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ABSTRACT- Tasks at upper levels of sensor fusion are usually 
concerned with situation or impact assessment, which might consist 
of predictions of future events. Very often, the identity and relations 
of target of interest have already been established, and can be 
represented as relational data. Hence, we can expect a stream of 
relational data arriving at our agent input as the situation updates. 
The prediction task can then be expressed as a function of this 
stream of relational data. Run-time learning to predict a stream of 
percepts in an unknown and possibly complex environment is a 
hard problem, and especially so when a serious attempt needs to be 
made even on the first few percepts. When the percepts are 
relational (logical atoms), the most common practical technologies 
require engineering by a human expert and so are not applicable. 
We briefly describe and compare several approaches which do not 
have this requirement on the initial hundred percepts of a 
benchmark domain. The most promising approach extends existing 
approaches by a partial matching algorithm inspired by theory of 
conceptual blending. This technique enables predictions in novel 
situations where the original approach fails, and significantly 
improves prediction performance overall. However an 
implementation, based on backtracking, may be too slow for many 
implementations. We provide an accelerated approximate algorithm 
based on best-first and A* search, which is much faster than the 
initial implementation. 

Keywords-Pattern analysis, Machine learning, Reasoning 
under uncertainty, Relational Time Series, Learning, Prediction 

I.  INTRODUCTION 
Sensor fusion plays an important role in translating the raw 

sensory output from a sensor to more usable data such as 
identity and relation of target object. The high level goals are 
usually for situation and impact assessment. The technologies 
that underpin these assessment capabilities usually assume the 
availability of domain knowledge. These technologies will be 
less useful if the domain is largely unknown, and call for new 
means to learn and make prediction. Learning from a percept 
sequence and predicting its future course is fundamental to 
agent cognition. A relational time series (RTS) is a percept 
sequence composed of logical ground atoms, as opposed to the 
commonly known time-series used to represent sampled 
floating point data at a constant time interval. Learning and 
prediction on RTS in unknown environments is a hard 
problem. The technologies available for this task are mainly 
based on production systems or statistical graphical model 

inferencing processes such as Bayesian networks. To apply 
these approaches, it is necessary that domain knowledge be 
known. Many time series approaches are either propositional 
and thus do not leverage the structural properties offered by a 
relational representation, or require prior knowledge of the 
environment coded into the predefined topological structure of 
a graphical model.  

There are three contributions in this paper. The first is an 
argument for the situation learning approach [2] for learning 
relational time series in unknown environment. The second is a 
comparison of several prediction techniques in conjunction 
with the situation learning approach. The third is several 
computational approaches to single scope blending.  

In this paper, we first define the problem of learning and 
prediction in RTS for unknown domains, and describe some 
challenging characteristics of the problem. We then briefly 
evaluate possible learning and prediction technologies for their 
suitability in RTS. Then we describe the situation learning 
approach [2], and report our works in exploiting this approach 
for prediction, particularly, techniques based on Variable Order 
Markov models (VOMM) (Begleiter 2004), Multiple Simple 
Bayesian (MSB), Simple Bayesian Mixture (SBM) and new 
approaches inspired by Single Scope Bending [3]. 

II. RELATIONAL TIME SERIES 
We define a relational time series (RTS) as a sequence of 

relational percepts. Each percept is a ground atom defined as p୧ ൌ rሺcଵ, cଶ, … , c୫ሻ, where r is the predicate and c୨∈ሺଵ..୫ሻ are 
constants that represent objects. An example of a RTS is given 
in Figure 1. There are two types of percept: point and interval. 
The point percept exists or is active for a point in time and 
immediately ceases to exist. For example, a percept that 
describes “a ball hitting the wall” becomes obsolete 
immediately after it occurred. An interval percept occurred and 
remains true until something happens that change its state. For 
example, a percept that describes “a ball is in the box” is true 
until the ball is removed. The interval percept has a ‘+’ 
indicator in the predicate as shown in Figure 1. A percept that 
is true is said to be active. The interval percept becomes 
inactive when a special type of point percept arrives, indicated 
by ‘-‘ in the predicate. 
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Pi RTS Semantics 
P1 (loc+ Ed road) Ed is at location road 
P2 (loc+ Fox1 road) Fox1 is at location road 
P3 (goE Fox1 east) Fox1 is going east 
P4 (loc- Fox1 road) Fox1 is NOT at location road
P5 (loc+ Fox2 road) Fox2 is at location road 
P6 (goE Fox2 east) Fox2 is going east 
P7 (loc- Fox2 road) Fox2 is NOT at location road

Figure 1: An example of relational time series. ‘+’ means that 
the current atom is currently active. ‘–‘ means that the 
previously active atom is removed. All atoms are point percept 
except for the ‘+’ atom.  

The prediction problem can then be defined as follows. Let ሼpଵpଶ … p୬ሽ  be the sequence of percepts from the time the 
agent started learning till the present time, where i in p୧ refers 
to the running index of each incoming percept. A one-step 
prediction problem is then ሼpଵpଶ … p୬ሽ  ├  p୮ where ├ is an 
operator that predicts that p୮ is the next most likely percept. A 
two-step prediction problem is defined as ൛pଵpଶ … p୬p୮ଵൟ  ├ p୮ଶ , given that ሼpଵpଶ … p୬ሽ   ├  p୮ଵ . This means that the 
percept predicted by a one-step predictor is used for the second 
step prediction. The two-step prediction problem can be 
generalized to a multiple-step prediction problem. 

Relational representation is a natural way to express the 
relations among the constants in both real and simulated 
worlds. We can use such a time series to learn the behavior of 
our opponents, or other agents. Furthermore, relational 
representation allows us to infer additional knowledge from the 
structural properties afforded by the relations among the 
constants. In particular, such structural properties can help to 
predict even atoms that we have not seen before.  

Learning and prediction in RTS from unknown 
environments is a hard problem because of a set of challenging 
characteristics. (1)  Since there is no knowledge of the 
environment, there can be no predefined statistical graphical 
model or structure for knowing what kinds of atom that will 
arrive next. This leads to the second characteristic, which is (2) 
arbitrarily many constants and relations of arbitrary arity. This 
results in a large state space. To make the matter worse, the 
sequence of percepts can be noisy, and a function of (3) a 
moving context, with different percept subsequences occurring 
in different contexts. These characteristics present many 
challenges and opportunities for research. 

III. CURRENT APPROACHES FOR RTS 
We discuss possible learning and prediction approaches for 

RTS by organizing them into Markovian or Non-Markovian 
approaches. Markovian approaches such as Markov Chains or 
Hidden Markov Models appear to be suitable for the task 
because the sequencing property of the time series is naturally 
captured by the Markov property. These approaches are also 
efficient for online learning, which can assimilate newly 
learned percept into the knowledgebase, refining its structure if 
necessary, and use it immediately. Structural agility is 
accomplished by the state transition matrix. Each state can 
transit probabilistically to different states. The main limitation 
of Markovian approaches lies in its limited generalization to 
novel situations due to strict ordering. For example, the current 

situation may be similar to one previously encountered but 
simply have the order of two percepts switched, or have extra 
percept (noise) in between two percepts, Markov models will 
not detect it and treat it as a new sequence. Furthermore, most 
Markov approaches treat relational atoms as propositions, and 
do not leverage the relational structure. Jaeger [5] describes an 
Observable Operator Model (OOM) that models a stochastic 
process to compute the probability distribution over all possible 
future sequences, given that a sequence of propositional 
observation has been observed. The learning process requires 
prior manual estimation of a dimension (a set of features), 
which is a potential limitation in an unknown environment. 
Even in known environments, choosing the set of appropriate 
features is difficult [7].  

Non Markovian learning approaches do not regard or may 
relax the sequential order requirement of the RTS. These 
approaches usually have no or limited learning capability. 
Production system and finite state machine rely on expert 
knowledge. These approaches cannot encode rules with 
multiple possible consequences.  Bayesian learning typically 
encapsulates expert knowledge in the form of causation 
structures that are usually fixed. The key assumption to these 
approaches is that domain knowledge is known, or examples 
are available for training before deployment. Structural or rule 
learning are usually limited and done offline due to their 
exponential complexity. Statistical Relational Learning (SRL) 
attempts to combine first order logic with statistical learning 
[4]. The relational learning addresses the relational structure 
while the statistical learning allows multiple possible 
consequences. SRL are usually modeled using graphical model 
such as Bayesian Network (BN) or Markov Network (MN), 
which require predetermination of some topological structures. 
Khosravi & Bina [6] highlighted a challenge from the 
complexity of inferencing because the size of the graph grows 
with the number of attributes and objects. Most inferencing 
methods are based on the standard Bayesian inferencing 
approaches. In the case of MN, inferencing approaches require 
the computation of the partition function, which make the 
inferencing process NP-complete. These methods are therefore 
not suitable for the RTS task. 

The above methods either require domain knowledge, 
predefined inferencing structures or sensitive to noise. We 
propose a situational learning approach for learning a RTS that 
features structural agility in its learned knowledgebase, and 
allow multiple prediction techniques to be used. 

IV. A SITUATION LEARNING APPROACH TO LEARNING AND 
PREDICTION IN RTS 

Darken [2] introduces a novel and yet simple approach that 
process a RTS into a set of situations (not to be confused with 
the related notion of situation in situation calculus). The 
approach appears to use a sliding time window to identify sets 
of atoms called “situation”. When a new atom arrives, this new 
atom forms a situation with older active atoms that are still 
active within the time window from the time stamp of the new 
atom. The next arriving percept becomes the predictive target 
atom of the situation just form. If this situation already exists in 
the knowledge base, the number of occurrence of this situation 
is incremented. Otherwise, this situation will be added into the 
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knowledge base. Instead of learning the entire RTS with one 
graphical model such as a BN or MN, the approach effectively 
generates multiple simple networks of two layers. This 
approach avoids the current challenges of structural learning in 
the statistical relational learning by turning the problem into a 
situation matching and simple inferencing process. This 
situation learning approach addresses all challenging 
characteristics of RTS in a natural manner.   

A. Situation Learning 
Formally, the situation learning (SL) approach processes 

the percept sequence ሼpଵpଶ … p୬ሽ into smaller disjoint set of 
percepts (called a situation) ሼs୧ሽ, i ൌ 1. . S where S is an integer 
that defines the number of situation. Let τa(p୧ሻ refers to the 
time in which the atom pi is active, τmax(p୧ሻ refers to the latest 
time in which pi is active, τc refers to the current time when a 
new atom pnew is received and τw refers to the time window 
duration. pi ∈ sc if τmax(p୧ሻ + τw ≥ τc where sc is the current 
situation. Let pୡ  refers to the percepts encountered after 
situation sୡ.  We write a consequence cୡ  as a tuple, cୡ ൌሺsୡ, pୡሻ, such that pୡ follows sୡ.  

Given a RTS as shown in Figure 1, the agent starts with 
zero knowledge and begins to learn the situations as soon as the 
first percept arrives as shown in Figure 2. A short time window 
slides through the RTS as the percepts arrive. If the percepts 
fall within the same window, or are still active in that window, 
they will be grouped together to form one “situation” as shown 
at the left column of the table. The percept that arrives next is 
the consequence of the situation, listed at the right column. The 
numbers describe the number of occurrences to facilitate 
statistical inferencing.  

{} 1 (loc+ Ed road) 1 
{[loc+ Ed road]} 2 (loc+ Fox1 road) 

(loc+ Fox2 road) 
1 
1 

{[loc+ Ed road]  
[loc+ Fox1 road]} 

1 (goE Fox1 east) 1 

{[loc+ Ed road]  
[loc+ Fox1 road]  
[goE Fox1 east]} 

1 (loc- Fox1 road) 1 

{[loc+ Ed road]  
[loc+ Fox2 road]} 

1 (goE Fox2 east) 1 

{[loc+ Ed road]  
[loc+ Fox2 road]  
[goE Fox2 east]} 

1 (loc- Fox2 road) 1 

Figure 2: A collection of situations (left column) and their 
associated prediction (right column) 

The SL approach reduces a potentially huge RTS into a set 
of smaller situations. The process of prediction is thus reduced 
to choosing an appropriate situation for prediction inferencing. 
This approach allows the application of many inferencing 
techniques such as Variable Order Markov Models (VOMM), 
Multiple Simple Bayesian (MSB) networks, Simple Bayesian 
Mixtures (SBM). 

B. Prediction Techniques 
Darken [2] provides two simple techniques of prediction, 

and offer some insights into other possible techniques of 

prediction. The two techniques are Statistical Look-up Table 
(SLT) and Variable Matching (VM). SLT searches the situation 
table to look for a situation that exactly matches the current 
situation. If a match is found, the percept that follows the 
matched situation with the highest number of occurrence will 
be the predicted percept. VM replaces all constants in the atom 
with variables. Multiple instances of a constant use the same 
variable. The matching of situations becomes the problem of 
variable matching with substitution. A substitution is a list of 
variable bindings, e.g. θ={?a/?b} where variable ?a from one 
situation is bound to variable ?b in another situation. 
SUBST(θ,α) denotes the result of applying substitution θ to 
situation α. A match is then defined as a bijection of variables 
between the current situation and a match situation in the table. 
Finding matches is a graph isomorphism problem. An example 
of the variable representation is shown in Figure 3. 

 

Figure 3: Constant versus Variables Representation 
Darken [2] reports a prediction accuracy of about 45%, after 
250,000 percepts have been processed. This performance is 
remarkable because there are more than 300 percepts to choose 
from. However, when we run the two techniques on 100 
percepts only, simulating an unknown environment, the 
prediction accuracy drops to 10%. The mean number of 
unmatched cases is 80 and 78 for SLT and VM respectively. 
SLT suffers limitations such as strict perfect matching and not 
utilizing structural information offered by relational 
representation. VM also uses strict perfect matching, which is 
detrimental because most situations encountered are new.  

SL supports prediction techniques such as Variable Order 
Markov Models (VOMM), Multiple Simple Bayesian (MSB) 
network, and Simple Bayesian Mixture (SBM). When the RTS 
is decomposed into a set of situations, we can build one simple 
Bayesian network for each situation with the predictive target 
atom as the parent nodes, effectively forming MSB networks. 
Since MSB cannot learn certain functions such as Exclusive-
OR, we implemented SBM. SBM contains probability mixture 
densities, constructed by normalizing a linear combination of 
two or more Simple Bayesian Networks probability densities 
having the same domain and range. SBM is implemented using 
the Estimate & Maximize (EM) algorithm. VOMM is an 
extension to the Markov chain models in which a variable 
order is used in place of a fixed order. We implemented a 
VOMM model using context trees [1].  

C. Experiment 
We compared the prediction performance in a benchmark 

environment that is used in [2] in which, an agent wanders 
around and performs actions randomly. Actions include “go 
eastward”, “pick up weapon”, “equipped weapon”, “hit”, and 
many more. There are other agents (monsters) in the 
environment such as goblins, trolls and dragons. There are 
three types of weapon: pitchfork, dagger and sword. Each 
weapon may be more effective against each type of monsters. 
Each time a monster is killed, it will leave behind a weapon. 

Constant Variable 
[loc+ Ed road] [loc+ ?x ?y] 
[loc+ Ed grass] [loc+ ?x ?z] 
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