i € M) as the
reconstruction of X'. If m > k descriptions are received, then any k descriptions
reveal & symbols from each of the Y;, j € N. Also, since the punctured co-
ordinates are known to the decoder, it can construct a longer codeword from
every partially received codeword by adding erasures in place of the punc-
tured coordinates. The longer codewords can be treated as codewords from
the original (¢ — 1, k) MDS code. The original MDS code can subsequently be
decoded by applying an erasure decoding algorithm [42, Ch. 9] and all the
Z; vectors can be recovered. Mapping the Z; vectors to their binary represen-
tations reveals the erased version X! of the original source string X'. Output

{(Xy, ., X)) P U{XAN (XY, ..., X,,) } as the reconstruction of X'.

Analysis: We now argue that the above scheme achieves the rate-distortion

vector (Rk<Dk), 1—%, 1—%, RN 1—%, Dk, (niﬁgl)Dk, (nfﬁ;2)Dk, RN (ﬁ)Dk, O)

n n

For any source string X!, every description (say the i description) consists

of (X;,Y;; : j € N). X, consists of [Dy/(n — k) bits. Now since Yj; is an
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element of GF(g), it can be represented by m bits. Thus (Y;; : j € N)isa
length-n vector in GF(g), and can be represented by mn bits. Every descrip-
tion therefore consists of mn + [ Dy, /(n — k) bits. Since the source string consists

of | = mnk(n — k)/(n(1 — Dy) — k) source symbols, every description has rate

l ok

Moreover, every description received at the decoder reveals D, /(n — k) bits via
X, and exactly one symbol from k of the Z;, j € N. Each of these k symbols is
an element of GF(g) and can be represented by m bits. Thus every description
reveals Dy, /(n — k) + mk bits to the decoder. (We note that the bits revealed by
any two descriptions are disjoint. The uncoded bits X, and X, are disjoint by
definition for any two descriptions a and b. Now suppose descriptions a and
b revealed the same symbol from some Z;. Then Y, = Z;g;. = Z;g5 = Yj,
which implies a = b.) Thus if ¢ < k descriptions are received, the decoder can

reconstruct ¢(IDy/(n — k) + mk) bits of the original source sequence. Thus

c(% + mk)

D,=1- ;
_q_ cDy  en(l —Dy) —ck
n—k n(n — k)
-1- <
n
If ¢ > Fk descriptions are received, say descriptions 1,...,m, then
(X1,...,X,,) reveal cl Dy /(n— k) bits. Moreover, the erased version of the source

sequence, X!, can be reconstructed by applying the MDS erasure decoding al-
gorithm. The bits revealed by (X,...,X,,) are disjoint from the bits revealed
by X!. The total number of bits revealed, therefore, is c/Dy/(n — k) + mnk. Thus
c% +mnk

D.=1-
l

25



36

cDy,  n(l—Dy)—k
n—=k n—=k

Thus R € RDyopst- O

2.2.2 Optimality Results

In this section we present optimality results for the MDS coding scheme de-
scribed in the previous subsection. We first establish some preliminary results
in Appendix A.1 which will be used in the proofs of the following theorems. The
optimality results presented here are stronger than those for average-case dis-
tortion (Section 2.3.2) and yield a more complete characterization of the achiev-
able distortion region. Since we are dealing with worst-case distortion con-

straints, the following results hold for any source distribution.

Theorem 2. For any n and k, if D > 1 — % and rational®, then

i (Rk(Dk), Di,....Dy,... ,Dn) € RDuyorsty Dy > 1 — mRk(Dk)for allm e N.

Proof. Let D, > 1 — % If a code achieves a certain distortion under worst-case

distortion, then it will achieve that distortion under average-case distortion as

well. The result therefore follows from the first part of Theorem 7. O

Definition 4. Let X' be a vector taking values in X'. An erased version of X' is a
vector X! (X) (where X!(-) is a function of the X string), taking values in X', such that
Bte{l,... 1} suchthat X,(X) = +and X, = — or X;(X) = — and X, = +.

3For this theorem and subsequent theorems in this subsection, we consider rational values
for Dy, since any code over a finite blocklength can yield rational distortions only.
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The following lemma is integral to the proofs of our optimality results for
worst-case distortion. Intuitively, the lemma says that for any code that encodes
length-I source sequences into n pairwise independent messages, there exists a
source sequence for which each of the [ bits can be revealed by at most one of

the n messages.

Lemma 1. Let X! (X), X,(X), ..., X, (X) be erased versions of the source string X! €
X', Suppose X! isi.i.d. uniform over X', If forall t € {1,...,1}, I(Xy(X); X;4(X)) =
0Vi,jeN,i+#j, then

max [%Zd(mt,f(ﬁ(m))] >n—1.

l
lexl
x€ t=1

Proof. See Appendix A.9. O

The following theorem proves that the MDS coding scheme is optimal for all

n and k when a single-message is received at the decoder.

Theorem 3. For any n and k, if D, < 1 — % and rational, then

V (Re(Dy), D1, ..., Dy,...,Dy) € RDyopst, Dy > 1 — .

Proof. See Appendix A.2. O
The following theorem shows that the MDS coding scheme is Pareto optimal

in the distortions Dy, ..., Dy_;.

Theorem 4. For any n and k, R is Pareto optimal in Dy, ..., Dy_4, i.e., there does
not exist (R', DY, ..., D) € RDyorst such that either R' < Ry(Dy), or R' < Ry(Dy),

Dgg1—%foralll§i§kz—1andD;<1—%f0rutleastonej,1§jgk—l.

Proof. See Appendix A.3. O
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The following theorem shows that for certain values of m, n and k, the MDS

coding scheme is optimal when m messages are received.

Theorem 5. For any n and k, if m < g and m|n (m divides n), then

v (Rk(Dk)7 D17 cee 7Dka cee 7Dn) € RDworst/ Dm > 1 - %
Proof. See Appendix A 4. O

It is worth noting that that our converse bounds for Dy, < 1 — £ are sharper

than the cooperative or cut-set bound, which is given by D,,, > 1 — mR;(Dy).

2.3 The Average-case Distortion Criterion

2.3.1 An Achievability Result

Theorem 6. Let Dy, € [0,1]. Foranynand k < n, if D;, > 1 — %, then R € RD -
IfD,<1-£ then R € RD gy

Proof. Theorem 6 is implied by Theorem 1. However, an alternate, more conven-
tional proof based on random binning arguments, which also proves Theorem 6

for the closure region RD,,,, is included in Appendix A.8. O

2.3.2 Optimality Results

We now present optimality results for average-case distortion. These optimal-

ity results deal primarily with single-message optimality, i.e., when only one
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message is received at the decoder, and are weaker than the optimality results
proved earlier for worst-case distortion. Moreover, the optimality results per-
tain to the achievable region RD,,, itself rather than its closure RD,,,. In other
words, there exists a “closure gap” between the inner bound in Theorem 6 and
the outer bounds presented below. It should be evident from the proofs of the
optimality results in the previous section that for converse proofs, only the pair-
wise independence condition between the component variables Xit and X jt 18
important, and this condition follows from independence at the block level. The
difficulty is that when we attempt to prove an outer bound for the closure, no
excess rate imposes a weaker independence condition on the transmitted mes-
sages; messages need not be completely mutually independent but rather nearly
mutually independent (i.e., for any k£ messages fi, ..., fi, no excess rate yields

I(f1;. - fx) < en for some € > 0, rather than I (f;...; fi) = 0).

A similar situation for the simpler case of two-channel MD with no excess
rate for two descriptions was addressed by Ahlswede in [25], where he used
“wringing techniques” to prove a tight outer bound without a closure gap. The
wringing technique is a way to infer near independence at the component level
given near independence at the block level. By conditioning on suitable random
variables, the wringing technique ensures, given two random vectors that are
nearly pairwise independent, that they are also nearly pairwise independent
in each component. More precisely, if 1(X!; X)) < el for some € > 0, then for
any 6 > 0 there exist ¢y,...,t,, € {1,...,l} (Where m < €l/) such that for all

t € {17 e ,l}, [(Xlt;X2t|X1t1X2t27 e ;Xlthth) < 6

It seems natural to employ the wringing technique to remove the closure

gap in the optimality results presented here. However, there is one important
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difference between our MD problem and the two-description problem consid-
ered in [25] which renders the wringing technique ineffective in our case. In the
two-description case with no excess rate for two descriptions, there is only one
set of descriptions (i.e., the set containing both descriptions) for which no excess
rate is imposed, resulting in a single pairwise independence condition. In our n-
description case with no excess rate for every k descriptions, there are (}) sets of
k descriptions for which there is no excess rate, and thus there are (}) indepen-
dence conditions, one for each of the (}) sets. If one applies existing wringing
techniques here, then one would obtain a set of conditioning variables for each
of the (}) constraints. If these sets of variables happened to be the same for all
of the constraints, then we could conclude component-wise independence in all
(1) cases, but there is no guarantee that this will happen. Developing wringing

techniques for this setup would be useful future work.

The following theorem shows that when only one message is received at the
decoder, our coding scheme is optimal, modulo a closure operation, for all n
and k satisfying (1 — %)k < 1. Recall that, given Dy, we use Ri(Dy,) to denote
(1 — Dy)/k.

Definition 5. For any fixed Dy, define
DT = ll’lf{Dl : (Rk<Dk)7 Dl; ey Dk, ey Dn) S RDavg}-

Theorem 7. For any n and k < n, if D, > 1 — % then for any
(Rk(Dk),Dl,---,Dk,.--,Dn) € RDavgl Dm >1- mRk<Dk)f01’ all m € N. If

Dy, < 1— % Dy is rational*, and (1 — %)k <1 thenD;>1-1.

Proof. See Appendix A.5. O

“For this theorem and subsequent theorems in this subsection, we consider rational values
for Dy, since any code over a finite blocklength can yield only rational distortions.
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We note that (1 — %)k < ; implies k > o5 = A(n). Since A(n)/n —

1/loge as n — oo, the second part of Theorem 7 provides a lower bound on D7

for a large range of k when n is large.
The following theorem proves single-message optimality for the coding
scheme when n = 4 and & = 2. This case is not included in Theorem 7.

Theorem 8. Let Dy, < 1 — % and rational. If n = 4 and k = 2, then D} > 1 — L.
Proof. See Appendix A.6. O

Theorem 7 handles the regime in which £ is large. We now study the other
extreme, i.e., when £ is small. In particular, we look at the £ = 2 case. The follow-
ing theorem provides a lower bound on the optimal single-message distortion
for n > 3 and k£ = 2. This lower bound differs from the distortion achieved by
our coding scheme by exactly 1/n, and thus becomes progressively tighter as n

increases.

Theorem 9. Let Dy, < 1 — £ and rational. If k = 2, then forn > 3, D} > 1 — 2,
Proof. See Appendix A.7. O

We conjecture that the lower bound in Theorem 9 is not tight and that our

scheme is in fact optimal. Evidence for this is provided by Theorem 8.

2.4 A General Multiple Descriptions Architecture

The scheme described above provides a substrate that can be used to construct

no-excess-rate multiple descriptions codes for a general source using only a
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point-to-point rate-distortion code for that source. We illustrate this idea for
a Gaussian source, where the resulting scheme is optimal in a certain sense.
The extension to arbitrary sources should be clear from the proof. Suppose that
(Xt):2, is a memoryless Gaussian process, where X; is a vector of length N and
has a marginal distribution N'(0, K, ). The distortion for a source-reconstruction
pair (X, 5(1) is measured as E [% S (X — X)) (Xe — X,)T| . We compare distor-

tions in the positive definite sense, i.e., D4 = Dpiff D4 — Dp = 0.

Definition 6. The rate-distortion vector (R,D,...,D,) is achievable if for some
| there exist encoders f : RVl — {1,... . M"}, i € N and decoders g\ -

[Ther{l,---, M,f;l)} — RVXUIC C N, K # 0, such that

1
R> Jlog MYV i, and

1 l

Dy 7 E | D (X~ X)) (X — X )| VECNIK| =k,

t=1

where X, = E[X'| (X)), i € K].

We use RD .55 to denote the set of achievable rate-distortion vectors and
ﬁgauss to denote its closure. We consider symmetric descriptions, i.e., each
description has the same rate R, and the distortion constraint depends only on
the number of descriptions received. We consider the case where there is no
excess rate for every k out of n descriptions, i.e., kR, = R(Dy), where R(-) is the

Shannon rate-distortion function and

1 K,
R(Dy) = min - log | = |

Thus R, = + R(Dy,) bits/symbol.
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Definition 7.

D — 1K, 2D —2)K,
RG:<R97 k+(lr; ) ) k+(z ) Yty
k—1)Dy+ (n —k+ 1)K,
(k= LD 7<7, ) Dy, .., Dy).

Theorem 10. R € RD youss-

Proof. 1t suffices to show that for any e > 0, the rate-distortion vector

D I - DK,
RG+e:<R9+E> et et ]) e
n
(k—=1)Dr+el)+ (n—k+ 1K,
n Y

Dk—f-EI,...,Dk—I—EI)

is achievable. For any ¢ > 0, we know from rate-distortion theory that there
exist integers [ and !/, with I’ < [(R(Dy) + €), such that any source sequence
X' of | symbols can be compressed to a sequence Y consisting of I’ bits and
then reproduced from Y" with distortion < D, + €I. Fix ¢ and choose a block-
length nl. Using the aforementioned rate-distortion code, we can compress the
length-nl source sequence (consisting of n blocks, each of length [) into a bi-
nary sequence Y™ taking values in X. Now Y™ can be treated as n blocks of
length {" each, and can be transmitted to the decoder over the n channels using
the MDS-coding based scheme proposed in Section 2.2.1. Thus every descrip-
tion contains I’ uncoded bits (i.e., one of the n blocks) of Y. In particular, the
decoder should be able to completely reconstruct Y™ upon reception of any
k descriptions, i.e., there is no distortion for every k out of n descriptions (this
corresponds to a special case of Theorem 1 with D, = 0). Thus every set of k&
descriptions must reveal nl’ bits, and therefore the rate of a single description

is R = nl'/knl = I'/kl bits per symbol of X'. Moreover, since every description
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contains !’ uncoded bits, the decoder can reconstruct ml’ bits (i.e., m blocks) of

Y™ upon reception of any m < k descriptions.

We now argue that R is achievable. The rate of every description is R =
U'/kl < (R(Dy) +€)/k < R, + €. Moreover, any m < k descriptions reveal m!’
bits (m blocks) of Y™ completely, and reveal nothing about the other n — m
blocks. Thus the decoder can reconstruct a fraction m/n of X (i.e., m out of the
n blocks of X™) from the m blocks of Y revealed to it with distortion at most
D;, + €I, and must reconstruct the remaining fraction without any information

(incurring distortion K,). If we take the time average over all blocks, we can see

(Dg+€I)+(n—m)Ky

that the decoder can reconstruct X with distortion at most ™
When k or more descriptions are received, the decoder is able to reconstruct

Y™ completely and can reconstruct X" with distortion at most < Dy + €. [

Next, we show that, for the special case of symmetric scalar Gaussian mul-
tiple descriptions with two levels of receivers (where one receiver reconstructs
the source from any k out of n descriptions with distortion D, and the second
receiver reconstruct the source from all n description with distortion D,,), and
no excess rate for the second receiver, the aforementioned scheme achieves the
optimal D;. It has been shown by Wang and Viswanath [43, Theorem 1] that
given distortion constraints D, and D,,, the symmetric multiple description rate

for an i.i.d. vector Gaussian source with mean 0 and covariance K, is

- 1
R=sup =log
K.-0 2

K, |+ K, + K| D, + K. |
ID,|= Dy + K. |* '

Thus the sum rate of the n descriptions is

- 1
nR=sup —log (2.1)

K.>0 2

K. |[K, + K.|"F |D, + K.|
|Dn||Dk+KZ|% '
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Theorem 11. For scalar Gaussian multiple descriptions (ii.d. N(0,02) Gaussian
source) with two levels of receivers (distortion constraints Dy, and D,,, respectively)

and no excess rate for the second receiver, Dy, > %Dn + ”T‘kafc.

Proof. Assume WLOG that 62 = 1. Reducing (2.1) to the scalar case and using

the no excess rate condition gives

L (1) wn L (2 (1+ A" (Dn + A)
— R = Su — —_ - ,
2%\ D,) " 2%\ D, (Dg + M)E

which implies

1 ((1 +A)"Z’“(Dn+>\)> |

0 =su —lo —
>\>Ig 2 & (Dk -+ >\)E

Define f(\) = w. Then
(Dr+A) *

0 = suplog, f(})

A>0
n

— sup (% - 1) log, (14 A) +log, (D, +3) = 7

A>0

log.(Dr + A)

D, + A\

sup lo 1+A
= su
AJS Be 1+ A + A

k
log (1+ 2271 4 Plog (14 L2 Dn
— sup 1o — 10 .
Jub t08e T+ ) k%8 Dy + A

+
koge

Define
D,— 1-Dy \2
( l+)\1>2 + (Dk+§\)

21— 13550 201 = |50

g(A) =

Using the fact that

LL‘Q

—Wf0r|$’<l

log.(14+2) >z

we obtain

Dn—l n 1—Dk
02> + - —g(\
—Sfi%(HA k:<Dk+>\> 9 )>
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1—Dn n ].—Dk

> - —g9(})
I+ A E \Dy+ A
I+ A E\1-D, 1-D,

Now let A — oco. Then %g()\) — 0 and DI’CTJ;’\ — 1. We thus have

1> 1 — Dy
=r\1-D,
~p.>Fp ok
n
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CHAPTER 3
OPTIMAL DELAY-RECONSTRUCTION TRADEOFEFS IN PEER-TO-PEER
NETWORKS

3.1 Problem Formulation and Coding Scheme

We begin with the formulation of the binary erasure robust CEO problem, de-
picted in Figure 3.1. Let N' = {1,...,n} and X = {4,—}. Let X be a uni-
form binary random variable taking values in X. We assume that this source
is i.id. over time, and we denote a length-/ sequence of X by X'. Define
Y; = N;- X, i € N, where Ny, ..., N, are independent Bernoulli random vari-
ables with 0 < Pr(N; = 0) = p; < 1. Thus each Y] is the output of passing
X through a binary erasure channel (Figure 3.2) with erasure probability p;,
and takes values in X = {+, —, 0}, where 0 denotes the erasure symbol. There
are n encoders, each of which is a function f; : X! — {1, . ,Mi(l)} .1 e N.
Encoder f;, i € N, observes Y} and transmits an encoded version of it over
channel ¢. The decoder either receives this description without error or does not
receive it at all. Excluding the case in which none of the messages is received,
the receiver may receive 2" — 1 different combinations of messages. Thus it can
be represented by 2" — 1 decoding functions g, K C N, K # 0 of the form
gk [iex {1, ce Mél)} — X'. Based on the set of received messages K, the re-

ceiver employs the corresponding decoding function to output a reconstruction

XL of the original source string X".

We measure the fidelity of the reconstruction using a family of distortion
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o

Figure 3.1: The binary erasure robust CEO problem
X Y

+ +

1-p

Figure 3.2: A binary erasure channel (BEC) with erasure probability p

measures, {d*} -0, where

A

0 ifz==x
ANz, 2) =491 ifs=0

A otherwise.

\

We are particularly interested in the large-\ limit, wherein erasures incur unit
cost while errors are penalized highly. In this regime, d* approximates the era-

sure distortion measure [33, p. 338].

In general, one could impose a distortion constraint for every subset of re-
ceived messages. This generality is not needed here, however, so we will only

measure the distortion as a function of the number of received messages.

Definition 8. (Ry, Rs, ..., R,, D1, Ds, ..., D,) is an achievable rate-distortion vec-

tor if there exists a block length [ for which there exist encoders f;, i € N, and decoders
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g, K C N, K # 0 such that

R; > %log MY
(3.1)

D, > E

l
1 .
7 2 X, X,Ct)] forall K s.t. |K| = k.
t=
Let RDcgo(\) denote the set of achievable rate-distortion vectors. Define

RDcro = [ | RDcro(N).

A>1

It is worth noting that
Icn\llca\xk H bi
since when all of the corresponding Y; are erased for a given subset of mes-
sages, the decoder gets no information about X whatsoever and is forced to
output erasures instead. We use RD¢go to denote the closure of RDcgo. In
a P2P context, the encoders represent peers in the network that have access to
partial copies Y; of the received file X. Peers generate encoded packets in a de-
centralized fashion, without communicating with other peers, based on their
own partial knowledge of the file. The erasure distortion measure measures

how much of the file is reconstructed from these encoded messages.

A natural achievability scheme for this setup is vector quantization using
erasure test channels followed by Slepian-Wolf binning at each encoder. Since
this is a particularization of a scheme in [47], we provide only a high-level de-
scription and refer the reader to [47] for a detailed treatment. For a fixed block-
length I, Encoder i, i € N first performs vector quantization of the possible Y}

sequences using an erasure test channel (Figure 3.3).

Specifically, Encoder i chooses a parameter ¢; for the erasure test channel and

generates codewords i.i.d. according to the output distribution of this channel
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Y; Ve(q)
1-q
+ +
q
0 0
q
1-q

Figure 3.3: Erasure test channels

when the input is Y;. These codewords are then divided randomly amongst 2"/
bins. Then given the Y} sequence, the encoder searches for a codeword with
which it is typical, and transmits the index of the bin containing this codeword.
The decoder receives the bin indices transmitted by a subset of the encoders and,
if possible, uses typicality considerations to identify the codewords within the
bins that were selected by those encoders. In particular, the decoder searches
for codewords that are typical with respect to the output distributions of the
encoders’ test channels. These codewords will collectively reveal some of the
source bits X! but not others, and the decoder creates a reconstruction X' of the

file that specifies the known bits while leaving the remaining ones erased.

The aforementioned scheme exhibits a fundamental tradeoff between inter-
mediate performance (i.e., the fraction of the file that can be reconstructed when
only a subset of the messages is received) and the overall efficiency of the file
transfer (i.e., the fraction of the file that can be reconstructed when all n mes-
sages are received). Although the scheme is valid for the case where p; and R;
are different for different encoders, and we have stated it in its most general
form, important insight can be gained into the above tradeoff if we consider the
special case in which the encoders are symmetric. We therefore consider the
scenario in which all of the Y; have the same erasure probability, p; = p, the

rates are identical, R; = R, and all of the encoders use the same test channel
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parameter, i.e., ¢; = q for all 7.

Let us first understand the performance of the scheme in the symmetric case.
Consider the portion of the string X' that the decoder will be able to reconstruct
as a function of the number of messages received. For the first few messages,
the decoder will be unable to recover the codewords chosen by the encoders.
As such, it will be unable to reproduce any of the bits of X', and accordingly its
reconstruction will be entirely erasures. After sufficiently many messages, say
k, have been received, the decoder will be able to determine all & codewords
from the bin indices and thereby determine some of the source bits. More pre-
cisely, the decoder will have access to k codewords, each of which is a copy
of the source string with a fraction p + (1 — p)g of the bits erased. Since the
erasures in different codewords are independent, the fraction of erasures in the

reconstruction will be
Dy=(p+(1—-p)g)*

which by our choice of distortion measure is also the distortion. If additional
messages are then received, their associated codewords can be determined
through typicality considerations. These additional codewords will allow the
decoder to reproduce even more of the bits of the source. In fact, the fraction of

erasures in the reconstruction will be

D= (p+ (1 =p)g)™

where m is the number of received messages. In particular, we have D,, = DZ/ .

The relation D,,, = D}C”/ " captures the tradeoff between the fraction of the file
that can be reconstructed from m < n messages (intermediate performance) and
the overall efficiency of the file transfer (i.e., the fraction of the file that can be re-

constructed from all n messages, which in this caseis 1 - D,, = 1 — DZ/ *). Notice
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that the above scheme enables us to operate between two extremes in P2P tech-
nology which exhibit the same aforementioned tradeoff; (i) peers share packets
without coding (e.g., BitTorrent), and (ii), peers share fully encoded packets (e.g.,
network coding). Letting & = 1 allows us to recover the “no coding” case; there
is no binning, and every message reveals a partial source string to the decoder.
Letting k£ = n allows us to recover the “coding” case; every quantized codeword
is binned, and the decoder can only recover the codewords when all n messages

have been received.

N
Y

P i o @) o s @@

o
Jod

o
o)}

o
~

©
N

Distortion (fraction of erasures)

o

Figure 3.4: Performance of the achievability scheme for n = 10, p = 0.1, and
encoder rate R = 0.25. The solid curve corresponds to £ = 1 (no coding), the
dotted curve to k = 10 (coding), and the dashed curve to £ = 5.

By varying k, therefore, we can interpolate between the “coding” and “no
coding” extremes. Figure 3.4 illustrates the performance of the scheme for
n = 10 and p = 0.1. The solid curve corresponds to £k = 1 (no coding), the
dotted curve to £ = 10 (coding), and the dashed curve to £k = 5. An encoder rate
R = 0.25 was used for all three cases. Notice that the “no coding” case yields
good intermediate performance; 20% of the file can be reconstructed from a sin-
gle message, and the distortion falls to 0.8. The overall efficiency, though, is
not good; about 15% of the file cannot be reconstructed even when all of the

messages have been received. The “coding” case performs contrary to the “no
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coding” case: nothing at all can be reconstructed with fewer than n messages
(Dy, = 1for m < n), but once n messages have been received, everything can be
reconstructed (the distortion is almost 0). The £ = 5 curve, however, illustrates
how the aforementioned scheme allows partial reconstruction of the source with
fewer than n messages as opposed to the “coding case” (the decoder can out-
put a partial reconstruction as long as £ messages have been received), and also
achieve a better overall efficiency with n messages than the “no coding” case (in

fact, with k£ = 5, almost all of the file can be reconstructed from n messages).

The ability to partially reconstruct the source can prove vital in the context
of distribution of content, e.g., video files, in P2P networks. In such a scenario,
our coding strategy can be implemented on the level of video frames rather
than bits, treating the entire video file as a coding block. In this case, users
with a partial reconstruction of the video file can watch the whole video by
interpolating over the missing frames. This would lead to lower buffering delay
(in Figure 3.4, for instance, the delay is halved for £ = 5 as compared to the
“coding” case) and might at the same time yield adequate playback quality,
depending on the purposes of the user. As more messages are received, users
would be able to reconstruct a higher quality video. Partial reconstruction also
provides other advantages in this context; peers with partially reconstructed
tiles can transmit uncoded bits to peers that are still waiting to receive enough
messages to start decoding. This would lead to smaller user-perceived delays
than with network coding, without compromising the overall efficiency of the
download. Moreover, if users accidentally downloaded the wrong file, they

would be able to stop the download after viewing the partial file.

In the next section, we prove optimality results for the delay-reconstruction
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tradeoff exhibited by the aforementioned coding scheme with symmetric en-
coders. In order to achieve distortion D with £ messages and fixed encoder
rate R, we must have kR > R(Dy), where R(-) is the Shannon rate-distortion
function for the robust CEO problem. In practice, having kR strictly greater
than R(Dy) is wasteful, since the additional rate can be used to convey useful
information about the source and lower the distortion below D,;,. We therefore
focus on the case when kR = R(D),), which implies that the encoder rate is just
sufficient to achieve distortion D, with any £ messages. This scenario is referred

to as no excess rate in information theory.

3.2 Pareto Optimality of the Scheme in the Symmetric Case

We now show that for symmetric encoders, given k£ and Dy, the tradeoff D,, =
D,T/ * between the distortion and the number of received messages is Pareto
optimal. In particular, we will show that any scheme that achieves distortion
Dy, for k messages must have D,, > D,T/ *. It is known from the results in [44]

that the minimum per-encoder rate required to achieve a given distortion D

when any k messages are received is

1-Dy

— (DY) (3:2)

R

where! g(-) is given by

LAll logarithms and exponentiations in [44] have base e whereas we use base 2 here. There-

fore the corresponding expression in [44] is R = (1 — Dj)log2 + g(DE ).
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By choosing the erasure test channel parameter ¢ accordingly, the scheme de-
scribed above can achieve equality in (3.2). We next show that with this choice
of ¢, the scheme is Pareto optimal with respect to (Dy, Dy+1, . . ., D,,): any scheme
(with the same rate R) that achieves a strictly lower D,, for some £k < m < n

must achieve a strictly larger D,,, for some k < m < n.
Theorem 12. If (R,..., R, Dy,...,D,) € RDcro, and

Dk:mf{D:(R,...,R,1,...,1,D,1,...,1)eﬁcm},
——

k—1

i.e., R is as given by (3.2), then D,, > (Dk)%for all m > k.

Note that this result makes no optimality claims about the performance of
the scheme when fewer than k& messages are received. Under this scheme, the
decoder will be unable to recover the transmitted codewords in this regime, so
it will be forced to declare an erasure for every bit in its reconstruction. It would
be interesting to determine if the performance in this regime can be improved,

perhaps by using the ideas in [37].

In order to prove this theorem, we first establish a new outer bound for a

general problem in distributed rate-distortion.

3.21 Outer Bound on the Rate Region of the Multi-terminal

Source Coding Problem
Consider the general problem in which we have an arbitrary number of dis-

crete memoryless sources Yi,...,Y,, with Y; taking values in the set ), en-

coders f;, i € N, a hidden source Yj that is not directly observed by any en-
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coder or the decoder, and a side information source Y, taking values in the
set ),+1, which is observed by the decoder but not by any encoder. In particular,
{You, Y14, ..., Your, Yar1 122, is a vector-valued, finite-alphabet and memoryless
source. Although we consider finite-alphabet sources here, the outer bound is
extensible to continuous or countable alphabets, e.g., Gaussian sources, by using
the approach in [44]. Encoder f; observes a length-I sequence of Y; and transmits

a message to the decoder based on the mapping
Oy {1, . ,M}”} .

The decoder seeks to reconstruct the sources, or functions of the sources, from
subsets of messages fx = {f,gl), k € K}, where K € N, K # (. Since we al-
low the reconstruction of functions of the sources instead of, or in addition to,
the sources themselves, we represent the reconstructed sequences by V{, ...V}
(with V., t € {1,...,l},5 = 1,..., J, taking values in the set V;). Given a sub-

set of messages K C N, K # 0 and j € {1,...,J}, the decoder thus uses the

mappings
N l
()" Vi < T[T {1 M0} =V
kek
We have J distortion measures
n+1
dj : H:)/l X Vj —)R+,
i=0
one for each constraint.
For every j € {1,...,J}, we impose a common distortion constraint for

all size-k subset of messages used to reconstruct V. More precisely, for every
j € {1,...,J} all (}) subsets of messages of size k, when used to reconstruct
le, must satisfy a single distortion constraint. Thus there are n.J distortion con-
straints in total. Let Yx denote (Y;)rcx, and Y;e denote Y. Moreover, Y; 44

denotes {Y 4, Yiat1, ..., Yip}.
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Definition 9. The rate-distortion vector (R, D) =

(Rla s 7Rn7D1,17D2,17 cee 7Dn,17D1,27 R 7Dn,27 LRI
Dl,J7 .. '7Dn,J)

is achievable if for some [ there exist encoders fY i e N, and decoders (gh), K C

N, K#0,5=1,...,J,such that

l (3.3)

Asin [44], we use RD, to denote the set of achievable rate-distortion vectors

and RD, to denote its closure. We use the following definitions from [44].

Definition 10. Let Y;, Y, ..., Y, 1 be generic random variables with the distribution
of the source at a single time. Let I, denote the set of finite-alphabet random variables

v=U,....,Us,V1,...,V;, W,T) satisfying

(i) (W, T) is independent of (Yo, Y, Yi1),

(ii) U; < (Y, W,T) < (Yo, Y, Y1, Use), shorthand for “U;, (Yi,W,T') and
(Yo, Yie, Yoi1, Use) form a Markov chain in this order”, for all i € N, and

(lll) (3/07Y./V’7 W) A (UN7 Yn-l-lu T) < (Via ceey ‘/J)
Definition 11. Let v denote the set of finite-alphabet random variables Z with the

property that Y1, .. .,Y, are conditionally independent given (Z,Y,41).

There are many ways of coupling a given Z € ¢ and v € I', to the source.
We shall only consider the Markov coupling for which Z < (Y;, Y, Yit1) < 7.

We now state our outer bound.
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Definition 12. Let RD,(Z, ) = {(R,D) :

> Ri = max (1(Z; Ux|Yai1, T), 1(Z; Ug|Uxs, Y, 7))
€KX

+ Y IV Ui Z, Yoid, W, T) VK C N, and
€L

Dk,j 2 max E[dj(}/(]7YlC7Yn+l7‘/j)]7 ] - 177J}

K:|K|=k
Then define
72’7)0 = ﬂ U RDO(Z/)/)

Zey vel,
Theorem 13. RD, is an outer bound on the rate-distortion region for the general prob-

lem,ie., RD, C RD,.
Proof. See Appendix B.1. O

The new bound is more general than the bound in [44]. Even if we apply it to
the setup of [44], however, the new bound offers an improvement. Specifically,
whereas the bound in [44] lower bounds the sum rate of a subset K of mes-
sages by I(Z; Ux|Uke, Y, 41,T), the new bound improves upon it by taking the
maximum of I(Z; Uk |Uke, Y41, T) and I(Z; Uk|Y,41,T). This improvement is
useful for establishing the main result. Notice that if we have the Markov chain
Ui < (Y;,T) < (Uge), then I(Z; Ux|Uge, Vi1, T) < I(Z; Ug|Yya1,T). Since, in
our setup, a weaker Markov chain condition (Definition 10, (i¢)) is being im-
posed, the above inequality might not hold here. However, as we show in the
proof of Theorem 12, using [(Z; Ux|Y,,41,T) instead of I(Z; Ux|Ue, Y, 11,7T)
yields a tight lower bound, which suggests that the outer bound in [44] could

be loose for our setup.
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3.2.2 Proof of Theorem 12

We begin with the following lemma.

Lemma 2. Suppose p™ < D and that (U, X, X, Y, W, T) for all K, |K| = m is such

that

(i) (X,Y,Uge,W) & (Ug,T) < X,
(i) U; < (Yi,W,T) <> (X, Y, Uye) forall i € N, and

(i) £ Y, I(Yis Ui X, W, T) < g(DV/™),

Let D = maxc.x—n, E[dNX, Xi)]. For § € (0,1/2], if

2 [ () (2)

then D > D — 5([), 9) for some continuous £ > 0 satisfying f(f), 0) =0.

Y

Proof. See Appendix B.2. O

Proof of Theorem 12. It suffices to prove Theorem 12 for a single subset of mes-

sages of size m > k. Fix ¢ € (0,1/2], and suppose X satisfies

32m \*" (D,ﬂ)2
A>max |4 | ——— | — :
- [ (5p(1 - p)) 0
It follows from Theorem 13 by taking Z = X in the definition of RD,(Z,~)

(Definition 12) and from the monotonicity of R,(D, \) with respect to A that

there exist R € R* and v € T', such that, for all subsets K of size k,
Dy, + 6 > E[d\(X, Xx)], and
kR+ 60> kRo,(D,\) +§ (3.4)

> I(X; Uk|T) + Y I(Y5 Ui X, W, T).
e
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From (3.2) and (3.4), it follows that

I(X;Uk|T) 1
_— —E 1Y Ui | X, W, T
k +k 1€ ( | )
1-D L9
< (—kk) +9(Dy) + s (3.5)

Now by the data processing inequality, I(X; Ux|T) = I(X; Uy, T) > I(X; Xx).
Lete = 1(X - Xx = —1). We then have
I(X; Ux|T) > H(X) — H(X|X)
—1— H(X, ¢|Xx)
—1— H(e|X¢) — H(X|e, Xx)
> 1 — h(Dy/)\) — Pr(Xx = 0)

> (1= Dy) — h(9).

Using this and (3.5), we can upper bound ; >, I(Y;; U;| X, W, T) as

1 1 h(§) ¢
- L TT. < k AT )
k;elcf(Y“UJX’W,T)_Q(Dk)‘F 2 +k: (3.6)
We will now show
LS rsuixw) <o) + M4 0 sk (37)
m

=1
Suppose the U; are ordered according to the mutual informations I (Y;; U;| X, W, T),
i.e., we have an ordered list of messages Uy, ..., U,, in which, for all ¢,j €
{1,...,m},U; and U; are such that I(Y;; U;| X, W,T) < I(Y;;U;|X,W,T) when

i < j. The last k elements of this list, U;,_g+41, . . ., U, must satisty (3.6), i.e.,

. 1 h(d
Z 1(Y;; UilYo, W, T) Sg(D,f)Jr%Jr
i=m—k+1

=SS

(3.8)

| =

All other elements in the list yield equal or strictly smaller mutual informations.

Therefore, if we average over a larger subset of messages, the average will never
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increase. We thus have

1 m m
IO W) S 1YY TG U W)

=1 i=m—k+1

x| =

Using this and (3.8), we obtain (3.7). Define

=g (g(D;ii) + @ + %)

==

(Dr, — ((Dg, 6))

for some continuous ¢ > 0 satisfying ((Dy, 0) = 0. We then have

LS I U, WT) < (i~ (D )1, (39)

=1

From (3.9), we obtain, by using Lemma 2,

m
k

Dy 2 (Dy, = (D, 6)) * = &(Dm, 0)

for some continuous ¢ > 0 satisfying £(D,,,,0) = 0. The proof is completed by

letting A — oo and then § — 0. OJ

3.3 Suboptimality in the Asymmetric Case

In the previous section, we considered symmetric peers and showed that
the coding scheme described in Section 3.1 provides a Pareto optimal delay-
reconstruction tradeoff. If we consider asymmetric encoder observations, i.e.,
the binary erasure probabilities p; of the channels from X to Y; are not identi-
cal, then it becomes natural that encoders encode at different rates, since some

encoders (with smaller p;) will have a better knowledge of the source.

We now consider a very simple asymmetric case with two encoders and
show that the achievable scheme is no longer optimal; more precisely, the choice

of an erasure test channel is no longer optimal. Encoder 1 observes the binary
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source X directly (i.e., p; = 0), while Encoder 2 observes an erased version Y’
of the source with p, = p > 0. Both encoders transmit messages to a decoder,
which then attempts to reconstruct X upon reception of both messages. This
setup is referred to as a one-helper problem (Figure 3.5), and the two encoders,
Encoders 1 and 2, are referred to as the main encoder and the helper, respec-
tively. The goal is to characterize the tradeoff between the rate of the main en-

coder, Ry, the rate of the helper, R,, and the resulting distortion.

Rl
x

BEC (p)

v
R

2

= ® o 0 o o O
M

Figure 3.5: The erasure one-helper problem

Before showing that erasure test channels are suboptimal for this problem,
it is worth mentioning why this suboptimality is unexpected. Existing results
in distributed rate-distortion theory suggest a connection between binary era-
sure problems and their quadratic Gaussian counterparts. For instance, for the
Wyner-Ziv problem, both instances have no rate loss [51], and this is shown us-
ing erasure and Gaussian test channels, respectively. Similarly, the only two in-
stances of the CEO problem for which conclusive results are available at all rates
are the erasure [44] and Gaussian [50] ones, and again the optimal schemes use
erasure and Gaussian test channels, respectively. For the quadratic Gaussian
version of the one-helper problem [52], Gaussian test channels are known to
achieve the entire rate region. This suggests that erasure test channels might
be optimal for the erasure version, yet we shall see that they are not in general,

even if the decoder’s goal is to reproduce X losslessly.

52



63

Y Vy(€)
1-¢
+ a
1/2
€
0
€
1/2
- b
1-¢

Figure 3.6: A family of symmetric test channels

Specifically, we show that for some rate constraints R, on the helper, the
alternate family of test channels V,(¢) depicted in Figure 3.6 meet the helper’s
rate constraint while allowing the primary encoder to use less rate. The opti-
mal test channel for the lossless one-helper problem, given a rate constraint R,
on the helper, is given by the optimal solution to the following optimization

problem [33]:

min H(X|V) (3.10)

p(vly)

s.t. I(Y, V) S RQ

XYV

If we restrict the minimization to the family of channels V;(¢) and the class of
erasure channels V,(g), then it suffices to show that given a rate constraint R, on
the helper, the optimal H (X |V}) is smaller than the optimal H(X|V;). Figure 3.7
depicts the optimal H (X |V}) and H(X|V,) against R,. Notice that for low values
of Ry, H(X|V,) is lower than H(X|V.), signifying that erasure test channels are

the worse of the two families of channels.

The superiority of the Vj(¢) test channel can be understood as follows.
Define a Bernoulli random variable F such that £ = 1 when Y is erased

and £ = 0 when Y is not erased. Since E is a function of Y, we have
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Figure 3.7: Plot of H(X|V;) (solid) and H(X|V.) (dashed) against R, for p = 0.1.
For low values of Ry, H(X|V;) is smaller than H(X|V,).

I(Y;Vi(e)) = I(Y, E; Vi(€)) = I(E; Vi(e)) + I(Y; Vi (€)| E). Likewise, I(Y;Ve(q)) =
I(E;V.(q) + I(Y;Vo(q)|E). Now I(E;Vy(€)) = 0, i.e., V,(€) communicates no in-
formation about whether Y is erased. In contrast, I(F;V.(q)) > 0, i.e., erasure
test channels expend positive rate transmitting information about the location
of erasures in Y'. This information is not pertinent to the problem of recon-
structing X, and is therefore wasteful. Of course, when € > 0, X can never be
determined with certainty from the output of the V;(¢) channel. If the goal is
to reproduce X' from the helper’s codeword, then the V;(¢) would be a poor

choice. Here, however, the helper’s objective is simply to minimize H(X|V).

Thus the erasure test channel is suboptimal, although Figure 3.7 shows that
the benefit of using the alternate test channel V;(¢) is small. Indeed, numerical
solution to (3.10) for various problem instances suggest that erasure test chan-
nels are very nearly optimal and are therefore sufficient in practice. Showing

this rigorously is an interesting problem for future work.
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CHAPTER 4
LOSSY SOURCE CODING WITH BYANTINE ADVERSARIES

4.1 Problem Formulation

Let {X;}:°, be ani.i.d. source, with the random variables X; taking values in the
(possibly infinite) alphabet X'. There are n encoders, ¢ of which are traitors, that
observe X' and transmit a message to a decoder, which then attempts to recon-
struct X' from the received messages up to a specified distortion. The traitors’
goal is to maximize the expected distortion in the decoder’s reconstruction, and
they choose their messages in order to fulfill this goal, with full knowledge of
X!, the other n — 1 messages, and the decoder’s decoding strategy. The number
of traitors, t, is known to all the encoders and the decoder. However, their loca-
tion among the n encoders (i.e., which of the n encoders are traitors) is unknown
to the honest encoders and the decoder. Moreover, the traitors can observe X'
and then decide which encoders to take over. The traitors’ location among the
n encoders and their actions can therefore be different for different source se-

quences.

Let X denote the reconstruction space, with an associated distortion measure
d: X xX — R. Let NV = {1,...,n}. Acode (fi,..., fn,g)is a collection of en-
coders f;: X' — {1,...,M"},i € N, and a decoder g : []"_{1,..., M"} — XL
A rate-distortion vector (Ry,..., R,, D) is said to be achievable if for all suffi-
ciently large [, there exist encoders f; and a decoder g such that

1

7 log Mi(l) for all ¢, and

R; >
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l
1
D>E | max max d(X;,g(Cy,...,C,))| , where C; = fi(X') Vi € H.

HcN  Cge
|H|=n—t t=1

Let RD denote the set of achievable rate-distortion vectors, and let RD denote

its closure. Moreover, let R(-) denote Shannon’s rate-distortion function.

Definition 13. RD* = {(Ry,...,R,,D) : VS C N, [S| = n —2t,>, s Ri >
R(D)}.

Note that RD" is the factor-of-2 region. The following theorem, proved in

the next section, shows that RD" is achievable.

Theorem 14. Suppose there exists a reconstruction sequence X, € X' such that

d(z!, X}) is finite for all ' € X'. Then RD* C RD.

4.2 A Separation-based Achievability Scheme

The achievability scheme we present in order to prove Theorem 14 consists of
two stages: rate-distortion quantization and adversarial error correction. Our
coding scheme separates the lossy source coding part of the problem from the
adversarial error correction part. The lossy source coding part is taken care of in
the first stage. The second stage deals with adversarial error correction, treating
the quantized sequences generated in the first stage as a message to be transmit-
ted over a channel with adversarial errors. The first stage corresponds to source
coding (rate-distortion quantization) and the second stage corresponds to chan-
nel coding for transmitting the quantized sequences from the first step over the
non-stochastic, packetized, adversarial channel depicted in Figure 4.1, where

the original message W is transmitted to the decoder in the form of n packets,
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t of which are corrupted by traitors. Source-channel separation dictates that re-
liable communication can occur as long as R(D) < C, where C' is the capacity
of the channel. In Section 4.6 we show that the capacity of the channel shown
in Figure 4.1 is in fact ming s—,—2¢ Y ;e R With source-channel separation, re-
liable communication can occur as long as R(D) < ming s—j,—2¢ Y _;cq, Which is

the statement of Theorem 14.

Encoder 1 Rl

‘Iv Encoder 2 < ﬁ'

Decoder

R,

Encoder n

Figure 4.1: A non-stochastic, packetized adversarial channel where the original
message is transmitted as n packets, ¢ of which are corrupted by traitors.

Proof of Theorem 14. Choose ¢ > 0, § > 0, and 0 < o < (n — 2t)e. Given the
source distribution p(z), fix p(i|z) such that I(X; X) = R(D). Compute p(z) =
22 P(x)p(]2).

Rate-distortion quantization: Fix a blocklength [, and generate a codebook
C consisting of 2(E(?)+) sequences X' drawn randomly and i.id. from the

marginal distribution p(#). Index the sequences in C by w € {1,...,2/(RD)+e)},

Random binning: For all i € N, Encoder i bins the 2(f(P)+2) gsequences in C

uniformly and independently into 2/(%i*9 bins.

Encoding: Observe a length-I source sequence X' and find a w such that

X!, X!(w)) are distortion typical [33, p. 319]. If there is more than one such
yp p
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w, pick w to be the least one. If there is no such w, set w = 1. Let b; = f;(X'(w))

be the bin index of X*(w) at Encoder i. Encoder i transmits b; to the decoder.

Decoding: For each set of n — ¢t messages, the decoder attempts to generate a
reconstruction of X'. In particular, for H C N, |H| = n —t, the decoder searches
the bins indexed by b;, i € H, for a sequence X!, such that f;(X%) = b, for all
i € H. If there is exactly one such sequence X% in the bins indexed by b;,i € H,
set X!, to be the reconstruction for the set H. If there is no such sequence, or

there is more than one such sequence, set X}, = ().

Consider now the () sequences X, the decoder generates for H C N, |H| =
n — t. If there exists exactly one sequence X' such that X!, = X" for all X}, # 0,
output X' as the reconstruction of X'. If X}, = § for all H, or if X}, # X}, for

some H,, Hy, C N, output Xé as the reconstruction.

Error analysis: There is at least one set  of n — ¢ encoders that are all hon-
est. By virtue of the encoding strategy, there is guaranteed to be at least one
sequence common to all the bins indexed by b;, i € H. If there is only one
such sequence (and this would be the true quantized sequence X?), the decoder
would output this sequence as the reconstruction for H. If, however, there is
more than one sequence common to all the bins, then the decoder would set

X}l{ = (). Define the error event

Fy: XY #0and XY, # X' VH e N, |H| =n —t.

Define £ = {X}, = 0} U (U, Fu). Observe now that since there are ¢ traitors,
any set H of size n — t has at least n — 2t honest encoders. Denote the honest
encoders in H by Sy. Note that the encoders in Sy will send bin indices cor-

responding to the true quantized sequence X'. Denote by Ej,, the event that
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the bins reported by Sy contain more than one common sequence. Then Ef§
is the event that the bins reported by Sy contain exactly one common sequence
(which would be X%). If E§,. occurs, then no matter what the traitors S§ N H
do, the decoder will output either X' or () for H (this is because if the traitors
choose to send the bin indices for X!, then the decoder would find X! in all the
bins in H, and therefore output X! ; if however, the traitors choose to send bin
indices for a different sequence, then the decoder would not find that sequence
in at least one of the bins reported by the honest encoders in Sy, and will there-
fore output (). Thus it is evident that 'y will occur only if Eg, occurs. Hence

PI‘(FH) < PI‘(ESH).

Now let f;(fi(X!)) denote the preimage of the message that the i encoder
sends for X'. Define Ey = |(,cs fi " (fi(X"))| # 1. Thus EY is the event that
the bins corresponding to the messages sent by the encoders in S do not contain

exactly one common sequence. Notice that Es,, C (g g E% for all H, and

=n—2t

therefore £ C g 5= o Es-

Suppose now that for any set S of n — 2t encoders, ) ..o R; > R(D). We

bound Pr(F) as follows. By the union bound,

PrE)< Y Pr(Bl)

S:
|S|=n—2t

= Y PrEXFeC X AKX [(X) = f(X) vies)

S:
|S|=n—2t
=>"p(C) Y PrAX'eC, X'£X': fi(X') = f(X")Vie S|c=C)
|S|=€i—2t
=> p(C)> pa') Y PrEX'ec, X'#£i: fi(X') = fi(d) Vie S|X' =a!,c=C)
C !

S:
|S|=n—2t
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<> p(0)> plah) Z ZPrf, = fi(@") Vie S|X'=4',c = O)
C

\S\:n—Qtjl;éil
<Y pO) Y pa) Y (O B
¢ v \S|mn—at
_ (R(D)+0)9—1 e g(Rite)
2_p(C) ) _pla') Z 2
¢ o 1|2t
< Zp< Zp Z 2~ I((n—2t)e—a)
¢ v \S|mn—at
Z Zp < ) I(n—2t)e—a)

C

— n 2—1((n—2t)e—a)
2t ’

where the last inequality follows because > . ¢ R; > R(D). Notice now that

ies
if E° occurs, then the decoder outputs the true quantized sequence X' for H,
and for every H, H # H, the decoder either outputs X' or (). Thus the decoder
outputs X! as the reconstruction of X'. If, however, E occurs, then the decoder
reconstructs the wrong quantized sequence. Let [ be sufficiently large so that,

by the rate-distortion theorem, the distortion when E° occurs is less than D + §

when averaged over X' and C. We have

!
1
E;,Ex | max max— d( X, Xt) < (D+0)(1—=Pr(E)) + dnas Pr(E)

HcN  Cge
|H|=n—t t=1

<D d dmax
<D0+ duu(

”)2—1((n—2t)e—a)_

The right hand side can be made smaller than D + € by letting | — oo and then

a,d — 0. Thus there exists a code that achieves (R; +¢,..., R, +¢,D+¢). O
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4.3 Converse for Uniform Binary Sources with Hamming Dis-

tortion

In this section, we prove that the achievability scheme in Section 4.2 is optimal
for a uniform binary source with Hamming distortion. For Hamming distortion,
given the binary source alphabet X’ = {+, —}, the reconstruction space X = X =

{+, —}. The Hamming distortion measure d : X x X — {0, 1} is given by

1 otherwise.

Theorem 15. For a uniform binary source and Hamming distortion measure, RD* =

RD.

Given a target distortion D for some rate vector in RD", the Shannon rate-
distortion function for a uniform binary source with Hamming distortion is
given by R(D) = 1 — h(D), where h(-) is the binary entropy function. There-
fore, in order to prove Theorem 15, we need to show that for any subset of
encoders S of size n — 2t, D > h™'(1 — }"._¢ R;). Before proving Theorem 15,
however, we shall state and prove a lemma which provides an upper bound on
the number of binary strings of length ¢ such that any two strings differ in at
most 2(§ places, where § < 1/2. In proving this lemma, we shall make use of a
result of Kleitman [66], earlier conjectured by Paul Erd6s: the number of binary
strings of length ¢ such that any two strings differ in at most 2k places is at most
>0 (5):

Lemma 3. For any set S of binary strings of length {, where |S| > 2, there exists a pair
of strings in S that differ in at least (2¢h™" (3 log(|S| — 1)) — 1) places, where h™" is

the inverse of the binary entropy function.
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Proof. Let§ = ™" (11og(|S| — 1)). Thus § < 1/2 and |S| — 1 = 2(®). We have

|S]>|5] =1

= (S| = 1)(6 +1—6)

L

—(s1- 03 (§)ea-or

1=0

143

= (IsI-1y

> ()
(0
> 5103 (a-or (125)
(-
(0

~ e
S |
)

(\5!—1)2

[e=]

143

— .
—

= (IS - 1)
=0
2]

By the aforementioned result in [66], Y .~ L] (%) is the maximum number of binary
strings such that any two strings differ in at most 2[¢J]| places. Since |S| >

Zi{% (f), there must exist a pair of strings in S that differ in at least 2| (6] + 1 >

2066 — 1) +1 =206 — 1 places. O

We are now in a position to prove Theorem 15. Let (fi, ..., f,,g) be a code
that achieves the rate-distortion vector (Ry,...,R,,D),and letS = {1,...,n —
2t}. Define, for any given source sequence 7', the set M (z!) = {&' € X' : fi(3') =
fi(#") Vi € S}. Let M., cs € {1,...,2!%ies ®i} be the values taken by the set

M(X'"). Thus M, is the pre-image of the set of codewords cs. Since there are
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2! 2ies i gets of codewords covering 2! sequences, we have

2l ies Ri ol
- - § |Mc | N — 2l(1_zz'e$ RL)
9l Dies Ri = S 9l Dies Ri
s=

Suppose that the set S contains honest encoders only, and the traitors con-
stitute either the set of encoders 71 = {n — 2t + 1,...,n — t} or the set 7, =
{n —t+1,...,n}. Suppose further that (2')! is the observed source sequence,
and the encoders in S send codewords ¢ to the decoder. Thus (') € M. Since
there are [ M, | sequences in M., Lemma 3 tells us that there exists a sequence
(z”)! € My, such that d((«')", (x”)") > 216 — 2 bits, where § = ™! (] log [ M| — 1).
Suppose 7; is the honest set, and the encoders in 7; send the codewords corre-
sponding to (2)!. Then the set 7T, of traitors could send codewords correspond-
ing to the fake sequence (z”)". Thus the decoder would receive the set of mes-
sages (s, cr; (¢'), ez (2”)). Note, however, that the same set of messages would
be received by the decoder if (z”)! were the true source sequence and 7; rather
than 7; were the traitorous set, and the traitors decided to report (')’ to the de-
coder. In either case, the decoder must output the same reconstruction, say z,
since it cannot distinguish between the two cases. We thus have the following

sequence of inequalities:

> max Y d(z},2'¢) + max Z d(zy,z})) + Z max max d(Xy, Xy)

S R [ e, =12 O i
‘s
(@)t (")
l ! 1
> ) dwh )+ dal )+ Y, maxmaxg )y d(X, X)
t=1 t=1 IZGIW , v t=1
wlyﬁ(x’)l,zsx”)l
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!
1
g (x, ) Z max max - d(X,, X;)

vy i=1,2 CT p—t
‘s
wl?g(x/)l’(z//)l
1 1 .
-1
> 2lh (7log | Mo | — 1) -2+ E max max - E d( X, X3),
zleM t=1
‘s
;El#(x’)l,(a;”)l

where the penultimate inequality follows from the triangle inequality. We can
now remove (z') and (z”)" from M, and apply Lemma 1 to the remaining
| M| — 2 sequences. We can do this iteratively, stopping when 3 or fewer se-

quences remain. This yields the lower bound

M |
l L 2S J_l 1
maxmax » d(zy, ) > (2lh_1 <— log(|My.| — 1 — 2k)) - 2)
i=1,2 Cr l s
1’ZEM/ tot=1 k=0
M | -2
S 1
> (lh ! (7 log(| M| — 1 —j)) 1)
=0
QlZzESR _ ol ZZ' R,
Let N=>7 "1 ([M|—1)=2"—2"2ies™. Now
Ex maxmax l Zd Xt,Xt ]
1
> Ex |maxmax — d(Xt,Xt)]
i=1,2 C7, | —
QZZzESR 1 l
Z Z max max - d(axy, )p(x!)
1=1,2 CT
T EM t=1

ol Xies Bi |Mcg|—2

1 1 N
> > g (i (Frostiatg = 1-0)) <1) -2 5
cs=1  j=0
(@) 1 olYies Ri [Meg|—2 1 ol Yies Ri |Mceg|—2 1
2 (1 SIS PR S S
cs=1 7=0 cs=1 =0
ol Yies Ri
0 (1 (Mgl = 1) Meg] = 1)~ (el =D\ 1) i Lyt
- { ] In2 N )
cs=
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N N 1 1
= -1 _ lzz SRi— _ —1 =
h (ZN2 C s 8 (sziesm) zm) 2N =7

1 1 1
—h [ Zloe(2 0 2Xies Bi) 1) — ——_ ) (1 — 27 l-Xies Ri)y _ =
7t (a0 - 1) - ) ) 1

where (a) follows from the convexity of h~!(x) in z, (b) follows from the fact
that > Inz > mInm — m and because h~!(z) is nondecreasing in z, and (c)
follows from the convexity of xlogz in z and because h~'(z) is nondecreasing

in z. Letting | — oo completes the proof.

4.4 Converse for Gaussian Sources with Squared Error Distor-
tion
In this section, we prove that the achievability scheme in Section 4.2 is optimal

for a Gaussian source with squared error distortion. The squared error distor-

tion measure d : R x R — R" is given by d(z, %) = (z — %)%

Theorem 16. For a Gaussian source and squared error distortion measure, if there

exists a reconstruction symbol X such that E[d(X, X)] is finite, then RD* = RD.

Given a target distortion D, the Shannon rate-distortion function for a Gaus-
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ol Zzesﬁ ol Xies Ri
M. | —1 1 _
( Mg — D)log(|Mes| = 1) = Y 1‘;—2 S E 'N -
cs=1
1 1 1
>h = 1)1 ——— | 27N - =
( N Z (1Mol = 1) log(|Mg] — 1) = = l
1 1 2l Xies Rq 1 2l ies R;
R lZz Rl J— [ —
N = 2lzz‘es R; 221 (|MCS| 1> IOg ol ies Ri 231 (|
cs= cs=

l
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sian source with squared error distortion is given by R(D) = $logo?/D, where

o? is the variance of the source. Therefore, in order to prove Theorem 16,

we need to show that for any subset of encoders S of size n — 2t, . ¢ R; >
%log o?/D. Let (f1,..., fn,9) be a code that achieves the rate-distortion vector
(Ri,...,R,, D), and let C; be the codeword transmitted by the i*" encoder. For

any S € N, |S| = n — 2t, we have

> R > %ZH(Q)

€S i€S

1
> 7H(CS)

1
> 7](XZ;CS>
1

= (XY = Jh(X'|Cs)

1 1
=3 log 2mec? — 7h(Xl]C’5).

Thus, in order to prove Theorem 16, it suffices to show that 1h(X'|Cs) <
tlog2meD. Let Hy and H, be two sets in A such that [H\| = [Hy| = n — ¢

and H, N Hy, = S. Define

I
1 N
Qp = {' : maxmax - d(Xy, Xy) < D}.

i=1,2 Cpe
1

For every codeword cs, let Qps = {2' € Qp : fs = cs}. Then

PI'(Xl € QD/) = ZPI‘(CS = CS) Pl”(Xl < QD’|CS = Cg)

cs

<Y Pr(Cs = cs) Pr(X' € Qi |Cs = cs)

cs

= PI‘(Xl S QD’|CS>- 4.1)

Since the code achieves distortion D, we have

!
1 A
D>E | max max- » d(X;, X;)

HcN  Cge
|H|=n—t t=1
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I
1 X
> E | max max 7 d( Xy, Xt)]

i=1,2 Cge —
7 =

I
% 1 R
:/ Pr [maxmax— d( X, Xi) > D’] D’
0

i=1,2 Cpe —
> / Pr[X' ¢ Qp/]dD’
0
Z / PI‘ [Xl ¢ QD’\CS] dD/, (42)
0

where the last inequality follows from (4.1).

Let D = inf{D': X' € Q D'jcg }- Since the set Q. is non-decreasing in D',

the event {X" ¢ Qp|c,} is identical to the event {D > D'}. Hence from (4.2),

D > / Pr(D > D')dD' = E(D).
0

Fix A > 0and let Dy = A [%1 be a quantized version of D. Observe that since
DA < D + A/
E(DA) <E(D+A) <D+ A. (4.3)
We then have
1 ! 1 ! 2 Lol 7
T(X'|Cs) = 7h(X'|Cs, Da) + 71(X7; Da|Cs)
1 ~ |
< 7h(leCs, Da) + 7H(Da). (4.4)

Consider the first term in (4.4). Note that D < Da,s0 X' € Q DalCs* Therefore,

by the uniform bound on entropy,
h(X'|Cs, Da) < Ellog Vol(Qp, |Cs))- (4.5)

Now consider the second term in (4.4). Since D, is quantized, it can be shown

using a maximum entropy distribution result that

- E(Da) A
1(Da) < 22 h(E([?A))’ ®.6)
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where h(q) = —qlogq — (1 — ¢)log(1 — ¢) is the binary entropy function. The

right hand side of (4.6) is increasing in E(D,), so using (4.3) gives

H(Da) < DZAh (DﬁA) . 47)

Now consider two sequences 2!, 2" € Qp/.;. Suppose the decoder receives
the set of codewords (cs, cuy\m, = fr\m (%), cap i, = fu\m (). First observe
that this set of messages could have been produced if X! = z! and H; were
the set of honest encoders. Then the nodes in H,\H;, which are all traitors,

could send cy,\g,. Since 2t € Qpi.., the estimate 2! must by definition satisfy

less
7d(z!, ') < D'. However, the same set of messages could have been produced if
X! = 2" and H, were the set of honest encoders, and the traitors H,\ H, decide
to send cp,\p,. Since the decoder produces just one estimate for a given set of

received codewords, the very same estimate 7!, by the same reasoning, must

satisfy 7d(z", #') < D'. Hence we have

t=1
1
S ) - a0 < D,
t=1
which can be rewritten as

||z — Z||]2s < VID!
||[E,—JA7H2 S \/lD,.

Therefore, by the triangle inequality, for any z', 2" € Qp/ s, ||z — 2'||2 < 2VID'.

Thus Qp/|.s has diameter at most 2v//D’. The following lemma from [67] upper

les

bounds the volume of subsets of R! as a function of their diameter.

Lemma 4. The volume of any subset of R! is no more than that of the I-ball with the

same diameter.
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Lemma 4 tells us that the volume of Q)p/|.. is no more than the volume of

les

an [-ball with radius VID'. The latter can be shown to be less than (27weD’ )%.
Combining this with (4.5) and (4.7) gives

— < — 2 —
lh<X |Cs) < lE[log(27TeDA) |+ N h <D+A)
1 - 1D+ A A
< — Z
<3 log(2meE[DA]) + N h (D—i—A)

—_

1D+ A A
<= -
< —log(2me(D + A)) + N h <D+A) :

[\

where the penultimate inequality follows from the concavity of logz in z and
the last inequality follows from (4.3). Letting [ — oo and then A — 0 completes

the proof.

4.5 Uniform Binary Sources with Erasure Distortion

In this section, we show that for uniform binary sources with erasure distor-
tion, the factor-of-2 rule is pessimistic, and there exists a coding scheme which
can achieve points outside the rate region proposed in Section 4.1. We will con-
sider a special case of the 3-channel Byzantine multiple descriptions problem
in which one of the channels transmits at rate R and the other two transmit at
rate 1. One of the three encoders is a traitor. We shall henceforth refer to this
special case as the R — 1 — 1 problem. Assume without loss of generality that
Encoder 1 transmits at rate R and Encoders 2 and 3 transmit at rate 1. Thus
Encoders 2 and 3 send the complete source sequence X ' to the decoder, since
their respective channels are not rate-constrained. Given the source alphabet

X = {+, —}, define the reconstruction space X = {+, —, 0}, where 0 denotes the
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erasure symbol. The erasure distortion measure is given by

dz,2) =491 ifz=0 (4.8)

oo otherwise.

\

Let RD.,.s be the set of achievable rate-distortion pairs as defined in Section 4.1,

and let RD,.,,, denote its closure.

Theorem 17. RD,,.. = {(R, D) : D > 2h~*(1 — R)}, where h™'(-) is the inverse of

the binary entropy function h.

Proof. (Achievability) Note that 2h'(1 — R) < 1 — R, which is the distortion-
rate function for a uniform binary source with erasure distortion. We will show
that for any D and any R > 1 — h(D/2) (equivalently D > 2h~(1 — R)), the
rate-distortion pair (R, D) is achievable. In particular, we will show that for any
€ > 0, there exists a code with rate less than R + ¢ and distortion less than D + e.
Define D = D/2, and let R > 1 — h(D). Let p(Z|z) denote a binary symmetric
channel (BSC) with crossover probability D. We construct an encoder similar
to a rate-distortion encoder for a binary symmetric source (BSS) with Hamming

distortion.

Random codebook generation: Compute p(z) = > p(z)p(Z|r). Fix a block-
length [, and generate 2'% + 1 sequences X' drawn randomly and i.i.d from the
marginal distribution p(z). Assign each codeword an index w € {0, 1,...,2%}.

The codebook is revealed to the encoders and the decoder.

Encoding: Choose § > 0. Encoder 1 observes a length-I source sequence X,
and encodes X' by w, w # 0, if X! and X'(w) are jointly typical, i.e., the Ham-

ming distance between X' and X'(w) is less than I(D + ). If there is more than

70



81

one such w, the smallest is used. If there is no such w € {1, ..., 2%}, Encoder 1
sends w = 0. Since [R + 1 bits are required to describe the 2'% + 1 indices, the

rate of this code is R + 1/I. Encoders 2 and 3 send the whole sequence X".

Decoding: If Encoders 2 and 3 send the same source sequence X', then X!
is the true source sequence, since at least one of Encoders 2 and 3 is honest.
Output X! = X' as the reconstruction. If Encoders 2 and 3 send different source
sequences, then one of them is the traitor, and Encoder 1 is honest. In this case,
if Encoder 1 sent w = 0, output the all erasure string. Otherwise, if one of the
sequences sent by Encoders 2 and 3 is not jointly typical with the index sent by
Encoder 1, then that encoder is the traitor. Output the sequence sent by the other
encoder as the reconstruction. If, however, Encoders’ 2 and 3 sequences are both
jointly typical with the index sent by Encoder 1, output a reconstruction X' such
that X' has the same value for the bits for which Encoders’ 2 and 3 sequences

agree, and has erasures for the bits for which Encoders’ 2 and 3 sequences differ.

Distortion analysis: Let us consider the possible traitor locations and actions
for each source sequence. If the traitor chooses to take over Encoder 1, then
Encoders 2 and 3 will send the true source sequence and the decoder will be
able to decode correctly regardless of the source sequence. Suppose the traitor
takes over one of Encoder 2 or Encoder 3. Assume without loss of generality
that the traitor takes over Encoder 3. Then Encoder 2 will send the true source
sequence, and Encoder 1 will send an index that is jointly typical with the true
source sequence. If the traitor sends the true source sequence, the decoder will
be able to decode correctly, so suppose the traitor chooses to send a spurious
sequence. If the fake sequence sent by the traitor is not jointly typical with the

index sent by Encoder 1, the decoder will output the sequence sent by Encoder
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2, which is the true source sequence. Suppose now that the traitor sends a source
sequence which is jointly typical with the index sent by Encoder 1, but different
from the true source sequence. Then the decoder will output a partially erased
reconstruction based on the bits that are common between the true sequence
and the fake sequence. Thus, for any source sequence for which Encoder 1
transmits an index w # 0, the only strategy for the traitor which will yield non-
zero distortion is to send a source sequence which is jointly typical with the
index sent by Encoder 1, but different from the true source sequence. It therefore
makes sense for the traitor to pursue this strategy for every source sequence. In
this case, let X} and X! be the true and fake sequences respectively. Since both
X% and X! are jointly typical with X'(w), where w is the index sent by Encoder
1, the Hamming distance between X*(w) and X! (and X*(w) and X}) is at most
I(D + §). By the triangle inequality, therefore, the Hamming distance between

the true sequence X} and the fake sequence XY is at most 2/(D + ).

Let P, = {2 € X! : the encoder transmits the index w}. We thus have

l

1

zle

2l !
1 ; I
B Z Z [aglla§3} T g A, xt)] p(r)

szl‘lERu
=2 [f?} T Zd ] g
zlePy
2lR l
l
35 | e 50 )
w=1glep, t=1
olR
<D Lpa)+) ) > 2D+ o)),
zlep, w=1glep,

since, when w = 0, the decoder outputs the all-erasure string (which yields

distortion 1), and when w # 0, the traitor sends a fake sequence X! which differs
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in at most 2/( D+6) bits from the true source sequence, as described earlier. Thus
the distortion when w # 0 is at most 2(D + §). Recall that the set P, (the set of
sequences for which the encoder transmits w = 0) is the set of sequences for
which no typical codeword can be found. Let P, be the total probability of these
sequences. The total probability of the rest of the sequences can be bounded by
1. We thus have

l 2lR
1
Ex | max max 5 dXt,Xt < E 1-p(x') + E E D+5 @)
aef123} Ca | 4= et it

<1-P.+2D+6)-1

=92D+25+ P..

Since we are using a rate-distortion code of rate R > R(D) = 1 — h(D) for a BSS
with Hamming distortion, P., averaged over a random choice of codebooks, can
be made arbitrarily small as [ — co. Therefore, there exists a sufficiently large
blocklength I such that 1/l < e and 20 + P. < e. Thus there exists a code with

rate R+ 1/] < R + e and average distortion less than 2D + ¢ = D + . O
We will now prove the converse to Theorem 17.

Proof. (Converse to Theorem 17) Let (f,g) be a code that achieves the rate-
distortion pair (R, D). For this code, define, for any given source sequence z!,
the set M(2!) = {37! € X' : (@) = f(a")}. Let M;, i € {1,...,2'%} be the values
taken by the set M(X'). Thus M, is the pre-image of the i"" codeword. Since

2lR

there are 2/ codewords covering 2' sequences, we have

olR

I(1-R)
2lR Z | =2 ’

Suppose Encoder 3 is the traitor, and suppose that unless the pre-image of the

codeword sent by Encoder 1 contains a single source sequence (in which case
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Encoder 3 sends that source sequence), Encoder 3 always sends a fake source
sequence X' which is in the pre-image of the codeword sent by Encoder 1 but
is different from the sequence X' sent by Encoder 2 (which is the true source
sequence). The true and fake sequences will differ in at least one bit. The situ-
ation, from the point of view of the decoder, is identical to the situation where
X! is the true source sequence, X l'is the fake source sequence, and Encoder 2,
rather than Encoder 3, is the traitor. Since the distortion is maximized over all
traitor locations and actions, the decoder cannot output either + or — for any
bit in which X! and X' differ, since outputting either would result in infinite
distortion under one of the two aforementioned scenarios. The decoder, there-
fore, must output an erasure for any bit in which X! and X' differ. Given a

L€ M;, let Dy, (2') be the maximum Hamming distance of z! from

sequence x
any sequence in M;. In the extreme case that | M;| = 2!, i.e., all sequences map to
the same codeword, the traitor will be able to find a source sequence differing
in [ bits for every sequence. Thus Dy, (z!) = [ for all 2!, and the decoder would

be forced to output the all erasure string for every source sequence, resulting in

a distortion of 1.

Now suppose |M;| < 2! for all 7. Since there are | M;| source sequences in M;,
Lemma 3 tells us that the traitor will be able to find a sequence z!, € M; such
that Dy, (2},) > 206 — 2 bits, where § = h™'(7log|M;| — 1). We can remove z!,
from M; and apply Lemma 1 to the remaining |M;| — 1 sequences. Doing this
iteratively yields the lower bound

[M;|—2

> Dyah) = > (2lh‘1 <%10g(|Mi| -1 —j)) - 2) .

Z‘lEMi Jj=0
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olR

Let N = > (]M;| — 1) = 2! — 2. Now

Ex

I

1 N

acling) Ca 1 ; d(Xe, Xt)]
I

1 ~
> Ex mchjtzz;d(xt,xt)]
2ZR 1
> Z > YDMi(xl)p(r’)
=1 gleM;
olR | M;|— 2
1 . ., N
Z > 7 (2lh (7log(|Mi|—1—])) 2) 27
i=1 j=0
1 olR | M;|—2 1 QLR | M;|—2 9
1 . —1 -1
22h TZ Z log(|Mi| =1 -j) -+ | 2 N—Z Z 72
i=1 j=0 =1 j=0
e~ (M = )M — 1) = (IMi] = 1)\ 1 2 e
QoL - — ARV R I R 2N (M| — 1
(;;( R R W)
1 (& 2 —1) 1 2
- M;| — Dlog(|M;| — 1 PPl 2 ) 2 'N=2. 97N
(z ;(! | — 1) log(|M;| — 1) — Z:; 03 N ;
2lR 1 2
> op~ ! (|M;| — 1) log(| M; —— 2N - =
(ZNZ R e e I
2lR 2lR 1 2
>2* (|M;] —1) |1 (M| —1) | = — | 27'N - =
> 2h ( 21RZ| | 0g QIRZ’ | 1o 2 I
1 N 1 9
=2n"! A .
(lN 21R 108 51m zmz) l
1 9
_ I1=R) _ 1) _ 1 (1-R) 4
=2h~ ( log (21 1) _lan)( 2 ) T

where (a) follows from the convexity of h~!(z) in z, (b) follows from the fact
that > Inz > mInm — m and because h~!(z) is nondecreasing in z, and (c)
follows from the convexity of xlogz in z and because h~'(z) is nondecreasing

in z. Letting [ — oo completes the proof. O
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4.6 Channel Coding Theorem

In this section we make precise the fact that separation breaks for erasure dis-
tortion. We begin by proving a capacity result for the channel depicted in Fig-
ure 4.1. A set of messages, indexed by {1,...,2'%} is to be transmitted over
the channel. Encoder i encodes the message using the encoding function f; :
{1,...,2"8} — {1,... 2%} If i € H, then Encoder i’s codeword is C; = f;(W),
where W is the message to be transmitted. If ¢ € H*, then Encoder i can choose
C; arbitrarily, with full knowledge of W and the other n — 1 codewords. The
decoders employs the decoding function ¢ : [ {1,...,2"%} — {1,... 2%}

produces an estimate W = g(Cy, . .., C,,) of the original message V.

For the message w, define the indicator function

~

. 0 ifw=w
lf,g(w,H, CH ) =

1 ifw#w
given that the set of honest encoders is /I and the traitors transmit the code-

words C*°. For the code (f, g), we define the average probability of error as

olR

HC
fig9) = IRE r}rllcaif rggxlf,g(w7H,C ).

Definition 14. A rate R is said to be achievable if there exists a sequence of codes (f, g),
indexed by the blocklength , such that P.(f,g) — 0as — ooc.

Theorem 18. All rates R such that R < min SICN | >
S=|n—2t

minS_S'C/th| Y ics then Po(f,g) — 1asl — oo.

R; are achievable. If R >

i€S

The proof of achievability for Theorem 18 is very similar to the proof of The-
orem 14 and is omitted. We prove the converse below. It is worth noting that

Theorem 18 admits a strong converse.
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Converse to Theorem 18. Suppose R > "~ * R;and let T; = {n—2t+1,...,n—t}
and 7, = {n —t+1,...,n}. Fix a code (fi,..., fn,g) and consider the first
n — 2t encoding functions fi,..., f,—2. Define M(w) to be the set of source
sequences such that for all w’ € M(w), f;(v') = f;(w),i=1,...,n—2t. Note that
given a random message IV, the range of the random variable M (W) partitions
the original set of messages {1,...,2"}. Since the sum rate of the first n — 2¢
R;

. —2 ey . n—2t
encoders is >.7~* R;, the number of partitions is 2! >i=: We can therefore

label the partitions as M;, Ms, ..., M

ST R For each partition M;, we have

the following two cases:

1. there exists @ € M; such that if the encoders in 7; transmit f;(w) for all
i € Ty, then the decoder outputs W = b regardless of the messages trans-

mitted by encoders in 7;. We refer to w as a “leader” message.

2. for all w € M;, there exists a set of messages C;, ¢ € Ty, such that if the
encoders in 77 transmit f;(w) for all i € 7; and the encoders in 75 transmit

C;, i € Ty, then the decoder outputs W £ w.

We now argue that for any message in M, that is not a leader message, the
traitors can cause the decoder to make an error by outputting a different mes-
sage. If the first case holds, then the traitors simply have to take over the en-
coders in 7; and transmit f;(w), i € 7; where @ is the leader message. If Case 2
holds, then the traitors simply have to take over 7, and transmit the messages
that would result in an error at the decoder. We can also argue that if there is
more than one leader message in 1/;, then the traitors can cause an error for ev-
ery leader. More precisely, if @ and w’ are two leader messages, then the traitors
can cause an error for w by taking over 77 and transmitting f;(w’), i € 7. If there

is only one leader in 1/;, then, by the above argument, the traitors can cause er-

77



88

rors for all messages other than the leader. Therefore, at most one message for
every partition can be decoded correctly. Since there are 2' S B partitions, at
most 22" Fi can be correctly decoded. We can therefore compute the proba-

bility of error as follows:

olR

_ He¢
e X e mpl ACT)

j=1  weM; H=|n—t|

1

> ZR(QZR ol 327 ”R)
2

Y

which goes to 1 as [ — oo. O

Notice now that according to Theorem 18, the capacity of the corresponding
channel in the R — 1 — 1 problem is R. For source-channel separation, the con-
dition R(D) < R must hold. But the scheme proposed in Section 4.5 achieves
works for R(D) > R, which implies that the channel is being operated above
capacity. Even though operating the channel above capacity is useless from the
point of view of reliable communication, it appears to be beneficial from the
point of view of rate-distortion. Note that in the end the decoder has to choose
from two messages only, one of which it knows is the correct message. This is
not sufficient for reliable communication, since the decoder cannot unequivo-
cally determine which of the two messages is correct. However, the reduction
to two messages, one of which is correct yields benefits from the point of view
of rate-distortion since the two messages are constrained to be within a certain

distortion-typical set.
It is instructive to consider the R — 1 — 1 problem for the Hamming distortion
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case. Since separation is optimal in the Hamming case, we have R(D) < R (cf.
Theorem 14 and Theorem 15). Consider now the R — R — R problem, i.e., all
three encoders have rate R. Theorems 14 and 15 tell us that we must again have
R(D) < R. Thus in the Hamming case, the R — 1 — 1 and R — R — R problems
have the same rate region. This signifies that in the R —1—1 Hamming problem,
the extra rate available to the encoder from Encoders 2 and 3 is useless; the
same distortion could be achieved if Encoders 2 and 3 transmitted at the lower
rate R. This is because it is optimal for the decoder to output the quantized
sequence transmitted by Encoder 1 (which is the centroid of the corresponding
Hamming ball) even if Encoders 2 and 3 send the complete source sequence as
in the R — 1 — 1 problem. The adversarial channel reveals a lot of information
to the decoder through the source sequence that the traitor chooses to transmit,
since the decoder eventually receives two source sequences, one of which is the
true source sequence. However, this additional information is not useful at all
since all the decoder needs to know to make an optimal decision is Encoder 1’s

quantized sequence.

The erasure distortion measure, however, is more stringent than the Ham-
ming distortion measure, since it does not allow the decoder to make errors in its
reconstruction. For this reason, the decoder needs to be absolutely certain about
any non-erased bit it outputs in its reconstruction and output erasures for any
bit about which it is not certain. This is not the case with Hamming distortion,
since the decoder can always guess for any bit about which it is uncertain. In
order to to achieve the same distortion, the erasure distortion measure requires
the decoder to have more information than the Hamming distortion measure.
It turns out that the information revealed by the adversarial channel, which is

useless in the Hamming case, accounts for the additional information required
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in the erasure case. This allows Encoder 1 to transmit at a rate lower than the
erasure rate-distortion function by performing Hamming quantization instead
of erasure quantization, with the remaining information being supplied to the

decoder by the adversarial channel.
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APPENDIX A
CHAPTER 2: PROOFS

A.1 Preliminaries

We define a multi-variable mutual information as follows:

In(Xp: Xoy . s X)) = D(p(Xl,...,XK)HHp(XZ-)>

- ZK:H(XZ-) — H(Xy,..., Xk).

i=1
In particular, I;(X) = 0. The multi-variable mutual information, as defined
above, is a measure of the mutual dependence among K random variables and
is different from McGill’s multivariate mutual information [41]. We note the

following properties of I (Xi; Xo;...; Xk).

1. Ig(XE; . X5 ) > 0.
2. I( Xy 5 X)) = In(Xas - X)) H kg (F (X, - X)) Xt -5 X k),
where f(Xi,...,X,,) is a function of the random variables X,..., X,,,

m < K.

Remark: This property holds by symmetry for the general case when f(-)

is a function of any size-m subset of X1,..., Xg.
Proof.
]K<X1; Ce ;XK)
m K
=Y HX)+ Y HX)-H(Xi,... . Xp)
=1 i=m-+1
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— H( X1, X X0y, Xon)

= Ln(Xi5 5 X))+ > HX)

— H(Xma1y - XX, oo, Xy f( X, 00, X))

— HXpa1, - X (X1, o0, X))
=IL(X1;...; Xn)
+ Lk —m) (X1, X)) Xogas -5 X i),

where the solitary inequality holds because conditioning never increases

entropy. [

(X X X)) > (X f(XG); - XK ), where f(XG) s a func-
tion of the random variable X;. This is the data processing inequality for

the multi-variable mutual information and is a special case of Property 2.

A.2 Proof of Theorem 3

Let Dy < 1 — £ and rational. Let f;, i € N and g, K C N, K # 0, be a code

that achieves (Ry(Dg), D1,...,Dy,...,D,). Let Ry(Dy) be the rate of f;, i €

N. Consider endowing the source with an i.i.d. uniform distribution over X !
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for analysis purposes. From the proof of Theorem 7 (cf. (A.3) and (A.4)) and
using the fact that the worst-case distortion is no lower than the average-case

distortion, we obtain I (fs;...; fs,) =0

Let Xls be the reconstructed source string when the decoder has access to
the si" description only. By Property 3 of the multi-variable mutual information,
L(XLs.. XL ) < Ii(foi-- -3 fs) = 0forall S € NV, |S| = k. By Property 2 of
the multi-variable mutual information, I(X!;X%) = 0 for alli,j € NV, i # j, and
thus I(X,;; Xj;) = 0foralli,j € N, i # j,and t = 1,...,1. Now if any two of the
XZS disagree in a source symbol they reveal, then the resulting single-message

distortion is going to be co and the result follows trivially, so suppose that the

X! are consistent. Then by Lemma 1, we have

}E{lea;%[ det, Zt] n—1,

which implies

!
1 N —1 1
D; = max max [7 E d(:vt,Xit)] > n =1--.

iEN xlexl

This completes the proof.

A.3 Proof of Theorem 4

If R < Ry(Dy), then the sum rate of any & descriptions is strictly less than 1 — Dy,
and the source string cannot be reconstructed with distortion Dj. Thus the rate
of each description must be at least R, (Dj). Now, in light of the previous the-
orem, it suffices to show that for any (Ry(Dy), D1,..., Dk, ..., Dy) € RDuyorst,

if D, = 1—— then D, > 1 — ™ form < k. Let S = {s1,...,5:} and
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M = {s1,...,8n}. Let XlM be the source reconstruction when the decoder has
access to set of descriptions indexed by the elements in M. Then from (A.4) and

Properties 2 and 3 of the multi-variable mutual information, it follows that

[(XIM;XlSmH; o 7Xik) < [(Xl/\/[;meH; oo fs)

< Li(fsys--5 fse) =0,

and thus I (X4 X , Xs,t) = 0fort = 1,...,1. This implies that for

Sm41,ty 0

each t, the (n — m + 1) random variables { X (; X, .4 .- X5, ¢} are pairwise

independent, and therefore by Lemma 1,

n

l
1
+ )Ijlea)iil [7 ; d(xt, Xsmf)]

xlex! .
i=m+1

l
1
max [i ; d($t, X./\/l,t)

>n—m.

Since D; =1 — %, we have

1 1
e [7 Zd@t’xsw] <l-n

t=1

form +1 < i <n,and thus
1
e [z ;d@twl

n l
1
>n—m — max [7 tzl d(l’t, Xsi,t)]

i:erlxleXl
1
>n—m—(n—m)(1l——
n
n—m m
— =1-—,
n n

which implies

l
1
D, = max max [7 ;d(:ct, XW)] >1-— —.

IM]=m
This completes the proof.
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A.4 Proof of Theorem 5

Since m divides n, we can form n/m sets consisting of m messages each. Denote
these sets by My,..., M, /n, where M; C {fi,..., fu}, M| = m, and M; N
M; =0,4,5 € {1,...,n/m}, i # j. Since m < k/2, there exists a set S =
{s1,...,sk} of k messages containing M, and M; for some i,j € {1,...,n/m},
1 # j. Let Xﬁwi be the source reconstruction when the decoder has access to the
messages in M, only. By Property 2 of the multi-variable mutual information,

it follows that for the set S containing M; and M,

I(X03 X)) < Toe2m) (X Xl frs o Frin-2m1)

< [k(fsl;"';fsk) = 07

where f., ..., frik—am—1 € {fs1,-- s fsr.} \ {M;, M;}. By Lemma 1, we have

n/m
1 n
max [7 Zd('xt?XMivt)] Z E — ]_,

! Xl
i—1 <€ =1

and thus

1
>  max max lizd(l’t,XMi,t)]

This completes the proof.
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A.5 Proof of Theorem 7

The proof of the first part of Theorem 7 is simple. Let D;, > 1 — %. No excess rate
for every k descriptions implies that every description has rate Ry (Dy). If the
decoder receives m descriptions, then it receives a sum-rate of mR;,(Dy,) bits per
source symbol. Using the point-to-point rate-distortion function for a binary

source with erasure distortion, we get D,,, > 1 — mRy(Dy,).

The proof of the second part of Theorem 7 is less trivial. We begin with a

lemma which is similar in spirit to Lemma 1 for worst-case distortion.

Lemma 5. Let X, ..., X, be erased versions (Definition 4) of a uniform binary random
variable X taking values in {+, —}. If (1 — %)k <tand [i(X,;...; X,,) =0 VS=
{s1,....sx}, S CN,|S| =k, then > Pr(X;=0)>n-—1.

Proof. (1-1) <1 (%)% > 1 — L. We have the following four cases:

Case I: There exists i € N such that Pr(X; = +) > 0 and Pr(X; = —) > 0.
Assume 7 = 1 without loss of generality. Since Xj, ..., X, are erased versions
of the same variable, they can never disagree in the source symbol they reveal
(i.e., if X; = + for some i € N, then the rest cannot be —, and if X; = —, then
the rest cannot be +). Thus Pr(X; = +,X; = —) =0, j € {2,...,n}. Since
Ii(Xg ;... Xs,) = 0 for any set of k variables containing X; and X, X; and X

must be independent. Thus

Pr(X;=+4) -Pr(X;=-) = Pr(Xi=+,X;=-)=0

Likewise, Pr(X; = —, X; = +) =0 = Pr(X; = +) = 0. Thus Pr(X; =0) =1
andso ) "  Pr(X;=0)>n—1.
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Case II: There exists i € N such that Pr(X; = +) > 0 and Pr(X; = —) = 0, and
Case I does not hold.

Let S = {s1,...,sx} be a size-k subset of N. For all T C S, denote by E7 the
event that X, = —Vs; € T,and X;,, = 0V s; ¢ T, s; € S. Now since
Pr(X,, = —) = 0 from (A.1), Pr(E7) =0V T # 0. Thus

Pr(X =) < 3 Pr(Er)

=X, =...=X, =0). (A.2)
Since Pr(X = —) =1/2and (Xj,, ..., X}, ) are independent, (A.2) yields

=0) =

N | —

k

k
[[Pr(x, =0)=Pr(X,, =X, =... = X,
j=1

In order to lower bound """, Pr(X; = 0), we solve

min 7, Pr(X; =0)

st. [I'., Pr(X,, =0)>

i=1

1
5 VS:{Sl,...,Sk}CN.

This is a convex optimization problem, as can be readily seen by substituting
a; = log Pr(X; = 0), and can therefore be solved by choosing Pr(X; = 0) = (%)%
forj=1,...,n. Thus 37  Pr(X; =0) > n (%)% >n(l—1/n)=n—1.

Case III: There exists i € N such that Pr(X; = —) > 0 and Pr(X; = +) = 0, and
Case I does not hold.

This case is symmetric to Case II.

CaseIV:Foralli e N, Pr(X; = +) =Pr(X; = —) = 0.

We have > 7 Pr(X; =0) > 7", Pr(X; =0) =n— 1. O

We are now in a position to prove the second part of Theorem 7. Let D), <

1 — £, Dy, rational, and (1 — }l)k < 1,andlet f;,i € Nand g, K C N, K # D be
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a code that achieves the rate-distortion vector (Ry(Dy), D1, ..., Dg,...,D,). Let

fi, i € N have rate Ry(Dy). We have
IRy (Dy) > H(f;), 1 € N. (A.3)

Let X% be the reconstruction when the source X' is reconstructed from a set
S of descriptions. Since Dy is finite, the decoder cannot make errors in its
reconstruction (which would incur infinite distortion). Thus ng must be an
erased version of X!, i.e., forall t € {1,...,1}, Xs’t = X, or Xg,t = 0. Then

VS ={s1,...,sx} CN,|S| =k, wehave

H(fs, ... fs) > HXE)
> I(X5X5)
— H(X) — HXIRY)
l

=1-> H(X,X§ X1,..., Xi1)

t=1

l
>1— Y H(X)|Xsy)

t=1

l
=1-Y H(X,|Xs;=0)-Pr(Xs;=0)

t=1

l
=1-) Pr(Xs;,=0)

t=1
l
=1-E|) 1{Xs,t—o}]
t=1
> 1Dy = I(1— Dy). (A.4)

Thus
k
L(fos s fo) = Y JH(f) = H(foy - fs)
j=1
< klRy(Dy) — (1 — D) = 0.
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Let Xls be the reconstruction when the decoder receives the si" descrip-

tion only. Then (X! ;...;X.) < Li(fs;...;fs,) = 0 (Property 3) and so

L(Xes; 3 Xo0) =0, € {1,...,1}. By Lemma 5, 7, Pr(X;; = 0) > (n — 1)
fort € {1,...,1}. Thus

I3
-

>
/N
~| =

e
=
3<>

Il

=
N~
AV

—_

|
S|

This completes the proof.

A.6 Proof of Theorem 8

We establish two lemmas before proving Theorem 8.

Lemma 6. Let X;, Xy, and X3 be Bernoulli random variables such that 1(X;; X;) =0,
Vi, je {1,2,3},i # j,and Pr(X; = X, = X3 = 0) > 1. Let p = max(Pr(X; =
0),Pr(Xy =0)). Then

p(1 —p)

Pr(X; = 0) > .
M =002 5+ 5,7

+

1
2

Proof. If p = 1, then the conclusion follows directly from the hypothesis, so
suppose that p < 1. Let p; denote Pr(X; = 0), p(z1,22,2z3) denote Pr(X; =
11, Xy = 2, X3 = x3), and pyyjz, o, denote Pr(Xs = z3| Xy = 21, Xy = x9).
Let g0 = pojp,o, @1 = Pojo,1, and gz = poj1,1. We thus have p(0,0,0) = pipaqo,

2(0,1,0) = p1(1 — p2)q1, and p(1,1,0) = (1 — p1)(1 — p2)ga. Then

Pr(X; =0,X5=0) = p(0,0,0)+p(0,1,0)

= p1(p2q0 + (1 —p2)q1) (A.5)
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Pr(Xo=1,X5=0) = p(0,1,0)+p(1,1,0)
= (1=p2)(piq1 + (1 = p1)g2). (A.6)

Since (X7, X3) and (X3, X3) are pairwise independent, we have, from (A.5) and
(A.6),

Pr(X1=0,X3=0) = pips =pi(p2g0 + (1 — p2)q1)
=ps = paqo+ (1 —pa)q, (A7)
Pr(Xo =1,X5=0) = (1-p2)ps
= (I=p2)(prar + (1= p1)ge)
=p3 = g+ (1—p1)ge. (A.8)
From (A.7) and (A.8),

pigr+ (1 —=pi)ga = pago+ (1 —p2)a

— —1
=g — p2go — (p1 + p2 )QI' (A.9)

I—p

Since p(0,0,0) > 1/2 by hypothesis, we have p;p, > 1/2, and thus p; +p,—1 > 0.

Now since ¢, < 1, (A.9) gives

- 1
1> P2go — (p1 + P2 )@

> S Pedo = (L= p1). (A.10)
I—p

T prtpe—1

= q1

Now

1
p(0,0,0) = p1p2go > = = p2qo > (A.11)

=2 2p1
Assume without loss of generality that p; > ps. Then p; + ps < 2p,. Substituting
this and (A.11) into (A.10) yields

1
PSS T S . S (A.12)
To—1 -1 2p) |

Upon substituting (A.11) and (A.12) into (A.7), we get
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1 P1 1
> 4 (1—
_ 1 4 pi(l —p1)
2 op — 1
where the last inequality follows because p; < p; and 32 — 271 > 0. O

Corollary 1. Let X;, Xy, X3 and X, be Bernoulli random variables such that
[(XzaX]) =0, Vz,j € {1,2,3,4},7: 7£ j, and PI'(Xl = X2 = X3 = X4 = O) >
Then

4
> Pr(X;=0) > 3.
=1

Proof. Let p; = Pr(X; = 0). Assume WLOG that p; > p, > p3 > ps. Now
psps = Pr(Xs = Xy = 0) > 1/2 by hypothesis, which implies p; > 1/4/2 and
pa > 1/2p3. Applying Lemma 6 to X5, X3, and X, gives p, > 1 5+ p‘*(l p“ . Thus

4

Zpi =p1+p2+p3s+ps
i=1

> 2py + ps +pa

1 ps(1—ps) 1

> 2 I A -

Z max(p3,2+ 25 — 1 + 3+2p3
( 1 x(l—x)) 1
> min 2max |z, =+ —F | +2r+ —.
we[L51] 2 20 —1 2z

Since % + ’% is monotonically decreasing in ps for p; € (1/2,1], it is easy to

verify that
1 1— T ifo >14 L
max(:v §+—x2( ‘?): (o) 2 V2
T — 1 r(l-x : 1 1
st syt o
where 1 + f is the admissible solution to the equation z = § + xz(glc:f) Thus

i > min min 2 1+x(1—x) —i—:c—l—l
L P = s Wl S Py 20

xe[ﬁ,2+\/ﬁ
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1
min 2r+x+ —
zeli+ A1) 2

1
:min( min 1+ —+

z€[ds,5+ A5 2r  2x—1’
_ 1
min 3x + —
ze[3+ 501 2$)

= min(3,3) = 3,

T
2r—1

where the penultimate equality follows from the fact that 1 + 5- + is a
monotonically decreasing in « for z € [5, 5 + 5 and takes a minimum value
of 3atz = 5 + 5, and that 3z + 5 is monotonically increasing in z for = €

5 + 5, 1] and takes a minimum value of 3at v = § + . O

The following lemma is similar to Lemma 5, but is adapted to the n = 4,
k = 2 case, which is not covered by Lemma 5. Lemma 5 requires that n and &
satisfy the inequality (1 —1)" < 1, which is violated when n = 4 and k = 2.
Indeed, much of the following proof is similar to that of Lemma 5, except for
Cases II and III, where we use Corollary 1 to bypass the condition (1 — %)k <3

which is needed in Case II of the proof of Lemma 5.

Lemma 7. Let X, ..., Xy be erased versions of a uniform binary random variable X

taking values in {+, —}. If I(X;; X;) =0, i,j € {1,...,4}, i # j, then

4

> Pr(X;=0)>3.

=1

Proof. The proof is very similar to that of Lemma 5, so we only summarize the
argument here.

Case I: There exists i € {1,2,3,4} such that Pr(X; = +) > 0and Pr(X; = —) > 0.
Just as in the proof of Lemma 5, we have 2?21 Pr(X;=0)>4-1=3.

Case II: There exists i € {1,2,3,4} such that Pr(X; = +) > 0and Pr(X; = —) =
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0, and Case I does not hold.

Assume i = 1 WLOG. Then from (A.1), Pr(X; = —) = 0 for j € {2,3,4}. Thus
the X are effectively binary random variables such that Pr(X; = ... = X, =
0) > 1/2. By Corollary 1, ijzl Pr(X; =0) > 3.

Case III: There exists i € {1, 2, 3,4} such that Pr(X; = —) > 0and Pr(X; = +) =
0, and Case I does not hold.

This case is analogous to Case II.

CaseIV:Foralli € {1,2,3,4}, Pr(X; = +) = Pr(X;, = —) =0.

We have Y0 | Pr(X; =0) > >0 ,Pr(X; =0)=4—1=3. O

We are now in a position to prove Theorem 8. Let f;, i € AN and g, K C N

1—Doy
2

be a code that achieves ( ., D1, Dy, D3, Dy). Using the same argument as that

in the proof of the second part of Theorem 7, we have for i, j € {1,2,3,4},7 # j
that 1(X}; X!) < I(fi; f;) = 0 and thus I(X;; Xj;) = Oforall ¢ € {1,...,l}. By
Lemma9, >>r  Pr(X; =0) > 3fort e {1,...,1}. It follows that

4

%iZPr(XiFO) > 3

t=1 i=1

1 3
= max <7 ZPr(X,-t = O)) 1

t=1

v
|

This completes the proof.

A.7 Proof of Theorem 9

We establish two lemmas before proving Theorem 9.

Lemma 8. Let X;,..., X, be Bernoulli random variables such that I1(X;; X;) = 0
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Vi,jeN,i#jandPr(X, =X, =... =X, =0) > 1. Then
1 & 2
=3 Pr(X;=0)>1- =
nizl n

Proof. Let p; denote Pr(X; = 0) and let ¢; = Pr(X; = 1) = 1 — p,. Since the X,’s

are pairwise independent, we have
R |
Var -1iX- _ ! ZVar(X)— ! i
n Z:1 i - n2 - (A - n2 Z:1 plq’L‘

Let o > 1/ % (3", pigs)- Then, by Chebyshev’s inequality,

15n .
Pr ( S a) < Var [n Diei XJ

o2
Let F) and E, be the events [ 3" X; — 13" ¢ <cand X; = X, = ... =

n

1 1 &
Ez;Xi_E;Qi

1=

2?21 Piqi < 1

n2a? 2

X, = 0, respectively. Then Pr(E;) > %, and Pr(E,) > % by hypothesis. Since
Pr(Ey) + Pr(Ey) > 1, Pr(Ey N Ey) > 0. This implies that

AN < Ly > 1
ﬁ;ql_aéﬁ;pz > — Q.

Since o was arbitrary, this implies

> p > 1- (A.13)

Moreover,

1 n
o ;pi% <

A little algebra gives

Zpiqz' <
i—1

2> “pigi = Y pigi < 2. (A.14)
=1 =1
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Substituting (A.14) into (A.13) yields

]

Lemma 9. Let X, ..., X, be erased versions of a uniform binary random variable X

taking values in {+, —}. If I(X;; X;) =0, i,j € N, i # j, then

ZPr(Xi:O) >n—2.

i=1

Proof. We have Cases I, 11, I1I, and IV as in the proof of Lemma 5. Cases I and IV
are the same as those in Lemma 5, so we will only mention Cases II and III.
Case II: There exists i € A such that Pr(X; = +) > 0 and Pr(X; = —) = 0 and
Case I does not hold.

Assume ¢ = 1 WLOG. Then from (A.1), Pr(X; = =) =0for j € {2,...,n}. Thus
the X’s are always erased when the binary source X = —, and so Pr(X; = ... =
X, =0)>1/2. By Lemma 8, >""" |, Pr(X; = 0) > n — 2. The proof of Case III is

analogous to the proof of Case II. O

We are now in a position to prove Theorem 9. Let f;, i € N and g, K C N

be a code that achieves (1’2D 2. Dy, Ds,...,D,). Using the same argument as that
in the proof of the second part of Theorem 7, we have for i,j € N, i # j that
I(XEXE) < I(f; f;) = 0and thus I(Xy; Xj,) = 0fort € {1,...,1}. By Lemma 9,

Yo Pr(X;y=0)>n—2forte{l,...,1}. It follows that

!
%ZZPr(Xitzo) > n—2.

\
=
Qo

s
Y
o~ =
}—U
=
s

I
=
N——
v

—_

|
S|

This completes the proof.
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A.8 A Random Coding Proof of Theorem 6

Like the MDS coding scheme for worst-case distortion, the random coding
scheme consists of two parts - uncoded bits and an random binning component.
The uncoded component is similar to the uncoded component of the MDS cod-
ing scheme. The difference lies in the encoded component; instead of encoding
an erased version using an (n, k) systematic MDS code, the average-case dis-
tortion encoder randomly bins an erased version of the source and then sends
bin indices to the decoder. The decoder outputs the uncoded bits as the source
reconstruction if less than k descriptions are received. If k£ or more descriptions
are received, the decoder uses the uncoded bits and the bin indices to decode the
encoded erased version using typicality considerations. A formal description of

the scheme follows.

Casel: D, >1- %
Assume without loss of generality that Dy, is rational (if Dy, is irrational, then
we can prove achievability for a sequence of rational distortions in [1 — k/n, 1]
converging to Dj, and take limits). Then there exists a positive integer [’ such
that I’Ri(Dy,) is a positive integer. Choose a blocklength | = anl’, where « is
any positive integer. Observe a length-I source sequence X!, and divide X' into
n disjoint parts such that each part contains [/n = al’ bits. (The division is the
same regardless of the source realization.) Label the parts X;, ¢ € A/. Choose
IRy (Dy) bits from each of the n parts (since D, > 1 — £, IR, (Dy) < L and

therefore [ Ry (D)) bits can be chosen from each part). Denote by Y, the set of

IRy (Dy) bits chosen from X;. Transmit Y; uncoded over the i** channel.

The decoding is trivial. If m descriptions, say (Y;,...,Y,,), are received,
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output X! as the reconstruction of X', where X/ is such that the ml R, (D;) bits
corresponding to (Yy,...,Y,,) are non-erased and the other (I — m{Ry(Dy)) bits
are erasures. The distortion, therefore, is (| —mlRy(Dy))/l = 1—mRy(Dy). When
k descriptions are received, the distortion is 1 — kR (Dj,) = Dy. Thus R e RDavg,

and therefore also lies in RD,,,.

Casell: D, <1—%

The scheme for this case is an extension of the scheme for Case I. It has two com-
ponents; random binning and transmission of uncoded source bits. An erased
version of every source sequence is binned separately at each encoder. The ob-
served source string is divided into n disjoint parts. Each uncoded part is then
sent on one of the n channels along with the corresponding bin index of the
erased version of the source. If less than k descriptions are received, the de-
coder outputs a partial reconstruction based solely on the uncoded parts; if £ or
more descriptions are received, the decoder outputs a reconstruction based on

the uncoded parts and the bin indices.

Assume again that Dj, is rational. Choose ¢ > 0, and define R’ = Ry(D;) —
1/n+-e. Since Dy, is rational, there exists a positive integer I’ such that ' D, /(n—k)

is an integer. Choose a blocklength | = anl’, where « is any positive integer.

Random binning: Construct n sets of bins such that every set contains 2!

I ¢ X!, construct an erased version as

bins. For every length-l source string x
follows. Divide x' into n disjoint parts such that each part contains I/n = al’
bits (the division is done identically for all source sequences). For each part,

replace the last Dy /(n — k) bits by erasures (since Dy, < 1— £, each part contains

l/n > IDy/(n — k) bits). Assign the resulting erased version x.' uniformly at
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random, and independently from other strings, to one of the 2/ bins in the i*"
set, for alli € V. The assignment is done only once for each erased version. This
is important because multiple source strings can have the same erased version.

Denote the assignments by I';.

Encoding: Let X! be the observed source sequence. Divide X' into n disjoint
parts each containing [/n bits as described above. Label the parts X;, i € N. Let
B; = T;(X") be the index of the bin containing the erased version of X' in the i*"

bin set. Transmit (X;, B;) over the i*" channel.

Decoding: 1f m descriptions, say {(Xi,Bi1),..., (X, Bn)}, are received,
where m < k, output X! as the reconstruction of X! where X!
is such that the mil/n bits corresponding to (Xi,...,X,,) are non-erased
and the other (I — ml/n) bits are erasures. If m > £k descriptions
are received, say {(Xi,B1),..., (X, Byn)}, choose any k descriptions, say
{(X1,B1), ..., (X, Bg)}, and search the bins (B, . . ., By) for a sequence Y such
that I'y(Y) = B;, i = 1,...,k, and Y is consistent with the partially revealed
source string (Xy,...,X;). Output X\, = {(Xy,...,X,)} U {Y} as the re-
construction of X'. (Thus the non-erased bits in X/, are the bits revealed by
(X1,...,X,,) or by the erased version Y, or both.) There is guaranteed to be at
least one such sequence Y in the bins indexed by By, ..., Bi. If there is more
than one such sequence, output the non-erased portion (X;,...,X,,) as the re-

construction of X'.

Error analysis: We say an error Es has occurred at the decoder if, for a set
S = {s1,..., s} of k descriptions, there exists an erased version Y # X, ! such
that I',,(Y) = I',,(X.') for all s; € S and Y is consistent with (X, , ..., X, ). Let

Cs be the set of erased versions that are consistent with (Xj,, ..., X, ). Define
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E =g, s/=k Es- We bound Pr(E) as follows.

Pr(E)

< > Pr(Es)

5.IS|=k

= > PrAY #X, Y €Cs: T, (Y) =T,,(Xc)
S.|S|=k

Vs; € 8)

= Zp(xl) Z Pr(3Y # x., Y € Cs :

x! S,|S|=k

Lo (Y) =T, (x0)Vs; € SIX! = x)

< Zp(Xl) Z Z Pr<rsi<Y) = Fsz‘(Xel)

x! S,|S|:k y;éxel
y€Cs
Vs; € S|X! = x)

<D p(x) Y 27|

x! S.|S|=k
= Y plx) 3D 2 g0

x! S,|S|=k
Y ¥ 2

x! S,|S|=k

n
< 27 the,
<(2

We now show that for any ¢ > 0, the (n+ 1)-tuple (Ry(Dy,) +¢,1 — = +¢,1— 2 +

€, vt 1—%—}—6,Dk—|—e, (";—ﬁ;l)Dk—FG, (";k_Q)Dk—l—e, ..., (-15) Dy +e€, €) is achiev-

—k

able, and thus R € RD,,,. Fix ¢ > 0 and define R’ as above. In our scheme, any
description (X;, B;) has rate R = 1/n + R, where 1/n is the rate due to X; and
R'is the rate due to binning. Thus R = 1/n + (Rx(Dy) — 1/n+€) = Ry (Dy) + €.

Moreover, if m < k descriptions are received, the decoder outputs mi/n bits as
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revealed by the m descriptions and the other (I — ml/n) bits as erasures. Thus
D,, =1—m/n < 1—m/n+e. If k descriptions are received, say S = {s1,..., si},
the decoder either outputs an erased version of the correct source sequence if
E% occurs, or outputs (X, , . .., X, ) if Es occurs. If ES occurs, then the decoder
receives kl/n bits uncoded from the & descriptions, and is able to figure out a
further (n — k)(I/n—1Dy/(n—k)) = (1 — k/n — Dy,) bits by using the bin indices
to decode the erased version of the source sequence. Hence the maximum per-
letter distortion over sets of k£ descriptions is 1 — (k/n +1 — k/n — D) = Dy, if
E¢occurs, and 1 — k/n if E occurs. Let ds x be the per-letter distortion achieved

using the set S of descriptions if the observed source string is x'. Thus

Epg max Ex|dsx]

<E: E d
> Ly g X[S%?iik s,x]

k

_ (1 _ ﬁ) Pr(E) + Dy(1 — Pr(E))

n

- (1 - % —Dk> Pr(E) + Dy

() ]

which can be made smaller than D; + € by letting @ — oo. Thus Dy + € is
achievable for some sufficiently large [. If m > k descriptions are received,
then the decoder receives ml/n bits uncoded, and is able to figure out a further
(n —m)(l/n — Dy /(n — k)) bits by decoding the binned erased version. Thus,

if E° occurs, the maximum per-letter distortionis 1 — m/n — ((n —m)/n — (n —

m)Dy/(n — k)) = (“=F)Dy, and by the same analysis as above, a distortion of

(%=2)Dy + € can be achieved for some sufficiently large /. This completes the

n

proof.
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A.9 Proof of Lemmal

Foranyt € {1,...,l}, we have exactly one of the following four cases:

Case I: 37 € N s.t. Pr(X;(X) = +) > 0 and Pr(X;,(X) = —) > 0.

Case II: 37 € N s.t. Pr(X;(X) = 4) > 0 and Pr(Xy(X) = —) = 0, and Case I
does not hold.

Case III: 3i € NV s.t. Pr(X;(X) = —) > 0 and Pr(X;(X) = +) = 0, and Case I
does not hold.

CaseIV:Vic N, Pr(Xy(X) = +) = Pr(Xu(X) = —) = 0.

Let By, By, B; and By be the sets of ¢ € {1, ..., 1} satisfying Cases I, II, IIl and
IV, respectively. Moreover, let |B,| = by, |Bs| = by, |Bs| = b3 and |B4| = bs. Then
by + by + b3+ by = I. Now consider a source string (x*)' such that z; = —if t € By
and z; = + if t € Bs. We have

n l
1 -

=1
n 1 ! ~
> ; 7 tzld(l“faXit(x*))

S S et Kl 4 L XS et Kl

teB; =1 teBy i=1
1 - * v * 1 o * v *
+7 0N (e, Xu(a®) + 7 SN dar, Xala").
teBs i=1 teBy i=1
Consider now ¢ € B;. Since X 1w(X), ..., Xnt(X ) are erased versions of the same

binary random variable X, they can never disagree in the source symbol they
reveal. We therefore have Pr(X;(X) = +, X;(X) = =) =0,j € N, j # i. Since
X'Z-t(X) and th(X), i,j € N,i# j,are pairwise independent, we have
Pr(Xu(X) = +) - Pr(X;(X) = —)
T

= Pr(Xy(X) =+, X;(X) =) =0
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= Pr(X;(X)=—-) =0, (A.15)

since Pr(X;(X) = +) > 0. Repeating the same analysis with Pr(X;(X) =
—, X;(X) = +) yields Pr(X;,(X) = +) = 0. Thus Pr(X,,(X) = 0) = 1 for all
j € N, j # i, and therefore X;(z*) = 0 forall j € N, j # 4. Similarly, it
follows from (A.15) that Pr(X,;,(X) = —) = Oforj € N, j # iif t € B, and
Pr(X;(X) = +4) = 0forj € N, j # iif t € Bs. Thus by construction, X!(z*),

1 € N, must have f(it(:c*) = 0fort € By U Bs U By. It follows that
n 1 l ~
Eea;é(l 2 [7 ; d(xy, th($))]

1 o ¢y
> 7 Z Z 1(5(“(1’*):0) + 7 Z Z 1(Xit(x*):0)

teB; i=1 teBy i=1
1 n 1 n
72 2 Mxuter-0 + 7 22 2 ka0
teBsz i=1 teBy i=1

1 1 1
bl(” - 1) + —bgn + —bgn + —b4n

>
- l l l

(nl — bl)

b
:n—%zn—l.

This completes the proof.
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APPENDIX B
CHAPTER 3: PROOFS

B.1 Proof of Theorem 13

This bound differs only slightly from the outer bound proposed in [44] and
much of the proof is similar to that in [44]. Suppose (R, D) is achievable. Let
fl(l), ce fr(f) be encoders and (g,jc)l, K C N be decoders satisfying (3.3). Take any
Z in 1) and augment the sample space to include Z' so that (Z;, Yo, Y, Yos1s)
is independent over ¢ € {1,...,l}. Next let 7" be uniformly distributed over

{1,...,1} and independent of Z', Y{, Y}, and Y, ,. Then define
4 =Zr
Yo =Yor
Y=Y, rforie N
Yori =Y
Ui = (£ 00, Zuroa (Vi \Yair}) fori e N
Vi=Virforj=1,...,J
W= {Z'"\{Zr} AV, P\ Yarrr}).
It can be verified that v = (Upr, V4,...,V;,W,T) isin I', and that, together with

Yo, Y, Yoi1, and Z, it satisfies the Markov coupling. It suffices to show that

(R,D) isin RD,(Z,~). Note that (3.3) implies, for j = 1,...,J,

Dk,j Z KI?I‘lKE},}_(k E[dj ()/O,T7 Y/C,T? Yn+1,T’ ‘/j,T)L

ie.,

Dyj; > /crzllllca\b}:(k E[dj (Yo, Yie, Vi1, Vj)]-
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Second, by the cardinality bound on entropy and the fact that conditioning

never increases entropy,

Sz n((00),)

e

=12 Y5 (7)) s | Vi) (B.1)

By the chain rule for mutual information,

F( 2 ks (D) e Y20
_ (Zl; (Fi(Y))ex er+1)

+7 (Yﬁc; (fi(yil))ielc )ZZ’Y’f“) '

The rest of the proof is similar to that in [44]. The main difference between this
proof and the proof in [44] is that here we do not condition on (f;(Y})), . in

(B.1). Taking the maximum over this bound and the bound in [44] yields the

desired outer bound.

B.2 Proof of Lemma 2

Assume WLOG that £ = {1,...,m}. For each possible realization (w,t) of
(W, T), let
Dy = E[dNX, Xx)|W = w, T =1].

Let S = {(w,t) : Dy, < v/A}. Then by Markov’s inequality,

Pr((W,T) ¢ 5) < (B.2)

D <4
5 S0
In particular, Pr((W,T) € S) > 0. Also, for any (w,t) € S,

32m (QDM)”T”
’ < 6.
p(I—p) \ A
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Thus, by Lemma 6 in [44], if (w,t) € S,

1 m
— > IV U X, W =wT =t)
m

i=1

)
> g ((Dyy + 0)Y™) + 26 log =

By averaging over (w, t) € S and invoking Corollary 1 in [44], we obtain

1 & Pr(W =w,T =t)
S =S IV UIX W =w, T =1) -
m 2 TV Ul W =w, T =) Pr(W,T) € S)

(wi)es  i=1

- )
> g((D +6)"™) + 26 log 5
Therefore, = > | I(Y;; U;| X, W, T)

> [g(([) +0)Y™) + 20 log g} -Pr((W,T) € S)

v

[g(([) + 5)1/m) + 26 log g} (1-9)

(D +&(D,8))M™)

for some continuous ¢ > 0 satisfying £(D,0) = 0. It follows from this and con-
straint (iii) of the lemma that ¢(D'/™) > g((D + £(D,§))"/™). From the mono-
tonicity of g(D*™) in D (Corollary 1 in [44]), we obtain D + £(D, ) > D. Thus

D > D —¢(D,6), completing the proof.
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