

 ARL-SR-0312 ● MAR 2015

 US Army Research Laboratory

Adaptive Geometry Shader Tessellation for
Massive Geometry Display

by Lee A Butler and Clifford Yapp

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official

endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-SR-0312 ● MAR 2015

 US Army Research Laboratory

Adaptive Geometry Shader Tessellation for
Massive Geometry Display

by Lee A Butler and Clifford Yapp
Survivability/Lethality Analysis Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

March 2015

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

1 October 2013–30 September 2014
4. TITLE AND SUBTITLE

Adaptive Geometry Shader Tessellation for Massive Geometry Display

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Lee A Butler and Clifford Yapp

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory

ATTN: RDRL-SLB-S

Aberdeen Proving Ground, MD 21005-5068

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-SR-0312

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A large number of the Survivability/Lethality Analysis Directorate’s (SLAD’s) software tools need to display geometric data.

This project explored options for improving the speed and clarity with which SLAD’s tools can display geometry. The goal was

to reduce the amount of human effort and elapsed time necessary to prepare complex models for use in analysis and

visualization tasks. We investigated several avenues for high-speed visualization and worked to update BRL-CAD’s graphics

display system to support more modern display layers. While additional work remains, we identified high-performance

techniques and achieved the first stages of display system improvements.

15. SUBJECT TERMS

temporal coherence, dynamic occlusion culling, occlusion queries, geometry, visualization

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

OF ABSTRACT

UU

18. NUMBER

OF PAGES

22

19a. NAME OF RESPONSIBLE PERSON

Clifford Yapp
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-1382

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

Executive Summary v

1. Introduction and Background 1

2. Approach 2

3. Speed Improvements in the Visual Simulation Laboratory 2

4. Ray Tracing 4

5. Sharing Display Technologies Across Applications 5

6. Conclusions and Future Work 7

7. References 8

Appendix. Refactoring and Updating Steps for Improving BRL-CAD’s
Display System 9

List of Symbols, Abbreviations, and Acronyms 13

Distribution List 14

 iv

List of Figures

Fig. 1 Example frame timing code ..3

Fig. 2 The expectation was that the time required for the interFrame process
would remain constant. Above 400 objects there is a consistent increase
of interframe process overhead. ..4

Fig. 3 Drawing of MGED wireframe and ray-traced image in
OpenSceneGraph-provided OpenGL context ...6

Fig. 4 Working portable FontSplash text display in OpenSceneGraph-provided
OpenGL context ..6

 v

Executive Summary

Survivability/Lethality Analysis Directorate (SLAD) customers would like a

faster product that is easier to understand and use. To address this desire, we

conducted work under a SLAD Methodology Research Initiative to explore

options for improving the speed and clarity with which SLAD’s tools can display

geometry. The goal was to reduce the amount of human effort and elapsed time

necessary to prepare complex models for use in analysis and visualization tasks.

To investigate the possibility of fast geometry visualization within SLAD’s tools,

we focused on 2 task-oriented goals: 1) investigate the OpenSceneGraph (OSG)

3-dimensional graphics toolkit’s1 existing capabilities and any other available

avenues for speed and 2) redesign and update BRL-CAD’s graphics display

system to support OSG.

After investigating the existing capabilities provide by OSG, we found that

enabling the Coherent Hierarchical Culling (CHC) algorithm2 resulted in

successful renderings of complex computer-aided design geometry at an excellent

140 frames/s, but the required memory (24 GB for a 2-GB geometry model) and

preparation time (hours on computer hardware circa 2014) are currently

prohibitive for practical use. Further work might improve our implementation of

the CHC algorithm, but concurrent experiments with another approach using

Intel’s Embree raytracing engine indicate raytracing requires approximately 30 s

of preparation time to achieve a rendering speed of 15–30 frames/s, which is

adequate for most visualization purposes when combined with a traditional

rasterized rendering system for interactive elements. Therefore, we must explore

the possibilities of the Embree engine in the context of analytical raytracing.

An additional problem arose when performance testing indicated that a significant

portion of the bottleneck in OSG’s rasterization-based rendering occurs outside

the drawing phase. Further investigation is being pursued under separate funding.

Redesign and update of BRL-CAD’s display system proved to be an involved

problem touching a large portion of BRL-CAD’s core code. Modernization efforts

have improved BRL-CAD’s code to a point where OSG can be used to provide an

OpenGL drawing canvas portably, but it is not yet to the point where BRL-CAD

can leverage the higher-level OSG functionality. OSG has been incorporated into

1 OpenSceneGraph web site. Open Source High Performance 3D Graphics Toolkit [accessed 2015 Feb

10]. http://www.openscenegraph.org.
2 Mattausch O, Bittner J, Wimmer M. CHC++: coherent hierarchical culling revisited. Computer

Graphics Forum (Proceedings Eurographics 2008). 2008 Apr;27(2):221–230. Also available at

http://www.cg.tuwien.ac.at/research/publications/2008/mattausch-2008-CHC/.

 vi

the BRL-CAD build and deployment infrastructure. Substantial additional

refactoring of application and library code is necessary to fully leverage high-

performance rendering. For BRL-CAD to remain a part of the US Army Research

Laboratory’s (ARL’s) core software infrastructure, such improvements are

essential, for they provide long-term benefits in terms of both maintenance cost

reductions and enabling desired improvements across ARL’s modeling and

simulation tools.

 1

1. Introduction and Background

Survivability/Lethality Analysis Directorate (SLAD) customers would like a

faster product that is easier to understand and use. To address this desire, we

conducted work under a SLAD Methodology Research Initiative (MRI) to explore

options for improving the speed and clarity with which SLAD’s tools can display

geometry. The goal was to reduce the amount of human effort and elapsed time

necessary to prepare complex models for use in analysis and visualization tasks.

The US Army Research Laboratory’s (ARL’s) vulnerability/lethality (V/L)

analysis toolbox has 2 significant display systems for 3-dimensional (3-D) model

information. The oldest is descended from Mike Muuss’s original graphics editor

work in the 1980s1 and now forms the graphical display system of the BRL-CAD

open-source computer-aided design package. The other is developed for the

Visual Simulation Laboratory (VSL) built atop the OpenSceneGraph (OSG) 3-D

graphics toolkit.2

The original work to create the current BRL-CAD display manager (vector list

drawing) and frame buffer (pixel drawing) interfaces took place circa 1982, and

relatively little has changed since that time. Both interfaces were created as

common Application Programming Interfaces (APIs) for special purpose

hardware devices of that era. As such, they represented “lowest common

denominator” functionality. Interfaces for modern display mechanisms such as

OpenGL have been implemented for these APIs, but to date, the level of

functionality expressed in the API has not been expanded to take advantage of

new capabilities.

Although BRL-CAD’s libraries fulfilled their original purpose, in today’s

graphics environment this approach represents a significant obstacle to adopting

the current industry-standard practices for displaying this type of data. For

example, in modern systems, such as OpenGL and DirectX, there is no distinction

between pixel, vector, and polygon drawing hardware or associated APIs. This

indicates that management of drawing information and scenes within BRL-CAD

should be reworked to support leveraging modern features of graphics hardware

and software APIs.

Most of ARL’s specialized V/L applications require 3-D geometry display. They

use the BRL-CAD software libraries for these functions. This propagates the

limitations and technical debt of BRL-CAD through the tool chain.

VSL is a newer project, deliberately setting out to employ improvements in

geometric display research and technology from the last 20 years to addressing

 2

V/L-related application needs. VSL is able to use much of what OSG offers by

avoiding the low-level approach taken by BRL-CAD’s system, which allows for

more sophisticated, higher-performance visualizations. However, this updated

design also means that the resulting features cannot be easily integrated into other

analysis tools at ARL that generally expect a more dated approach to drawing.

Recent experience has shown that even OSG is not adequate for some large target

models provided by manufacturers for V/L analysis.

The problems addressed by this research are 1) what approaches might be taken to

improve performance when using a modern graphics display system and 2) what

must be done to update the older BRL-CAD display system to let it take

advantage of modern improvements.

2. Approach

Given the goals and the software resources available, the approach separated

cleanly into 2 task-oriented goals: 1) investigate OSG’s existing capabilities and

any other available avenues for speed improvements that could be integrated into

the OSG framework in place within VSL and 2) redesign and update BRL-CAD’s

graphics display system to support OSG.

3. Speed Improvements in the Visual Simulation Laboratory

Numerous techniques for speeding up the drawing process exist. Frustum culling

discards geometry that is clearly outside the field of view of the virtual camera

prior to rendering. Back-face culling discards geometry that is facing away from

the camera. These are both provided in robust and effective means by the most

current scene management systems. This work focused on occlusion culling,

which attempts to discard geometry that cannot be seen because other geometry is

between it and the camera position.

Occlusion culling requires some knowledge of which objects are visible and

which are not. Even in changing scenes, objects in view (or not) in one frame are

likely to be in view (or not) in a subsequent frame. Rasterization engines, such as

OpenGL and DirectX, allow for a limited number of queries about whether

objects are occluded. Occlusion queries are relatively lightweight instructions that

return the number of visible pixels of geometry (or a simplified proxy shape)

without the need of reading back the frame buffer. The technique consists of

several stages:

1) A query number is obtained from the graphics driver.

 3

2) The query state is entered for the obtained query number.

3) Drawing operations are performed.

4) The query state is exited for the query number.

5) The driver is asked if the results of the query number are available.

6) When results are available, the host CPU gets the results.

7) Typically, objects that are not visible are not drawn in subsequent frames,

or are drawn as a simpler tessellation (even an axis-aligned bounding box).

The simpler geometry may not be rendered to the color buffer but only

depth-checked. This drastically reduces the drawing necessary to complete

the scene.

8) Historically, the queries were conducted per frame. In more recent work,

such as that of Mattausch et al.,3 a hierarchical approach to querying is

used, and sets of queries are aggregated to reduce overhead.

The test geometry used for this work was from a modern military system being

subjected to ballistic analysis. It was chosen because it is representative of the

detail and complexity in use and stresses the existing display capability in VSL.

The geometry represented about 2 GB of polygonal data.

In timing testing (Fig. 1) with the example code provided by Mattausch et al.,3 we

found that the depth of the bounding volume hierarchy (BVH) had to be increased

substantially compared to the author’s use to see any significant speed.

Unfortunately, this led to excessively long run-times for BVH construction. We

anticipated that this cost could be paid once as a preprocessing step for completed

target geometry and the BVH used for all future display needs. Eventually, the

performance levels indicated in the literature were achieved (~140 frames/s).

However, the BVH data needed to achieve these levels consumed approximately

24 GB of memory. This was most of the available system memory on a typical

high-end workstation.

Fig. 1 Example frame timing code

DoFrame () {

 interFrame = timer.elapsed();

 timer.start();

 draw();

 drawTime = timer.elapsed();

 requestRedrawLater(10ms);

 timer.start();

}

Example Frame Timing

Code

 4

While the work testing Mattausch’s example code was ongoing, we instrumented

the traditional drawing infrastructure in the VSL framework. This revealed an

unexpected source of delay. Experiments with progressively increasing geometry

complexity showed that the drawing time (drawTime) increased relatively slowly

and linearly. The time between drawing frames (interFrame) did not remain

constant as expected (Fig. 2). Further investigation to identify the cause of this

delay (and eliminate it) is being pursued under VSL project funding.

Fig. 2 The expectation was that the time required for the interframe process would

remain constant. Above 400 objects there is a consistent increase of interframe process

overhead.

4. Ray Tracing

While this work was ongoing, a colleague working on a separate project was

investigating modern ray-tracing engines. We loaded the test geometry into a

prototype renderer using the Intel Embree ray tracer. We were pleasantly

surprised to see that the BVH for the test geometry was constructed in

approximately 30 s and rendering was possible at a satisfying 30 frames/s. This

strongly suggests that a hybrid raytracing/rasterization rendering system would be

ideal for SLAD applications. Both NVIDIA and Intel have created such systems.

Since SLAD applications often require a high-performance ray tracer, it is a

minor extra cost to leverage the ray tracer to assist rendering.

 5

5. Sharing Display Technologies Across Applications

The first order of business for improving BRL-CAD’s graphics display system

was developing an understanding of the existing code. BRL-CAD-based

programs, such as the Multiple Device Geometry Editor (MGED) (and the newer

“libged” library), have significant amounts of code that interleaves application

functionality with drawing operations. This lack of modularity makes integration

of modern practices and optimizations particularly challenging.

While examining the existing display architecture and some initial design work to

decide what an “ideal” libdm API would look like, we found that the only

practical approach to the complexities of reworking the existing code base

required a series of incremental refactoring steps (see the Appendix).

While it was not possible to complete all necessary work in FY14, OSG was

integrated into BRL-CAD’s build system, and enough of the refactoring process

was completed to make an OSG-managed OpenGL context practical as a drawing

canvas for BRL-CAD’s system. Figure 3 demonstrates a traditional BRL-CAD

MGED ray-traced image in combination with an overlaid wireframe drawn on an

OSG-provided OpenGL canvas. The addition of the small FontStash4 library for

OpenGL text drawing in combination with the portable OSG context management

API resulted in the first complete portable cross-platform display manager back

end for OpenGL: osgl. The problem of portable text drawing, in particular, has

long been a problem for BRL-CAD’s display manager code, and this work is (to

the best of the author’s knowledge) the first practical demonstration of a portable

solution within BRL-CAD. Figure 4 demonstrates this text drawing ability in the

MGED faceplate in display editing interface as well as the ellipsoid’s primitive

parameter labels.

6

Fig. 3 Drawing of MGED wireframe and ray-traced image in OpenSceneGraph-provided

OpenGL context

Fig. 4 Working portable FontSplash text display in OpenSceneGraph-provided OpenGL

context

7

Once osgl has been sufficiently vetted for quality and stability, it will replace 2

platform-specific display manager back ends (the X11 back-end ogl and the

Windows back-end wgl) and avoid the need for the creation of a third.

(BRL-CAD does not currently have the ability to work natively on Mac OSX; this

limitation was due in large part to the absence of a display manager that could

work with the native Mac OSX API.) This capability alone represents a

significant benefit derived from this MRI effort.

The proper introduction of scenegraph-based drawing management (instead of

simply using the OSG canvas for existing drawing techniques) is a considerably

more invasive change and may need to wait on other simplifications to the

BRL-CAD code base (such as consolidation of the MGED and Archer interfaces)

to reduce the amount of work required.

6. Conclusions and Future Work

Given that BRL-CAD forms the basis for all of Ballistics Vulnerability/Lethality

Division’s geometry processing capability for all of its analysis tools, it is critical

to focus on maintaining and extending the capabilities to assure that BRL-CAD

and derived tools remain relevant and usable in the future.

Scene graph–based drawings in OSG should be integrated into current tools,

including BRL-CAD. The highest payoff in both performance and flexibility will

be achieved with a hybrid raytracing and rasterization rendering engine, such as

NVIDIA’s SCENIX or Intel’s Embree.

While a number of significant steps remain to be completed before proper support

for scene graph displays in BRL-CAD’s libdm applications becomes a reality, it is

clearly possible and a necessary step if substantial improvements to BRL-CAD’s

3-D visualization frameworks are to be achieved.

In proposed follow-on efforts, we will explore the feasibility of rendering

BRL-CAD geometry directly in the Embree ray-tracing engine.

8

7. References

1. Muuss M, Applin KA, Suckling JR, Moss GS, Weaver EP, Stanley CA.

GED: an interactive solid modeling system for vulnerability assessments.

Aberdeen Proving Ground (MD): Army Ballistic Research Laboratory (US);

1983 Mar. Report No.: ARBRL-TR-024B0.

2. OpenSceneGraph web site. Open Source High Performance 3D Graphics

Toolkit [accessed 2015 Feb 10]. http://www.openscenegraph.org.

3. Mattausch O, Bittner J, Wimmer M. CHC++: coherent hierarchical culling

revisited. Computer Graphics Forum (Proceedings Eurographics 2008). 2008

Apr;27(2):221–230. Also available at http://www.cg.tuwien.ac.at/research

/publications/2008/mattausch-2008-CHC/.

4. FontStash web site. A small, self contained library for text display in opengl

[accessed 2015 Feb 10]. https://github.com/memononen/fontstash.

9

Appendix. Refactoring and Updating Steps for Improving
BRL-CAD’s Display System

10

These steps outline in detail the changes already made to the BRL-CAD codebase

in support of display modernization and attempts to predict what work remains to

reach a fully scene-graph-enabled system. Such predictions are contingent on

assumptions. (For example, if Archer were to replace the Multiple Device

Geometry Editor [MGED] in the BRL-CAD code base, certain categories of work

below would no longer need to be completed.) The primary purpose of this

Appendix is to provide future BRL-CAD developers with a convenient summary

of the work done to date and a breakdown of expected additional necessary steps.

1) Remove the obsolete dg.h interface. This interface was long deprecated

and had not been removed simply because of lack of time. There was no

justification for spending the effort to update it to a new approach; it is

time to finalize its removal. [DONE]

2) Make embedded frame buffers the responsibility of the display manager in

which the frame buffer is being embedded, avoiding the need to expose

implementation details in applications using embedded frame buffers.

[DONE]

3) Refactor libdm and libfb macros directly accessing struct members into

function calls. (A to-do item to allow checking for null structure values.)

[DONE]

4) Hide the public structures of libdm and libfb, both to ensure libged

remains independent of the implementation details of the display libraries

and force the Application Programming Interface (API) to provide enough

information for displays in a generic fashion. This impacts a large amount

of code in libraries and applications. [DONE]

5) Refactor application code and (where needed) library code to remove the

need for display manager back-end specific code in applications. An

enhancement to libbu’s vparse API proved necessary to support

applications passing data around during the parsing operations, but the

final result allows each dm back end to define its own specific options and

provide them to the application for modification without requiring system-

specific logic or headers. [DONE]

6) Refactor duplicate code (matrix handling for sure, probably others) from

MGED, libdm, and libged into library APIs to ensure any changes needed

to support mapping to OpenSceneGraph (OSG) are consistent.

[IN PROGRESS]

11

7) Refactor logic common to libdm and libged but not needing types for

either into shared functions in lower-level libraries (typically libbn, which

already has some similar code for vlists). Where information does need to

be shared between libdm and libged, create a header “bview.h” to define

common view-related data types for all libraries and applications. This

ensures the data is consistent between both environments without

requiring linking dependencies. [DONE]

8) Consolidate functionality in libged that interacts with display lists

(particularly the solid lists within display lists) to identify the scope of

functionality necessary for a higher-level libdm API and to simplify

eventual changes to the display list mechanism itself. [DONE]

9) Refactor MGED handling of solid lists to isolate logic. Extensive testing

in this stage is particularly important to ensure no features are broken.

[TO DO]

10) Integrate OSG and its dependencies into BRL-CAD’s src/other

compilation system for dependency management and cross-platform

compilation simplicity. [DONE]

11) Identify and test key concepts from OSG and the Visual Simulation

Laboratory (VSL) that will be needed in the final scene graph aware back

end. [IN PROGRESS]

12) Implement a high-level alternative API in libdm (while preserving existing

API to avoid breaking code) for object drawing. At this stage, do not

introduce an OSG scene graph but simply encapsulate higher-level logic

from MGED/Archer/libged underneath a library API. [IN PROGRESS]

13) Refactor MGED and/or Archer/libged quaternion-based positioning code

to a library API such as libbn—robust rotational interactions are a key

component of most 3-dimensional viewing applications, and MGED’s

solution to that problem has worked well. [TO DO]

14) Map view setup and manipulation concepts from MGED’s approach to

that used by OSG. (Some of this work has been accomplished in prior

VSL work.) [IN PROGRESS]

15) Migrate libged to the new high-level API. [TO DO]

16) Introduce scene graph concepts into the back-end logic for the new API

functions. Ideally, these high-level functions will use back-end agnostic

calls built from the lower-level API and MGED’s logic unless overridden

12

by a back end like OSG that wishes to take a different data management

approach. [TO DO]

17) Investigate BRL-CAD’s Archer interface and vulnerability/lethality-

specific tools to determine what changes are necessary in those code bases

to use the new API and implement them. [TO DO]

18) Incorporate any results from the speed enhancement work into the display

manager back end. Depending on the findings of that work, it may be

necessary to consider additional API design changes for optimal results.

[TO DO]

13

List of Symbols, Abbreviations, and Acronyms

3-D 3 dimensional

API Application Programming Interface

ARL US Army Research Laboratory

BVH bounding volume hierarchy

CHC Coherent Hierarchical Culling

MGED Multiple Device Geometry Editor

MRI Methodology Research Initiative

OSG OpenSceneGraph

SLAD Survivability/Lethality Analysis Directorate

VSL Visual Simulation Laboratory

V/L vulnerability/lethality

14

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 RDRL CIO LL

 IMAL HRA MAIL & RECORDS

 MGMT

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

 1 DIR US ARMY EVAL CTR HQ

 (HC) TEAE SV

 P A THOMPSON

 2202 ABERDEEN BLVD 2ND FL

 APG MD 21005-5001

 18 DIR USARL

(4 HC, RDRL SL

14 PDF) J BEILFUSS (HC)

 P TANENBAUM (HC)

 RDRL SLB

 B BOWEN

 RDRL SLE

 R FLORES

 RDRL SLB A

 G MANNIX

 RDRL SLB D

 R GROTE

 RDRL SLB E

 M MAHAFFEY

 RDRL SLB G

 P MERGLER

 RDRL SLB S

 W BOWMAN

 L BUTLER (1 HC, 1 PDF)

 S MORRISON

 M PERRY

 N REED

 G SAUERBORN

 C YAPP (1 HC, 1 PDF)

 RDRL SLB W

 S SNEAD

