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ABSTRACT- Tasks at upper levels of sensor fusion are usually
concerned with situation or impact assessment, which might consist
of predictions of future events. Very often, the identity and relations
of target of interest have already been established, and can be
represented as relational data. Hence, we can expect a stream of
relational data arriving at our agent input as the situation updates.
The prediction task can then be expressed as a function of this
stream of relational data. Run-time learning to predict a stream of
percepts in an unknown and possibly complex environment is a
hard problem, and especially so when a serious attempt needs to be
made even on the first few percepts. When the percepts are
relational (logical atoms), the most common practical technologies
require engineering by a human expert and so are not applicable.
We briefly describe and compare several approaches which do not
have this requirement on the initial hundred percepts of a
benchmark domain. The most promising approach extends existing
approaches by a partial matching algorithm inspired by theory of
conceptual blending. This technique enables predictions in novel
situations where the original approach fails, and significantly
improves  prediction performance overall. =~ However an
implementation, based on backtracking, may be too slow for many
implementations. We provide an accelerated approximate algorithm
based on best-first and A* search, which is much faster than the
initial implementation.
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Sensor fusion plays an important role in translating the raw
sensory output from a sensor to more usable data such as
identity and relation of target object. The high level goals are
usually for situation and impact assessment. The technologies
that underpin these assessment capabilities usually assume the
availability of domain knowledge. These technologies will be
less useful if the domain is largely unknown, and call for new
means to learn and make prediction. Learning from a percept
sequence and predicting its future course is fundamental to
agent cognition. A relational time series (RTS) is a percept
sequence composed of logical ground atoms, as opposed to the
commonly known time-series used to represent sampled
floating point data at a constant time interval. Learning and
prediction on RTS in unknown environments is a hard
problem. The technologies available for this task are mainly
based on production systems or statistical graphical model
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inferencing processes such as Bayesian networks. To apply
these approaches, it is necessary that domain knowledge be
known. Many time series approaches are either propositional
and thus do not leverage the structural properties offered by a
relational representation, or require prior knowledge of the
environment coded into the predefined topological structure of
a graphical model.

There are three contributions in this paper. The first is an
argument for the situation learning approach [2] for learning
relational time series in unknown environment. The second is a
comparison of several prediction techniques in conjunction
with the situation learning approach. The third is several
computational approaches to single scope blending.

In this paper, we first define the problem of learning and
prediction in RTS for unknown domains, and describe some
challenging characteristics of the problem. We then briefly
evaluate possible learning and prediction technologies for their
suitability in RTS. Then we describe the situation learning
approach [2], and report our works in exploiting this approach
for prediction, particularly, techniques based on Variable Order
Markov models (VOMM) (Begleiter 2004), Multiple Simple
Bayesian (MSB), Simple Bayesian Mixture (SBM) and new
approaches inspired by Single Scope Bending [3].

II.

We define a relational time series (RTS) as a sequence of
relational percepts. Each percept is a ground atom defined as
pi = r(cy, ¢y, -, Cy), Where r is the predicate and cje(1.m) are
constants that represent objects. An example of a RTS is given
in Figure 1. There are two types of percept: point and interval.
The point percept exists or is active for a point in time and
immediately ceases to exist. For example, a percept that
describes “a ball hitting the wall” becomes obsolete
immediately after it occurred. An interval percept occurred and
remains true until something happens that change its state. For
example, a percept that describes “a ball is in the box” is true
until the ball is removed. The interval percept has a ‘+’
indicator in the predicate as shown in Figure 1. A percept that
is true is said to be active. The interval percept becomes
inactive when a special type of point percept arrives, indicated
by ‘- in the predicate.

RELATIONAL TIME SERIES
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P; RTS Semantics

Py (loc+ Ed road) Ed is at location road

P, (loc+ Fox1 road) Fox1 is at location road

P3 (goE Fox1 east) Fox1 is going east

P4 (loc- Fox1 road) Fox1 is NOT at location road
Ps (loc+ Fox2 road) Fox2 is at location road

Ps (goE Fox2 east) Fox2 is going east

P, (loc- Fox2 road) Fox2 is NOT at location road

Figure 1: An example of relational time series. ‘+’ means that
the current atom is currently active. ‘—° means that the
previously active atom is removed. All atoms are point percept
except for the ‘+’ atom.

The prediction problem can then be defined as follows. Let
{p1ps .- Pn} be the sequence of percepts from the time the
agent started learning till the present time, where i in p; refers
to the running index of each incoming percept. A one-step
prediction problem is then {p;p, ... pn} |— pp where [ is an
operator that predicts that py, is the next most likely percept. A
two-step prediction problem is defined as {plp2 ...pnppl} |—
Pp2, given that {p;p, ... pn} |— Pp1- This means that the
percept predicted by a one-step predictor is used for the second
step prediction. The two-step prediction problem can be
generalized to a multiple-step prediction problem.

Relational representation is a natural way to express the
relations among the constants in both real and simulated
worlds. We can use such a time series to learn the behavior of
our opponents, or other agents. Furthermore, relational
representation allows us to infer additional knowledge from the
structural properties afforded by the relations among the
constants. In particular, such structural properties can help to
predict even atoms that we have not seen before.

Learning and prediction in RTS from unknown
environments is a hard problem because of a set of challenging
characteristics. (1) Since there is no knowledge of the
environment, there can be no predefined statistical graphical
model or structure for knowing what kinds of atom that will
arrive next. This leads to the second characteristic, which is (2)
arbitrarily many constants and relations of arbitrary arity. This
results in a large state space. To make the matter worse, the
sequence of percepts can be noisy, and a function of (3) a
moving context, with different percept subsequences occurring
in different contexts. These characteristics present many
challenges and opportunities for research.

III.

We discuss possible learning and prediction approaches for
RTS by organizing them into Markovian or Non-Markovian
approaches. Markovian approaches such as Markov Chains or
Hidden Markov Models appear to be suitable for the task
because the sequencing property of the time series is naturally
captured by the Markov property. These approaches are also
efficient for online learning, which can assimilate newly
learned percept into the knowledgebase, refining its structure if
necessary, and use it immediately. Structural agility is
accomplished by the state transition matrix. Each state can
transit probabilistically to different states. The main limitation
of Markovian approaches lies in its limited generalization to
novel situations due to strict ordering. For example, the current

CURRENT APPROACHES FOR RTS
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situation may be similar to one previously encountered but
simply have the order of two percepts switched, or have extra
percept (noise) in between two percepts, Markov models will
not detect it and treat it as a new sequence. Furthermore, most
Markov approaches treat relational atoms as propositions, and
do not leverage the relational structure. Jaeger [S] describes an
Observable Operator Model (OOM) that models a stochastic
process to compute the probability distribution over all possible
future sequences, given that a sequence of propositional
observation has been observed. The learning process requires
prior manual estimation of a dimension (a set of features),
which is a potential limitation in an unknown environment.
Even in known environments, choosing the set of appropriate
features is difficult [7].

Non Markovian learning approaches do not regard or may
relax the sequential order requirement of the RTS. These
approaches usually have no or limited learning capability.
Production system and finite state machine rely on expert
knowledge. These approaches cannot encode rules with
multiple possible consequences. Bayesian learning typically
encapsulates expert knowledge in the form of causation
structures that are usually fixed. The key assumption to these
approaches is that domain knowledge is known, or examples
are available for training before deployment. Structural or rule
learning are usually limited and done offline due to their
exponential complexity. Statistical Relational Learning (SRL)
attempts to combine first order logic with statistical learning
[4]. The relational learning addresses the relational structure
while the statistical learning allows multiple possible
consequences. SRL are usually modeled using graphical model
such as Bayesian Network (BN) or Markov Network (MN),
which require predetermination of some topological structures.
Khosravi & Bina [6] highlighted a challenge from the
complexity of inferencing because the size of the graph grows
with the number of attributes and objects. Most inferencing
methods are based on the standard Bayesian inferencing
approaches. In the case of MN, inferencing approaches require
the computation of the partition function, which make the
inferencing process NP-complete. These methods are therefore
not suitable for the RTS task.

The above methods either require domain knowledge,
predefined inferencing structures or sensitive to noise. We
propose a situational learning approach for learning a RTS that
features structural agility in its learned knowledgebase, and
allow multiple prediction techniques to be used.

IV. A SITUATION LEARNING APPROACH TO LEARNING AND
PREDICTION IN RTS

Darken [2] introduces a novel and yet simple approach that
process a RTS into a set of situations (not to be confused with
the related notion of situation in situation calculus). The
approach appears to use a sliding time window to identify sets
of atoms called “‘situation”. When a new atom arrives, this new
atom forms a situation with older active atoms that are still
active within the time window from the time stamp of the new
atom. The next arriving percept becomes the predictive target
atom of the situation just form. If this situation already exists in
the knowledge base, the number of occurrence of this situation
is incremented. Otherwise, this situation will be added into the



knowledge base. Instead of learning the entire RTS with one
graphical model such as a BN or MN, the approach effectively
generates multiple simple networks of two layers. This
approach avoids the current challenges of structural learning in
the statistical relational learning by turning the problem into a
situation matching and simple inferencing process. This
situation learning approach addresses all challenging
characteristics of RTS in a natural manner.

A. Situation Learning

Formally, the situation learning (SL) approach processes
the percept sequence {p;p; ... pn} into smaller disjoint set of
percepts (called a situation) {s;},i = 1..S where S is an integer
that defines the number of situation. Let T,(p;) refers to the
time in which the atom p; is active, T.x(p;) refers to the latest
time in which p; is active, 1. refers to the current time when a
new atom pyey is received and 7T, refers to the time window
duration. p; € s if Toax(pi) + Tw = T. Where s. is the current
situation. Let p. refers to the percepts encountered after
situation s.. We write a consequence c. as a tuple, c.
(¢, Pe), such that p follows s..

Given a RTS as shown in Figure 1, the agent starts with
zero knowledge and begins to learn the situations as soon as the
first percept arrives as shown in Figure 2. A short time window
slides through the RTS as the percepts arrive. If the percepts
fall within the same window, or are still active in that window,
they will be grouped together to form one “situation” as shown
at the left column of the table. The percept that arrives next is
the consequence of the situation, listed at the right column. The
numbers describe the number of occurrences to facilitate
statistical inferencing.

SRR | S 1 ; (loctEdroad) 1

{[loc+ Ed road]} 2 | (loc+Foxlroad) 1
(loc+ Fox2 road) 1

{[loc+ Ed road] 1 (goE Fox1 east) 1

_lloctFoxiroadl} i
{[loc+ Ed road] 1 : (loc- Fox1 road) 1
[loc+ Fox1 road] :

lgoEFoxleastl} .
{[loc+ Ed road] 1 (goE Fox2 east) 1

_lloc+ Fox2 road]} F
{[loc+ Ed road] 1 ' (loc- Fox2 road) 1
[loc+ Fox2 road] !
[goE Fox2 east]}

Figure 2: A collection of situations (left column) and their
associated prediction (right column)

The SL approach reduces a potentially huge RTS into a set
of smaller situations. The process of prediction is thus reduced
to choosing an appropriate situation for prediction inferencing.
This approach allows the application of many inferencing
techniques such as Variable Order Markov Models (VOMM),
Multiple Simple Bayesian (MSB) networks, Simple Bayesian
Mixtures (SBM).

B. Prediction Techniques

Darken [2] provides two simple techniques of prediction,
and offer some insights into other possible techniques of
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prediction. The two techniques are Statistical Look-up Table
(SLT) and Variable Matching (VM). SLT searches the situation
table to look for a situation that exactly matches the current
situation. If a match is found, the percept that follows the
matched situation with the highest number of occurrence will
be the predicted percept. VM replaces all constants in the atom
with variables. Multiple instances of a constant use the same
variable. The matching of situations becomes the problem of
variable matching with substitution. A substitution is a list of
variable bindings, e.g. 6={?a/?b} where variable ?a from one
situation is bound to variable ?b in another situation.
SUBST(8,01) denotes the result of applying substitution 6 to
situation o. A match is then defined as a bijection of variables
between the current situation and a match situation in the table.
Finding matches is a graph isomorphism problem. An example
of the variable representation is shown in Figure 3.

Constant Variable
[loc+ Ed road] [loc+ ?x ?y]
[loc+ Ed grass] [loc+ ?x ?z]

Figure 3: Constant versus Variables Representation

Darken [2] reports a prediction accuracy of about 45%, after
250,000 percepts have been processed. This performance is
remarkable because there are more than 300 percepts to choose
from. However, when we run the two techniques on 100
percepts only, simulating an unknown environment, the
prediction accuracy drops to 10%. The mean number of
unmatched cases is 80 and 78 for SLT and VM respectively.
SLT suffers limitations such as strict perfect matching and not
utilizing  structural information offered by relational
representation. VM also uses strict perfect matching, which is
detrimental because most situations encountered are new.

SL supports prediction techniques such as Variable Order
Markov Models (VOMM), Multiple Simple Bayesian (MSB)
network, and Simple Bayesian Mixture (SBM). When the RTS
is decomposed into a set of situations, we can build one simple
Bayesian network for each situation with the predictive target
atom as the parent nodes, effectively forming MSB networks.
Since MSB cannot learn certain functions such as Exclusive-
OR, we implemented SBM. SBM contains probability mixture
densities, constructed by normalizing a linear combination of
two or more Simple Bayesian Networks probability densities
having the same domain and range. SBM is implemented using
the Estimate & Maximize (EM) algorithm. VOMM is an
extension to the Markov chain models in which a variable
order is used in place of a fixed order. We implemented a
VOMM model using context trees [1].

C. Experiment

We compared the prediction performance in a benchmark
environment that is used in [2] in which, an agent wanders
around and performs actions randomly. Actions include “go
eastward”, “pick up weapon”, “equipped weapon”, “hit”, and
many more. There are other agents (monsters) in the
environment such as goblins, trolls and dragons. There are
three types of weapon: pitchfork, dagger and sword. Each
weapon may be more effective against each type of monsters.

Each time a monster is killed, it will leave behind a weapon.



Each monster, weapon, agent and location has a unique
constant name. The sequence of percepts d :scribes what the
agent sees, such as its location, weapons, and other agents. Our
prediction task is to predict the next percept, given the past
percept sequence. The predicted percept p = r(cy,Cy, ..., Cpy) 18
said to be correct if the mnext new percept
p'=r'(c,,¢; ) is such that p' =p,r' =r,¢ =
¢c; wherei=12,..,m. If n is the number of correct
prediction, prediction accuracy is % where t is the total number

of percepts.

Darken [2] tested the prediction performan:e by running the
algorithms through more than 250,000 perce sts. In this study,
we want to know how the algorithms work n harsh and new
environments. We clear off the memory a ter 100 percepts
have been processed and examine the results after 40 batches of
100 percepts are processed. To simulate noisy environment, we
randomly swapped the order of two atoms in the current
situation. All experiments were run on a Dell XPS Laptop i7
1.87Ghz 16GB RAM with Windows 7.

D. Results

The prediction accuracies are given in Figure 4. Each bar in
the chart represents the mean prediction accuracy with its
associated standard error of a predictor. From the standard error
indicators, we can see that the differences are significant for at
least alpha o = 0.05 for a statistical student- " test with degree
of freedom df=39. There is no significant difference between
the SLT and VM, and both techniques are significantly worse
off than the others. This is due to the strict requirement of exact
matching. When the environment is unkno m and noisy. the
current situation can hardly match the learne | situations in the
memory. Figure 5 shows the mean number o 7 no-match for 40
batches of 100 percepts. No-match occurs wien the algorithm
is unable to find a reasonable situation. V OMM, MSB and
SBM have much lower number of No-Match.
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Figure 4 Comparison of Prediction Accuracy

The Markov Model is a popular approach in sequential and
online learning, and handles novel situations better than SLT
and VM. While the VOMM does not require exact atom to
atom matching, and even allow partial mat:hing, it requires
exact sequential adjacency ordering. For example, the sequence
of words [The Blue Fish is eating] will not match the sequence
[The Fish is eating]. In addition, VOMM treats each atom as a
proposition.
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The multiple simple Bayesian network is able to handle
novel situations with the Laplice method of assigning
probabilities to newly encountere . atoms. Its performance is
low for several reasons. Firstly, there are too many novel
percepts. The prior probabilities for each percept can be very
low. The Laplace method assigns a probability that can be
unfairly large to new atoms. Secondly, Bayesian network
cannot handle exclusive-OR relation. There are atoms that are
mutually exclusive. Thirdly, atoms in the sequence are not
independent and identically distrib ited. The Bayesian mixture
performs better than simple Bayesian classifier. However, it
also suffers some of the problems found in Multiple Simple
Bayesian.
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Figure 5 Comparisons of No-M itch.
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At this point, SBM appears to be the best performer. The
challenging benchmark environment consists of too many
novel situations for LUT, VM, V. MM, MSB and SBM. Any
algorithm that attempts to excel i1 novel situation prediction
may have to possess properties of human creativity. In the next
section, we describe our exploratio of the theory of Cognitive
Integration, also known as Concept 1al Blending [3].

V.

Conceptual blending (CB), a human cognition theory, was
developed by Fauconnier and Turner [3] to explain how
humans make sense of the wo 1d, through a process of
imaginative blending of concepts t) arrive at an understanding
of a new environment. Each coicept is equivalent to one
situation in our task and contains a frame that describes the
structural properties such as relitions and constant types.
Figure 16 describes the structure of two concepts given in
Figure 15. There are four types of integrating network in CB,
which are differentiated based on how frames from the two
concepts in the blending network are used in the blend.

CONCEPTUAL BLE DING PREDICTORS

A. Single scope blending network

We use the single scope blen ling (SSB) network., which
describes the process of analogi:al inferencing (Figure 6).
Figure 15 provides an example o "the SSB network. In SSB
network, both concepts have different frames since both
situations have different set of relitions, and constants of the
same relation may be of different types. One of the frames is
used in the blend. Here, Concept 1 corresponds to our learned
situation (source) while Concept ! refers to the current new
situation (target). The source frame is projected onto the target
situation.



B. Cross space mappings

Cross space mappings associate constants from both
concepts. The mappings process can be expressed as a form of
attempted graph bijection in which, each concept is viewed as a
graph, with constants as nodes., and relations as links. We
assume that atoms with arity more than 2 have been converted
to an equivalent set of atoms with arity 2. Since two situations
may be different, to overcome the high rate of unmatched
instances in SLT and VM, we attempt to find the largest
subgraph in one concept that can be matched to a subgraph in
another concept. This is known as subgraph isomorphism,
which is NP-Complete. We use a recursive backtracking
method to identify the largest common subgraph [9] in both
concepts.

Generic

‘ Space ’

Concept 1 Concept 2
Cross Space
Frame 1 Mappings Frame 2 4
*
“" Back

S
= * " Projection

Figure 6: Single Scope Blending Network

Once the largest subgraph is identified, the constants in the
subgraph of one concept can be substituted by the
corresponding constants in the other subgraph since they are
mapped in the subgraph isomorphism process. We call this
method the substitution method. The substitution method is
complete and optimal because it searches through all possible
substitutions to find a set with maximum possible mappings.
When every constant in one atom in concept 1 can be
substituted by one constant in another atom in concept 2, we
have one common atom. The total number of common atom is
the similarity score.

troll+ troll11 troll+ troll11

troll+ troll12 spock+  spockll

spock+  spockll hitA troll11 spockl1
hitA troll11 spock11

troll+ x1 troll+ x4

troll+ x2 spock+ x5

spock+  x3 hitA x4 x5

hitA x1 73

x3:x4

x1:x4 x5 X2 :
1 0 1 /\o
0 2 1 0 0 1 0
s=1 s3 s=1 s=0 s=1 s=2 S=

1
1 S0

/\o {
x5 ] 255 ” oxd ” 2w l
0 0 2 1
0 s0 S8  s=2

Figure 7 Backtracking partial matching process

Please refer to Figure 7 for an illustration of the backtracking
implementation. The algorithm starts with a permutation of
possible bindings. Each binding corresponds to a node in the
tree in Figure 7. These nodes are pushed into the fringe, which
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is a stack that holds the yet-to-process nodes. Each node in the
stack is popped, evaluated, and other possible bindings are then
added into the stack. The evaluation is a simple counting of the
number of common atoms in both situations if the binding is
accepted. For example, if we accept the (x1:x4) binding at the
first level, we have an additional score of one because the
binding produces one common atom, which is troll+(x1) and
troll+(x4). There are additional two possible bindings (x2:x5)
and (x3:x5) consistent with this one. The (x2:x5) binding does
not contribute any additional common atoms. Hence, the
additional score is zero. Since there is no other unmapped
nodes in concept 2 for x3, the algorithm backtracks to evaluate
(x3:x5), which contributes two common atoms in conjunction
with (x1:x4). A flow from the root to the leaf node constitutes
one path. The total score for a path describes the similarity
score of both situations based on the bindings in that path. The
path [(x1:x4), (x2:x5)] has a score of one while the path
[(x1:x4), (x3:x5)] has a score of three. The path with the
highest possible score indicates the maximum possible
similarity score between two situations. It is possible that more
than one path has the same similarity score. We could choose
the one that has the most number of types matched. For
example, in the path [(x1:x4), (x3:x5)]. x1 and x4 have the
same type troll+ and x3 and x5 have the same type spock+. In
the path [(x1:x4). (x2:x5)]. x2 and x5 do not have the same
type. Suppose that these two paths have the same similarity
score, we will choose the first path. since it has two types
matched while the later has only one. Hence, for paths that
have the same similarity score, we could further sort them by
number of types matched. (We call this TypeSort heuristic). In
the example given in Figure 7, there are two paths that have the
same similarity score and same number of types matched. In
such situations, both paths will have the same set of nodes
bindings. Experiments show that there is no difference whether
we choose the one with the TypeSort heuristic, or choose
arbitrarily.

The original backtracking approach has serious
computational complexity problem. By looking at Figure 7, we
see that there are redundancies in the search process. We
introduce two heuristics to speed up the computation. The first
heuristic is to terminate the search process, if we have found a
path with the highest possible score (MaxLen). In the example
in Figure 7, situation one has four atoms while situation 2 has
three atoms. The maximum possible score is three. Hence, if
we have found a path with a score three, we can safely
terminate the search. Our experiments show that there is no
difference in prediction accuracy for backtracking with and
without the heuristic. However, the computation time improved
by a factor of 80.

Another possible heuristic is to use the type checking to
prune the search tree (TypePruning). If a possible binding
consists of nodes of different type, that search branch is
terminated. Figure 8 illustrates the nodes that are pruned by the
heuristic. In the case that all nodes have different types, we will
have a score of zero with no bindings. The search process will
check only the first level of the tree. This heuristic affects the
completeness of the search process because of the pruned
branches.



The results from a simple experiment of 40 batches of 25
percepts, with fixed and random are shown in Figure 9 and
Figure 10. The purpose of 40x25, instead of 40x100 percepts is
because the no heuristic and TypeSort cases t ikes weeks to run
an 40x100 experiment. Random refers to additional noise
introduced to the current situation by rando aly swapping the
order of two atoms. Overall, the MaxLen and TypePruning
heuristics reduce the computation time by more than 95%
while maintaining similar levels of prediction accuracy.

Figure 8 Backtracking with TypePrunning he ristic

Effect of Backtracking Heuristics on Prediction Accuracy
40 batches of 25 percepts
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Figure 9 Effect of heuristics on prediction acc wacy
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Figure 10 Effect of heuristics on computation time

We explored a best first search (BFS) method to attempt to
improve the substitution method to cross space mapping. The
best first search is similar to the backtracking, but with a
priority queue for the fringe. The fringe is sorted based on the
similarity score. Figure 11 illustrates the state of the fringe after
processing the first level of the tree. As in backtracking, we
compared the effect of the three heuristics >n the prediction
accuracy and computation time. Since the fringe is sorted,
nodes at the end of the queue have lower similarity scores. This
raises the question of whether we can ignore some of the nodes,
and if so, how many. We ran some experiments with maximum
fringe size of one, 1,000, 2,000 and 10.000. Ve know that the
maximum fringe size is less than 8,000 in our task of 100
percepts. It turns out that there is no significant difference on
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the prediction accuracy for all four fringe size. However, the
computation time is drastically different between fringe size
one and fringe size 10,000. The results are described in Figure
12 and Figure 13. The computation time for BFS with fringe
size 10000 is 10 times more than jacktrack due to the sorting
requirement. We use insertion sort. However, the computation
time for fringe size one is much lower than all backtracking
configurations, and yet able to achieve similar prediction
accuracy. In our task, the BFS with fringe size one that
includes all three heuristics appears to be the best method for
the substitution method for cross space mapping. It turns out
that, a fringe size of two is able to achieve exactly the same
accuracy as fringe size 10,000.

=

Head

1 1 1 0 0 0

Priority Queue

Figure 11: State of the priority queue after processing the first
level of the tree
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Effect of Best First Search Heuristics on Computation Time
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We also tried an ASTAR meth>d. In Figure 7, we see that
the potential binding (x1:x4) and (2:x4) have the same score.
In the priority queue, it is possible that (x2:x4) is before



(x1:x4). Hence, we use a simple heuristic for (x1:x4) to appear
before (x2:x4) after sorting. In BFS, the frin (e is sorted based
on the similarity score, known as the g-score. In ASTAR, the
fringe is sorted based on f-score = g-score - h-score. The h-
score in this task is computed as follow: in each node in the
current path, every node that has a typ: mismatch will
contribute a negative one (-1) score to the f-score. In Figure 7,
(x1:x4) does not have type mismatch while (x2:x4) has type
mismatch. F-score(x1:x4) =1-0=1. F-score(x2:x4)=1-1=
0. The heuristic for ASTAR is admissible b :cause it is either
optimistic or zero. When there is a type mism itch, there will be
more atoms difference than just the type atom. The sanity
check can be illustrated with an example. Sup >ose we have two
paths A [(x1:x5)] and B [(x1:x5),(x3:x4)] where B is the
consequence of adding one node to A. These paths will lead to
zero similarity score. Path A will have a f-score of 0 — 1 = -1
while path B will have a f-score of 0 — 2 =-2. A path that
accumulates more mismatched nodes will have a lower score.
In our experiments with A* and the heuristics, there is no effect
on the prediction accuracy. There is a signifi :ant improvement
in the computation time. The results of a paired t-test,
comparing the computation time of BFS and A* are shown in
Figure 14.

BFS(MaxLen) FS=10000 Fixed ASTAR(MaxLen) F5=10000 Fixed

Mean 129.2776 44.71395
Variance 346090.7684 37821.28
Observations 40 40
df 39 39
F 9.150688935
P(F<=f) one-tail 1.341E-10
F Critical one-tail 1.704465067

Figure 14: Paired T-test comparing BFS and A* using
heuristics MaxLen and fringe size of 10.000.

We implemented one final approach for cross space
mappings: Structural Mapping (SM). In SM, all constants are
replaced by their types. An atom maps to an ither atom if they
have identical relation and there are corresponding constants
from both atoms at their respective position that are of the same
type. Such a mapping constitutes one commo 1 atom. Figure 16
illustrates the structures for both concepts in Figure 15.

C. Generic space

The generic space contains the common atoms in both
concepts. We look for a situation that maxi nizes the generic
space. It is the most similar situation. In the case of multiple
situations that share the same similarity scor :, the earliest one
is used.

D. The Blend

Once a previous situation is selected, the frame is used in
the blend. The constants of the frame come from the current
situation. Hence, constants from the selected >revious situation
are substituted by constants from the current situation. The
constant substitution mappings are determi ied by the cross
space mapping process. In the case of struct ral mapping, one
constant will be substituted by another if bot1 are of the same
type. The predictive target atom is generat d in the process
since it is part of the previous situation. An e ample is given in
Figure 17.
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Figure 15 Concept 1 represents a situation that has a structure
that best match the current situation in Concept 2
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Figure 16 Structures of concept 1, :oncept 2 and generic space
generated by structural mapping

Cancpr [ Frame V" Valies from Concept 2 if avaiiable | Blended Space :
1 floc+ spock+place+] 1+ spock+spock7, place—wasteland8 1 [loc+ spock” wasteland3 ] '
] ] - ' ~ '
1 [spock+spock+] 1+ spock+:spock? 1 [spock+spockT ] '
| [place= place=] | place+ wasteland$ 1 [place— wasteland8 ] |
| foct trell+ placet] troll+troll3, placet.wasteland$ | floct troll wasteland8 | H
| [irol+ troll+] troll+ trclld | [troll- troll9 ] H
| foct daggert spock~] daggert.dagger5, spockspock’ | Mloct dagger5 spock7 ] H
5 I

'

'

'

'

I

'

'

'

'

'

Q

1 [dagger+ dagger-] dagger+:daggers | [dagger- dagger$ ]
1 [equipping+ spock+ daggert] | spock+:spock7,. daggert:daggerd 1 [equipping+ spock7 daggerS ]
! [loc+ dagger+ place+] ! dagger-:daggerf. place+:wasteland® | [loc+ daggeré wasteland$]
! [dagger + dagger+] | dagger+-:dagger§ ! [dagger— dagger§]
'

"= =

Figure 17: Generating the blend by using the frame from
concept 1, and constant from concept 2. Constants mapping
are identified based on constant type.

E. Back-projection
The back-projection adds counterfactual details into the

current situation, which in our case, is the predictive target
atom.

F. Results

In this experiment, we use 40 batches of 100 percepts, in
order to compare with the earlier prediction techniques. The
results of four single scope blending predictors (Backtrack
(SSB-BT), BFS (SSB-BFS), A TAR (SSB-ASTAR) and
structural mapping (SSB-SM)) are described in Figure 18,
alongside with the other predictors described earlier. The SSB-
BT, SSB-BFS and SSB-ASTAR technique achieve the best
prediction accuracy of 28%. The 3SB-BFS and SSB-ASTAR



are the most robust techniques here th it achieve good
prediction accuracy at a reasonable time. The SSB-SM also
seems to be a good approach. Although it’: accuracy is 4%
lower, the time to compute is better than tie SSB-BFS and
SSB-ASTAR. The single scope blending approaches achieve
better performance because they make good use of the
structural properties during the situatio 1 selection and
inferencing processes. Unlike previous tech iiques that either
require exact matching, or treat each atom as one proposition,
single scope blending network approaches identify the previous
situation that has the most similar structure, and uses the
structure to make a prediction.

Prediction Performance: 40 batches of 100 percepts

0.279 0278 a

76

Figure 18 Comparison of Prediction Accura:y. SSB = Single
Scope Blending, SSB-Sub: Substitution, SSB-SM: Structural
Mapping, SSB-BFS-1: Best First Search with Fringe Size = 1,
SSB-BFS-1000 with Fringe Size =1000.
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Figure 19 Mean Computation time for proces ing 40 batches of
100 percepts.

M VOMM MSB SBM $58-BT SSB-BFS  SSB-ASTAR  $53-5M

VL

We have presented a situation learning ap roach to learning
relational time series by decomposing themn into a set of
situations. This approach can potentially hand le the challenging
characteristics of relational time series. With the set of
situations in the agent memory, the inferencing process reduces
to that of situation matching. It is only after the situation

CONCLUSIONS & FUTURE VORK
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learning is employed that we can e sen possibly use established
inferencing techniques such as Mrkov Chains and Bayesian
Inferencing. However, even with situation learning, many
current approaches have low predi :tive power because of their
inability to predict new atoms for novel situation. Therefore,
we developed analogy approaches to prediction that leverage
the relational properties of the at)mic structure. Finally, we
have shown that the analogical a proaches outperformed the
other approaches significantly.

For future work, we have recently been introduced to the
Event Segmentation Theory (EST) [8], which describes how
human cognitively learn from the szquence of inputs. It will be
interesting to develop a computatinal model of the EST and
compare it with the situation leariing approach. In addition,
Conceptual Blending’s double scope network can potentially
contribute to more novel predictions. This may help us to
address the issue of multiple situations that share the same
similarity score.
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