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Distributed sensor networks often call for bursty, high data rate communications over long distances and fluctuating channels. A waveform 
for such a scenario would ideally be wideband to mitigate frequency selective fading, have data multiplexed into separate streams for high data 
rate, have long symbol times to mitigate multipath, and have a constant amplitude over time for non-linear amplification. These requirements 
are uniquely served by constant envelope OFDM. We describe the use-cases, theory, and successful implementation of such a waveform via the 
GNU radio framework on Ettus software-defined radios. We measure the bit error performance of the link as a function of channel quality and 
compare this performance to simulations of the link.
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A CONSTANT ENVELOPE OFDM IMPLEMENTATION ON GNU RADIO

1. BACKGROUND

We wish to consider a waveform that supports communications between spatially separated sensors.
Because sensors ideally spend most of their time sensing, we would like a waveform that communicates in
short bursts (tens of milliseconds) on platforms that are not capable of simultaneous transmit and receive.
The short times allowed for transmission require that overhead carrier acquisition be minimized. Thus,
incoherent modulation is preferable to one that relies on knowing the precise phase and frequency of the
transmitted carrier. We also wish to consider a fluctuating channel such that channel estimation will have to
be done at the beginning of every data payload by means of a short pilot pulse. This also aids synchronization
at sample time resolution so that the receiver can decide the precise time limits of the symbols so that it can
perform its correlations with known symbol signals.

The design of high data-rate RF data communication links over long-distance fluctuating channels
presents a complex trade-space. The high data-rate requirement necessitates either short symbol times or
parallel data streams. The symbol times are determined by two competing interests: the required data rate
and the resilience to multipath fading. We would like to use the longest symbol time that will reliably guar-
antee the required data-rate. Longer symbol times yield an integration gain that protects against multipath
and noise, but they require parallelization of the data stream. Short symbol times cause higher error rates
because the receiver has less time to average away noise. This problem is compounded by multipath de-
layed signal components resulting in heavy inter-symbol interference (ISI). On the other hand, data stream
parallelization techniques such as OFDM come with their own set of problems. The greatest of these is
the high peak-to-average power ratio (PAPR) of parallelized waveforms. That is, any waveform that can
be represented as a sum of separately modulated sub-carriers will have large fluctuations in its transmitted
amplitude over time. Because power amplifiers have only a finite range in input amplitude over which their
gains are linear, the waveform must either be input at artificially low power (by an amount called the back-
off ) or face non-linear distortion of the waveform resulting in symbol errors. Many operational scenarios
would benefit from a waveform that had long symbol times for resilience against noise, parallelization of
streams over separate subcarriers for high data rate, and constant amplitude for high amplifiability.

The great distance between sensors necessitates high amplification, but intermodulation distortions arise
when the signal input to an amplifier is a sum of modulated subcarriers [1]. Such distortions can be com-
pletely nullified by using a constant-amplitude modulation (FSK, PSK, GMSK, etc.), but this is a heavy
restriction because a sum of constant-amplitude waveforms is no longer constant-amplitude. Thus, such
modulations often cannot be parallelized to send more data over a large bandwidth. The combination of
high data rate and long symbol time requirements means that the waveform must be multiplexed across a
large bandwidth like OFDM. However nonlinear amplification precludes the use of OFDM and any other
modulation that is a sum subcarriers because they are not constant amplitude.
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2 Andrew Robertson [et al.]

These niche requirements necessitate a waveform that is incoherent, bursty, high-instantaneous data rate,
constant amplitude, and has a long symbol time. Constant envelope OFDM (CE-OFDM) is an experimental
wave-form that fits these requirements [2–5]. In this waveform, the phase of a single carrier is modulated
with an OFDM signal. Like OFDM, the modulation parallelizes a serial stream of data into several streams
that modulate separate subcarriers. Unlike OFDM, these modulated subcarriers are summed and written
into the phase of a single RF carrier so that the resulting signal has constant amplitude. Due to the paral-
lelization, CE-OFDM is wideband and high data rate. It is constant amplitude, continuous phase, and it can
be incoherently received.

The goal of this project is to produce a CE-OFDM waveform on a GNU Radio platform and validate
its properties. This means measuring the bit-error performance as a function of noise conditions, channel
conditions (including different multipath amplitude-delay profiles), channel equalization strategies, packet
frame parameters, and amplification hardware. This report details our successful implementation of the
waveform on GNU Radio and where we are presently on our course toward waveform validation.

2. THEORY OF CE-OFDM OPERATION

2.1 CE-OFDM Transmission

Let each data payload consist of a sequence of Nbits bits. The data is written in non-zero returning (NZR)
form as the sequence {dl}Nbits

l=1 = {±1,±1, . . . ,±1}. Our first step is to parallelize the data into separate
streams that will modulate the OFDM subcarriers.

{dl}Nbits
l=1 = {±1,±1, . . . ,±1}→

 ±1 ±1 · · ·
±1 ±1 · · ·

...
...

. . .

= [Ii,k]Nsubcarriers×Nsymbols (1)

The length Nbits serial stream of data has been converted to Nsubcarriers parallel streams of Nsymbols symbols
where (assuming the dl to be binary) Nbits = Nsubcarriers×Nsymbols. These bits modulate an orthogonal set
of Nsubcarriers subcarriers. The subcarriers are functions qn (t) that are only nonzero over the time domain
0≤ t < TS where TS is the symbol time. We choose them to have the property that

∫ TS
0 dt qm (t)qn (t) = λδm,n

for some constant λ so that we can design a suboptimal receiver with close to optimal symbol error rate.
To guarantee a continuous phase between symbols and their cyclic prefixes (for spectral containment), we
would like to use a set of subcarriers for which qm (t) approaches 0 as t → T−S and t → 0+. The family of
half-sines satisfies this requirement, but that they add a phase distortion proportional to

∫ TS
0 dt qm (t) [2].

To maintain phase continuity without the phase distortion, we use only the even half-sines. The distortion
integral vanishes for these functions. Letting p be some even integer, we have:

qm (t) =

{
sin(π pmt/TS) 0≤ t < TS

0 else
(2)

In our work so far, we use p = 2. This integer is one of the knobs we can tune to increase the bandwidth
of the waveform and provide more frequency diversity to mitigate the frequency selective fading of the
channel. Greater values of p result in greater waveform bandwidth.
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Fig. 1 — The CE-OFDM transmission chain for real samples. Real samples require a phase
modulator separate from the DAC.

We now define a baseband OFDM waveform that will modulate the phase of an RF carrier. The OFDM
signal for a block of Nsymbols symbols can be written as ν (t). The subcarrier multiplication and summing
operations in Fig. (1) have the form:

ν (t) = 2πhC
Nsubcarriers

∑
i=1

Nsymbols

∑
k=1

{
Ii,k qi[t− (k−1)TS]+θk

}
(3)

We will discuss the memory phases θk later. The constant h is called the modulation index which scales
the amplitude of the OFDM signal and sets the phase variance of the CE-OFDM signal. The normalizing
constant C ensures that the phase variance of the CE-OFDM signal is a function of h only. It is written in
terms of the variance σ2

d of the information signal {dl}. For equally likely independent symbols from an
alphabet of size M, the symbol variance is σ2

d = M2−1
3 . Since M = 2 for binary {dl}, we have

C =

√
2

Nsubcarriersσ
2
d
=

√
2

Nsubcarriers
(4)

Equation (3) is an OFDM signal, so it is not contant-amplitude. While parallelization of the data stream
allows for the communication of a lot of data in a short time over a large bandwidth, the ν (t) is still a
sum of modulated subcarriers. Worse, the data signal modulates the amplitudes of those subcarriers. This
information will be heavily corrupted by the non-linear distortion of the amplifier. To mitigate this, we must
take the crucial step of writing this OFDM signal into the phase of a single carrier. Letting j =

√
−1 the

resulting base-band CE-OFDM signal s(t) is:

s(t) = e jν(t) (5)
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Fig. 2 — The initial phase signal described by ν (t) is continuous. The addition of cyclic prefixes
destroys this, but memory phases are added so that ν ′ (t) is continuous.

The last step that is strictly necessary is to multiply s(t) by the carrier and transmit. However we elect to
add a cyclic prefix to each symbol so that the effect of the multipath channel can be reversed in the frequency
domain. We then choose our memory phases θk to guarantee phase continuity across symbol thresholds. The
memory phases have the added effect that information is encoded in the time-derivative of the phase rather
than the absolute phase during the symbol time. This obviates the need for the receiver to be phase-locked
to the transmitter. The modulation becomes incoherent, and we save time that would have been required for
carrier acquisition. However the addition of cyclic prefixes must be done explicitly in the digital domain.
Assuming a sampling rate fs and letting ts = f−1

s , let us define the signal we have at this stage.

sn = s(nts) (6)

This sequence consists of Nsymbols symbols in succession each of which is itself a sequence of N = fsTS

complex samples. We know that the effect of a multipath channel will be to convolve these samples with the
channel’s impulse response. If we add the final L samples of each symbol to the beginning of that symbol,
then the effect of the channel on the symbols becomes a circular convolution. The cyclic prefixes contain
only redundant information and will be discarded after the signal is sampled at the receiver. Their only
function is to make the convolution with the channel impulse response circular instead of linear. This is
an important function because circular convolutions are diagonalized by discrete Fourier transforms. Thus
we can reverse the effect of the channel in the frequency domain [6]. To add a cyclic prefix of length L to
symbol i, we take the L final samples of the symbol and append them in the same order to the beginning
of the symbol. That is, we take the samples {siN−L,siN−L+1, . . . ,siN−1} and append them to the beginning
of symbol i creating a longer symbol with samples {siN−L,siN−L+1, . . . ,siN−1,s(i−1)N ,s(i−1)N+1, . . . ,siN−1}.
This new symbol has length N′ = L+N and duration T ′S = (L+N) ts, but L samples contain redundant
information. The price we pay for lower bit-error rates due to channel distortion is a data rate lowered by
a factor of N/(N +L). Consequently, we want L to be as small as possible such that the channel can be
reliably equalized. The cyclic prefixes should be slightly longer than the multipath delay.
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Table 1 — Digital Operations per Symbol in the Transmit Chain

Signal Operation Mathematical Operation
Store data vector Store 1×Nbits vector

Serial-to-Parallel Converter Reshape 1×Nbits vector to Nsubcarriers×Nsymbols matrix

Storage of subcarriers Store Nsubcarriers vectors of fsTS samples
This requires Nsubcarriers fsTSQbits bits for Qbit quantization

Modulation of subcarriers Nsubcarriers multiplications of subcarrier vectors by scalars {Ii,k}k

Summation of subcarriers Nsubcarriers vector sums of modulated subcarriers

Addition of Cyclic Prefixes Append final L samples of symbol to the beginning of symbol
Each symbol now requires ( fsTS +L)Qbits bits of storage

Addition of Memory Phases Subtract difference between final sample of symbol (i−1) and
initial sample of symbol i from each sample in symbol i.

Phase Modulation Convert from samples ν ′[n] to e jν ′[n]

Suppose we have created a new sequence {s′n} by adding a cyclic prefix to symbol i in the sequence
{sn} for all i as described in the preceding paragraph. Our choice of half-sines for our subcarrier functions
ensures that qm (t)→ 0 for all m at the beginning and end of each symbol (t→ T−S and t→ 0+). Thus we can
be sure that the appendation of cyclic prefixes does not make the signal phase discontinuous within symbols.
Still, there are discontinuous phase jumps across thresholds between symbols. That is, there are large jumps
in phase between s′iN′−1 and s′iN′ . These jumps give the baseband signal high frequency components that we
would like to suppress. This can be done by a judicious choice of the memory phases θk.

θ1 = −arg(sN−L) =−ν ((N−L) ts) (7)

θk = −arg(skN−L)+
k−1

∑
k′=1

θk′ =−ν ((kN−L) ts)+
k−1

∑
k′=1

θk′ (8)

Notice that the recursion rules in Eq. (8) depend on sn rather than s′n. They can be calculated and added
before the cyclic prefixes are appended. One need only know the prefix length L beforehand. At the receiver
side, these phases need not be subtracted because their contributions are nullified at the detector by virtue of∫ TS

0 dt qi (t) = 0. Table 1 gives an account of the mathematical complexity of the digital operations that we
have discussed so far.
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The final step before amplification is to convert to an analogue passband signal. A DAC converts the
samples {s′n} to a continuous waveform s′ (t). This wave-form can still be written as a time-dependent phase,
s′ (t) = e jν ′(t), but because of the inclusion of cyclic prefixes ν ′ (t) 6= ν (t). Regardless, the passband signal
has constant amplitude when mixed with a carrier Ace2π j fct at frequency fc. If this signal is sent directly to
the channel, it has the form:

y(t) = Re{s′ (t)e2π j fct}= Ac cos(2π fct +ν
′ (t)) (9)

We can model the nonlinear amplification of the signal in Eq. (9) using the Rapp model [7, 8] of solid state
power amplifiers. In this model, a signal with instantaneous form A(t)e jφ(t) is amplified resulting in a signal
of the form g[A(t)]e j(φ(t)+Φ[A(t)]). The non-linear gain can be written as follows.

g[A(t)] =
A(t)(

1+A(t)2g
) 1

2g
(10)

This amounts to a rescaling of the signal amplitude by a factor that is non-linearly dependent on the input
signal amplitude. Signals with high amplitude fluctuations over time will produce in-band intermodula-
tion products [1] that will interfere with reception. These distortions are the primary reason for choosing
constant-envelope OFDM over regular OFDM. CEOFDM will have superior performance through non-
linear amplification provided that the phase distortion is negligible, Φ [A(t)] ≈ 0. While models of solid
state power amplifiers commonly set Φ [A(t)]≈ 0, future work will experimentally validate this assumption.
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2.2 CE-OFDM Reception

Incoherent reception necessitates added processing in the CE-OFDM receiver. However this is done
in the back-end after the filtered receive signal has been sampled. Because the data vector {dl} is binary,
each CE-OFDM symbol can assume any of 2Nsubcarriers possible configurations. The optimal receiver would
correlate the received signal with each of these possible instantiations and detect the symbol that had the
highest correlation. This requires 2Nsubcarriers correlation templates each with N real samples to be stored
in memory, a computationally impractical task. We instead leverage the orthogonality of the subcarriers
over a symbol duration to design a suboptimal correlation receiver requiring only Nsubcarriers templates of N
samples. Fig. (3) shows the receive chain for such a receiver.

After filtering, the complex signal r (t) is sampled at rate fs yielding I and Q samples. Assuming fine
synchronization (within O[ f−1

s ]) by means of a pilot pulse (see section 2.3), we can pick the N′×Nsymbols
samples belonging to the data symbols and their prefixes. Let rn be the n-th sample from this set with
0 ≤ n ≤ N′×Nsymbols− 1. Knowing that the prefixes are of length L, we can delete the first L samples of
each symbol and organize the remaining complex samples into an Nsymbols×N matrix [rk,m] where rk,m is
the m-th sample of the k-th symbol. The data is written into the phase of these samples. We demodulate the
phase by taking arg(rk,m). Within symbol durations, this yields a discontinuous function of time because
the range of arg(•) is [0,2π) whereas the range of Eq. (3) is contained within [−NsubcarriersA,NsubcarriersA].
However, knowing that the desired phase function is continuous within symbols by construction, we can
unambiguously define the “unwrapped phase” [9] as a function of time for each symbol. In perfect channel
conditions, the unwrapped phase for symbol k will be equal to ν (t) sampled at the appropriate time steps.
Let us call the i-th sample of the unwrapped phase sequence ν̂i. It is an estimate of the samples of ν (t).
We mentioned previously that the added memory phase θk is constant throughout each symbol and can be
neglected as it integrates away during symbol detection.

We mitigate the effects of multipath fading by frequency domain channel equalization. As we see
in Fig. (3), equalization consists of taking an N-point discrete Fourier transform (DFT), multiplying the
vector element-wise by the equalization coefficients (see section 2.4), and returning to the time domain
with an inverse discrete Fourier transform (IDFT). Among linear equalizers, our scheme minimizes symbol
estimation errors. However it remains to be seen if linear equalization will be sufficient to reverse the
effect of the multipath channel or if more advanced schemes like Decision Feedback Equalization or Turbo
Equalization must be implemented to avoid the noise enhancement that all linear equalizers suffer. For
theoretical calculations of error rates in the presence of white noise, see reference [2].
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Fig. 3 — The CE-OFDM receive chain.

Now that we have an estimate ν̂ (t) of the phase of the received baseband signal, the next step in the
chain is to estimate the matrix [Ii,k] from Eqs. (1) and (3). Our estimate Îi,k is equal to 1 or −1 depending on
if the correlation of symbol i with sub-carrier k is positive or negative respectively. Letting qk,m = qk (mts)
be the m-th sample of sub-carrier k,

Îi,k = sgn

(
(i+1)N−1

∑
n=iN

ν̂nqk,n mod iN

)
≈ sgn

(∫ (i+1)TS

iTS

dt ν̂ (t)qk (t)
)

≈ sgn

(∫ (i+1)TS

iTS

dt ν (t)qk (t)+ ∑
m≤i

θm

∫ (i+1)TS

iTS

dt qk (t)

)
(11)

We see that the contribution to Îi,k from the memory phase vanishes by virtue of our choice of subcarriers
with

∫ TS
0 dt qk (t) = 0. The last step in the receive chain is to reorganize Îi,k into an single vector estimate

{d̂p} of the transmitted data by means of a parallel-to-serial converter not shown in Fig. (3).
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2.3 Frame Construction

Fig. 4 — The 40 ms scheduling frame.

In Fig. (4), we see our intended communications frame broken down into its components. We are
interested primarily in bursty communications because we want our sensors to primarily spend their time
sensing. Thus our communications frames are designed for a single burst transmission of a packet. We
are limited by the sampling rate (1 MHz) of the USRP, so our frame duration is 17.984 ms consisting of
256 symbols each with a duration of 70 µs including a 6 µs cyclic prefix. Within the total 17.984 ms, we
must send a pilot signal for synchronization and channel estimation. If we were to send this data in a single
stream, the symbol times would have to be on the order of 5 µs with the precise value depending on the
size of the symbol constellation. While this symbol time is longer than the maximum delay time (2.5 µs)
measured in one potential use-case [10], we wish to provide a migration path to more advanced hardware
and higher data-rates where symbol rates of order 10 µs are required but delays of less than 1 µs would
create heavy inter-symbol interference that will degrade performance. Short integration time also make the
symbols more vulnerable to noise. Thus decided to use the parallelization of CE-OFDM even though it is
not strictly necessary to provide the intended data-rate for our sensor network.

The calculation of the bandwidth W of our CE-OFDM waveform is a non-trivial task [2], but a conser-
vative estimate bounds the bandwidth from below by the frequency of the highest subcarrier. This estimate
is valid when 2πh < 1. We presently use 2πh = 0.6.

W ≥ 2Nsubcarriers

TS
(12)

Even though Eq. (12) is a lower bound, approximately 99% of the signal’s power is within W of the
carrier frequency [2]. Consequent to the frame construction in Fig. (4), we can conservatively estimate the
bandwidth at 500 kHz. This is far from a wide-band signal, but that is because of the 1 MHz sampling rate
we use with our hardware-limited radios. In future scenarios, we will either upgrade to hardware capable of
supporting wider bandwidths (2̃0 MHz) or increase the sampling rate of our radios.

A wide bandwidth is desired so that most of the waveform is unaffected by the deepest fades of a
frequency-selective channel. Although we know it to be possible, we have not yet explored how much h
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and p from Eqs. (3) and (2) should be tuned to increase the frequency diversity of the waveform. Still more
work must be done to ascertain if we need specialized source coding to ensure that errors have the required
time correlation properties for the error correction codes to work. The choice of error correction code is an
ongoing problem.

2.4 Channel Estimation, Synchronization, and Equalization

As indicated in Fig. (4), we estimate the channel impulse response using a pilot at the beginning of each
1 ms communication frame [11]. We then equalize in the frequency domain [2, 11]. Mathematically our
goal is to estimate the channel frequency response H (k) and then determine equalization coefficients Ck that
reverse the effect of the channel as in Fig. (3). We begin with our choice of pilot signal. We presently use a
Chu sequence defined as follows

sn =

{
e jπrn2/N for even N
e jπrn(n+1)/N for odd N

(13)

where N is the number of samples in the pilot symbol, and r is an integer relatively prime to N. We simply
use r = 1. Similar to a chirp, this sequence is constant amplitude and suffers no degradation from nonlinear
amplification. Its autocorrelation in time approaches a delta function with increasing sequence length. It
also has flat power spectrum across the band of interest. This makes it useful for channel estimation. The
total pilot symbol is 64 µs long. Within this period, 58 µs are devoted to the Chu sequence with a 6 µs quiet
time afterward.

Channel estimation begins with the pilot-aided synchronization. Suppose we are assured (through ship-
board synchronization) that the beginning of the pilot symbol will be received at an unknown time within a
time-window [t0, t0 +δ ]. On the assumption that multipath delays are less than the length of a cyclic prefix,
the last component from the pilot will be received before t0 + δ + T ′S . The goal of synchronization is to
denote the integration limits in Eq. (11) that estimate Ii,k with the fewest errors. Let the lower limit of the
first symbol detection integral be tdata. Presently we use the autocorrelation properties of the Chu sequence
to home in on the multipath component with the highest power. That is, we define

tdata =
T ′S
2
+ argmax0≤m≤δ

{
N′

∑
n=1

x[n]y[n+m]

}
(14)

where xn is the known sampled pilot and yn is the received sampled signal for t ∈ [t0, t0 +δ ]. However our
frequency domain equalization by cyclic prefix relies on homing in on the earliest multipath component.
Our present strategy probably suffices for troposcatter channels with ranges less than 100 km because the
highest power multipath component is usually the earliest to be received [12]. This is not the case for longer
ranges, and we may need more advanced algorithms for these ranges. Poor synchronization will result in a
phase rotation of the symbol constellation after equalization. This can be corrected, but clearly more work
must be done to fully explore our options. After synchronization, Fourier transforms of the received and
known pilots can be compared to estimate the channel using the LMMSE criterion as in [11]. We follow
this prescription to determine the estimates ĤLMMSE before defining the coefficients in Fig. (3) to be

Ck =
Ĥ∗LMMSE

|ĤLMMSE |2 +SNR−1
(15)
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3. CE-OFDM ON GNU RADIO

GNU Radio is a software toolkit used for signal processing and wireless communications. It is highly
compatible with the Universal Software Radio Peripheral (USRP) by Ettus Research and serves as the foun-
dation for running and testing the CE-OFDM waveform in our experiments. GNU radio contains many
signal processing operations useful for CE-OFDM modulation and demodulation. They include filtering,
multiplication, integration, and decimation. GNU Radio also provides a template to build and create custom
modules. This is especially useful given the unique properties of the CE-OFDM waveform that necessitate
in-house solutions.

Most GNU Radio applications and scripts are written in Python. However the mathematical operations
and signal processing are commonly performed in C++. GNU Radio blocks are first written in C++ because
of the languages computational efficiency. Then through the Simplified Wrapper and Interface Generator
(SWIG) interface, these C++ modules get a Python interface. The Python interface is important because
the language is extremely flexible, extensible, and user-friendly. GNU Radio also contains a GUI-based
programming application called GNU Radio Companion. It allows users to create programs by selecting
and connecting various GNU Radio blocks in a graph.

GNU Radio uses a flow graph convention. Signal samples and data begin with a particular source,
go through a chain of signal processing blocks, and finally stop at a sink. This allows flexible, modular
programming for each source, sink, and block. It also enables interoperability between custom blocks and
other GNU Radio blocks. This section details the GNU Radio architectures for our CE-OFDM transmitter
and receiver.

3.1 Transmitter Implementation

Figure (5) depicts the CE-OFDM transmitter implementation. The entire transmitter chain is composed
in Python. Recalling that our CE-OFDM implementation sends data in bursts, the data volume of a single
packet was chosen to be 512 bytes. A physical layer modulation function was written to take the payload
data and create baseband I/Q samples. These samples include the pilot, quiet time, and CE-OFDM signal.
Once the samples were created, they were packaged as a GNU Radio message. The messages were then
stored into a message queue in preparation for transmission through the flow graph layer.

The flow graph layer contains the message source and USRP sink. It performs the core real-time trans-
mission, and runs on a separate CPU thread. The message queue is used as a common memory space for
both the flow graph thread and the main thread. Once messages are inserted into the queue, the message
source extracts the message and converts it into complex I/Q streams for the USRP sink. The USRP sink
block accepts the baseband samples, upconverts the signal, and sends it out to the connected USRP device.
The user sets the parameters for the USRP including the sample rate, transmitter center frequency, transmis-
sion gain, and antenna. These parameters are all handled by various function calls within the USRP sink.
Once the block is properly connected, and the flow graph begins, the USRP radio initiates and performs the
necessary RF amplification, downconversion, and decimation into baseband IQ samples.

3.2 Receiver Implementation

Figure (6) represents the block diagram implementation of the receiver. The receiver begins with a
USRP Source. The USRP source performs downconversion from RF to baseband in-phase and quadrature
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Fig. 5 — The GNU radio transmit chain.

samples. Next, the pilot detector checks for the existence of a packet. The packet valve analyzes the pilot
detector and either blocks the samples or passes samples at the desired packet length. Once a full packet
is passed, the channel equalization block removes any channelization effects and also discards the cyclic
prefix. The phase information is extracted, using the arctangent block and unwrapping block. The symbol
detector takes the phase information and correlates with all the subcarriers, determining the data bits sent.
Finally, the frame sink extracts the data from the packet and stores it in a queue, available for processing by
the main thread.

Two demodulation blocks were created to provide a simple interface to the CE-OFDM receiver. First, a
CE-OFDM demodulator block called demod was created. It includes a pilot detector, packet valve, channel
equalizer, arctangent, unwrapper, and symbol detector. The instantiation parameters are the low and high
thresholds from the pilot detector. These thresholds determine the minimum correlation between the re-
ceived RF signal and the expected pilot for a packet to be detected. The input stream is complex baseband
I/Q samples. The first output to the block is from the symbol detector. This provides the user with a contin-
uous and readable stream of unpacked bytes. The second output comes from the correlation output of the
pilot detector. This output is particularly useful for debugging and setting the correct threshold values.

The second demodulation block is called demod pkts. It contains the entire receiver chain, from pilot
detector to framer sink. This block accepts the pilot detector thresholds as parameters to the block. For
input, the block accepts complex I/Q baseband samples. It has no output because it contains a framer sink.
Within the framer sink, a message queue exists to store the received packets.
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Fig. 6 — The GNU Radio receive chain for CE-OFDM.

3.2.1 Pilot Detection and Synchronization

After the USRP source block converts the RF into baseband I/Q-samples, the pilot detector attempts to
find the beginning of the packet. This is performed by first correlating the signal with a reference pilot,
and then thresholding the values. Figure (7) shows the GNU Radio Companion flow diagram for the pilot
detector. The detector is set up as a hierarchical block i.e. a general-purpose block made out of smaller
signal processing blocks that are grouped together for functional and organizational purposes. The pilot
detector contains two parameters: a low threshold and a high threshold used directly by the GNU Radio
threshold block. The high threshold determines the margin to set the output (the conclusion as to whether
a pilot signal has been detected) to 1. Similarly, the low threshold determines where to set the output to 0.
In many cases, both threshold values can be set to the same number, creating a simple slicing operation to
determine the output.

Fig. 7 — The GNU Radio Companion flow diagram for the pilot synchronizer.



14 Andrew Robertson [et al.]

The pilot detector block contains one input from the pad source. This is a stream of complex samples
from some source (e.g. USRP or File). The detector correlates these against the pilot, which is a length
N = 58 Chu sequence from Eq. (13). In general, the correlation of the pilot sequence involves taking a dot
product with its conjugate.

C[n] =
m=n+N−1

∑
m=n

R[m]P∗[m] (16)

where C[n] is the pilot correlation, N is the pilot sequence length, R[n] is the baseband received samples,
and P∗[n] is the complex conjugate of the pilot. We use the correlation block from GNU radio to execute
the operation in Eq. (16). We merely use the convolution block with the taps flipped and the output delayed
by N−1. As Fig. (7) shows, we then run the signal through a decimating FIR filter with decimation set to
1 (indicating filtering only; no decimation). After filtering, the magnitude is output and thresholded.

The pilot detector contains three outputs as indicated by the three pad sinks in Fig. (7). The first output
of the pilot detector contains the threshold output. Its values are either 0, indicating no pilot found or 1
indicating a pilot was found. The second output is a delayed copy of the input. The delay is necessary so
as to use the convolution block for correlation. With the delay implemented the outputs are aligned and
the beginning of the packet can be found by extracting the second output at the same index where the first
output is high. The third output contains the magnitude of the correlation. This output is especially useful
for debugging purposes and determining a useful threshold. In many cases, the correlation can vary greatly,
depending on transmitter and receiver gain, and noise levels. This output can be used for measuring and
finding an appropriate threshold in a given communication environment.

3.2.2 Packet Valve

The packet valve block controls the flow between the pilot detector and the rest of the demodulation
blocks. If a pilot is detected, the packet valve engages the packet demodulation functions. It was written
in C++, and it uses the GNU Radio API for out-of-tree modules. Like most common GNU Radio signal
processing blocks, it has a Python interface for flow graph connections. The packet valve takes two inputs.
Its first input is the correlation threshold signal from the output of the pilot detector block. The second input
comes from the delayed complex samples of the pilot detector. Where the correlation threshold signal is
1, the corresponding complex sample will be at the beginning of a packet. As its output, the packet valve
passes the baseband samples over the known duration of one whole packet. Once finished, the valve searches
the threshold input for more potential packets. During times when no packet is found, the block does not
generate any output. In these cases, the valve shuts off the output, preventing unnecessary computations
downstream. By using fixed-length packets, the demodulator blocks are kept simple, and no conditional
cases are needed to determine exactly when packet transmission have stopped.

3.2.3 Channel Equalizer

The channel equalizer block helps remove the effects of multipath and other channel distortions. The
equalizer block is implemented in C++ using the GNU radio API, and it performs the two-fold function
of cyclic prefix removal and MMSE equalization. The block works in multiple stages. First it accepts
inputs from the packet valve. Since fixed length packets are used, the equalizer block can determine the
first and final samples of the packet. The block then takes the received pilot and quiet time, and performs
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a fast Fourier transform on them. The Fourier transform sequence is used to estimate the channel. The
MMSE-based channel estimation method specifies the estimated channel coefficients E[k] as follows.

E[k] =
R[k]P∗[k]
|P[k]|2 + 1

γ

(17)

Where R[k] is the Fourier transform of the received pilot signal and quiet time input to the equalizer block.
P[k] is the Fourier transform of the pilot signal including the quiet time, and γ is the estimate of the signal-
to-noise ratio. The SNR is determined by using the envelope mean as the approximate signal power, and
the envelope variance as the approximate noise power. With channel estimation completed, we calculate the
MMSE equalization coefficients C[k].

C[k] =
E∗[k]

|E[k]|2 + 1
γ

(18)

The equalization block performs frequency domain equalization using these coefficients. First, the cyclic
prefix of each symbol is removed. Next, the remaining samples in the symbol go through an FFT. Each
symbol’s Fourier components are multiplied by the equalization coefficients C[k]. Finally, an inverse Fourier
transform is performed to obtain the equalized baseband samples. The output of the block is the cyclic
prefix-removed packet I/Q sample stream, equalized via MMSE.

3.2.4 Phase Demodulation

Because CE-OFDM is a phase modulation technique, the next step is to extract the phase from the
equalized I/Q samples. GNU Radio has a simple converter block called complex-to-arg that performs this
operation. To properly map the phase from the domain [0,2π) to R as described in section 2.2, the phase
must be unwrapped. Then the underlying phase-modulated signal can be reconstructed for symbol detection.
The unwrapper block is coded in C++, and uses the phase unwrapping algorithm similar to MATLABs
unwrap() function. To avoid false wraps propagating throughout the entire packet, this block unwraps one
symbol at a time.

The last step is to detect symbols and convert to a received bit-stream. The symbol detector takes the
unwrapped phase of the symbol, correlates with the known subcarrier signals, and makes a bit decision for
each subcarrier. It is a hierarchical block, and the diagram for its operation is shown in Fig. (8). The input
to the block is split 16-ways; one for each subcarrier. Because the subcarriers are mutually orthogonal, a
dot product operation can be performed between the unwrapped phase and each subcarrier. This yields 16
scalar values (one for each subcarrier) per symbol. Whether or not these scalars are positive or negative
determines whether a 1 or a 0 bit was received.

The unwrapped phase is input to the hierarchical symbol detection block as a single float stream. It is
then converted to multiple vectors of 64 floats, each corresponding to a single symbol. Each vector is fed
into 16 instances of GNU Radio’s multiply-constant block where the constant parameter in the block is the
corresponding subcarrier’s output samples in vector format. Next, the vector output is converted back into
a single floating stream before being input to the integrate block. With the decimation parameter also set to
the symbol length, the integration block sums the vector producing the scalar output for each subcarrier. In
Fig. (9), we find the flow graph for subcarrier correlation.
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Fig. 8 — The GNU Radio symbol detection block diagram.

The output of each subcarrier correlation goes to a streams-to-stream block. This block acts as a parallel-
to-serial converter multiplexing each correlator’s output to a single stream. A binary slicer is then used to
make the bit decision. Because each subcarrier undergoes binary modulation, the slicer simply looks at the
sign of the correlation output and determines if the bit is one or zero. The output is a stream of bytes, with
each byte representing one bit. Therefore the value of each byte stream is either a one or zero. Although the
output is inefficient, given a maximum of 8 bits in a byte, it allows for easy viewing if testing or debugging
is needed.

3.2.5 Packet Framer

The packet framer takes the stream of unpacked bytes from the symbol detector, and adds a header for
the framer sink. The block is custom-made and programmed in C++. The header consists of two identical
16-bit shorts, each representing the payload size. The payload follows after the header. It is also in unpacked
bytes, with the least significant bit representing a data bit. The second bit is used to mark the start of the
payload. The framer sink takes the header and payload information from the framer and assembles it into a
packet. The packet is stored in a message queue. Both the framer sink and the message queue are objects
available in GNU Radio. They allow easy access to received packets. This is especially important given that
GNU Radio scripts are usually run in a multi-threaded environment. The message queue is needed to pass
received packets from the flow graphs thread to the main thread.
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Fig. 9 — The GNU Radio Companion flow diagram for the subcarrier correlator.

4. EXPERIMENTAL AND SIMULATED RESULTS

To validate CE-OFDM as a candidate waveform for point-to-point links between distributed sensors, we
constructed a bench-top experiment between two GNU radios. For added verification, we also simulated the
experimental conditions in Matlab. The goal of these efforts was to produce the BER as a function of the
SNR in the channel (see Fig. (10)). Both the experiments and the simulations reported here are conducted
in a simple AWGN channel using the parameters in Table 2. Future validation of the waveform in complex
channel conditions with Doppler and multipath spreading is on our agenda. We will conduct more robust
channel studies once we acquire channel emulation capabilities.

Table 2 — Packet Parameters for CE-OFDM Experiment and Simulation

Experimental Parameter Parameter Value Comments
Receiver Sample Rate 1 MHz
Center (Carrier) Frequency 900 MHz
Bare Symbol Duration 64 µsec
Cyclic Prefix Duration 6 µsec This precedes each 64 µsec symbol.
Pilot Signal Duration 58 µsec
Quiet Time Duration 6 µsec This occurs after the pilot transmission

and before the first symbol.
Number of Symbols 256
Number of Sub-carriers 16
Total Number of Bits 4096
Total Packet Duration 17.984 ms

The experiments were conducted in one of two configurations. In the first configuration, GNU radio
is only used to add AWGN at a known power level, up-convert baseband samples of the waveform to 900
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MHz, transmit the RF through a wired connection or over the air, and down-convert the RF on receive. The
baseband signal processing, modulation, and demodulation of those samples is done on Matlab using the
same functions employed in the simulation. Because the experiment and simulation use the same modulation
and demodulation signal processing, we expect good agreement between the two. In fact, we find that the
bit-error performance between the simulation and these experiments match reasonably in Fig. (10) for runs
where equalization was not employed. However because baseband I/Q files have to be received and stored
by GNU radio before being processed by Matlab offline, this communication experiment is not real-time.

Fig. 10 — Comparison of simulated and measured BER vs. SNR with and without MMSE and ZF
channel equalization. Dashed lines indicate that no equalization was used.

In the other (more recent) experimental configuration, signal processing blocks were created in C pro-
gramming language to enable GNU radio to process both the baseband and RF waveform. Matlab is no
longer necessary, and the system can communicate in real-time. This configuration will enable the wave-
form to be used by GNU radio sensors executing distributing sensing protocols, but it has yet to be fully
debugged and validated. The results we discuss below indicate that there are still implementation differences
between the two configurations that are leading to higher error rates in the real-time system.
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Given a configuration, an experiment consisted of a series of 100 transmitted packets with identical
parameters (see Table 2) at a given SNR. The communicated data was randomized between packets. The
two Ettus USRP radios were connected directly by an RF cable. The AWGN was added at the transmitter
using a GNU radio function in order to have precise control of the SNR. Both the simulations and the
experiment enabled the option to choose channel equalization strategies. However because the channel
simply consists of the addition of AWGN, we expect linear equalization to increase bit error rates through
noise amplification with zero-forcing (ZF) performing worse than minimum mean-squared error (MMSE).

In Fig. (10) we see the average bit error results of our experiments and simulations as functions of the
SNR. The most obviously feature is that the equalization strategies (represented as solid lines) do indeed
fair worse than not using equalization at all (represented as dashed lines). This is because both ZF and
MMSE equalizations are examples of linear equalization whereby the received signal is multiplied by some
matrix to produce the equalized signal. Because this correction matrix always multiplies the noise in the
received signal as well as the target signal, the noise is amplified. One can think of linear equalizers being
useful only when channel distortions result in more errors than the addition of noise. Because there are no
distortions in a pure AWGN channel, our equalizers perform worse than our unequalized waveforms both in
simulation and in experiment. It was also expected that ZF would have worse performance than MMSE due
to its higher noise amplification. This too is proven in the performance curves.

Another result worth pointing out is that the experiments wherein Matlab was used as the baseband signal
processor outperform the real-time GNU radio implementation at higher SNR’s. While the unequalized
experiment with the Matlab processor usually stayed within 5 dB of the simulated results, the full GNU radio
implementation only had comparable performance up to an SNR of 4 dB. The real-time implementation also
differed in that no large discrepancy between equalized and unequalized strategies was exhibited. There is
a possibility that some bug in the implementation is allowing the equalization routine to run even when the
user specifies that it should not. Future debugging and validation will explore this possibility.

4.1 Non-Linear Amplification of CEOFDM

In order to demonstrate that the constant amplitude of our CEOFDM waveform increases the resilience to
non-linearities in the amplification process, we conducted our bit error experiments through a compressed
amplifier. The output of the transmitting USRP was input to a Hewlett Packard power amplifier (model
number 8447D). So as not to damage the receiving USRP, the output of this amplifier was subsequently
attenuated using a variable attenuator set to decrease the signal power by 61 dB. Because noise is added
to the signal at the USRP transmitter, the noise is amplified along with the signal maintaining a constant
SNR. Using the USRP transmit gain, we toggled the amplifier between the linear region at a USRP gain of
0 dB and a region in excess of the amplifiers 2dB compression point at a USRP gain of 30 dB. For each of
these two cases, we sent a total of 2000 packets with waveform parameters given in Table 2 and recorded
the number of bit errors in each received packet.

The results are plotted in Fig. (11). The average bit-error probability for the compressed and uncom-
pressed runs were approximately equal at 2.3× 10−4. Furthermore, the distributions over the numbers of
errors in a packet for the two cases look remarkably similar. At such a high compression, one would expect
a waveform with any vulnerability to non-linear distortion to show severe increases in the probability of
errors for the runs with a USRP gain of 30 dB as compared to the runs at 0 dB. That is, one would expect
the red bars in Fig. (11) to be much higher than the blue bars. The absence of this effect is evidence that our
CEOFDM waveform is indeed resilient to non-linear amplification as intended.
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Fig. 11 — Comparison of bit error performance of CEOFDM with and without non-linear amplifica-
tion.

4.2 Concluding Remarks

Constant Envelope OFDM is a wide-band, constant-amplitude waveform that can simultaneously meet
demands for high data-rate and long symbol times. This makes the waveform ideal for distributed sensor
networks separated by great distances. The high data rate allows sensors to communicate their data in short
bursts so that they can spend most of their processing power and duty cycle on sensing their environments.
The heavy parallelization of data streams (reminiscent of OFDM) permits long symbol times without com-
promising data rate. This offers resilience against noise and multipath. Finally a CEOFDM signal can
be transmitted through a deeply compressed non-linear amplifier without in-band interference from ampli-
fier distortions. This is due to the CEOFDM waveform’s constant amplitude over time, and it makes the
waveform ideal for transmission over the long distances present in highly distributed sensor networks.

We demonstrated CEOFDM between two Ettus Research USRP radios using the GNU Radio software
suite. We added packet-level synchronization and frequency-domain channel equalization by means of an
initial training sequence (pilot) at the beginning of each sent packet. The link was demonstrated over a
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channel with a controllable level of additive white Gaussian noise, and the bit-error rate was measured
as a function of the signal-to-noise ratio. These results were compared to simulations of the link across a
space of different channel equalization strategies. We further demonstrated the resilience of the waveform to
non-linear amplification by recording the bit-error performance of transmissions sent through a compressed
amplifier. In the future we will characterize link performance through an emulated channel with nontrivial
multipath, through a non-linear amplification suite, and over a troposcatter link. We will also consider new
channel equalization strategies that reduce the noise amplification.
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