

IMPLEMENTING COOPERATIVE BEHAVIOR & CONTROL USING OPEN

SOURCE TECHNOLOGY ACROSS HETEROGENEOUS VEHICLES

THESIS

MARCH 2015

Stefan L. Hardy, 1st Lieutenant, USAF

AFIT-ENV-MS-15-M-180

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT-ENV-MS-15-M-180

IMPLEMENTING COOPERATIVE BEHAVIOR & CONTROL USING OPEN

SOURCE TECHNOLOGY ACROSS HETEROGENOUS VEHICLES

THESIS

Presented to the Faculty

Department of Systems Engineering and Management

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Systems Engineering

Stefan L. Hardy, BS

1st Lieutenant, USAF

March 2015

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENV-MS-15-M-180

IMPLEMENTING COOPERATIVE BEHAVIOR & CONTROL USING OPEN

SOURCE TECHNOLOGY ACROSS HETEROGENEOUS VEHICLES

Stefan L. Hardy, BS

1st Lieutenant, USAF

Committee Membership:

Dr. David R. Jacques

Chair

Dr. John M. Colombi

Member

Maj. Brian B. Stone, Ph.D.

Member

iv

AFIT-ENV-MS-15-M-180

Abstract

This thesis describes the research effort into implementing cooperative behavior and

control across heterogeneous vehicles using low cost off-the-shelf technologies and open source

software. Current cooperative behavior and control methods are explored and improved upon to

build analysis models. These analysis models characterize ideal factor settings for implementation

and establish limits of performance for these low cost approaches to cooperative behavior and

control.

 The research focused on latency and position accuracy as the two measures of

performance. Three different ground control station (GCS) software applications and two types

of vehicles, rover ground vehicles and aerial multi-rotors, were used in this research. Using

optimum factor settings from Design of Experiments (DOE), the multi-rotor following rover

vehicle configuration experienced almost twice the latency of other experiments but also the

lowest positional error of 0.8 m. Results show that the achieved update frequency of 0.5 Hz or

slower would be far too slow for close-formation flight.

v

Acknowledgments

I would like to thank my chairman, Dr. Jacques, and my committee members, Dr.

Colombi and Maj Stone, for their unlimited support. Dr. Jacques was in the trenches with me

throughout my research, from extended 2+ hour long discussions/meetings, to freezing alongside

me during experimental testing.

 This document is a testament to my wife, who has given about as much as I have, if not

more, for me to be where I am today. Her insurmountable support has carried me through the

doubtful moments, inspiring confidence in me in moments of reservation. I’ve learned more from

her than any research can provide. We had our first child right before the first quarter began.

Though daunting, you made raising a newborn and working towards a master’s degree feel

effortless. She’s given me the joy of being a husband and a father, everything I’ve ever wanted.

God is the reason for everything I am and everything I have. He has never led me astray.

I owe everything I have to Him. For that, I am blessed.

 Stefan L. Hardy

vi

Table of Contents

Page

Abstract .. iv

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xiii

I. Introduction ...1

Background...1

Problem Statement..2

Research Objectives/Questions ..3

Methodology...5

Assumptions/Limitations ..6

Implications ..7

Preview ...8

II. Literature Review ..9

Chapter Overview ...9

Policy ..9

Cooperative Behavior ...10

Cooperative Control ...12

Metrics ..19

Summary...25

III. Methodology ..27

Chapter Overview ...27

Materials and Equipment ..27

Configuration Architectures ...35

vii

Procedures ..45

Summary...57

IV. Analysis and Results ..60

Chapter Overview ...60

Diagnostic Testing ..60

Optimum Factor Settings (Design of Experiments) ...63

Heterogeneous Vehicle Implementation ..88

Summary...94

V. Application Analysis ...96

Chapter Overview ...96

Close-Formation Flight ..96

Target Information Sharing ..97

Vehicle Following ..97

Investigative Questions ..103

VI. Conclusions and Recommendations ..108

Chapter Overview ...108

Conclusions of Research ..108

Significance of Research ..109

Recommendations for Action ...112

Recommendations for Future Research..114

Bibliography ..116

Appendix A: Traxxas Modified Rover Ground Vehicle Setup120

Appendix B: X8 Multi-Rotor Setup ...126

Appendix C: Leader Vehicle Python Script...132

Appendix D: Rover Follower Distance Offset Python Script ..134

viii

Appendix E: Rover Follower Vehicle Heading Offset Python Script137

Appendix F: Multi-Rotor Follower Vehicle Heading Offset Python Script140

Appendix G: AFIT Document 5028 Test Project Technical and Safety Review144

ix

List of Figures

Page

Figure 1. Heterogeneous Vehicles In Operation [1] ... 2

Figure 2. Mission Planner Swarm Application With Grid Offset [3] 14

Figure 3. Flocking Algorithm Run Through Python [13] ... 15

Figure 4. 3DR Pixhawk Autopilot [21]... 29

Figure 5. 915 MHz 3DRobotics Telemetry Modems [23] .. 30

Figure 6. Rover Ground Vehicles ... 31

Figure 7. X8 Multi-Rotor [25] .. 32

Figure 8. Mission Planner ... 33

Figure 9. Droid Planner 2 [27] .. 35

Figure 10. Mission Planner Swarm SV-1 (Configuration 1) .. 36

Figure 11. Python Method on One GCS SV-1 (Configuration 2) 37

Figure 12. Python Method on Separate GCSs SV-1 (Configuration 3) 38

Figure 13. Droid Planner 2 Method SV-1 (Configuration 4).. 39

Figure 14. Vehicle System Node Functions SV-4 .. 40

Figure 15. Mission Planner System Node Functions SV-4 .. 41

Figure 16. Python System Node Functions SV-4 ... 42

Figure 17. Droid Planner 2 System Node Functions SV-4 ... 44

Figure 18. Operator System Node Functions SV-4 .. 45

Figure 19. Latency Model Screening .. 64

Figure 20. Latency Half Normal Plot ... 64

Figure 21. Latency Effect Tests .. 65

x

Figure 22. Latency Summary of Fit .. 66

Figure 23. Latency ANOVA Table ... 66

Figure 24. Latency Residual vs. Predicted Plot .. 66

Figure 25. Latency Normality Plot ... 67

Figure 26. Latency Lack of Fit Test.. 67

Figure 27. Latency Parameter Estimates .. 68

Figure 28. Latency Lack of Fit Test Without Sleep Time2 In Model 68

Figure 29. Latency Summary of Fit Without Sleep Time2 In Model 68

Figure 30. Latency Prediction Profiler .. 70

Figure 31. Latency Cube Plot ... 71

Figure 32. Latency Interaction Plots ... 72

Figure 33. Accuracy Error Summary of Fit .. 74

Figure 34. Accuracy Error ANOVA Table ... 74

Figure 35. Accuracy Error Effect Tests .. 74

Figure 36. Accuracy Error Lack of Fit Test .. 75

Figure 37. Accuracy Error Parameter Estimates... 75

Figure 38. Accuracy Error Prediction Profiler .. 76

Figure 39. Accuracy Error Cube Plot ... 76

Figure 40. Accuracy Error Residual vs. Predicted Plot .. 77

Figure 41. Accuracy Error Normality Plot ... 77

Figure 42. Accuracy Error Box-Cox Transformation ... 78

Figure 43. Square Root Accuracy Error Transformation Summary of Fit 78

Figure 44. Square Root Accuracy Error Transformation Parameter Estimates 78

xi

Figure 45. Square Root Accuracy Error Transformation Residual vs. Predicted Plot 79

Figure 46. Log Accuracy Error Transformation Summary of Fit 79

Figure 47. Log Accuracy Error Transformation Parameter Estimates 79

Figure 48. Log Accuracy Error Transformation Residual vs. Predicted Plot 80

Figure 49. Figure Eight Accuracy Error Model Screening ... 81

Figure 50. Figure Eight Accuracy Error Half Normal Plot .. 81

Figure 51. Figure Eight Accuracy Error Effect Tests ... 82

Figure 52. Figure Eight Accuracy Error Summary of Fit ... 82

Figure 53. Figure Eight Accuracy Error ANOVA Table .. 82

Figure 54. Figure Eight Accuracy Error Parameter Estimates ... 83

Figure 55. Figure Eight Accuracy Error Prediction Profiler ... 83

Figure 56. Figure Eight Accuracy Error Cube Plots ... 84

Figure 57. Figure Eight Accuracy Error Interaction Plots .. 85

Figure 58. Figure Eight Accuracy Error Residual vs. Predicted Plot 86

Figure 59. Figure Eight Accuracy Error Normality Plot .. 86

Figure 60. Figure Eight Accuracy Error Box-Cox Transformation 86

Figure 61. Sideview of Camera Footprint... 99

Figure 62. Bird's Eye View of Camera Footprint ... 101

Figure 63. Rover Gain Settings ... 120

Figure 64. Rover Steering Modes ... 122

Figure 65. Rover Components .. 122

Figure 66. Traxxas Rover Battery ... 123

Figure 67. X8 Multi-Rotor Gain Settings ... 127

file:///C:/Users/Stefan/Documents/Thesis/Stefan's%20Thesis%20(Final).docx%23_Toc414013521

xii

Figure 68. X8 Multi-Rotor Flight Modes ... 129

Figure 69. X8 Multi-Rotor Components ... 129

Figure 70. Multi-Rotor Battery ... 130

xiii

List of Tables

Page

Table 1. Clough's Autonomous Control Level (ACL) Chart [17] 20

Table 2. Unmanned Vehicle Human Supervisory Control Metric Classes and Subclasses

[18] ... 21

Table 3. Dudek’s Taxonomy Properties Used In The Experiments [20] 24

Table 4. DOE Factor Levels ... 53

Table 5. Test 2 Five Factor Half-Fractional Factorial Design .. 55

Table 6. Diagnostic Testing for MP Swarm and Python Configurations 61

Table 7. Two-Sample T-Test Results Between Python Configurations 62

Table 8. Optimal Factor Settings for Low Latency .. 73

Table 9. Optimal Factor Settings for Low Accuracy Error .. 80

Table 10. Optimal Factor Settings for Low Figure Eight Accuracy Error 87

Table 11. Heterogeneous Vehicle Implementation ... 89

Table 12. Multi-Rotor Following Rover Droid Planner 2 Tests 89

Table 13. Commanded Offset vs. Actual Distance Accuracy .. 93

Table 14. Commanded Offset vs. Actual Distance Accuracy CEP 94

Table 15. Angle Calculations for Azimuth FOV .. 99

Table 16. Footprint Distances ... 100

Table 17. Rover Travel Time/Latency Buffers ... 102

Table 18. Rover Gain Settings .. 121

Table 19. Rover Components ... 124

Table 20. MXL-6s ESC Speed Controller Specifications .. 125

xiv

Table 21. X8 Multi-Rotor Gain Settings... 128

Table 22. X8 Multi-Rotor Components .. 131

1

IMPLEMENTING COOPERATIVE BEHAVIOR & CONTROL USING OPEN

SOURCE TECHNOLOGY ACROSS HETEROGENEOUS VEHICLES

I. Introduction

This thesis describes the research effort into implementing cooperative behavior and

control across heterogeneous vehicles using off the shelf technologies and open source software.

Current cooperative behavior and control methods are explored and improved upon to build

analysis models. These analysis models characterize ideal factor settings for use in heterogeneous

vehicle implementation and establish limits of performance for these low cost approaches to

cooperative behavior and control.

Background

Heterogeneous vehicles are defined as using a combination of non-similar vehicles such

as rover ground vehicles, multi-rotors, planes, and other vehicles with different capabilities. For

this research, heterogeneous vehicles will be assumed to be low cost, ranging from a couple of

hundred dollars to a couple of thousand dollars. These low cost vehicles are more expendable

than current expensive UAVs, allowing for even riskier missions without fear of no return, and

flexible designs small enough to be used by ground troops on the frontlines. The vehicles

communicate with a Ground Control Station (GCS) for control. Figure 1 below is a visual of

rovers, multi-rotors, and planes, operating together in theatre [1]. This particular opeation shows

the payload drops of rover vehicles from a plane, while the multi-rotors are launched from off of

the rovers to prep for surveillance missions.

2

Figure 1. Heterogeneous Vehicles In Operation [1]

Problem Statement

Low cost heterogeneous vehicles can use cooperative behavior and control to support

applications in the military. Still, because of their affordability, these heterogeneous vehicles

could be used against the United States military by its adversaries. Though the limits of

performance are unknown, it’s important to identify the limitations of these low cost

heterogeneous vehicles using cooperative behavior and control. Identifying these limitations will

aid in recognizing suitable applications for the United States military and for preparation in

deterring adversary use. Some ways that cooperative behavior and control can benefit the

military is through addressing communication and fragile vehicle issues.

Communications are currently limited with vehicles in urban warfare or other restricted

communication environments, and mission effectiveness is currently limited by the robustness of

the vehicle. The robustness of the vehicle could be measured by the ability to respond to the

operator’s controls, ability to process autonomous functions such as distributed waypoints, or

even the ability to physically withstand the operational terrain or environment. The DoD is

currently looking for methods to improve the robustness of UAVs.

3

 These issues are reason to incorporate cooperative behavior and control into multiple

vehicles, but not necessarily of the same type. Heterogeneity offers the ability to address another

specific set of problems. In some instances, the environment can be the most crucial issue or

weakness among autonomous vehicles. The operational environment can vary in many ways

such as urban, rural, mountains, plains, land, sea, dry, or wet. Therefore, incorporating multiple

vehicles of the same type to complete a mission limits the vehicles to the same terrain. For

instance, a rover does not have the same view as an aerial vehicle would. If the rover were to

take a path that would later prove to be impossible to navigate through, the rover would lose

valuable time and resources back-tracking to a more accessible path, or even worse, not be able to

continue the mission at all. Aerial vehicles could be used as a scout to communicate with the

GCS or the rover as to where the optimum route would be [2]. These aerial vehicles, such as the

multi-rotors or planes, have a view that the ground rovers do not.

In enclosed areas or coverings, aerial vehicles could be arguably useless. In these

circumstances, rovers could navigate through pipes, low lying coverings, or places where

aerial vehicles would have a hard time operating. Therefore, by implementing

cooperative behavior and control into heterogeneous vehicles, the weaknesses of each

vehicle could be counteracted with the strengths of the accompanying vehicles.

Research Objectives/Questions

The primary question for this research is, given the state of technology for commercially,

available autopilots and Remote Control (RC) hobbyist equipment, what is the achievable

performance for cooperative behavior among heterogeneous vehicles? However, there are other

hurdles to cross in order to answer this question.

4

 First, cooperative behavior and control must be proven on a particular platform, whether

it be rovers, multi-rotors, or planes. The GCS software, platform, and method should all be

accounted for.

 A baseline can be established in order to improve cooperative behavior and control. A

new method of cooperative behavior and control can then be started, noting the software,

vehicles, and method being used. This new method can offer integration of further cooperative

behavior applications. The baseline method could then be used in comparison to the improved

method of cooperative behavior and control. The data files from these experiment comparisons

should then be analyzed to conclude the effects of these methods. With an improved method,

performance can be optimized through experimentation to find ideal settings, which can be used

on differing heterogeneous vehicle configurations.

Research Focus

There are many different approaches to, or hardware sets, that can be used with

cooperative behavior and control applications. For example, expensive autopilots for vehicle

navigation and autonomy offer high processing capabilities, but are not as accessible or

disposable as low cost equipment. Therefore, this research is scoped to focus on low cost readily

available technology.

Investigative Questions

In order to the research question several other questions need to be addressed:

1. What methods are currently available for cooperative behavior and control with low cost

vehicles? Research will be done to discover current methods of cooperative behavior and

control for low cost vehicles.

2. What are the challenges of using multiple heterogeneous vehicles from a single GCS?

The limitations or challenges involved with implementing heterogeneous vehicles from a

single GCS could limit the performance of cooperative behavior and control.

5

3. What is the initial architecture that can be implemented and improved upon? A baseline

architecture will need to be established in order to improve cooperative behavior and

control.

4. What appropriate assessment measures should be used for analysis? These assessment

measures will be used to define the effectiveness of cooperative behavior and control

throughout the research.

5. What are the performance limitations given current architecture? Once an improved

architecture for cooperative behavior and control is established, experimentation may

reveal limitations or shortcomings in performance.

6. What cooperative behavior applications are reasonable or achievable given current

limitations? Potential cooperative behavior applications will be discussed given the

results and limitations of the current cooperative behavior and control architecture.

Methodology

 A baseline will need to be established for cooperative behavior and control for

heterogeneous vehicles. Therefore, cooperative behavior and control will first need to be

implemented on homogenous vehicles in order to verify implementation of GCS software

applications. The GCS software applications will include a “swarm” capability that will set one

vehicle as a leader and the others as followers [3]. This capability will pave the way for new

cooperative behavior and control methods. Using a programming language, the same capabilities

from the “swarm” function will be implemented across multiple GCS instances. By re-creating

this application using scripting, it can be improved upon. Once again, homogenous vehicles will

be used in the same tests as the GCS software application tests. Therefore, accuracy error and

latency will be available for proper assessment and comparison.

6

 After the baseline comparisons, the new programmed method will incorporate new

behaviors. Using homogenous vehicles, experimentation and analysis software will help find the

ideal settings for optimum performance. Performance measures will assess low latency and

accuracy.

The newly improved programming script can then be implemented on two heterogeneous

vehicles, a rover ground vehicle and a multi-rotor. The same ideal settings from homogenous

vehicle tests can then be used on heterogeneous vehicles to assess the same latency and accuracy

measures in order to establish comparative assessments. Another method, involving a smart

phone application, will be used to measure latency and accuracy error in heterogeneous vehicle

configurations as well, as an alternative method implementation.

The data collected will allow for analysis and calculations regarding mounted vehicle

camera performance. These calculations will offer insight into how operating parameters and

design choices will affect the camera’s footprint from aerial vehicles, attempting to maintain

surveillance over a ground vehicle.

Assumptions/Limitations

 All tests will be done outdoors. Depending on when and where the tests are executed, the

weather should be favorable, including dry, warm, calm weather. Once temperatures reach below

freezing, the battery life on the vehicles and operating times for the safety pilot start to diminish

rapidly making the mission time unpredictable. Windy weather will add too much noise to the

data by pushing vehicles off course. Therefore, testing needed to be complete prior to the winter

months.

 Global Positioning System (GPS) reception will be necessary for leader/follower

navigation and for any cooperative behavior related to navigation, relative to position. GPS and

internet are required for the synchronization of maps on the GCS, which is used for waypoint

7

selection. GPS is the heart of autonomous navigation. Without GPS, the heart of low cost

cooperative behavior and control dies alongside autonomous navigation. When operating

vehicles on separate GCSs, a network connection between the GCSs must also be established.

 Aerial vehicles may not be flown by the military without approval. Therefore, when

planning to fly aerial vehicles, a proper location must be selected that supports UAV testing.

Camp Atterbury, IN offers a testing range for UAVs with a devoted UAV runway and restricted

military use airpsace. Appropriate accommodations must be made in order to reserve the testing

site and use all scheduled times efficiently since the location is 145 miles away.

 Upgrades to GCS software are constantly being released and the version of the software

and firmware that are on the vehicles should be known at all times. If not, there can be

compatibility issues and the vehicles may not respond to commands from the GCS.

 Cooperative behavior and control has been an area that many have focused on improving.

As noted earlier, open source GCS software recently developed a beta “swarm” application as an

attempt to make strides in the cooperative behavior community. Many others have tried

incorporating cooperative behavior and control into heterogeneous vehicles [2]. However, this

research focuses on demonstrating what has already been established in open source software and

using it as a way to customize another method of cooperative behavior and control for

heterogeneous vehicles. This new cooperative behavior method will improve the baseline method

with the integration of new behaviors and capabilities using programming scripts.

Implications

Successfully establishing an architecture for cooperative behavior and control for

heterogeneous vehicles will give the DoD and other UAV or low cost vehicle users an edge in the

field. Cooperative behavior and control could help improve communications by allowing each

vehicle to act as a relay in a link of communications to the GCS, increasing the range of missions.

8

UAVs could be more robust with the addition of multiple vehicles flying in formation or

heterogeneous vehicles used to overcome obstacles that single or homogenous vehicles couldn’t

do on their own. Using each vehicle’s strength to counteract the other’s weakness will allow for

maximum mission effectiveness.

Alternating a leader in a group of heterogeneous vehicles adds a dimension of flexibility

and allows for every vehicle to equally distribute resources. If one were to fail, several others

could step up and take its place.

Preview

The subsequent chapters will present additional material on cooperative behavior and

control for heterogeneous vehicles. Chapter two will discuss the literature involved with the

research. It will discuss what cooperative behavior and control research has been done before,

autonomy assessments for verification, and military flight policy for multiple vehicle operation.

Chapter three discuss the methodology of the research. It will explain what experiments

are to be done, what data will be obtained, how they will be obtained, and how they will be

analyzed. The chapter will discuss the details of the software and procedures used.

Chapter four will present the results of the research and the analysis associated with

them. The data will be presented in the form of plots, spreadsheets, and algorithms.

Chapter five will cover application analysis from this research. A sequence of

calculations and a trade study will investigate how certain variables should be altered to

maximize the effectiveness of an application in a heterogeneous vehicle configuration.

Chapter six will disclose the conclusions associated with the research after analyzing the

data. The chapter will offer final thoughts and explanations of the research, what was done, what

could have been done better, and future areas of work for follow-on research.

9

II. Literature Review

Chapter Overview

The purpose of this chapter is to provide relevant background information and report on

the investigations and results of other researchers. Terms will be defined, and a review of recent

literature will validate the focus of this research. Research into current issues will validate the

focus of this research. Previous research efforts will be presented that establish foundations for

this research.

The focus of this research is to implement cooperative behavior across heterogeneous

vehicles using off the shelf technology and open source software. This research involves

addressing methods of cooperative behavior and control with heterogeneous vehicles that can be

used and improved. Defense Advanced Research Projects Agency (DARPA) recently initiated a

Swarm Challenge Program, with a goal to “leverage affordable, existing unmanned systems and

platforms and/or low-cost approaches enabled by distributed/redundant functionality of

heterogeneous unmanned systems,” as one of its goals of a new program [1]. While the current

research is not associated with the DARPA program, there is an overlap in the research

objectives. In subsequent sections, policy will be discussed, cooperative behavior and control

will be defined, and metrics used for evaluation will be identified.

Policy

There are guidelines, such as GCS configuration, altitude, and speed restrictions on

SUAS, written in policy that must be followed, which could limit this research. Both the Federal

Aviation Administration (FAA) and the Air Force have policy and guidance associated with small

UAS flight, and both need to be understood.

There are five groups of UAS codified by the JFCOM Joint UAS CONOP, but only the

first two will be discussed due to their relevance to this research [4]. Group 1 involves UAS less

10

than 20 pounds that normally operate below 1200 feet Above Ground Level (AGL) and at speeds

less than 250 knots. Group 2 UAS weigh between 21 and 55 pounds and operate below 3500 feet

AGL at less than 250 knots. All vehicles related to this research fall under Group 1 classification.

It is important to note the classifications because there are specific restrictions related to each

group classification. However, Group 1 UAS are exempt from most of the restrictions placed on

the other groups. Air Force Institute of Technology’s (AFIT) current Military Flight Release

(MFR) prevents any military UAS from flying outside reserved training locations without a

Certificate of Authority (COA) from the FAA. The closest facility to test UAS in military

restricted airspace is Camp Atterbury, IN. A further restriction prevents multiple UAS from

flying under control of a single GCS [5]. This is a form of policy that this research hopes to

change after the groundwork is established for proof of air worthiness of cooperative behavior

and control for heterogeneous vehicles. Until then, this research will focus on heterogeneous

vehicles, consisting of rover ground vehicles and aerial multi-rotors. If more than one aerial

vehicle will be used simultaneously, it will operate from separate GCSs, using a network

connection between them. The policy and restrictions discussed are primarily the Department of

Defense’s (DOD) guidelines; FAA guidelines weren’t discussed since no vehicle was flown

outside of military restricted airspace for this research.

Cooperative Behavior

Cooperative behavior and control are two separate functions; however, sometimes they

overlap. Cooperative behavior describes the act of cooperation between two or more vehicles,

which can be facilitated by cooperative control. It is more formally defined as, “the interaction of

two or more persons or organizations directed toward a common goal which is mutually

beneficial. An act or instance of working or acting together for a common purpose or benefit”

[6]. Cooperative behavior was originally learned from the behaviors of animals, insects, and

11

people. Therefore, the realm of cooperative behavior evolved from natural living organisms to

autonomous vehicles, which may share some similar characteristics of biological system.

Cooperative behavior brings another dimension of autonomy to man-made vehicles. Some say

cooperative behavior can exist only when individuals improve the joint payoff, instead of their

own payoff [7]. Thus, cooperation involves joining two or more vehicles to reach a more

beneficial goal or task, that would not be achievable with individual performance.

Flocking/Swarming

Some types of cooperative behavior include swarming and flocking. Many people use

these definitions interchangeably as a collective behavior of individuals interacting with one

another towards a common direction [8]. Some use “flock” to describe a behavior and “swarm”

to describe a group of individuals. In biological terms, swarming refers to the collective behavior

of a group of insects, and flocking refers to the collective behavior of a group of birds. If the

group of individuals were acting like a flock of birds, the rapid collective moving to and away

from locations, then the term “flocking” can be used in the description [9]. If the group of

individuals was acting like a swarm of insects, the constant collective movement of a group

around a location, then one might use the term “swarming.” This research will focus on the

biological definitions of the two words in reference to vehicle behavior. In terms of planes,

flocking may be more commonly used because it involves the non-hovering constant flight,

mostly seen with birds. In terms of multi-rotors or rover ground vehicles, swarming may be more

commonly used because it involves hovering capabilities, or a stop and go characteristic, that

planes are not able to exhibit.

Impact

Cooperative behavior and control among unmanned vehicles can support mission

capability by extending the range of communications. Low cost unmanned vehicles typically are

limited to line-of-sight (LOS) communication range. Using cooperative behavior & control and

12

Commercial Off-The-Shelf (COTS) hardware, a rover and relay Small Unmanned Aerial System

(SUAS were used to essentially double the communication range from the GCS to the rover

aircraft [10]. The relay aircraft used an algorithm to effectively navigate to an optimal position

for communication range based on the location and heading of the rover vehicle.

With the success that cooperative behavior and control brings to the mission,

heterogeneity adds another dimension. Heterogeneity allows flexibility in a multi-terrain,

unpredictable operational environment. For example, a multi-rotor SUAS was used in

combination with multiple ground vehicles to overcome terrain obstacles [2]. A single ground

vehicle was incapable of navigating over a steep ramp. However, with the ability for multiple

ground vehicles to attach to one another, the vehicles could generate enough force to collectively

maneuver over the ramp. The ground vehicles, using the multi-rotor vehicle’s camera vision,

used internal processing and programmed behaviors to interconnect. The multi-rotor vehicle was

able to display a view beyond the vision of the ground vehicles, detecting a need for cooperative

behavior. In this instance, the multi-rotor essentially acts as a scout. This scout configuration

could be beneficial for a ground vehicle, whose camera doesn’t have the range of vision of multi-

rotors. Otherwise, the ground vehicle could unknowingly maneuver onto an obstacle it cannot

navigate over due to its lack of preemptive vision.

Cooperative Control

Cooperative control is a precursor to cooperative behavior. It involves the control of

individuals or vehicles to perform cooperative behavior. Cooperative control can include

algorithms, feedback loops, and formation control [11]. Cooperative control essentially explains

the “How,” while cooperative behavior explains the “What.” Cooperative control explains how

the vehicles or individuals will interact and what measures will enforce it.

13

Swarm

Mission Planner, an open source GCS software managed by Michael Oborne, has a

“swarm” application developed through contributions of the open source community [3]. This

application is a beta feature and is continuously being updated. It allows for the connection of

more than one autonomous vehicle, setting one vehicle as a leader and one or more as followers.

The leader can maneuver by manual control or autonomously through given waypoints. The

followers, given an offset, will follow the leader autonomously. The application offers the ability

to set the leader-follower offset. A grid feature displays the location of the connected vehicles.

By dragging each vehicle on the grid, the follower offset from the leader can be established. It

should be noted that this offset is relative to inertial bearing. For example, if the follower is

positioned directly behind the leader on the grid, the follower will follow directly behind the

leader only when the leader travels North. If the leader were to maneuver East, the follower

would be attempting to follow the leader in a parallel fashion instead of directly behind. The grid

determines an offset based only on North, South, East, and West position or a geodetic frame.

This research will preserve the follower’s formation by configuring the offset relative to the

leader heading instead of the leader’s geodetic orientation. Nevertheless, the application’s

arguably best contribution is the ability to simultaneously connect to multiple vehicles. The

application adds the ability to add a second Micro Air Vehicle Link (MAVLink), which is a link

between the GCS and the vehicle that communicates the GPS location, speed, and other vehicle

parameters. Mission Planner is not able to connect to multiple vehicles without the addition of

the “swarm” application. Figure 2 below shows the swarm application menu with the grid offset

on Mission Planner, and the second MAVLink option.

14

Figure 2. Mission Planner Swarm Application With Grid Offset [3]

Though Mission Planner cannot connect to multiple vehicles simultaneously without the swarm

application, there are other GCSs that can. APM Planner 2.0 and Q Ground Control are two

GCSs investigated that support multiple vehicle connections. Further investigation found that

APM Planner 2.0 was relatively new and did not support Python, a programming language that

Mission Planner did support. Q Ground Control was found to not have a user friendly interface,

and not much support was found on forums.

Flocking

Flocking has been simulated in several different scenarios. The Boid algorithm is

commonly used as a flocking algorithm [12]. The most basic Boid scheme involves three rules

for application: separation, alignment, and cohesion. The flock must separate to avoid colliding

with flock occupants, align towards the average heading of flock occupants, and form a cohesive

15

flock by moving towards the geometric center of the flock. This flocking algorithm has been

modified and simulated using a variety of algorithms and programming environments.

Implementing this behavior into SUAS would greatly enhance autonomy with the use of

cooperative behavior and control by eliminating the need for manual control. The algorithms

force the operation of the vehicles in the flock to depend on every other vehicle in the flock. By

appropriately weighting the various rules, to include the possible addition of more rules

associated with target seeking or obstacle avoidance, the vehicles can essentially create their own

steering commands and sustain navigation. Figure 3 below shows a visual of flocking in Python

[13].

Figure 3. Flocking Algorithm Run Through Python [13]

Flocking can be a beneficial component of mission effectiveness. In recent research, a

methodology was modified from Craig Reynold’s model in order to provide the most ideal flock

flight formation for fuel saving and mission endurance [14]. Reynold’s model focus of collision

avoidance, flock centering, and velocity matching was restructured to focus on precise

positioning in relation to the Formation Geometry. Precise positioning allowed for the flock

members to maintain their offset during navigation. In close proximity, cooperative behavior and

control as well as timely sensing and communication are essential between the aircraft in the

flock to prevent collision or mission failure. The aircraft must interact by exchanging

16

information among the other aircraft in the flock such as velocity and position. This information

sharing can be accomplished through such measures as a local area network, which will prevent

the flock from needing central guidance, initiating semi-autonomous behavior. The flock

formation was designed as a staggered “V” pattern in order to minimize drag.

Collision avoidance was implemented by establishing a buffer between the aircraft in the

flock. If the distance between two aircraft in the flock was within 75% of the established offset,

the aircraft would speed up or slow down accordingly to avoid collision and maintain the offset

balance [14].

If the leader in the flock maintained its position in the flock for an extended amount of

time, the leader aircraft autonomously switched positions with another aircraft in the flock [14].

This autonomous leader switch benefited the mission endurance by balancing drag savings and

fuel usage over time across the vehicles in the flock.

Through these methodological principles, the optimum drag reduced flock configuration

still provided too much of a collision risk. However, longitudinal spacing provided less drag

effect than lateral spacing. Therefore, the flock configuration implemented further longitudinal

spacing in order to maintain reduced drag effects, while also decreasing the collision risk.

Through this configuration, a 9.7% reduction in drag was achieved allowing for a 14.5% increase

in mission endurance [14].

Rover/Relay

For overcoming communication range limitations, cooperative behavior has been

demonstrated through use of rover and relay vehicle configurations. Using a rover and relay

SUAS, with incorporated cooperative behavior and control algorithms, anticipated range was able

to increase over 50 percent [15]. With moving target search areas, the algorithm was able

increase coverage area by over 110 percent. The relay aircraft acted as a messenger aircraft,

17

sending valuable information from the GCS to the mission oriented rover aircraft, as well as

transmit rover information to the GCS.

 Equation 1 is used to calculate the anticipated position of the rover aircraft in latitude and

longitude coordinates, given the actual rover position, 𝑃𝑎𝑐𝑡𝑢𝑎𝑙, in latitude and longitude [15]. The

speed lead factor, 𝐶𝑆𝐿, weights the amount of system speed lead. The heading, h, and ground

speed, v, in meters per second also contribute to the anticipated rover position. The constant,

mpD, measures the meters per degree latitude and longitude for the location.

𝑃𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑 = 𝑃𝑎𝑐𝑡𝑢𝑎𝑙 + (
𝐶𝑆𝐿

10
) [

sin ℎ
cos ℎ

] (𝑚𝑝𝐷)𝑣𝛥𝑇 (1)

Then, the midpoint of the rover aircraft is calculated using Equation 2. The position of the GCS,

𝑃𝐺𝑆, is used in the algorithm [15].

𝑃𝑚𝑖𝑑 =
𝑃𝑎𝑛𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑒𝑑 + 𝑃𝐺𝑆

2
 (2)

With the midpoint of the rover aircraft calculated, the distance to the midpoint from the GCS

could be calculated from Equation 3 [15].

𝐷 = |2 (
𝑃𝑚𝑖𝑑 − 𝑃𝐺𝑆

2
) ∗ 𝑚𝑝𝐷| (3)

Finally, the position of the relay is able to be calculated in Equation 4, given the weighted

average formula in Equation 5 [15].

𝑃𝑟𝑒𝑙𝑎𝑦 =
∑ 𝑊𝑖 ∗ 𝑃𝑚𝑖𝑑

#𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑜𝑣𝑒𝑟𝑠
𝑖=0

∑ 𝑊𝑖
#𝑎𝑐𝑡𝑖𝑣𝑒𝑅𝑜𝑣𝑒𝑟𝑠
𝑖=0

 (4)

The weighted average in Equation 5 requires the unsigned positive integer Distance Bias Factor,

𝐶𝑑𝑏 [15].

18

𝑊 = 𝐷
𝐶𝑑𝑏
10 (5)

It was later found from testing during the research, that the calculated midpoint of the

rover was the optimum location for the relay aircraft to loiter for maximum range [15]. It was

also found that smaller loiter radii coupled with slower and more maneuverable relay aircraft

increased the overall communication range between the GCS and the rover aircraft.

Surveillance

Cooperative control has also been used for surveillance. Past research discusses

cooperative control algorithms used for multiple SUAS to perform surveillance using equal

angular spacing from the ground target [16]. The algorithm allows each SUAS in the surveillance

mission to loiter around a target at an equal angular spacing from one another on the same loiter

path. This loiter would allow for the target to continually be within the Field of View (FOV) of at

least one SUAS camera. It was found that roll had the largest impact on the FOV of the fixed

body camera. Also, wind greatly affected the visibility time of the camera. The wind’s effect

was measured with the wind at speeds of 0-50% of the vehicle air speed. It was found that at

wind speeds greater than 50% of the nominal airspeed, the visibility time of the camera was too

short to be considered mission effective. It was also found that the more vehicles operating in the

mission, the less wind affected the visibility time. This low wind effect is because there were

more operational cameras focusing on the target during the mission. This use of multiple vehicles

to limit wind effects highlights why cooperative control can be important to the mission. The

multiple SUAS need to obtain current position, velocity, angle from target, and other flight

information from the other SUAS in the mission to affect its own course. In this regard, the

SUAS need to work together for the most effective solution.

19

Metrics

Measuring autonomy is perhaps another challenge, since it is mostly known as a

subjective evaluation. This research focuses on implementing cooperative behavior and control.

However, cooperative behavior and control is a small part of autonomy. Cooperative behavior

and control can improve autonomy. Nevertheless, autonomy must somehow be able to be

measured in order to evaluate SUAS capabilities. Bruce Clough, from the Air Force Research

Laboratory (AFRL), introduced an Autonomous Control Level (ACL) chart in order to measure

autonomy [17]. Clough points out that automatic and autonomous are not the same. Automatic

means that the system will follow directions exactly as specified. Autonomy means the system

has free will or choice outside of influence. Clough integrated existing autonomous evaluation

categories from other autonomy scales in order to create his own ACL. The ACL categorizes

SUAS on a scale of zero to ten, ten being fully autonomous like a human, and zero being a

Remotely Piloted Aircraft (RPA). Integrating human dynamists’ Observe, Orient, Decide, and

Act (OODA) measures, columns were made measuring perception/situational awareness,

analysis/coordination, decision making, and capability of SUAS. Table 1 shows Clough’s ACL,

which could be used for data measurement and analysis between the cooperative behavior and

control methods presented in this research.

20

Table 1. Clough's Autonomous Control Level (ACL) Chart [17]

Level Level

Descriptor

Observe

Perception/Situational

Awareness

Orient

Analysis/Coordination

Decide

Decision Making

Act

Capability

10 Fully

Autonomous

Cognizant of all within

Battlespace

Coordinates as necessary Capable of total independance Requires little guidance to do job

9 Battlespace

Swarm

Cognizance

Battlespace inference – Intent of

self and others (allies and foes).

Complex/Intense environment –

on-board tracking

Strategic group goals assigned.

Enemy strategy inferred

Distributed tactical group planning. Individual

determination of tactical goal. Individual task

planning/execution. Choose tactical targets

Group accomplishment of strategic goal

with no supervisory assistance

8 Battlespace

Cognizance

Proximity inference – Intent of

self and others (allies and foes)

Reduced dependence upon off-

board data

Strategic group goals assigned.

Enemy tactics inferred. ATR

Coordinated tactical group planning. Individual

task planning/execution. Choose targets of

opportunity

Group accomplishment of strategic goal

with minimal supervisory assistance

(example: go SCUD hunting)

7 Battlespace

Knowledge

Short track awareness – History

and predictive battlespace data in

limited range, timeframe, and

numbers. Limited inference

supplemented by off-board data

Tactical group goals assigned.

Enemy trajectory estimated

Individual task planning/execution to meet goals Group accomplishment of tactical goal with

minimal supervisory assistance

6 Real Time

Multi-Vehicle

Cooperation

Ranged awareness – on-board

sensing for long range,

supplemented by off-board data

Tactical group goals assigned.

Enemy location sensed/estimated

Coordinated trajectory planning and execution to

meet goals – group optimization

Group accomplishment of tactical goal with

minimal supervisory assistance. Possible

close air space separation (1-100 yds)

5 Real Time

Multi-Vehicle

Coordination

Sensed awareness – Local

sensors to detect others, Fused

with off-board data

Tactical group plan assigned. RT

Health Diagnosis; Ability to

compensate for most failures and

flights conditions; Ability to

predict onset of failures (e.g.

Prognostic Health Mgmt). Group

diagnosis and resource

management

On-board trajectory replanning – optimizes for

current and predictive conditions. Collision

avoidance

Group accomplishment of tactical plans as

externally assigned. Air collision

avoidance. Possible close air space

separation (1-100 yds) for AAR, formation

in non-threat conditions

4 Fault/Event

Adaptive

Vehicle

Deliberate awareness – allies

communicate data

Tactical plan assigned. Assigned

Rules of Engagement. RT Health

Diagnosis; Ability to compensate

for most failures and flight

conditions – inner loop changes

reflected in outer loop performance

On-board trajectory replanning – event driven.

Self resource management. Deconfliction

Self accomplishment of tactical plan as

externally assigned. Medium vehicle

airspace separation (100’s of yds)

3 Robust

Response to

Real Time

Faults/Events

Health/status history & models Tactical plan assigned. RT Health

Diag (What is the extent of the

problems?). Ability to compensate

for most control failures and flight

conditions (i.e. adaptive inner-loop

control)

Evaluate status vs required mission capabilities.

Abort/RTB if insufficient

Self accomplishment of tactical plan as

externally assigned

2 Changeable

Mission

Health/status sensors RT Health diagnosis (Do I have

problems?). Off-board replan (as

required)

Execute preprogrammed or uploaded plans in

response to mission and health conditions

Self accomplishment of tactical plan as

externally assigned

1 Execute

Preplanned

Mission

Preloaded mission data. Flight

Control and Navigation Sensing

Pre/Post Flight BIT. Report status Preprogrammed mission and abort plans Wide airspace separation requirement

(miles)

0 Remotely

Piloted Vehicle

Flight Control (attitude, rates)

sensing. Nose camera

Telemetered data. Remote pilot

commands

N/A Control by remote pilot

21

Another metric used in previous research for Unmanned Vehicles (UV) involved

including human, UV, and the interaction measures. The five groups of metrics are shown in

Table 2 [18].

Table 2. Unmanned Vehicle Human Supervisory Control Metric Classes and Subclasses [18]

UV behavior involves usability, adequacy, autonomy, and reliability. Usability is

associated with efficiency, memorability, errors, and user satisfaction [19]. Adequacy is

characterized by the impact on mission support and is composed of autonomy, accuracy, and

reliability.

Human behavior involves the mission choices and actions made to satisfy the objective.

Human behavior is categorized into attention allocation efficiency and information processing

efficiency [19]. Attention allocation is measured through efficiency across tasks and involves

task switching times and prioritization and could be affected with increased workloads.

Mission Effectiveness (e.g., key mission performance parameters)

UV Behavior Efficiency (e.g., usability, adequacy, autonomy, reliability)

Human Behavior

Efficiency

-Attention allocation efficiency (e.g., task switching times, prioritization)

-Information processing efficiency (e.g., decision making accuracy, reaction

times)

Human Behavior

Precursors

-Cognitive Precursors (e.g., SA, mental workload, self-confidence, emotional

state)

-Physiological Precursors (e.g., physical comfort, fatigue)

Collaborative Metrics -Human/UV Collaboration (e.g., trust, mental models)

-Human/Human Collaboration (e.g., coordination metrics, team mental

model, team SA)

-UV/UV Collaboration (e.g., vehicle reaction times to situational events that

require autonomous collaboration

22

Information processing results from the ability to dissect and understand the tasks of the mission

and involves the decision making accuracy, and reaction times.

Human Behavior Precursors consist of processes that occur before a recognized action or

result [19]. These include cognitive precursors and physiological precursors. Cognitive

precursors involve the social or psychological factors, while the physiological precursors involve

physical factors, such as fatigue and physical discomfort.

Collaborative Metrics are measured through the interaction between operators and UVs

[19]. With multiple vehicles controlled by a single operator, the collaboration between the UV’s

is also considered. The vehicles must interact with one another for cooperative behavior and

control and must pass and receive information. Therefore, the reaction times required for these

messages could be measured for efficiency. The interaction between human and the vehicles

must also be measured through the trust that the human has in the vehicle and mental models. If

too much trust is given in the vehicle’s operation, the risk of complacency appears. However, if

too little trust is put into the vehicles, the potential capability of the vehicle is never fully realized.

With multiple operators, human to human collaboration is also measured. Cooperation and team

building exercises are vital to working as a team. Therefore, mental human behavior analysis

models could help measure the social skills involved with the team members.

Mission Effectiveness measures how well the overall system meets its objectives [19].

These involve key mission performance parameters. If mission effectiveness is high and lower

level measures of performance are low, either the measures of performance are not appropriate or

the measure of effectiveness is not measuring what is important.

With a single operator and multiple unmanned vehicles, an architecture was created of

the metrics and where they are measured within the system. [18]. The architecture starts with

Human Behavior Precursors, which affect Human Behavior Efficiencies, which affect UV

Behavior Efficiencies. Then, UV Behavior Efficiencies are cycled back to Human Behavior

23

Efficiencies with usability, adequacy, autonomy, and reliability information. The information

processing efficiency is then measured.

 Past research shows a way of measuring the effectiveness, efficiency, and complexity of

flocking UAVs [20]. Effectiveness is measured by the amount of targets killed, K, out of the

number of enemy events, E, using Equation 6. Efficiency is measured by the amount of targets

killed out of the number of munitions launched, LM, in Equation 7.

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 =
𝐾

𝐸
 (6)

𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐾

𝐿𝑀
 (7)

The complexity can also be measured by the mean length of the UAV’s target list. The

longer the target list, the more complicated the algorithm implementation and on-board

processing becomes. A long target list introduces more variables to analyze and requires higher

levels of on-board processing to sort through large data sizes. Dudek’s Taxonomy [20] was also

used, displayed in Table 3, to measure different flocking UAV attributes.

24

Table 3. Dudek’s Taxonomy Properties Used In The Experiments [20]

Axis Subdivision Value/Remarks

Collective size SIZE-ALONE

SIZE-PAIR

SIZE-LIM

SIZE-INF

1

2

3-10

N/A

Communication Range COM-NONE

COM-NEAR

COM-INF

0

10,000m

1e10m

Communication Topology TOP-BROAD

TOP-ADD

TOP-GRAPH

TOP-TREE

Used always

N/A

N/A

N/A

Communication Bandwidth BAND-ZERO

BAND-LOW

BAND-MOTION

BAND-INF

Same as COMM-NONE

Not used

Self-created target list

Entire target list

Collective Reconfigurability ARR-STATIC

ARR-COM

ARR-DYN

Dependent on UAV velocity which is

dependent on number of group size

Processing Ability PROC-SUM

PROC-FSA

PROC-PDA

PROC-TME

N/A

N/A

N/A

Used always

Collective Composition CMP-IDENT

CMP-HOM

CMP-HET

Used

Same as CMP-IDENT

used

The values in the table are sample values used in the research, but the categories present

opportunities and areas to evaluate for cooperative behavior and control.

25

Summary

 This chapter has introduced several related research efforts, both past and present. The

need for cooperative behavior and control can be seen through government Request For Proposals

(RFP) and through government organizations, such as DARPA, and their pursuit of swarm

technology programs.

Military policy prohibits military flight outside of reserved training sites, as well as

multiple vehicle operation from a single GCS. The lack of aerial vehicle operation from a single

GCS, forces other means of communication, such as through a network. However, latency issues

may now be introduced. With the use of ground vehicles and a multi-rotor, heterogeneous

vehicle cooperative behavior and control can be demonstrated, which will hopefully aid in

military flight policy adjustments. Policy restricting one aerial vehicle per GCS presents an

opportunity for this research to adjust current restrictions. The policy addresses an investigative

question in reference to the challenges of using heterogeneous vehicles from a single GCS.

Testing cooperative behavior and control with multiple rover vehicles on a single GCS gives data

that may support the claim of using multiple aerial vehicles on a common GCS. This policy also

leads to investigations or experimentations in this research as to whether operating multiple

vehicles from a single GCS is really beneficial over using separate GCSs.

Though cooperative behavior and cooperative control may seem similar, they are

different concepts. Cooperative behavior involves the collective acts performed by a group of

individuals, while cooperative control demonstrates how the system is run or managed.

Cooperative control, the “how”, often determines the cooperative behavior, the “what.” Defining

these terms helps communicate this research and its intent.

Past research in cooperative control has offered future improvements with the addition of

swarm applications in open source GCS software, such as Mission Planner. The application

offers simultaneous vehicle connection to a common ground station, previously incapable with

26

Mission Planner. This simultaneous connection to a single ground station leads the way for

further modifications, such as leader-follower offset re-configuration, and the inclusion of new

behavior modifications. Though other GCS software exists that support multi-vehicle

connections, Mission Planner is used through the extent of this research due to its Swarm

application, Python capability, and appears to be the most stable and supported GCS in the

community through the documentation offered by users. However, one of the leading limitations

of Mission Planner is that it cannot connect to multiple vehicles, aside from what was seen in the

Swarm application.

The autopilot used in this research is the Pixhawk, which offers higher processing

capabilities than other related low cost autopilots. In terms of this research, most of the

processing will be done from the GCS, but having a Pixhawk will hopefully reduce latency.

Surveillance is another type of cooperative control that could benefit with the use of

multiple vehicles. With this research, vehicle orientation and communication is paramount. The

methodology used to set equal distances between vehicles could possibly be used with

heterogeneous vehicles towards a common target or goal. Therefore, this research could aid in

the implementation of vehicle offset of multiple vehicles. Surveillance is a possible application

that can be investigated further through camera calculations to find the optimum settings for a

multi-rotor camera following a rover.

Previous research illustrates that to measure the performance of unmanned vehicles, more

than the vehicles’ mission capability needs to be analyzed. Human performance and supervisory

reaction needs to be incorporated to measure the system as a whole. With multiple vehicles, and

a single operator the vehicle collaboration will need to be measured through reaction times or

latency as well as the human to vehicle interaction through degrees of trust from the operator

towards the vehicle.

27

III. Methodology

Chapter Overview

Using a collection of past, current, and new developmental research, a set of test procedures

can be established and implemented. This chapter discusses the materials and equipment to be

used in the research test procedures, the test procedures involved with the research, and the data

measures to be collected. The aim of this chapter is to communicate the architectures, hardware,

and constructive test procedures that adequately address the following investigative questions out

of the six total investigative questions associated with the research.

2. What are the challenges of using multiple heterogeneous vehicles from a single GCS?

3. What is the initial architecture that can be implemented and improved upon?

4. What appropriate assessment measures should be used for analysis?

5. What are the performance limitations given current architecture?

6. What cooperative behavior applications are reasonable or achievable given current

limitations?

With proper test procedures set in place, responses to the investigative questions should

ultimately lead to conclusive solutions to the research objective.

Materials and Equipment

As part of this research, the system is comprised of heterogeneous unmanned vehicles,

including ground and air vehicles, and a GCS. Each vehicle in the system is its own system,

classifying the system as a system of systems. A system of systems occurs when each system

within the system can operate independently without the use of the other systems. However, each

system in the system can also operate together to reach a common goal, hence the name system of

systems. Therefore, each vehicle must have components, consisting of an autopilot,

28

communications, propulsion, and battery, to operate it and to exhibit cooperative behavior and

control with the other vehicles in the system.

Autopilot

The autopilot is the “brain” of the vehicle. It interprets commands and distributes them to

the rest of the components. Without an autopilot, the vehicle cannot function autonomously. For

the Pixhawk autopilot, these autonomous functions include waypoint navigation, loiter points,

Guided mode, and failsafe implementations [21]. A set of waypoints or loiter points edited from

GCS software can be loaded onto the autopilot. The loiter points are used for aerial vehicles.

Guided mode makes the vehicle move towards a set point. A Fly-to-Here function, a variant of

Guided mode, allows the user to mark a point on the GCS software’s map, while connected to the

vehicle, for the vehicle to immediately navigate towards. Once the vehicle arrives at the point,

the vehicle will loiter about that point. When the vehicle’s battery is low or telemetry reception is

lost, failsafes on the autopilot allow for the vehicle to autonomously land or return to a home

location. Most of the vehicle components are connected to the autopilot, some even directly

powered by the autopilot’s output voltage. The autopilots are not unique to a specific vehicle

type, meaning they can be used by both ground and air vehicles by loading the desired vehicle’s

firmware onto it. Past research has used the ArduPilotMega (APM) version 2.5 autopilot, due to

its low cost, accessibility, similarity to fielded systems, and flexible use as an open source

platform [22]. Firmware loaded onto the APM and Pixhawk is available in the open community.

This research is using the newer 3DR Pixhawk autopilots for the vehicles, as shown in Figure 4

[21]. The Pixhawk carries most of the same attributes as the APM, but has a faster processor,

potentially allowing for the incorporation of new cooperative behavior and control techniques.

29

Figure 4. 3DR Pixhawk Autopilot [21]

Telemetry Modems

In order for the autopilots and the vehicles to communicate with the GCSs,

telemetry modems are necessary. One telemetry modem is connected to the autopilot,

while the coupled modem is connected to the GCS. Telemetry, such as vehicle

parameters, is transferred through each pair of modems. These modems create the

wireless connection or link between the vehicle and GCS. The telemetry modems used in

this research are 915 MHz 3DR radios, shown in Figure 5 [23]. The Net ID of these

modems can be changed so each modem will only communicate with a modem with the

same Net ID. When multiple pairs of modems are used simultaneously, the Net IDs of

each pair must be set different from one another. If not, one modem may connect to a

modem from a different pair of modems. For lower latency performance, the Max

Window can be changed to lower values, down to 33 ms. The Max Window setting

controls how often telemetry packages and control commands are sent back and forth

30

between a pair of modems. With a 33 ms setting, one telemetry package would be sent

from the autopilot modem to the GCS modem every 33 ms.

Figure 5. 915 MHz 3DRobotics Telemetry Modems [23]

Ground Vehicles

Rover ground vehicles are used in this research. They are modified hobbyist vehicles

owned by AFIT. The base and structure of the vehicles are Traxxas vehicles [24]. The autopilot,

telemetry modems, voltage regulator, GPS, and receiver were added to give the vehicle

autonomous capabilities. Further description of these modifications can be seen in Appendix A.

Seen below in Figure 6, they consist of the same autopilot and communication components as the

air vehicles in the system. The wheels have shocks to absorb the force of the vehicle weight and

terrain variations. The vehicles can reach speeds of up to 60mph, but high speeds are greatly

suppressed through the use of speed limit settings in the autopilot software, to prevent

overturning the vehicles.

31

Figure 6. Rover Ground Vehicles

Air Vehicles

The air vehicles used in the research are multi-rotors. These vehicles, seen in Figure 7,

are AFIT owned and bought off-the-shelf from 3DRobotics [25]. The X8s include a Pixhawk

autopilot, a 3DRobotics GPS/Compass, a speed controller, motor, and a pair of 3DRobotics

telemetry modems. A more detailed look into the components of the vehicle can be seen in

Appendix B. These aerial vehicles are more suited for this research than planes because multi-

rotors are more maneuverable in small areas than planes and aren’t necessarily subjected to the

same constraints as planes. Planes offer higher safety risks, which must maintain a certain

elevation for safety, than multi-rotors, which could operate at eye level if need be. Demonstrating

cooperative behavior and control implementation on multi-rotors may lay foundations for plane

integration.

32

Figure 7. X8 Multi-Rotor [25]

Ground Control Station

The user interacts with the vehicles through a GCS. GCS software acts as a mission

planning element and Heads Up Display (HUD) for the user. There are many types of GCS

software, but Mission Planner [26] and Droid Planner 2 [27] are used in this research. Mission

Planner is an open source GCS software readily available to the public. Its open source

characteristic offers a low cost operational capability, with an active support forum due to its

popularity and use. Mission Planner allows the operator to create and edit waypoints or loiter

points for a vehicle as well as set vehicle parameters. Mission Planner’s Fly-to-Here function,

discussed previously, puts the vehicle into Guided mode and forces the vehicle to follow a given

point. Vehicle gain settings can be tuned through Mission Planner as well. Mission Planner

saves telemetry logs (T-logs) with the connection of a vehicle. These T-logs can be managed

through Mission Planner and record vehicle navigation and other established vehicle parameters.

Other open source GCS software is available, some even with the ability to simultaneously

connect to multiple vehicles. However, other features are missing or are still in development that

Mission Planner has included. For instance, Mission Planner has the ability to run Python scripts.

Python is a programming language like Java. With the ability to run Python scripts, the user can

add or incorporate new behaviors or controls into Mission Planner and the vehicle(s) it is

33

connected to. This Python capability adds a customizable aspect to the GCS software and allows

the user to shape the operation to a specific application. Mission Planner uses Google Maps and

acts as a HUD, displaying all necessary and optional vehicle parameters to the user, such as

vehicle GPS coordinates, local time, battery power, waypoints, altitude, heading, and other flight

instruments, as shown in Figure 8 [26].

Figure 8. Mission Planner

Droid Planner 2 is an open source free smart phone or tablet application available through

Google’s Play Store. Documentation on the application is supported from 3DRobotics [28], the

same company that sells the autopilots and telemetry modems used in this research. The

application requires GPS access on the smart phone or tablet that it’s installed on, internet access

for the Google maps, and a pair of telemetry modems. Both telemetry modems must have the

same Net ID in order for the modems to communicate between one another. One modem is

plugged into the smart phone or tablet and the other to the autopilot of the vehicle. The version of

the application that will be used with this research is Droidplanner_v2.8.6_RC3. Unfortunately,

34

this application does not support ground rover vehicles as of yet. The application only supports

multi-rotor and possibly plane aerial vehicles. However, multi-rotor aerial vehicles are the only

vehicles seen tested with the application.

 Once both modems are physically connected to the phone/tablet and autopilot and the

autopilot/vehicle turned on, the application can make a link connection through the “Connect”

button seen on the application map. At that point, seen in Figure 9, five buttons appear on the

bottom of the application labeled “Edit, Home, Land, Loiter, Follow.” The “Edit” button is used

for editing waypoints for the vehicle. The “Home” button is for returning the vehicle to home

location. The “Land” button is for landing the vehicle. The “Loiter” button is for the vehicle to

loiter around a location. The “Follow” button sends the vehicle into a Follow-Me Mode and

allows the vehicle to follow the GCS where the application is operating, in this case the smart

phone or tabled the application is installed on [27]. With the multi-rotor, the altitude the multi-

rotor is at when transitioned to Follow-Me Mode will be the altitude the multi-rotor maintains in

Follow-Me Mode. However, the vehicle must be in Guided Mode before the “Follow” command

can execute properly. The modes of the vehicle can be changed from the displayed current mode

in the top right of the application. Also, the different menu tabs, similar to the menu tabs at the

top of Mission Planner, can be accessed in the top left of the application from a drop down menu.

In the Editor menu, waypoints can be written for the vehicle. In the Parameters menu, vehicle

parameters can be edited. The application will save Telemetry Logs (T-logs) to a specified folder

on the device after a mission, just like with Mission Planner. When in Follow Me Mode, the

vehicle will follow the GCS wherever it is moved. The blue dot that appears on the application’s

map is the device’s location and the orange arrow is the vehicle’s location. Whenever in Guided

Mode, the destination appears as a green dot. Therefore, in Follow-Me Mode, the green dot

should appear in place of the blue dot, the device’s location. For the purposes of this research,

Follow Me Mode will be the primary utilization for Droid Planner 2.

35

Figure 9. Droid Planner 2 [27]

Configuration Architectures

 Architectures were defined for the different heterogeneous vehicle configurations used in

this research. These architectures include SV-1s and a SV-4 according to the Department of

Defense Architecture Framework (DoDAF) [29]. An SV-1 describes the systems interface.

“Systems, system items, and their interconnections” are represented in the SV-1 [29]. The SV-4

describes systems functionality. “The functions (activities) performed by systems and the system

data flows among system functions (activities)” are seen in the SV-4 [29]. The software used to

build the architectures was Enterprise Architect [30].

 There are four different vehicle-GCS configurations used throughout this research.

Displayed in sequential order of procedure, the first configuration involves using Mission

Planner’s Swarm application on a single GCS between two vehicles. This SV-1 of the

configuration is seen in Figure 10. A GPS receiver is connected to the autopilot in each vehicle.

The GPS signal is sent from the GPS satellites to the GPS receiver and then to the vehicle’s

Pixhawk autopilot. The vehicles are connected to the GCS through a 915 MHz telemetry link

36

from the telemetry modems. The Mission Planner Swarm application is used as the cooperative

behavior and control method, which is a part of Mission Planner. The operator will manually

control the leader vehicle with a radio during testing. Once the swarm application is started, the

application overrides operator control of the vehicle. This override prevents the need for a

follower vehicle radio, but still requires a leader vehicle radio for control. The operator will

control the offset and cooperative behavior and control method through the GCS. A Google map

server uses internet via Wi-Fi to load maps onto Mission Planner.

Figure 10. Mission Planner Swarm SV-1 (Configuration 1)

The SV-1 in Figure 11 shows the second configuration, consisting of the Python script

used to mimic the performance of Mission Planner’s Swarm application. This configuration will

have both vehicles being operated from a single GCS. Connections are similar to Figure 10,

except a Python script for each vehicle is run simultaneously across two instances of Mission

Planner on the same GCS. There is a radio for the vehicle of each operator. The follower vehicle

SV-1 MP Swarm

«CapabilityConfigura...

GPS

«CapabilityConfiguration»

Leader Vehicle

«CapabilityConfiguration»

Follower Vehicle

«CapabilityConfiguration»

GCS

«Software»

GCS::Mission Planner

«Software»

GCS::Mission Planner::Mission

Planner Swarm Application

«Performer»

Operator

«CapabilityConfiguration»

Leader Vehicle::GPS Receiver

«CapabilityConfiguration»

Leader Vehicle::Pixhawk

Autopilot

«CapabilityConfiguration»

Leader Vehicle::Telemetry

Modem

«CapabilityConfiguration»

Leader Vehicle::Radio Receiver

«CapabilityConfigura...

Operator::Radio

«CapabilityConfigur...

GCS::Leader Telemetry

Modem

«CapabilityConfiguration»

Follower Vehicle::GPS Receiver

«CapabilityConfiguration»

Follower Vehicle::Pixhawk

Autopilot

«CapabilityConfiguration»

Follower Vehicle::Telemetry

Modem

«CapabilityConfigura...

GCS::Follower Telemetry

Modem

«CapabilityConfigur...

Google Map Serv er

Physical Control

Wi-Fi

915 MHz Telemetry Connection

GPS Signal

915 MHz Telemetry Connection

2.4 GHz Radio Signal

GPS Signal

37

requires a radio for safety reasons or so the safety pilot can switch vehicle modes and kill the

Python script if necessary.

Figure 11. Python Method on One GCS SV-1 (Configuration 2)

 The SV-1 of the Python method running on separate GCSs is seen in Figure 12.

The only difference from Figure 11 is that now each vehicle script is run from a single

instance of Mission Planner on separate GCSs. The GCSs are linked through a Wi-Fi

connection introduced in the Python scripts.

SV-1 Python 1 GCS

«CapabilityConfigur...

GPS

«CapabilityConfiguration»

Leader Vehicle

«CapabilityConfiguration»

Follower Vehicle

«CapabilityConfiguration»

GCS

«Performer»

Operator

«Software»

GCS::Leader Mission

Planner

«Software»

GCS::Leader

Python Script

«Software»

GCS::Follower Mission

Planner

«Software»

GCS::Follower

Python Script

«CapabilityConfiguration»

Leader Vehicle::GPS Receiver

«CapabilityConfiguration»

Leader Vehicle::Pixhawk

Autopilot

«CapabilityConfiguration»

Leader Vehicle::Telemetry

Modem

«CapabilityConfiguration»

Leader Vehicle::Radio Receiver

«CapabilityConfiguration»

Operator::Leader Radio

«CapabilityConfigura...

GCS::Leader Telemetry

Modem

«CapabilityConfigur...

GCS::Follower Telemetry

Modem

«CapabilityConfiguration»

Follower Vehicle::GPS Receiver

«CapabilityConfiguration»

Follower Vehicle::Pixhawk

Autopilot

«CapabilityConfiguration»

Follower Vehicle::Telemetry

Modem

«CapabilityConfiguration»

Operator::Follower Radio

«CapabilityConfiguration»

Follower Vehicle::Radio

Receiver

«CapabilityConfigur...

Google Map Serv er

GPS Signal

915 MHz Telemetry Connection

Physical Control

2.4 GHz Radio Signal

2.4 GHz Radio Signal

915 MHz Telemetry Connection

GPS Signal

Wi-Fi

38

Figure 12. Python Method on Separate GCSs SV-1 (Configuration 3)

The fourth and final SV-1 in Figure 13 involves the Droid Planner 2 application

as the follower vehicle’s GCS software. This application is operated from a smart phone.

The leader vehicle is still operated from Mission Planner, but only for changing vehicle

parameters and creating waypoints for accuracy tests. Manual control of the leader

vehicle will only be needed for latency tests. Accuracy tests will require the leader

vehicle to operate autonomously through loaded waypoints. The follower GCS, or

phone, will be attached to the leader vehicle to execute a “Follow Me” capability. This

capability will allow the follower vehicle to follow the leader vehicle, due to the GCS’s

attachment to the leader vehicle. The smart phone must have access to the internet for

maps and GPS enabled due to Droid Planner 2 requiring a GPS signal. This signal is

SV-1 Python 2 GCS

«Performer»

Operator

«CapabilityConfigura...

GPS«CapabilityConfiguration»

Leader Vehicle

«CapabilityConfiguration»

Follower Vehicle

«CapabilityConfiguration»

Leader GCS

«Software»

Leader GCS::Leader Mission Planner

«Software»

Leader GCS::Leader

Python Script

«CapabilityConfiguration»

Follower GCS

«Software»

Follower GCS::Follower Mission Planner

«Software»

Follower GCS::Follower

Mission Planner::Follower

Python Script

«CapabilityConfiguration»

Leader Vehicle::GPS Receiver

«CapabilityConfiguration»

Leader Vehicle::Pixhawk Autopilot

«CapabilityConfiguration»

Leader Vehicle::Telemetry Modem

«CapabilityConfiguration»

Follower Vehicle::GPS Receiver

«CapabilityConfiguration»

Follower Vehicle::Pixhawk

Autopilot

«CapabilityConfiguration»

Follower Vehicle::Telemetry Modem

«CapabilityConfiguration»

Operator::Leader Radio

«CapabilityConfiguration»

Operator::Follower Radio

«CapabilityConfiguration»

Leader Vehicle::Radio Receiver

«CapabilityConfiguration»

Follower Vehicle::Radio Receiver

«CapabilityConfiguration»

Leader GCS::Telemetry

Modem

«CapabilityConfiguration»

Follower GCS::Telemetry

Modem

«CapabilityConfiguration»

Google Map Serv er

Wi-Fi Connection

GPS Signal

2.4 GHz Radio

Signal

915 MHz Telemetry Connection

GPS Signal

Physical Control

Wi-Fi

2.4 GHz Radio Signal

915 MHz Telemetry Connection

39

separate from the vehicle’s GPS signal and shows where the GCS is on the map of the

Droid Planner 2 application.

Figure 13. Droid Planner 2 Method SV-1 (Configuration 4)

The SV-4 shows the hierarchical functions of the system nodes involved with all

SV-1s. Figure 14 shows the SV-4 of the vehicles involved in the experiment

configurations. The navigation functions involve determining the vehicle’s position

using GPS, updating waypoint(s) or vehicle gain/settings, and steer or loiter at a

waypoint. The communicate function involves receiving commands from the operator’s

radio, receiving commands from telemetry modems, sending telemetry information,

receiving GPS signals, and recording log files. The modems’ connection between the

autopilot and GCS allows for telemetry sharing. Some vehicles will acquire an optional

camera or video camera for imagery.

SV-1 DP2

«CapabilityConfigur...

GPS

«CapabilityConfiguration»

Leader Vehicle «CapabilityConfiguration»

Follower Vehicle

«Performer»

Operator

«CapabilityConfiguration»

Leader Vehicle::Follower GCS

«Software»

Leader Vehicle::Follower

GCS::Droid Planner 2

«CapabilityConfiguration»

Leader GCS

«Software»

Leader GCS::

Mission Planner

«CapabilityConfiguration»

Leader Vehicle::GPS Receiver

«CapabilityConfiguration»

Leader Vehicle::Pixhawk Autopilot
«CapabilityConfiguration»

Leader Vehicle::Telemetry

Modems

«CapabilityConfiguration»

Leader Vehicle::Radio Receiver

«CapabilityConfiguration»

Leader Vehicle::Follower GCS::

Telemetry Modem

«CapabilityConfiguration»

Operator::Leader Radio

«CapabilityConfiguration»

Operator::Follower Radio

«CapabilityConfiguration»

Follower Vehicle::GPS Receiver

«CapabilityConfiguration»

Follower Vehicle::Pixhawk

Autopilot

«CapabilityConfiguration»

Follower Vehicle::Telemetry

Modems

«CapabilityConfiguration»

Follower Vehicle::Radio Receiver

«CapabilityConfigura...

Leader GCS::Telemetry

Modem

«CapabilityConfigur...

Google Map Serv er

GPS Signal

2.4 GHz Radio Signal

2.4 GHz Radio Signal

GPS Signal

Physical Control

915 MHz Telemetry Connection

915 MHz Telemetry Connection

Wi-Fi

Internet

GPS Signal

40

Figure 14. Vehicle System Node Functions SV-4

The functions of Mission Planner are seen from the SV-4 in Figure 15. The

swarm application can be accessed through Mission Planner’s Ctrl + F command. This

application allows for follower vehicles to be connected to the same instance of Mission

Planner as a leader vehicle. An offset can be placed between the leader and follower

vehicles by placing their location on an offset grid.

 Waypoints can be edited or written through Mission Planner. They can also be loaded

onto Mission Planner from a vehicle. Google maps are used so that Mission Planner can display

the vehicle’s location.

 Parameters can be set on Mission Planner that involve waypoint radius, vehicle cruise

speed, modem telemetry rate, and modem max window. These parameters are the ones used for

this research.

 Mission Planner records telemetry logs (T-log) throughout the connection to a vehicle.

These T-logs record vehicle navigation and parameters throughout the vehicle’s connection. Not

SV-4 Vehicle SV-4

«OperationalActiv ity»

Prov ide Vehicle Function

«Function»

Prov ide Imagery

(optional)

«Function»

Collect Imagery

«Function»

Transmit Imagery

«Function»

Nav igate

«Function»

Determine Position

v ia GPS

«Function»

Loiter at

Waypoint

«Function»

Update

Waypoint(s)

«Function»

Steer to

Waypoint

«Function»

Update

Gains/Settings

«Function»

Receiv e

Commands v ia

Telemetry Link

«Function»

Record Log

File

«Functi...

Send

Telemetry

Information

«Function»

Receiv e GPS

Signal

«Function»

Receiv e

Commands

v ia Radio

«Function»

Communicate

41

only are these T-logs recorded by Mission Planner, but they can be loaded and played back

through Mission Planner or converted to Excel files to organize parameter settings or data.

Figure 15. Mission Planner System Node Functions SV-4

The functions of the leader and follower Python scripts written for the

experiments can be seen from the SV-4 in Figure 16. The leader vehicle script reads the

leader’s location, including the latitude, longitude, heading, and altitude, and sends the

location to the follower vehicle script. A sleep time, or delay, exists in the leader vehicle

script that controls how often commands are executed in the script. Sleep time is a

parameter used in this research, and will be discussed later in this chapter.

SV-4 MP SV-4

«OperationalActiv ity»

Perform Mission Planner

Functions

«Function»

Execute Beta Swarm «Function»

Manage Waypoints
«Function»

Set Parameters

«Function»

Access Swarm

Screen

«Function»

Connect to

Follower

«Function»

Set Leader on

Offset Grid

«Function»

Set Follower on

Offset Grid

«Function»

Start Swarm

«Functi...

Stop Swarm

«Function»

Record T-Log
«Function»

Edit Waypoints

«Function»

Write

Waypoints

«Function»

Load Waypoints

«Function»

Set Waypoint

Radius

«Function»

Set Cruise Speed

«Function»

Set Max Window

«Function»

Set Telemetry

Rate

«Function»

Load T-Log

«Function»

Play T-Log

«Function»

Conv ert T-Log

to CSV file

«Function»

Manage T-Logs

«Functi...

Load Maps

«Function»

Communicate

with Vehicle

«Function»

Display Vehicle

Location

«Function»

Use Google Maps

«Functi...

Send

Commands

«Functi...

Receiv e

Telemetry

42

Figure 16. Python System Node Functions SV-4

 Instances of Mission Planner can be connected with Python scripts through the use of the

follower vehicle’s internet protocol (IP) address or a local host. An IP address is used when the

instances of Mission Planner are on separate GCSs. A local host is used when the instances of

Mission Planner are on the same GCS. By specifying a port in the scripts and creating/binding

sockets, a link can be established between instances of Mission Planner.

 There are two types of follower vehicle scripts used in this research. One of the follower

vehicle scripts calculated a geodetic offset, while the other calculated a heading offset. Both

follower vehicle scripts changed the follower vehicle to Guided mode before receiving the leader

vehicle’s location coordinates. In both scripts an x axis offset and y axis offset are input. In the

heading offset follower script, a safety switch was integrated to kill the script if the operator felt

the vehicle or surroundings were in danger. Without this safety switch, the Python script would

SV-4 Python GCS SV-4

«OperationalActiv ity»

Prov ide Python Script

Functions

«Function»

Prov ide Leader

Script Functions

«Function»

Prov ide Follower

Script Functions

«Function»

Connect Instances of

Mission Planner

«Function»

Specify Follower IP

Address

«Function»

Bind Sockets

«Function»

Specify Port

«Function»

Connect to IP

address

«Function»

Search for IP

address
«Function»

Connect to

Local Host

«Function»

Read Leader

Location

«Function»

Send Leader

Location

«Function»

Set Sleep Time

«Functi...

Read Leader

Latitude

«Function»

Read Leader

Longitude

«Functi...

Read Leader

Heading

«Function»

Read Leader

Altitude

«Functi...

Send Leader

Latitude

«Functi...

Send Leader

Longitude

«Function»

Send Leader

Heading

«Function»

Send Leader

Altitude

«Function»

Change to

Guided Mode

«Function»

Receiv e

Leader

Position

«Function»

Calculate

Geodetic Offset

«Function»

Input X axis

offset

«Function»

Input Y axis

offset

«Functi...

Calculate

Follower

Offset GPS

Location

«Functi...

Calculate

Heading

Offset

«Functi...

Write

Waypoint

«Function»

Set Waypoint

«Function»

Implement Safety

Switch

43

continue to override operator controls until the script was manually stopped. Once the offsets are

calculated in either follower vehicle script, the GPS location of the follower vehicle’s offset

waypoint is identified. This waypoint is written before it is set.

The functions of Droid Planner 2 are seen from the SV-4 in Figure 17. The Follow Me

function is the primary reason for the application’s use in this research. The function makes the

follower vehicle follow the GCS. A Fly-to-Here function allows the operator to point to a

location on the map of Droid Planner 2 and immediately command the vehicle to travel to that

location. This Fly-to-Here function sets the vehicle into Guided mode, which is the required

mode for the Follow Me function to work. The Follow Me function is begun and stopped by

selecting or deselecting the “Follow” command on the menu. The vehicle maintains the same

altitude throughout the Follow Me function that it was at when first switched to the Follow Me

function. Throughout the vehicle’s connection to Droid Planner 2, a T-log is recorded on the

GCS.

Like Mission Planner, Droid Planner 2 can set parameters and manage waypoints by

editing, writing, or loading previous waypoints from a vehicle to the GCS. Droid Planner 2

displays the location of the vehicles and the GCS by connecting the GCS to the internet and

enabling GPS. Once a pair of telemetry modems are connected from the GCS to the vehicle, a

connection to Droid Planner 2 from the GCS can be made.

44

Figure 17. Droid Planner 2 System Node Functions SV-4

The operator functions can be seen from the SV-4 in Figure 18. These functions

primarily involve collecting the measures of performance from the experiments in this

research. These measures of performance include latency, position accuracy, and figure

eight position accuracy, which will be discussed in subsequent sections of this chapter.

When in Manual mode, the operator has full control of the vehicle from the radio. From

the radio, the operator can switch vehicle modes. The operator can also edit waypoints

and input parameter settings on the GCS.

SV-4 DP2 GCS SV-4

«OperationalActiv ity»

Prov ide Droid Planner 2

Functions

«Function»

Execute Follow

Me Function

«Function»

Write Waypoints

«Function»

Set Parameters

«Function»

Access Location

«Function»

Connect to

Internet

«Function»

Enable GPS«Function»

Switch to Guided

Mode

«Function»

Connect to Droid

Planner 2
«Function»

Perform Fly To

Here

«Function»

Select Follow

«Function»

Follow GCS

«Function»

Maintain Altitude
«Function»

Record T-Log

«Function»

Edit Waypoints

«Function»

Display GCS

location

«Function»

Manage Waypoints

«Function»

Set Cruise Speed

«Function»

Set Waypoint

Radius

«Function»

Set Telemetry

Rate

«Function»

Deselect

Follow

«Function»

Load Waypoints

45

Figure 18. Operator System Node Functions SV-4

Procedures

The architectures and hardware descriptions are used for the development of a set of test

procedures that address the investigative questions in this research. First, a baseline cooperative

behavior and control method will be established for comparison tests. Mission Planner offers this

baseline through a swarm application that is essentially a follow-me method allowing multiple

vehicle connections. A new cooperative behavior and control method with similar effects will

then be created with Python in order to test how well the two methods on the ground vehicles

compare in terms of latency and accuracy error metrics. After finding the best Python

configuration, new cooperative behaviors will be introduced into the Python script for Design of

Experiments (DOE). DOE will be used to find the best configuration of script sleep time,

telemetry modem’s max window, position telemetry rate, waypoint radius, and cruise speed

settings on Mission Planner. This optimum configuration will be used to determine the best

SV-4 Operator SV-4

«OperationalActiv ity»

Perform Operator

Functions

«Function»

Measure Position

Accuracy

«Function»

Measure Latency

«Function»

Measure FIgure 8

Position Accuracy

«Function»

Calculate GPS

Distance Between

Vehicles

«Function»

Calculate Difference

Between GPS and

Actual Distance

«Function»

Measure Actual

Distance Between

Vehicles

«Function»

Load T-log

«Function»

Conv ert T-log to

CSV file

«Function»

Av erage Waypoint

Distances

«Function»

Retriev e Waypoint

Distances

«Function»

Start Stopwatch

«Function»

Stop Stopwatch

«Function»

Record Latency

«Function»

Guide Vehicles

«Function»

Edit Waypoints

«Function»

Input Parameter

Settings

«Function»

Switch Modes

46

offset accuracy error between the leader and follower. Then the optimum settings will be used in

heterogeneous vehicle configurations between a rover and a multi-rotor to measure the latency

and accuracy error. First, the rover will be designated the follower vehicle, and the multi-rotor as

the leader vehicle. Then the roles will be switched. Droid Planner 2, a new GCS smart phone

application platform will also be used as an experimental method for comparison. Latency and

accuracy error will be recorded using optimum settings again for analysis. Through these

experiments, latency and accuracy error data will be analyzed through models, spreadsheets, and

graphs, to determine the effects and best configuration for the responses.

Mission Planner Swarm

Mission Planner offers a swarm application that allows the user to simultaneously

connect to multiple vehicles. This application was briefly discussed in chapter two. The

application connects to multiple vehicles through the use of a “Connect to Mavs” button. Once

all communication modems to the vehicles are physically connected to the GCS, the leader

vehicle is connected and set as the leader. Then the “Connect to Mavs” button is pressed to

connect to the other vehicles. The vehicles will then appear at the origin of a grid, where each

block represents roughly 1m2. Documentation was not found for the area, or distances, of each

cube in the offset grid. As observed during the execution of several experiments, the area of each

cube in the offset grid appeared to be approximately 1 m2. The top of the grid is true north, while

the right part of the grid is east. The leader vehicle remains stationary in the center of the grid,

while the remaining vehicles are set to an offset in relation to the leader by placing them at a

desired position away from the leader on the grid. Because the grid is representative of north,

south, east, and west, the follower vehicle(s) will maintain position in the formation based on a

geodetic frame. In other words, if the follower vehicle(s) are offset to be south of the leader on

the grid, the follower(s) will always be south of the leader, regardless of the heading of the leader

vehicle. Once the desired offset is established, the “start” command is given. This “start”

47

command gives continuous waypoint updates to the follower(s) in Guided mode to maintain the

established offset in relation to the leader, whether the leader is following defined waypoints, or

operated manually. The follower vehicles remain in Guided mode at all times when the swarm

application is operating. The navigation of all vehicles will be displayed on the map in Mission

Planner during the application run. However, the T-log files, which record the vehicle path and

parameters, can be recorded only for the leader vehicle. Log files, containing the same

parameters as in the T-log files, are recorded on all Pixhawk autopilots. These Log files can be

downloaded from the autopilots. This application will be used as a baseline for comparison

against new cooperative behavior and control methods because it is the only known swarm

capability associated with Mission Planner or the stock Pixhawk autopilot.

Python

Python is a high-level programming language for general use. It can accomplish the

same tasks as other programming languages, such as C; however, it can do it in fewer lines of

code. Python can import libraries that provide functions used for writing lines of code to

accomplish a task. One of these libraries is Mission Planner. Mission Planner can use Python to

give the user flexibility and control over operations and commands in Mission Planner and with

connected vehicles. By scripting lines of code and running the script through Mission Planner,

waypoint and offset creation can be supported.

Python offers the capability of linking two or more instances of Mission Planner through

a network. Therefore, Mission Planner can either communicate to an instance of Mission Planner

on another computer or on the same computer. This send and receive ability allows for each

Mission Planner instance to connect to a single vehicle and still communicate with each other for

cooperative behavior and control. This multiple GCS configuration is vital in situations where

more than one aerial vehicle cannot operate from a single ground station, as limited by the

Military Flight Release (MFR) conditions.

48

Through this communicative behavior, the Mission Planner library from Python can

create waypoints for the vehicle and set the vehicle into Auto, Guided, or Manual mode. This

Mission Planner library is key for use of a follower vehicle in a swarm or flocking configuration.

It allows the follower vehicle to read the current GPS coordinates and parameters of the leader

vehicle from Mission Planner and add an offset using a meters per latitude calculation. This

offset, in return, will give actual GPS coordinates and parameters that can be set as waypoints

through Python to Mission Planner for the follower vehicle to read. With the use of a loop, the

vehicle parameters can be read continuously from the leader and create waypoints for the

follower vehicle to follow. Based on the leader’s position, the offset will always give a desired

location for the follower vehicle, resulting in a leader-follower configuration. Mission Planner

and Python will be used to script the same cooperative behavior, as well as new behaviors, to

compare to and improve upon Mission Planner’s swarm application.

Test 1: Configuration Comparison

Once a Python script is created to simulate Mission Planner’s swarm application, the

performance of the configuration will need to be determined. While Mission Planner’s swarm

application must be run from a single computer, Python offers the versatility to demonstrate

cooperative behavior and control from multiple computers. Using rover ground vehicles, the

follower vehicle can operate from a different computer than the leader vehicle. Little is known

about whether this configuration is more effective than operating from a single computer or how

it compares to Mission Planner’s swarm application. Hence, the two different configurations,

depicted in Figures 11 and 12 will be compared with each other as well as the baseline

architecture depicted in Figure 10.

Performance metrics are defined here as latency, in seconds, and accuracy error, in

meters. Though accuracy error measurements are recorded in inches, the response values use are

converted to meters for consistency with other measurements. Low latency is desired and is

49

critical in mission operations. Cooperative behavior and control requires low latency in order to

speed up response times and communicate instructions across platforms in time-constrained

missions. Latency will be measured by starting a stop watch when the leader vehicle takes off

and stopping the stop watch once the follower vehicle responds. The time in seconds will be

recorded for five runs or trials per configuration, allowing an average and standard deviation to be

obtained for each configuration. Accuracy error is vital in missions where targets must be

identified, tracked or neutralized. Cooperative behavior and control often requires low accuracy

error to avoid collisions with other vehicles. Similar to the challenges associated with latency,

the more vehicles involved with cooperative behavior and control, the more vital a low accuracy

error is. A lag in instruction could also incur position inaccuracies, because each vehicle is

basing its own movement on the observance of associated vehicles. The accuracy error involves

calculating the theoretical distance in inches by recording the GPS coordinates of the leader and

follower vehicles from Mission Planner and finding the difference. Then the actual distance from

the leader and follower vehicles will be physically measured and subtracted from the system’s

estimated distance, calculated between the two GPS coordinates. The absolute value of the

differences between these distances will give the error in inches. Five runs or data points will be

collected for each configuration, culminating in an average and standard deviation for each

configuration. This average will then be converted to meters. However, accuracy error will not

be measured with this accuracy measurement method using Mission Planner’s swarm application

because the application allows only one instance of Mission Planner for both vehicles. This

allows the ability to retrieve the GPS coordinates through Mission Planner for the leader vehicle

only. By measuring the difference between actual distance and commanded offset, the Mission

Planner swarm application’s accuracy error can be measured.

50

Test 2: Optimum Factor Settings (Design of Experiments)

Proving that multiple vehicles can operate with the two methods and finding the most

efficient Python method configuration will pave the way for improvement. Once the Python

method has been demonstrated against Mission Planner’s swarm application, the Python script

will be modified to incorporate new behaviors. The script will include Equation 8 and Equation 9

to orient the follower vehicles’ position based on the leader vehicle’s heading instead of geodetic

location. This can be done by rotating the frame based on the heading angle of the leader and

adding the offset to the leader position. Follower Latitude position is the latitude coordinate for

the follower vehicle and Follower Longitude position is the longitude coordinate for the follower

vehicle. The leader latitude and longitude coordinates are represented by 𝐿𝑎𝑡𝑙𝑒𝑎𝑑𝑒𝑟 and

𝐿𝑛𝑔𝑙𝑒𝑎𝑑𝑒𝑟. The latitude and longitude offset, 𝐿𝑎𝑡𝑜𝑓𝑓𝑠𝑒𝑡 and 𝐿𝑛𝑔𝑜𝑓𝑓𝑠𝑒𝑡, are calculated with the

input of a desired x and y value offset, in meters, for the follower from the leader divided by

meters per degree. The heading angle of the leader vehicle is represented by θ.

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐿𝑎𝑡𝑙𝑒𝑎𝑑𝑒𝑟 + 𝐿𝑛𝑔𝑜𝑓𝑓𝑠𝑒𝑡 ∗ sin𝜃 + 𝐿𝑎𝑡𝑜𝑓𝑓𝑠𝑒𝑡 ∗ cos𝜃 (8)

𝐹𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝐿𝑛𝑔𝑙𝑒𝑎𝑑𝑒𝑟 − 𝐿𝑛𝑔𝑜𝑓𝑓𝑠𝑒𝑡 ∗ cos𝜃 + 𝐿𝑎𝑡𝑜𝑓𝑓𝑠𝑒𝑡 ∗ sin𝜃 (9)

 The addition of a safety switch functionality will be added to the Python script as well.

Normally, when running the Python script or Mission Planner Swarm application, the safety

pilot’s manual radio controls are overridden. This introduces a safety hazard in many

circumstances if control cannot be given back to the operator fast enough. By observing the

mode switch input channel to the autopilot, the power level of the channel is an indicator of the

commanded operating mode. When the vehicle is on and connected to Mission Planner, the

manual, auto, and stabilize switches can be switched on using the safety pilot’s radio, and the

power levels are seen in the vehicle’s telemetry in the Flight Data tab of Mission Planner. Each

switch will trigger different power levels for that channel number parameter. Each type of remote

51

control radio will not necessarily have the same power levels for each switch so the switching

levels must be chosen specific to the radio being used. Once the set power levels for the specified

vehicle are found for each switch, an “if” statement can be programmed into the Python script to

trigger a shutdown of the script using the channel number parameter power levels once the

appropriate switch is triggered.

 Once the new behaviors are incorporated into the Python script, Design of Experiments

(DOE) will be used to find sets of optimum factor levels for latency and accuracy error using two

rover ground vehicles, one as the leader and the other as the follower. First, the experiments will

be performed with accuracy error as the response and then with latency as the response. A low

accuracy error is desired because it is measured by the distance difference in inches between the

actual and calculated GPS distance of the vehicles. A low latency is also desired because a lower

latency time should allow tighter formations or following applications. Using DOE, two level

factors will be investigated with the two methods to determine which factors are significant. The

factors will only have two levels, high and low values, to create simpler linear models and lower

the amount of runs needed. The high and low points of the factors are only able to create a linear

prediction. Finding these significant factors will facilitate a model using JMP Pro 11, a statistical

software package [31]. This model will give the optimum values, high or low, for each

significant factor in order to get the most desirable response. The linear model can also be tested

through a lack-of-fit test to determine if a higher order model is needed.

Following the latency and accuracy error experiments, another accuracy error

measurement method will be executed. A path consisting of figure eight waypoints will be

assigned to the leader rover vehicle. This will demonstrate how the follower vehicle responds to

the turns and maneuvering from the leader vehicle once the Python script is run. The T-log of the

follower vehicle will capture the waypoint distance for the follower vehicle at the telemetry rate

setting. These intervals capture two or three data points each second which are then averaged

52

into one single data point for every run of factor settings in the sixteen run design. The standard

deviation will be calculated as well. Each run will last about one to two minutes.

When running the Python script, the follower vehicle remains in Guided mode with the

guide to waypoint updated every time the leader vehicle’s location is updated. Therefore, the

waypoint distance measures how far away the follower vehicle is away from the last known

position of the leader vehicle, in meters, at all times unless there is a follower vehicle offset

given. There will be a waypoint lag in the measurements due to the latency of the follower

vehicle waypoint updates, given from the Python script. Still, the accuracy error measurement

should give a good understanding of how close to the target the follower vehicle is actually

following the leader.

This measurement method will be affected by latency since the waypoints are updated

only as fast as this latency allows. The measurement method gives an alternative way of

measuring accuracy error. Specifically, it includes both vehicles in motion, while the previous

accuracy error measurement method consists of stationary vehicle measurements. Both methods

will be analyzed and used for comparative purposes to determine which accuracy error

measurement method is better.

Factors

The factors chosen to be tested are the position telemetry rate, waypoint radius, vehicle

cruise speed, leader sleep time, and the 3DR modem’s max window and are seen in Table 4. As a

subject matter expert, these factors were chosen based on an exhaustive search for latency and

position accuracy sources. A factor’s level can be represented in its actual units or coded units.

When using DOE, the coded units line up the regression model’s intercept to the center of the

design, whereas the actual units usually have intercepts far from the design space. The coded

units also eliminate units of measure allowing similar coded unit levels to hold the same weight

between factors. For a two level model, a high and low level are represented by a +1 and a -1

53

coded unit. Center runs have a 0 coded unit, as the value in between the high and low levels. The

first three factors can be set in Mission Planner under the “Config/Tuning” tab.

The position telemetry rate defines how often the position telemetry data is updated from

the vehicle to Mission Planner and can be set from zero to ten, but the default is three. Ten is the

fastest setting, while zero is the slowest. Therefore, ten will be set as the high value, or positive

one, and three will be set as the low value, or negative one.

Table 4. DOE Factor Levels

Factor Low Level (-1) High Level (+1)

Telemetry Rate (Hz) 3 10

Waypoint Radius (m) 0.25 5

Cruise Speed (m/s) 1 6

Sleep Time (ms) 500 5000

Max Window (ms) 33 131

The waypoint radius controls the radius of entry into the waypoint. Once the vehicle

lands within the radius of that waypoint, it confirms it has arrived at the waypoint and begins

moving towards the next waypoint. The waypoint radius is in meters and gives a text box for

setting entry. Therefore, any value can be set in it, making it a continuous factor. However, in

terms of leader-follower, setting the follower waypoint radius to zero will force the follower

vehicle to crash into the leader vehicle. Hence, 0.25, instead of zero, will be used as the low

value, or negative one. The high value will be set to five because five meters tends to be around

average GPS error. No offset was used for the tests.

The vehicle cruise speed setting controls how fast, in meters per second, the vehicle

travels in Auto mode when navigating across waypoints. Once again, the value is placed in a text

box entry. For this experiment, the low value will be set to one and the high value set to six m/s.

The leader sleep time is built into the Python script. This sleep time determines how

often, in milliseconds, the leader vehicle’s telemetry data from Mission Planner is sent to the

follower vehicle’s Mission Planner Python script. Therefore, this factor will be used only for the

54

Python method instead of the Mission Planner swarm application method. The low value will be

set to the smallest, or fastest, stable sleep time, before the script starts sending repetitive position

data, which was found to be about 0.5 seconds or 500 milliseconds. The high value will be set to

five seconds or 5000 milliseconds because higher times start to induce much larger latencies.

The 3DR modem’s Max Window is used to set how often the GCS sends a packet to the

vehicle, in milliseconds. The default, which is why it was chosen as the high value, for this

factor will be set to 131 and the low value to 33 because it is the lowest setting possible.

Therefore, when the factor is set to the high value, the GCS will send a packet to the vehicle

every 131 msecs. Both the modem connected to the GCS, and to the vehicle must always contain

the Max Window to be able to communicate with one another [23].

Since there will be five two level factors for the Python method, there will be sixteen

experimental runs or data points with different treatments, plus four center runs, totaling twenty

runs, seen from Table 5. Though the design in Table 5 is not randomized in order to display the

runs in an organized manner, the design will be randomized when executed. This randomization

is to avoid the effect of unknown nuisance factors with the experimental factors. A center run

will be the first and last runs in the experiment with the other two center runs spaced equally apart

between runs in order to provide a measure of stability. The number of runs is found by taking

25-1 and adding the four center runs. This 25-1, with five factors, is called a fractional factorial

design [32]. These designs are created to limit the amount of runs and still produce effective

predictions through the regression model. If a standard full factorial design were to be used with

five factors, thirty-two runs would be required, which could waste time and resources when a

fractional factorial could produce a similar sufficient model. However, not all fractional factorial

models are equally effective. The less runs in a high factor populated model, the more bias is

introduced into the model. For instance, super saturated designs have less runs than factors which

prevents main effects from being estimated. Therefore, high resolution designs are desired so that

55

factor main effects aren’t aliased with other significant factors or interactions. When aliased, it

isn’t evident which aliased factor triggers a recognized effect. Therefore, a resolution V design

will be made for the 25-1 fractional factorial because it is the highest resolution design for the

fractional factorial.

Table 5. Test 2 Five Factor Half-Fractional Factorial Design

 Factor Levels

Run
Waypoint

Radius

Cruise

Speed

Sleep

Time

Max

Window

Telemetry

Rate

1 -1 -1 -1 -1 1

2 1 -1 -1 -1 -1

3 -1 1 -1 -1 -1

4 1 1 -1 -1 1

5 -1 -1 1 -1 -1

6 1 -1 1 -1 1

7 -1 1 1 -1 1

8 1 1 1 -1 -1

9 -1 -1 -1 1 -1

10 1 -1 -1 1 1

11 -1 1 -1 1 1

12 1 1 -1 1 -1

13 -1 -1 1 1 1

14 1 -1 1 1 -1

15 -1 1 1 1 -1

16 1 1 1 1 1

17 0 0 0 0 0

18 0 0 0 0 0

19 0 0 0 0 0

20 0 0 0 0 0

The center runs are used as a coded value of zero for the factor levels. Therefore, the

factor levels equal distance from the high and low factor levels are used as the center run settings.

The center runs will help test for curvature in the model. For each treatment in the model, an

average run will be taken out of three repeated runs. These replications are to aid in the

confidence, or precision of the estimate for the mean response at each factor level combination, of

the data collection. However, the figure eight accuracy error measurements will only be executed

once per treatment, averaging the waypoint distances gathered from the T-log.

56

Test 3: Rover Ground Vehicle Following Multi-Rotor

Once optimum factor levels are obtained for low latency and accuracy error, they will be

used in the differing heterogeneous vehicle configurations. The accuracy error measured from

the averages of the waypoint distances captured by the T-logs will be used when multi-rotor

vehicles are being tested due to its simplicity. The first heterogeneous vehicle configuration used

will be with the multi-rotor vehicle set as the leader and the rover vehicle set as the follower

vehicle.

 Using the Python script with the two vehicle configuration, the same latency and

accuracy error tests will be used as from test 2. However, only the optimum factor levels will be

used in the run for each response. Again, the latency test will be run three times with the

optimum factor levels, averaged into one data point. The accuracy error will be measured by

averaging the waypoint distances of the follower vehicle’s T-log after the accuracy error test with

its optimum factor levels. The standard deviations will be collected as well.

Test 4: Multi-Rotor Following Rover Ground Vehicle

The next heterogeneous vehicle configuration testing will involve the multi-rotor

following the rover ground vehicle. That is, the multi-rotor set as the follower vehicle and the

rover vehicle set as the leader vehicle. The same latency and accuracy error tests with the Python

script will be executed as in test 3, using optimum factor levels. However, the Droid Planner 2

application’s Follow Me Mode will be used with the latency and accuracy error tests as well, to

provide another method of comparison to the Python method. This method’s architecture was

seen in Figure 13. The application will be used on a Samsung Galaxy S3 smart phone. The

phone will be strapped down on top of the rover vehicle, essentially allowing the multi-rotor to

follow the phone when in Follow Me Mode.

57

Analysis

 Once all data is gathered, trade studies associated with camera settings and vehicle

operating parameters will be performed. The camera will be presumed attached to the multi-rotor

as a follower and the rover ground vehicle as the leader vehicle. Using the collected data, a set of

camera Field of View (FOV) angles and altitude will be altered to reflect the largest time buffer

for the ground vehicle to travel outside the camera’s footprint, with the multi-rotor stationary.

This time buffer will involve the ratio between the time it takes for the rover to exit the footprint,

and the latency of the follower vehicle. The speed of the rover and track lag of the follower

vehicle will be used based on the data collected from the previous experiments.

Summary

Using ground control stations, autopilots, and a combination of aerial and ground

vehicles, a set of procedures was developed in order to address the research’s investigative

questions. Two methods are defined using Python with Mission Planner and Mission Planner’s

swarm application. Latency and accuracy error are defined as the cooperative behavior and

control metrics for this research due to their mission criticality for autonomy. Latency should be

minimized for instructions to be passed quickly across vehicles and reduce response times, while

accuracy error could prevent vehicle collisions and mission obstruction. These methods and

metrics must first be tested with ground vehicles due to their safe nature in comparison to aerial

vehicles and the challenges associated with flight policy. Using Python with Mission Planner

from separate computers for each vehicle and still exhibiting cooperative behavior and control,

presents an opportunity to find out which platform configuration demonstrates lower latency and

more accurate positioning. The most effective Python solution will be compared to the Mission

Planner swarm application’s outcomes as a baseline test.

58

With the aid of statistical software, DOE will allow for position telemetry rate, waypoint

radius, vehicle cruise speed, leader sleep time, and 3DR modem’s max window to be used as

factors in testing of the two methods. The DOE tests will include latency as the response and

accuracy error as the response for a rover-following-rover vehicle configuration. Accuracy error

will also be measured in terms the average waypoint distances captured from a T-log for the

follower vehicle post-operation. A 25-1 Resolution V fractional factorial sixteen run design will be

used with four center runs. The Python script used for the DOE will involve new behaviors such

as a follower vehicle offset in relation to the heading of the leader vehicle, and a safety switch for

precaution.

Once the methods are proven on ground vehicles, they can be implemented with aerial

multi-rotors and heterogeneous vehicle configurations. However, only the Python method will be

able to be run with the multi-rotors as followers due to safety concerns. The performance of these

multi-rotors will lead to heterogeneous vehicle testing, with the multi-rotor as the leader first and

the ground vehicles as the followers. The optimum factor levels for a low latency and low

accuracy error, using the figure eight measurement method, will be used to find the latency and

accuracy error for the vehicle configuration. This will exhibit the first confirmation of the DOE

models created.

The heterogeneous vehicle configuration will then be reversed, with the rover ground

vehicle as the leader and the multi-rotor as the follower vehicle. The same tests with latency and

accuracy error as the last heterogeneous vehicle configuration test will be done with the DOE

optimum factor levels. These optimum factor levels will also be run on a Droid Planner 2

application via smart phone to measure latency and accuracy error through the use of the

application’s Follow Me mode.

The consistency of the factors, metrics, and methods set up the data for comparative

analysis. Therefore, safe assumptions can be made when there are noticeable differences in

59

effects based on vehicle configuration. These vehicle configuration effects lead to application use

that will be demonstrated through trade studies using camera FOV, altitude, speed, and latency of

the vehicles. Based on these parameters, the relationship between them will be determined as

well as a chance to see how long the rover can be kept within the camera’s footprint.

60

IV. Analysis and Results

Chapter Overview

 The analysis and results chapter discusses the results obtained from the implementation

of the previous chapter’s methodology. The chapter covers the results of diagnostic testing, using

the same parameters on Mission Planner’s Swarm application as with the Python method, in order

to compare the latency and accuracy error between a leader and follower rover vehicle. Using the

Python method, Design of Experiments was used to find the optimum parameter settings for both

latency and accuracy error responses. These optimum parameter settings were used on

heterogeneous vehicles, ground rover vehicle and multi-rotor, using the Python method and Droid

Planner 2 to compare the effects of latency and accuracy error on each configuration. These

results are broken down and analyzed in order to decipher the relationship between the data and

findings.

Diagnostic Testing

 Using Mission Planner’s Swarm application and Python, latency in seconds and accuracy

error in inches were directly compared between both methods. The Python method consisted of

two different configurations, one with one instance of Mission Planner running on two different

computers, and one with two instances of Mission Planner running on the same computer. The

same parameters were used on all methods and configurations for comparative purposes, with

sleep time set at 1000, or one second. Five data points were taken for each method. The average

of the five data points and their standard deviation for each method are seen below in Table 6.

 The latency was measured using a stopwatch. The stopwatch was started when the leader

vehicle took off, and stopped when the follower vehicle physically responded to the leader’s

location. The accuracy error was measured by taking the GPS coordinates of the leader and

follower vehicles from Mission Planner, after the follower vehicle reached its appropriate offset

61

from the leader. The actual distance was then measured between the two vehicles with measuring

tape. The offset was then calculated between the two GPS points and compared to the actual

distances measured. The difference between the actual distance and the calculated GPS points

distance is considered as the accuracy error.

Table 6. Diagnostic Testing for MP Swarm and Python Configurations

Latency (sec) Std. Dev. Accuracy Error (m) Std. Dev.

MP Swarm 2.67 0.81 N/A N/A

1 MP on each (2) PCs 2.99 0.89 0.77 0.41

2 MP on 1 PC 4.47 1.42 0.76 0.49

Accuracy error is not shown for Mission Planner’s Swarm application as it did not have

an accuracy error. This is due to Mission Planner only being able to read parameters, and save T-

logs, off of one vehicle at a time. In this case, the follower vehicle’s GPS location could not be

read through Mission Planner. Accuracy error could not be measured by comparing the actual

distance to the theoretical offset because the offset scale from the grid of the Mission Planner

Swarm application was unknown. Documentation was not found for the area, or distances, of

each cube in the offset grid. Through the execution of a couple of experiments, the area of each

cube in the offset grid appeared to be closest to 1 m2.

The latency averages were then compared between the two Python configurations to test

if one mean was larger than the other. Assuming the variances of each Python configuration are

not equal, the two-sample t-test, t0, seen from Equation 10 was used to test whether the separate

GCSs Python configuration’s mean latency, 𝑦̅1, was the same as the single GCS Python

configuration’s mean latency, 𝑦̅2. Equal means between the Python configurations represented

the null hypothesis. The two-sample t-test also tested if the single GCS Python configuration had

a higher latency mean than the separate GCSs Python configuration’s latency mean, which was

the alternative hypothesis [32]. The sample variances for the single GCS Python configuration,

62

S1, and the separate GCSs Python configuration, S2, are each squared and divided by sample sizes

of the single GCS Python configuration, n1, and the separate GCSs Python configuration, n2. The

degrees of freedom, v, were found from Equation 11.

𝑡0 =
𝑦̅1 − 𝑦̅2

√
𝑆1

2

𝑛1
+

𝑆2
2

𝑛2

 (10)

𝑣 =
(

𝑆1
2

𝑛1
+

𝑆2
2

𝑛2
)

2

(𝑆1
2/𝑛1)2

𝑛1 − 1
+

(𝑆2
2/2)2

𝑛2 − 1

(11)

 The results in Table 7 show a p-value of 0.048, which is less than an α of 0.05. This low

p-value shows that the null hypothesis is rejected and that operating the vehicles from the same

GCS using Python scripts produces a significantly higher latency than operating the vehicles from

separate GCSs using Python scripts.

Table 7. Two-Sample T-Test Results Between Python Configurations

t0 v p-value

1.98 6.71 0.048

 A fact to note here is that using the Python method with two instances of Mission Planner

on a single computer, the latency increased 1.5 times than that of using one instance of Mission

Planner on each computer. This could be attributed to computer processor speed or the two

modems competing for processor time. There could be increased lag with two applications up

and working on the same computer, apparently more so than lag across wireless network

connections. Having two modems connected to a single computer’s USB port could require

higher processing capabilities. Looking at the latency standard deviation, the two instances of

Mission Planner on one computer has a noticeably higher standard deviation than the other

Python configuration and Mission Planner Swarm. This could be due to some erratic data points

(outliers) involved with the collection, or perhaps the configuration results are just not

63

predictable. Either way, the standard deviation still was not high enough to ignore the Python

configurations’ effect on latency. There was also little difference between both Python

configurations’ accuracy error. Therefore, for implementation purposes, the Python method used

for continuing experimentation was one instance of Mission Planner for each computer.

Optimum Factor Settings (Design of Experiments)

 Once the preferred Python method was recognized, the optimum parameter settings were

chosen for telemetry rate, waypoint radius, cruise speed, sleep time, and max window, seen from

Table 4. Using Design of Experiments with the five factors, a resolution V 25-1 fractional

factorial design was created. This created a sixteen run design; however, two extra replicates of

each run were executed to improve the estimate of the mean at each design point. These

replicates did not affect the size of the design, in an analysis sense, because the response averages

of the replicates for each parameter settings were taken as the single response for each run in the

original 16-run design. The same designs were used for both responses, latency and accuracy

error. However, the latency design was executed with four center runs because curvature was

suspected in the model. The accuracy error model did not contain center runs due to the lack of a

credible model or way to measure the accuracy error. The design was created and data analyzed

through JMP 11 Pro.

Latency

 For the latency model, the data was screened for possible significant effects, as seen in

Figure 19.

64

Figure 19. Latency Model Screening

As seen in Figure 19, Sleep Time and Max Window appear to be the significant main effects,

because they have p-values lower than 0.05. This can also be seen from the Half Normal Plot in

Figure 20. Those two main effects are the farthest from the blue line, which signifies irrelevance.

Sleep Time*Max Window, Max Window*Telemetry Rate, Cruise Speed*WP Radius, and

Telemetry Rate*WP Radius also appear to be significant.

Figure 20. Latency Half Normal Plot

The effects tests are seen in Figure 21. Sleep Time was found to be a direct reflection on

latency and was, therefore, very significant. Sleep Time was placed in the leader’s Python script

to specify time between the leader vehicle’s position data being sent to the follower vehicle’s

GCS. If no Sleep Time is specified in the code, the default is 1000 ms, or 1 second. As the Sleep

Time was increased it was very apparent that the latency increased exponentially. Therefore, a

65

lower Sleep Time is desired. Max Window was a setting for the 3DR modems that controlled

how often the vehicle sent a packet to the GCS in milliseconds. Logically, a lower Max Window

should be desired. This would affect how often the position information is received and reaction

time of the follower vehicle. Both radios on the channel had to have the same Max Window or

they couldn’t communicate with one another.

Notice how Sleep Time*Sleep Time, or (Sleep Time)2, is in the model and is even proven

significant. Normally, a three or higher level design is needed to estimate individual quadratic

factors. However, this term tests for curvature in the model because it is the only quadratic term

shown in the two level design. Center points are not considered as a third level. A three level

design was not created in the interest of time and due to the two level design having such a high

R2
adjusted. Therefore, the term’s significance shows that curvature does exist in the model.

Figure 21. Latency Effect Tests

The other main effects are included in the model, despite being insignificant, for

hierarchy because there are interactions in the model with these factors that proved to be

significant. Significant interactions show that the interaction between two factors have a

significant effect on the response and that the effect of one factor depends on the factor level of

another factor.

66

Figure 22 shows an R2
adjusted of 0.97676. Note that a perfect fit to the data gives an

R2
adjusted of 1. This shows that the model fits the data extremely well. The model’s significance is

also proven in Figure 23 with a p-value much lower than 0.05.

Figure 22. Latency Summary of Fit

Figure 23. Latency ANOVA Table

The Residual vs Predicted Plot in Figure 24 shows a fairly constant variance throughout

the graph. The normality plot in Figure 25 shows that there is no issue with normality because all

data points seem to fall along the linear line. Therefore, these two graphs show that the model is

adequate and no transformations should be needed.

Figure 24. Latency Residual vs. Predicted Plot

67

Figure 25. Latency Normality Plot

There appears to be no lack of fit in the model because the lack of fit test in Figure 26

shows a p-value above 0.05. The lack of fit tests how well the model fits the data. For example,

if a linear model exhibits lack of fit, the factor-to-response relationship will not be characterized

properly and a higher order model would be needed [33].

Figure 26. Latency Lack of Fit Test

The model parameter estimates can be seen in Figure 27. A design containing only two

level factors limits the model to a linear prediction. Without a third level in a factor, quadratic

effects can’t be predicted. Though including quadratic terms in a two level model is normally

avoided, a case can be made for keeping (Sleep Time)2 in this two level latency model. Looking

at the model without including (Sleep Time)2 in it, not only does there prove to be lack of fit from

Figure 28, but Figure 29 shows that the R2
adjusted has dropped significantly to 0.824009. There

appears to be lack of fit in the model without including (Sleep Time)2 because the (Sleep Time)2

Sum of Squares is then added to the Lack of Fit Sum of Squares. The non-linearity in the design

68

appears to be due to Sleep Time’s non-linear increase in latency as the factor increases. There is

a significant drop in latency from a five second Sleep Time to a half second Sleep Time. The

center point response values were not higher or lower than the lowest or highest response values

in the design, which shows there wasn’t an extreme amount of curvature, and this helps validate

leaving (Sleep Time)2 in the model.

Figure 27. Latency Parameter Estimates

Figure 28. Latency Lack of Fit Test Without Sleep Time2 In Model

Figure 29. Latency Summary of Fit Without Sleep Time2 In Model

69

In the end, (Sleep Time)2 is left in a two level model based on assumptions such as a high

R2
adjusted and there being such few significant main effects. In two level designs, a quadratic term

in the model is aliased with all quadratic terms. However, if only Sleep Time and Max Window

are significant, with Sleep Time being much more significant than Max Window, then it is logical

to assume that the sum of the aliased quadratic terms is mostly the Sleep Time because the other

effects are so small. Therefore (Sleep Time)2 remains in the model and is assumed to be a

satisfactory estimate of this term.

Normally, two level designs are used in conjunction with follow on testing. Central

Composite Designs (CCD) are suitable designs for follow on experimentation. These designs

contain axial runs which are a third factor level, allowing models to be able to predict quadratic

terms. Unintentionally, follow on experimentation was not performed with this research. By the

time it was realized that follow on experimentation should have been executed, it was too late.

Tests 3 and 4 had already used the optimum factor settings from the models.

Using the parameter estimates from Figure 27, the regression model is shown in Equation

12. The factors with bigger coefficients, such as Sleep Time, Max Window, and most of the

interaction terms, prove to be more significant. The faster that these factors change, the faster the

latency response, y, will change.

𝑥1 = 𝑊𝑃 𝑅𝑎𝑑𝑖𝑢𝑠, 𝑥2 = 𝐶𝑟𝑢𝑖𝑠𝑒 𝑆𝑝𝑒𝑒𝑑, 𝑥3 = 𝑆𝑙𝑒𝑒𝑝 𝑇𝑖𝑚𝑒, 𝑥4 = 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑜𝑤, 𝑥5

= 𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦 𝑅𝑎𝑡𝑒,

𝑦 = 𝐿𝑎𝑡𝑒𝑛𝑐𝑦

𝑦 = 4.525 + 0.1651813𝑥1 + 0.2048187𝑥2 + 3.2869312𝑥3 + 0.7948063𝑥4

− 0.166894𝑥5 − 0.756519𝑥1𝑥2 − 0.573981𝑥1𝑥5 − 0.533931𝑥3𝑥4

+ 1.101106𝑥4𝑥5 + 2.5031938𝑥2
2

(12)

The prediction profiler in Figure 30 shows what factor settings or levels will give the most

optimal response, which in this case is low latency. All factors should be at negative one coded

70

values, while Sleep Time should be at -0.763198 coded value to get the predicted lowest latency

of -0.36256 seconds. Obviously, there is more error in the prediction at these factor settings.

However, what this does say is that the lowest latency possible as predicted by the model can be

achieved with these settings. This also confirms the regression model in Equation 12. As the

factors’ values get lower, the latency gets lower as well.

Figure 30. Latency Prediction Profiler

 Figure 30 also show how Sleep Time has an exponential effect on latency. This gives

further evidence that leaving (Sleep Time)2 in the two level latency model will still give the same

results. For example, a lower Sleep Time will always result in lower latency according to this

model. If Sleep Time had a quadratic effect on latency, then the optimum factor level may not be

as easy as selecting the lowest or highest factor level.

The prediction profiler is validated through the cube plot in Figure 31. Notice that from

the Cube Plot, the corner of the cube with all factor settings set to negative one, or low values,

predicts the lowest latency at -0.222 seconds. This is very similar to the Prediction Profiler in

Figure 30; however, the experimental run with all these factors set to negative one was never

executed in the experiment, which would explain the error from the negative prediction estimate.

However, this shows the advantages of fractional factorial designs by being able to predict

71

response values of factor settings having never run them. These predictions allow for fewer runs

and resources to be used in fractional factorial designs rather than full factorial designs.

Figure 31. Latency Cube Plot

 Notice that in the Cube Plot, when the value of Sleep Time changes from low to high

value, there seems to be the largest jump in latency than any other factor change. This validates

the significance of Sleep Time. Max Window appears to have the second largest significance,

especially seen with low Telemetry Rate. These factors appear to be robust to the remaining

three factors in the design. The optimal value of the remaining three factors depend on the

settings of other factors, as evaluated by the significant interaction terms.

 The interaction plots shown in Figure 32 characterize how the factors interact with each

other. Notice that the plots with faded lines involve insignificant interactions in the model. This

can also be seen by the parallel lines of latency response as their coded values switch from low to

72

high values. Therefore, all the plots with line intersections or non-parallel slopes show significant

interactions. The more opposite the slopes, or higher change, of the coded factors in the plot, the

more significant the interaction. The factor labels on the right side of the graph represent the

coded values in the graphs seen laterally. The factor labels seen within squares of the plots

represent the interacted factor, and their coded value axis is seen at the very bottom of the plots.

For instance, looking at Telemetry Rate’s interaction with Max Window, at a low coded value of

Telemetry Rate, there appears to be an increase in latency as Max Window changes from lower to

higher coded values. Not only is there an increase in latency, but the rate of change, or slope,

appears much greater than when Telemetry Rate is at a high coded value. At a high Telemetry

Rate coded value, the latency decreases at a slower rate as Max Window changes from low to

high coded values. However, the disparity between the high and low coded values of Telemetry

Rate and its interaction with Max window appears to be greatest than any other interaction.

Therefore, this interaction also appears to be the most significant out of the model which can also

be validated from Figure 21’s small p-value seen by the interaction.

Figure 32. Latency Interaction Plots

73

The latency model proved to be a very reliable model. With such a high R2
adjusted and no

model deficiencies, the model proved to be useful. Yet, a definitive screening design probably

should have been used to be able to properly estimate the quadratic terms in the model because

there appeared to be curvature. A definitive screening design has three levels and would have

provided estimates of the quadratic effects with only partial aliasing. Since one of the reasons a

two level design was chosen was in the interest of time, a definitive screening design would have

still been a time efficient choice with few runs needed. A two level design was good for

sequential experimentation, or follow on experiments. However, no follow on experiments were

planned or executed. Even though the knowledge of a definitive screening design was not

apparent at the time, the two level latency model still proved to be a very effective model.

The lowest latency was predicted with all factors at negative one coded values except

Sleep Time at a -0.763198 coded value. With the design being a two level design, all factors

were kept at negative one coded values to achieve optimal latency settings, seen from the cube

plot in Figure 31 and Table 8, for the heterogeneous vehicles implementation. Therefore, the

heterogeneous vehicles implementations were somewhat used as confirmation runs to validate the

predicted latency response for the lowest factor settings, as well as for comparison between

vehicle configurations.

Table 8. Optimal Factor Settings for Low Latency

WP Radius

(m)

Cruise Speed

(m/sec)

Sleep Time

(ms)

Max Window

(ms)

Telemetry Rate

(Hz)

Coded Value -1 -1 -1 -1 -1

Actual value 0.25 1 500 33 3

74

Accuracy Error

 Unlike the latency model, the accuracy model didn’t include center runs. The omission

was made in the interest of time and the lack of trust in the accuracy measuring method.

However, there were two extra replicates collected per run, though the three data points for each

run were averaged into one response for each run in a 16-run design. The accuracy error model

didn’t turn out to fit the data as well as the latency model. Seen in Figure 33, the R2
adjusted is

0.379125. This is much lower than the latency model’s. The model still proved significant from

analyzing the p-value from the Analysis of Variance (ANOVA) table in Figure 34. Only two

factors prove to be significant from Figure 35, Waypoint Radius and Telemetry Rate.

Figure 33. Accuracy Error Summary of Fit

Figure 34. Accuracy Error ANOVA Table

Figure 35. Accuracy Error Effect Tests

There proves to be no lack of fit as the test shows its insignificance in Figure 36. Though

no center points were executed, taking the only two significant factors in the model led to

repeated runs for these two factors in a sixteen run design. These replications are required for

75

testing lack of fit. The parameter estimates seen in Figure 37 create the regression model in

Equation 13.

Figure 36. Accuracy Error Lack of Fit Test

Figure 37. Accuracy Error Parameter Estimates

𝑥1 = 𝑊𝑃 𝑅𝑎𝑑𝑖𝑢𝑠, 𝑥2 = 𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦 𝑅𝑎𝑡𝑒,

𝑦 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑦 = 55.275994 + 14.953595𝑥1 + 13.752188𝑥2 (13)

The regression model shows that to get a desired low accuracy error for the response, low

coded values for the factors are desired. The optimal factor settings are shown from the

Prediction profiler in Figure 38. Negative one coded values for the two factors gives a predicted

minimum accuracy error of 26.57021 inches, or 0.67488 meters. This is also seen from the Cube

Plot in Figure 39. The lowest accuracy error appears in the lower left corner of the cube, at the

low coded values for both factors. There is a pretty steady increase in accuracy error switching

from low coded values to high coded values for each factor, showing the factors’ significance to

the model.

76

Figure 38. Accuracy Error Prediction Profiler

Figure 39. Accuracy Error Cube Plot

The two significant factors, Waypoint Radius and Telemetry Rate, can be rationalized.

Having a low Waypoint Radius allows for a more accurate target location. Setting a high

Waypoint Radius could keep the rover five meters off of its target because the rover will detect its

target location arrival once it reaches the Waypoint Radius of the target. The Telemetry Rate

focuses on how often the position data is sent to the GCS [34]. It would be expected that a high

Telemetry rate would be better for position accuracy because the position of the vehicle would be

updated to the GCS more frequently; however, the model does not show this. In fact, the model

suggest a lower Telemetry Rate is more desirable. Perhaps the higher telemetry rate interferes

with Mission Planner’s ability to service or run Python scripts. If Mission Planner is getting too

much information in too little time, this could overload the GCS.

77

 Looking at the Residual vs Predicted plot in Figure 40 and the Normality plot in Figure

41, it can be seen that the Residual vs Predicted plot looks to have a funnel shape with its data

points rather than a desired constant variance. This also shows that quadratic terms may have

been needed to model this funnel shape. Again, it was too late to run an experiment with three

level factors by the time it was realized it may have been needed. The normality plot doesn’t

have any issues with just a slight data point deviation from the linear line near the middle of the

graph. This somewhat unfavorable model adequacy check, coupled with a much lower R2
adjusted

than the latency model, raises questions as to whether a better model is obtainable for accuracy

error. Therefore, the Box-Cox Transformation seen in Figure 42 shows possible model

transformations.

Figure 40. Accuracy Error Residual vs. Predicted Plot

Figure 41. Accuracy Error Normality Plot

78

Figure 42. Accuracy Error Box-Cox Transformation

The Box-Cox shows how a transformation on the response of yλ could be made. Figure

42 shows the desired values for λ. The desired λ is the value where the minimum Sum of Squares

Error (SSE) value is reached. Usually taking any λ where the SSE is below the red line can be

sufficient; therefore, taking 0.5 as λ, a square root transformation on the response is done first.

It’s seen in Figure 43, that the R2
adjusted hasn’t changed much from 0.379125; in fact, it’s gotten a

bit lower. The Telemetry Rate’s significance became a little less as well in Figure 44 by crossing

the 0.05 threshold that the p-value usually identifies as significant. The Residual vs Predicted

plot in Figure 45 doesn’t show much change from the pre-transformed model. Therefore, the

square root transformation is deemed unnecessary.

Figure 43. Square Root Accuracy Error Transformation Summary of Fit

Figure 44. Square Root Accuracy Error Transformation Parameter Estimates

79

Figure 45. Square Root Accuracy Error Transformation Residual vs. Predicted Plot

Taking a log transformation on the response for y0 from the Box-Cox graph, the R2
adjusted

seems to have dropped quite a bit in Figure 46. The factors have also become less significant in

Figure 47. The Residual vs Predicted plot looks to be unchanged in Figure 48. Therefore, this

transformation is not desired either. Transformations aim at creating conditions for which the

coefficient estimates are accurate and the p-values for significance are valid. From the looks of it,

the original model without transformations proves to be the best model to support the data as

collected. Introducing quadratic terms may have improved the model though. With the lowest

accuracy error desired, the model predicts the lowest accuracy error with the factor settings in

Table 9.

Figure 46. Log Accuracy Error Transformation Summary of Fit

Figure 47. Log Accuracy Error Transformation Parameter Estimates

80

Figure 48. Log Accuracy Error Transformation Residual vs. Predicted Plot

Table 9. Optimal Factor Settings for Low Accuracy Error

WP Radius (m) Telemetry Rate

Coded Value -1 -1

Actual value 0.25 3

This method of measuring accuracy error proved to be more of a measurement of GPS

error because the GPS locations were compared to actual distances between the vehicles. The

R2
adjusted also proved to be a much poorer fit model than the latency model, with few significant

factors. This led to low confidence in the model. The distances measured were also when the

vehicles had reached a stationary point. Therefore, this didn’t account for the latency that would

occur when the follower vehicle would be in pursuit of the leader vehicle. To account for this

type of error, a set of Figure eight waypoints were assigned to the leader vehicle. The leader

vehicle would then operate in Auto mode, following the waypoints while the follower vehicle

would follow the leader using the Python script. Waypoint distance was captured in T-log files.

In terms of the follower vehicle in this case, the waypoint is the most recently transmitted

position of the leader vehicle. Likewise, the waypoint distance recorded in the T-log represented

how far away the follower vehicle was from the last known leader vehicle position at all times,

without an offset. Of course there is a bit of lag introduced based on latency, but the waypoint

distance still measured how far away from the desired target the follower vehicle was at all times,

81

labeling this distance as accuracy error. This was to prove, more or less, the vehicles’

effectiveness and possible application in a close-formation flight with aerial vehicles.

Figure Eight Accuracy Error

 By pulling the waypoint distances from the follower vehicle’s T-log and averaging them

for each run of factor settings, a response of accuracy error was obtained in meters for each run in

the 16-run design. Again, no center runs were executed to check for curvature in the model, in

interest of time. A linear model was expected to suffice for the figure eight accuracy error. The

data was screened as seen in Figure 49, with the Half Normal Plot seen in Figure 50. Seen here,

there are not too many obvious possibilities of significant effects.

Figure 49. Figure Eight Accuracy Error Model Screening

Figure 50. Figure Eight Accuracy Error Half Normal Plot

The model proved to only have one significant main effect in Cruise Speed, as seen in

Figure 51. However, all main effects were included in the model for hierarchy due to their factor

82

interaction significance. Cruise Speed affects how fast the follower vehicle catches up to the

leader. Logically, the faster the Cruise Speed, the less waypoint distance is recorded because the

follower vehicle will catch up to the leader vehicle in less time. However, the same Cruise Speed

was set for the leader vehicle as the follower vehicle to prevent vehicle collision. Therefore, the

Cruise Speed relationship or behavior is not as obvious. The model proves to fit the data better

than the previous accuracy error method’s model with an R2
adjusted of 0.745323 seen in Figure 52.

The model has an R2 of 0.898129. This gap between the R2
adjusted and R2

 shows that too many

terms may be in this model. The insignificant main effects included in the model for hierarchy

may attribute to this gap. The ANOVA table shows the model’s significance in Figure 53.

Figure 51. Figure Eight Accuracy Error Effect Tests

Figure 52. Figure Eight Accuracy Error Summary of Fit

Figure 53. Figure Eight Accuracy Error ANOVA Table

83

The parameter estimates for the model are seen in Figure 54. The most significant term,

which happens to be an interaction term in this case, has the largest absolute value estimate, or

coefficient. This helps build the regression model seen in Equation 14.

Figure 54. Figure Eight Accuracy Error Parameter Estimates

𝑥1 = 𝑊𝑃 𝑅𝑎𝑑𝑖𝑢𝑠, 𝑥2 = 𝐶𝑟𝑢𝑖𝑠𝑒 𝑆𝑝𝑒𝑒𝑑, 𝑥3 = 𝑆𝑙𝑒𝑒𝑝 𝑇𝑖𝑚𝑒, 𝑥4 = 𝑀𝑎𝑥 𝑊𝑖𝑛𝑑𝑜𝑤, 𝑥5

= 𝑇𝑒𝑙𝑒𝑚𝑒𝑡𝑟𝑦 𝑅𝑎𝑡𝑒

𝑦 = 𝐹𝑖𝑔𝑢𝑟𝑒 8 𝐿𝑜𝑜𝑝 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝑦 = 5.4185859 + 0.0971141𝑥1 + 0.7881484𝑥2 + 0.2312984𝑥3 − 0.243448𝑥4

+ 0.4630734𝑥5 + 0.6258516𝑥1𝑥2 + 0.7391891𝑥3𝑥4 − 0.849089𝑥2𝑥5

(14)

As seen from the regression model in Equation 14 and validated through the Prediction

Profiler in Figure 55, as Cruise Speed, Telemetry Rate, and Max Window get smaller, and Sleep

Time and WP Radius get larger, a minimum accuracy of 1.971134 m is predicted. The low factor

levels are represented by a coded value of negative one.

Figure 55. Figure Eight Accuracy Error Prediction Profiler

84

This minimum accuracy error is also seen from the Cube Plot in Figure 56. Notice how

the accuracy error increases more with Cruise Speed than any other factor when the factor is

changed from low to high coded values, especially with a high WP Radius. This validates Cruise

Speed’s significance in the model.

Figure 56. Figure Eight Accuracy Error Cube Plots

The interaction plots shown in Figure 57 show which factor interactions are significant

and how significant they are. Cruise Speed*Telemetry Rate, Max Window*Sleep Time, and

Cruise Speed*WP Radius appear to be the only significant interactions from Figure 51; yet, the

Telemetry Rate*Max Window does appear to have quite a bit of interaction from the interaction

plot and is on the borderline of significance.

85

Figure 57. Figure Eight Accuracy Error Interaction Plots

The Residual vs. Predicted plot is seen in Figure 58 and the normality plot in Figure 59 to

check the model’s adequacy. The Residual vs. Predicted plot looks to have a constant variance,

but the normality plot looks to have several points around the center and towards the upper right

of the graph that indicate a violation of normality. A transformation is investigated by examining

the Box-Cox transformation plot in Figure 60. Since part of the SSE values that are under the red

line include λ=1, there appears no need for a transformation because y1=y.

86

Figure 58. Figure Eight Accuracy Error Residual vs. Predicted Plot

Figure 59. Figure Eight Accuracy Error Normality Plot

Figure 60. Figure Eight Accuracy Error Box-Cox Transformation

 The optimum factor values for low accuracy error for the figure eight method are seen in

Table 10. Cruise Speed was discussed earlier as the only significant main effect. Since both the

leader and vehicle had the same Cruise Speed at all times, a high Cruise Speed didn’t necessarily

give an advantage towards a lower accuracy error. This was seen with the figure eight method.

In fact, a lower Cruise Speed aided in predicting a lower accuracy error. If both vehicles were

traveling at slower speeds, then the follower vehicle didn’t have too far to correct its path toward

87

the leader vehicle if the leader vehicle turned or executed some other, sometimes erratic,

maneuver. When both vehicles were set to higher Cruise Speeds, there appeared a much larger

distance between the leader and follower vehicles at most times because of the latency involved.

The follower vehicle had much more direction and distance to correct for when the leader was

traveling at fast speeds. This is an indication that close-formation flight may not be obtainable

with the methods investigated here. Cruise Speeds considered lower for aerial vehicles are

usually considered faster speeds for ground rover vehicles since some aerial vehicles, such as

planes, need to maintain faster speeds for level flight. Aerial vehicles maintaining such low

speeds could also be a threat to enemy detection in hostile environments or mission failure due to

loss of battery power. The figure eight accuracy error model ended up being used as the primary

accuracy error model for heterogeneous vehicle implementation based on the model’s

improvement over the previous accuracy model.

Table 10. Optimal Factor Settings for Low Figure Eight Accuracy Error

WP Radius

(m)

Cruise Speed

(m/sec)

Sleep Time

(ms)

Max Window

(ms)

Telemetry

Rate (Hz)

Coded Value 1 -1 1 -1 -1

Actual value 5 1 5000 33 3

 Though the model considered the WP Radius main effect insignificant, there was a

visually observable difference when observing the effects of WP Radius on the vehicles,

especially the multi-rotor aerial vehicles. When the WP Radius was low, the multi-rotor would

exhibit jerking motions while following the ground rover vehicle. When the WP Radius was

high, the multi-rotor would follow the ground rover vehicle more smoothly, without jerking

motions. This jerking motion could be attributed to the waypoint being changed too much. In

other words, the waypoint radius was too precise given the accuracy of the GPS measurement.

88

The multi-rotor had to constantly re-calculate its target. If a waypoint radius is less than the GPS

accuracy, it will constantly change the leader waypoint, even when the leader is stationary. With

a high WP Radius, the multi-rotor had time to react to the changing waypoints because the

waypoints weren’t as precise due to the buffer added from radius length. Though the model

displayed an R2
adjusted of 0.74, it was still much higher than the original accuracy model’s R2

adjusted

of 0.379, proving to be a better fit model. With the lack of a better method for measuring

accuracy error, the figure eight accuracy model was used throughout this research.

Heterogeneous Vehicle Implementation

 After finding the optimum parameter settings for low latency from Table 8 and accuracy

error from Table 10, the settings were used on different vehicle configurations and posed as

confirmation runs. Though the models’ predicted responses didn’t match the collected values, the

factor settings did accomplish the objective by producing the desired lowest responses seen from

the vehicles tested. Using the Python method, the multi-rotor vehicle was first set as the leader

and the ground rover as the follower vehicle. Then the rover ground vehicle was set as the leader

and the multi-rotor vehicle as the follower vehicle as seen in Table 11. Finally, the multi-rotor

following the rover configuration was used with an alternate method, the Droid Planner 2

application’s “Follow-Me” mode seen in Table 12. For the latency tests, three data points were

captured for each setting and configuration and then averaged into one data point.

While all optimum parameter settings were used for the tests, a test with Telemetry Rate

at its low coded value, or negative one, and a test with its high coded value, or positive one, were

captured with each configuration. This was led by curiosity as to whether high or low Telemetry

Rate is really desired. As seen from the original accuracy error model that was later replaced,

accuracy error favored a low Telemetry Rate. Though this was the only model with a significant

Telemetry Rate main effect, the latency and figure eight accuracy error model both favored

89

having a low Telemetry Rate as well. Logically, one might think a higher Telemetry Rate would

reduce latency and accuracy error. Yet, as stated before, perhaps too high of a Telemetry Rate

overloads Mission Planner with too much information in such a short time.

Table 11. Heterogeneous Vehicle Implementation

Latency (sec)

Low Telemetry Rate Std. Dev. High Telemetry Rate Std. Dev.

Rover following Multi-Rotor 2.49 0.46 2.61 0.24

Multi-Rotor following Rover 5.16 0.92 4.853333 0.43

Accuracy Error (m)

Low Telemetry Rate Std. Dev. High Telemetry Rate Std. Dev.

Rover following Multi-Rotor 4.89 3.13 4.44 4.36

Multi-Rotor following Rover 2.76 2.5 6.65 3.71

Table 12. Multi-Rotor Following Rover Droid Planner 2 Tests

Latency (sec) Std. Dev. Accuracy Error (m) Std. Dev.

Droid Planner 2 app 6.75 1.03 0.8 0.94

Seen from Table 11, the latency was a bit lower for the rover following the multi-rotor

when a low Telemetry Rate was used versus a high Telemetry Rate and vice versa for the multi-

rotor following the rover, proving Telemetry Rate’s insignificance. Yet in both vehicle

configurations, the higher Telemetry Rate offered more precise data points seen from the standard

deviation. In fact, the standard deviation was almost half that of the low Telemetry Rate. Though

the results were kind of opposite between both vehicle configurations, the low standard deviation

remained the same for a higher Telemetry Rate. Yet, since all previous models favor using a

lower Telemetry Rate, the results and differences in latency seen in Table 11 were not enough to

justify using a high Telemetry Rate over a low Telemetry Rate. Further experimentation may be

90

needed to really clarify which, if any, Telemetry Rate is optimal for low latency. Perhaps there

isn’t necessarily a better option to pick one Telemetry Rate over the other. This could be

indicated by the lack of significance for the Telemetry Rate main effect in the latency model from

Figure 21.

 The accuracy error results were quite the opposite from the latency results. The standard

deviation was lower for low Telemetry Rate. The rover following multi-rotor had a slightly

higher accuracy error with low Telemetry rate than high Telemetry Rate. However, for multi-

rotor following rover, the accuracy error was about forty percent of the high Telemetry Rate’s

accuracy error. This drastic decrease in accuracy error and lower standard deviation was enough

to further validate using a lower Telemetry Rate for a lower accuracy error. Though, as in the

case with latency, further experimentation would always help in validating the results.

 With the Droid Planner 2 application, Telemetry Rate and Sleep Time were not used

since these two factors were related only to Mission Planner and Python specifically. However,

still using the other factor settings from the latency and accuracy error models, the results in

Table 12 were obtained. It can be seen that the latency was noticeably higher with the Droid

Planner 2 application than with Python and Mission Planner. However, the accuracy error was

much lower coupled with a lower standard deviation. Therefore, it was fairly obvious that the

Droid Planner 2 application introduces more latency, but decreases accuracy error dramatically.

This is odd, in the sense, that latency is usually reflected or seen in accuracy error. Perhaps, the

latency tests required more processing from the application because the ground rover vehicle was

driven out such a far distance at a fast rate away from the multi-rotor. Once the multi-rotor

started following the ground rover vehicle, the multi-rotor looked to keep up with the ground

rover vehicle very well, possibly because the multi-rotor was already moving in comparison to

the latency tests where the multi-rotor is originally stationary. The standard deviations are

noticeably larger with accuracy error than latency. Though several of the standard deviations are

91

close to their accuracy error values, the Droid Planner 2 measurement is the only accuracy error

with a higher standard deviation than accuracy error. The standard deviation of Droid Planner 2’s

accuracy error is still much lower than the other configurations’. These relatively high standard

deviations show how varied the waypoint distances are. Still, this leaves concern over the

accuracy error measurement methods.

Vehicle Configuration Issues

 When executing the heterogeneous vehicle implementation, the ground rover vehicle

following the multi-rotor vehicle configuration had no problems with the Python script.

However, when executing the multi-rotor following the ground rover vehicle configuration, there

were issues. When starting the Python script, the multi-rotor would immediately overrun the

safety pilot’s manual radio controls and try to land at its set home location. At first thought, the

Python script was questioned. After running a similar Python script with only the multi-rotor

connected, the multi-rotor worked fine. Mission Planner’s Guided Mode was tested out by

pointing to a location on the map and sending the multi-rotor to the location by selecting “Fly-to-

Here.” The multi-rotor, once again, executed properly. Network issues were also investigated

between the GCS of the leader and follower vehicles when both were on at the same time. When

both vehicles were on and connected to Mission Planner on each of their own GCS at the same

time, even the Guided Mode’s “Fly-to-Here” command didn’t work for the multi-rotor. In fact,

the multi-rotor immediately tried to land at its home location. It was later concluded that the

vehicles must be connected in a proper sequence, with the multi-rotor being first to connect, in

order for the Python script and Guided mode to work effectively. The Droid Planner 2

application also appeared to require a “Fly-to-Here” command to be issued in order to send the

multi-rotor into Guided Mode. Once successfully in Guided Mode, the multi-rotor could execute

“Follow Me” without the multi-rotor trying to land at its home location again.

92

Commanded Offset Versus Actual Distance Accuracy Method

Having experienced the results of the two accuracy measurement methods, another

accuracy measurement method was applied post-experimentation. The actual distances measured

from the three GCS configurations in test one were compared to the commanded relative offsets

in Table 13. The absolute value of the differences between these measurements were considered

the accuracy error in meters. The relative commanded offset measurements were perceived offset

distances between the leader and follower vehicles. Documentation never provided the actual

offset units for Python scripting and Mission Planner swarm. The relative error was measured

between the vehicles by removing GPS error from the accuracy method. Assuming the same type

of GPS receiver on each vehicle, the GPS error of one vehicle was assumed to be similar to the

other vehicle in the configuration since both GPS receivers would be communicating with the

same GPS satellites. The data from test one was used here because it was the only test where an

offset was used. The distance measurements are just magnitudes since the angles or directions

were not recorded. As can be seen below, the accuracy error is much less than the original

accuracy error measurement method seen from Table 6.

93

Table 13. Commanded Offset vs. Actual Distance Accuracy

Observation

Actual

Distance (m)

Commanded

Offset (m)

Accuracy

Error (m)

Python MP on 2 PC 1 1.14 1 0.14

 2 2.08 1 1.08

 3 0.94 1 0.06

 4 1.09 1 0.09

 5 1.4 1 0.4

 Average 1.33 1 0.36

 St. Dev 0.45 0 0.43

Python 2 MP on 1 PC 1 1.4 1 0.4

 2 1.78 1 0.78

 3 2.03 1 1.03

 4 0.89 1 0.11

 5 1.4 1 0.4

 Average 1.5 1 0.54

 St. Dev 0.43 0 0.36

MP Swarm 1 2.59 2 0.59

 2 1.68 2 0.32

 3 2.95 2 0.95

 4 3.2 2 1.2

 5 1.73 2 0.27

 Average 2.43 2 0.67

 St. Dev 0.7 0 0.4

By finding the desired mean point from the commanded offset. The range error probable

(REP), deflection error probable (DEP), and circular error probable (CEP) can be found [35].

The range is considered the y axis of a location based on the trajectory of the vehicle, while the

deflection is considered the x axis of a location. The REP is the range distance to parallel lines

that include 50% of the location points from the commanded offset. The DEP is the same as

REP, but is deflection distance versus range distance. The CEP is the radius of a circle that

includes 50% of the location points from the commanded offset and is calculated from Equation

15. The relation of CEP to REP and DEP can be seen from Equation 16. These calculations

result from REP or DEP containing 50% of the locations or F(Z) = 0.75, which is Z = 0.6745,

from a zero mean normal distribution. These measures give ideas of the dispersion of follower

vehicle locations and are seen in Table 14. The larger the CEP values, the more error can be

94

attributed to the vehicle’s recognition of its position. This accuracy method, like the original

accuracy method from test one, is a stationary test. Therefore, latency is not factored into the

measurements. With latency, accuracy error could increase by multiplying the latency by the

velocity of the vehicles.

𝐶𝐸𝑃 = 1.1774𝜎
(15)

𝑅𝐸𝑃 = 𝐷𝐸𝑃 = 0.573 × 𝐶𝐸𝑃
(16)

Table 14. Commanded Offset vs. Actual Distance Accuracy CEP

 CEP (m) REP/DEP (m)

Python MP on 2 PC 0.5 0.29

Python 2 MP on 1 PC 0.43 0.24

MP Swarm 0.47 0.27

Summary

 Through diagnostic testing, a baseline was established with Mission Planner’s Swarm

application. Python was used to improve the capabilities of Mission Planner’s Swarm

application. The Python script written was first tested on two ground rover vehicles. Though the

latency was a bit higher than Mission Planner’s Swarm application, Design of Experiments was

used in order to find the optimal parameter settings in order to lower the latency and accuracy

error as much as possible. Sleep Time, written in the Python script, turned out to have the most

control over latency. Accuracy error was measured two different ways once the first model

proved undesirable and the measuring method unpractical. While the original accuracy error

measurements took the GPS location of the vehicles and compared their distance to the actual

measured distance, the figure eight accuracy error was measured by collecting the average of the

waypoint distances from the follower vehicle’s T-log. The figure eight accuracy error model

proved much more reliable and practical. Therefore it was used as the primary method for

measuring accuracy error in subsequent heterogeneous vehicle implementation tests. The rover

95

following the multi-rotor vehicle configuration proved to have much lower latency than when the

multi-rotor was following the rover. However, there appeared lower accuracy error for the multi-

rotor following the rover, at least with low Telemetry Rate. High and low Telemetry Rates were

run for each vehicle configuration in order test the logic behind the setting, with the other factor

settings remaining the same as the optimum factor settings from produced models. Evidence

proved that a low Telemetry Rate was best suited for a low accuracy error. Yet, not enough

evidence could justify picking a high Telemetry Rate over a low Telemetry Rate recommended

by the latency model. Using the Droid Planner 2 application from a smart phone, another method

was introduced to test latency and accuracy error with cooperative behavior and control for

heterogeneous vehicles. The application induced more latency between the vehicles. However,

the accuracy error dropped significantly. Therefore, this benefits the accuracy error test more

than the latency test. After solving several vehicle configuration issues posed earlier, it was

concluded that when having multiple vehicles connected to GCSs, Guided Mode requires that a

sequence of vehicle connections be made, starting with the multi-rotor aerial vehicle first.

 Two accuracy models were used in this research. Incorporating a third accuracy method

which compared the commanded offset to the actual distance measurement between the vehicles

conveyed the relative error of the vehicles. The accuracy errors were noticeably smaller because

the method didn’t account for GPS error. GPS error for each vehicle is assumed to have

miniscule differences when operating in such close proximity to one another due to the GPS

receivers onboard the vehicles viewing the same GPS satellites. Further research could

investigate the individual GPS error of each vehicle in a configuration.

The latency experienced from results was reduced using optimal factor settings, but is

still too high for certain applications. In the proceeding chapter, the results will be used to

analyze applications that may suitable for this research.

96

V. Application Analysis

Chapter Overview

 Once all data had been captured and all experiments run, potential applications for the

research can be analyzed. This chapter focuses on the military application of this research and

the analysis involved with its use. Three different applications are discussed and analyzed based

on the research gathered. The selected applications are close-formation flight, sharing target

information, and vehicle following. The research may or may not have provided evidence to

support these applications.

Close-Formation Flight

 With the use of cooperative behavior and control, close-formation flight is often

considered as a possible application. Precision flight requires very low latency for immediate

response times. When in close formation, if any vehicle in formation exhibits higher levels of

latency, the whole formation could be in danger of collisions. Close formation flights usually

require a minimum response rate of 10 Hz to an optimum rate of 60 Hz for effective use [36].

Unfortunately, no rate above 0.5 Hz was attainable from the experiments. This two second

minimum latency is much too slow and dangerous for any kind of close formation flight. If there

are other ways of reducing the latency, perhaps using direct vehicle to vehicle communication

and on-board processing, then there may be a possibility to support close formation flight with

low cost vehicles in the future. Mavlink cuts out the middle man, in this case the Mission

Planner, between the GCS and the autopilot. Therefore, Mavlink can send messages and

commands directly to the autopilot instead of having to navigate through Mission Planner, which

can cause higher latency due to processing requirements and GUIs associated with the software

[37].

97

Target Information Sharing

 Though the latency observed with this research may be an issue with close formation

flight, there may be other applications out there where low latency may not be a necessity. Target

information sharing from the vehicle to the GCS, and between vehicles, is vital in military

operations. When the vehicle detects a target, it should be able to transmit the general location of

the target to the GCS or between vehicles for a cooperative search. In this scenario, the amount

of latency shown through this research shouldn’t be an issue if the vehicle is just transmitting

target position.

Vehicle Following

 One of the primary applications demonstrated by this research is vehicle following.

Whether it be a vehicle following a friendly vehicle, or a vehicle following some other target,

vehicle following could be militarily useful. The use of heterogeneous vehicles, aerial and

ground vehicles in this case, give two different perspectives of an area or target. Though an aerial

target may cover more area, the ground target could offer closer and clearer views of Points of

Interest (POI), depending on the cameras used. The use of heterogeneous vehicles could allow

some vehicles to travel in terrain where others cannot. With cameras installed on a wide variety

of drones in operation, it is obvious that surveillance is a popular application not only in the

civilian world, but in the military realm as well.

 Given the rover ground vehicle speeds and latency received from testing and

experimentation, camera angles can be adjusted for on-board cameras on aerial vehicles to

produce different footprint projections. By calculating these footprint sizes, the time it takes for a

rover to exit the footprint can be calculated, assuming a stationary multi-rotor and camera. This

time can be compared to experienced latency between the vehicles in order to find the time the

multi-rotor would have to respond to the rover before the rover exited the footprint. If the rover

98

were ever to exit the footprint, the time it would take for the multi-rotor to get its camera within

FOV of the rover could lead to a loss of visibility during a critical mission time or a target vehicle

eluding surveillance.

To analyze the vehicle following application, a pixel density of 40 pixels/m2 minimum on

target will be used for the application because this is approximately the density required to

identify and distinguish between vehicle targets [38]. The required pixel density results in a

Ground Separation Distance (GSD) of 0.16 m/pixel to use in other calculations, as seen from

Equation 17 [38].

𝑦 =
40 𝑝𝑖𝑥𝑒𝑙𝑠

𝑚2
→ (

6.32 𝑝𝑖𝑥𝑒𝑙𝑠

𝑚
)

−1

=
0.16𝑚

𝑝𝑖𝑥𝑒𝑙
= 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐺𝑆𝐷 (17)

The pixel arrays are assumed to be standard high definition (HD) arrays having 1024 lines of

horizontal resolution and 768 lines of vertical resolution. The azimuth Field of View (FOV) will

be chosen as either thirty degrees, or sixty degrees. The pixel spacing, in pixels/degree, for each

azimuth angle are calculated by dividing the azimuth pixel count by the azimuth FOV, in degrees.

This same pixel spacing will be assumed for elevation, with a proportional reduction in elevation

FOV based on 768 lines of resolution (versus 1024 lines in azimuth). By dividing the elevation

pixel length, 768, by the pixel spacing, in pixels/deg, the elevation FOV, in degrees, will be

found. The angular spacing between each pixel can be found by converting the inverse of pixel

spacing, in pixels/deg, to radians, giving radians/pixel. The maximum range, in meters, can then

be found by dividing the required pixel density, in m/pixel, by the angular spacing, in radians,

seen from Equation 18 [38].

𝑅𝑚𝑎𝑥 =
𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝐺𝑆𝐷 (

𝑚
𝑝𝑖𝑥𝑒𝑙

)

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑝𝑎𝑐𝑖𝑛𝑔 (𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑝𝑖𝑥𝑒𝑙)
 (18)

99

A visual of the multi-rotor and its camera calculations can be seen in Figure 61. The

following results of the calculations between the two azimuth FOVs can be seen in Table 15. As

the azimuth FOV decreases, the pixel spacing and maximum range increase.

Figure 61. Sideview of Camera Footprint

Table 15. Angle Calculations for Azimuth FOV

Azimuth FOV (degrees)

30 60

Pixel spacing (pixels/deg) 34.13 17.07

Elevation FOV (degrees) 22.5 45

angular spacing (radians/pixel) 0.00051 0.00102

Maximum Range (m) 309.22 154.61

Two altitudes, h, are chosen for calculation, a high, 100 m, and a low, 50 m. For each

azimuth FOV-altitude configuration, a sensor depression angle, in degrees, a minimum range, in

meters, an x_last, in meters, x_first, in meters, and x, in meters was calculated. The ground

distance from the camera to the start leading edge of the footprint on the ground, in meters, is

found in x_first. The ground distance from the camera to the end trailing edge of the footprint on

the ground, in meters, is found in x_last. The sensor depression angle, in degrees, was found

using Equation 19 [38]. This will set the maximum range to the same length as the slant range to

the top of the scanned footprint. This will allow for the rover ground vehicle to be within

maximum range at all footprint locations to support the required level of target discrimination.

100

𝑆𝑒𝑛𝑠𝑜𝑟 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐴𝑛𝑔𝑙𝑒 =
180

𝜋
∗ 𝑠𝑖𝑛−1 (

ℎ

𝑅𝑚𝑎𝑥
) +

𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑂𝑉

2
 (19)

The minimum range, in meters, is the slant range to the bottom of the scanned footprint.

This is calculated using Equation 20 [38]. Using the Pythagorean Theorem, x_last and x_first are

found with previously calculated values, seen in Equation 21 and Equation 22 [38]. The ground

distance depth of the footprint, in meters, is measured in x, seen from Equation 23 [38]. The

calculations from 30 and 60 degree azimuth FOVs, and 100 meter and 50 meter altitude

configurations are seen in Table 16.

𝑅𝑚𝑖𝑛 =
ℎ

𝑠𝑖𝑛 (
𝜋

180 ∗ (𝑆𝑒𝑛𝑠𝑜𝑟 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐴𝑛𝑔𝑙𝑒 +
𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑂𝑉

2))

 (20)

𝑥𝑙𝑎𝑠𝑡 = √𝑅𝑚𝑖𝑛
2 − ℎ2

(21)

𝑥𝑓𝑖𝑟𝑠𝑡 = √𝑅𝑚𝑎𝑥
2 − ℎ2

(22)

𝑥 = 𝑥𝑓𝑖𝑟𝑠𝑡 − 𝑥𝑙𝑎𝑠𝑡 (23)

Table 16. Footprint Distances

Azimuth

FOV (deg)

Altitude

(m)

Sensor depression

angle (deg)
𝑅𝑚𝑖𝑛 (m) x_last (m) x_first (m) x (m)

30 100 30.12 151.31 113.55 292.61 179.1

30 50 20.56 94.87 80.62 305.15 224.53

60 100 62.8 100.34 8.22 117.92 109.7

60 50 41.37 55.69 24.53 146.3 121.77

 Notice how the footprint grows larger with lower azimuth FOV angles permissible at

lower altitudes. The minimum range and x_last also increase as the azimuth FOV decreases and

altitude increases. The value for x_first increases when azimuth FOV and altitude decrease. The

sensor depression angle decreases as the azimuth FOV and altitude decrease.

101

Along with the azimuth FOV and altitude, the rover ground vehicle speed and latency can

be input to the calculations for analysis. The rover ground vehicle speed, in meters per second,

will be altered from 6 m/s, the high speed run from the experiments, to 1 m/s, the low speed run

from the experiments. The latency will vary between 2.5 seconds, the lowest latency captured in

the heterogeneous vehicle configurations, and 6.75 seconds, the highest latency captured in the

heterogeneous vehicle configurations. The track lag, or latency, is a parameter that is observed

rather than set. Though Chapter IV discussed optimal settings and configurations for achieved

latencies, these latencies cannot be set directly. The footprint of the camera is represented as a

trapezoidal shape onto the ground, as seen in Figure 62. Using simple trigonometry, the distances

of the edges of these footprints can be solved. Assuming the rover ground vehicles to start at the

center of the multi-rotor’s camera footprint onto the ground, and the multi-rotor to be stationary,

the times until the rover ground vehicle exits the footprint, traveling forward, are seen in Table

17. The times are divided by the track lag, or latency, to create a ratio, or buffer. This buffer

shows a ratio of how many times more the time it take for the rover to leave the multi-rotor

camera’s footprint is than the latency. Alternatively, the difference between latency and the time

it takes for the rover to leave the footprint could be used to measure the tolerance for additional

latency.

Figure 62. Bird's Eye View of Camera Footprint

102

Notice how 90⁰ turn times and buffers are calculated too. These calculations, again,

assume the rover ground vehicle to start at the center of the multi-rotor camera’s footprint and the

multi-rotor to remain stationary. However, the rover ground vehicle is now projected to take a

90⁰ turn left or right, instead of traveling forward, until it reaches outside of the multi-rotor

camera’s footprint.

Table 17. Rover Travel Time/Latency Buffers

Azimuth

FOV

(deg)

Altitude

(m)

Ground

Vehicle

Speed

(m/sec)

Time till

out of

footprint

(sec)

Track

Lag

(sec)

Buffer
90 degree turn

distance (m)

Time

(sec)

90

degree

turn

Buffer

30 100 6 14.92 2.5 5.97 54.42 9.07 3.63

30 100 6 14.92 6.75 2.21 54.42 9.07 1.34

30 100 1 89.53 2.5 35.81 54.42 54.42 21.77

30 100 1 89.53 6.75 13.26 54.42 54.42 8.06

30 50 6 18.71 2.5 7.48 51.68 8.61 3.45

30 50 6 18.71 6.75 2.77 51.68 8.61 1.28

30 50 1 112.26 2.5 44.91 51.68 51.68 20.67

30 50 1 112.26 6.75 16.63 51.68 51.68 7.66

60 100 6 9.14 2.5 3.66 36.41 6.07 2.43

60 100 6 9.14 6.75 1.35 36.41 6.07 0.9

60 100 1 54.85 2.5 21.94 36.41 36.41 14.57

60 100 1 54.85 6.75 8.13 36.41 36.41 5.39

60 50 6 10.15 2.5 4.06 49.32 8.22 3.29

60 50 6 10.15 6.75 1.50 49.32 8.22 1.22

60 50 1 60.89 2.5 24.35 49.32 49.32 19.73

60 50 1 60.89 6.75 9.02 49.32 49.32 7.31

A higher buffer is generally desirable with the calculations. On that note, it is interesting

to see that the highest buffer, with the rover ground vehicle traveling forward, is 44.91. This is

with an azimuth FOV of 30 degrees, an altitude of 50 meters, a speed of 1 m/sec, and a latency of

2.5 seconds. The buffer for the associated 90⁰ turn is 20.67. Though high, this is still not the

highest buffer for the 90⁰ turns. The highest buffer under the 90⁰ turns happens to be 21.77 with

an azimuth FOV of 30 degrees, an altitude of 100 m, rover ground speed of 1 m/sec, and latency

of 2.5 seconds. The associated buffer for the rover ground vehicle traveling forward, with the

103

same settings, is 35.81. Therefore, the data show that at the highest 90⁰ turn buffer, the high 90⁰

turn buffer is associated with the high altitude. As the multi-rotor flies higher, the horizontal

edges of the footprint extend. However, it is seen that the vertical edges of the sufficient

resolution footprint do not extend as fast as the horizontal edges with increased altitude because

the associated rover ground vehicle traveling forward has a buffer that is not the highest of the

forward buffers collected. This is further demonstrated with the highest forward traveling buffer,

which is at a 50 meter altitude. The associated 90⁰ turn buffer for the same settings happened to

be the second highest buffer as well. The lower azimuth FOV angles appear to offer higher

buffers because the footprints are larger.

 It is also obvious to see that the highest buffers are generally associated with low rover

ground vehicle speed and low latency. The highest buffers for a rover ground vehicle traveling at

a speed of 6 m/sec are 7.48 for the forward traveling vehicle and 3.63 for the 90⁰ turn buffer.

These are much lower buffers than received with lower cruise speeds. The highest buffers for a

rover ground vehicle traveling with a 6.75 second latency are 16.63 for the forward traveling

vehicle and 8.06 for the 90⁰ turn buffer. These are still quite a bit lower buffers than received

with lower latency.

Investigative Questions

 This research set out to answer a list of investigative questions in order to respond to the

research’s primary question. What methods are currently used for cooperative behavior and

control with low cost vehicles? Seen primarily from chapter 2, there were several methods

researched that involve cooperative behavior and control. One of these methods was actually

used in this research. Mission Planner’s swarm application offers two vehicles to connect to a

single instance of Mission Planner. This application is essentially a follow-the-leader application

104

that can assign an offset to be maintained between the leader and follower vehicle at all times.

Wherever the leader vehicle goes, the follower vehicle follows in a geodetic frame. Therefore,

the offset only allows the follower vehicle to follow the leader in terms of a North, South, East, or

West offset. For example, if the leader were to turn from a North to East direction, the follower

vehicle would maintain its offset from the leader, but would turn East with the leader,

maintaining its same coordinate offset.

 What are the challenges of using multiple heterogeneous vehicles from a single GCS?

Research shows that military flight restrictions limit the use of multiple aerial vehicles to one

aerial vehicle per GCS or operator [5]. This was the underlying restriction heading into this

research. However, it was found by using two rover ground vehicles on a single GCS, that

latency was actually increased 50%. This was found using the Python script method. The theory

lies in an increased processing requirement when two instances of Mission Planner are run from

the same GCS, therefore inducing lag. Surprisingly, perhaps not having a wireless network

connection between two GCS may inhibit the effectiveness of cooperative behavior and control.

Though the research only experimented with two vehicles connected to a GCS at the same time,

an increase in vehicle connection could further limit vehicle response time as well as operator

response time.

 What is the initial architecture that can be implemented and improved upon? This was

found from Mission Planner’s Swarm application. The architecture was seen from Figure 10 in

chapter three. This baseline architecture was used to create a new Python method, developed by

programming similar behaviors of the swarm application and improving upon it. Some of these

improvements included allowing a heading offset, instead of a geodetic frame offset, between the

leader and follower vehicles, and introducing a safety switch into the script to allow the ability for

the safety pilot to regain manual control in precarious situations. These were a couple of

105

behaviors Mission Planner’s Swarm application didn’t have, making it a risky method, but

leaving potential for further improvement.

 What appropriate assessment measures should be used for analysis? Latency and

accuracy error were used in this research to measure the effectiveness of cooperative behavior

and control. Research demonstrated that low latency was a requirement in several cooperative

behavior and control applications. For instance, close-formation flying required a 10-60 Hz

response time for effectiveness. Low accuracy error is also warranted for precision based

scenarios, also demonstrated from close-formation flying. The aerial vehicles must maintain a

very precise and accurate offset between other vehicles in formation to prevent collision. When

vehicles are in a following configuration, accuracy error is necessary, especially when an offset

must be maintained. However, it was seen from chapter 2, that perhaps human effectiveness

should also be monitored unless a fully autonomous configuration is to be used.

 What are the performance limitations given current architecture? The architecture used

for DOE and heterogeneous vehicle configurations was seen in Figure 12 from chapter three.

Latency seemed to be an issue between vehicle configurations. Some latencies experienced

during experimentation were as high 10+ seconds. However, the latency was able to be brought

down between 2-3 seconds, which is still high, especially for certain applications like close-

formation flight. Accuracy error was brought down to below five meters, which is about the

standard error for GPS.

With heterogeneous vehicle configurations, a specific sequence of vehicle connections

was required in order for Guided Mode to work effectively. Whenever an aerial multi-rotor was

used, it always had to be connected first if used in conjunction with rover ground vehicles. The

Python method would override the safety pilot’s manual controls. Therefore, as stated earlier, a

safety switch had to be programmed into the script.

106

The lowest latency values were achieved with low cruise speeds, which could be

ineffective for fast-paced military applications. However, cruise speed didn’t seem to have as

large of an effect towards latency as other factors. The lowest accuracy errors were achieved

with a high sleep time. This is directly in confliction with the low latency settings. However,

again, sleep time seems to not have a very large effect on accuracy error. The low accuracy error

model exhibited a desired high waypoint radius for the follower vehicle; it was seen that a low

waypoint radius would give a repeated jerking motion to the vehicle as it followed the leader.

This was due to the waypoint radius being so small, that it was continually trying to find a stable

point. In this instance, the waypoint radius was probably much smaller than the average GPS

accuracy.

What cooperative behavior applications are reasonable or achievable given current

limitations? As seen from chapter 2, and earlier in this chapter as well, close-formation flight was

a possibility heading into this research. However, it was concluded that the 0.5 Hz rate shown

from the heterogeneous vehicle configurations is much too low for the 10-60 Hz close-formation

flight requirement. Yet, target information sharing proved to be a potential application because a

general target position would be all that is needed to be shared with the GCS or other vehicles.

The latency exhibited from the research should not adversely affect the outcome. Still, the most

well fit application seems to be with vehicle following. With a camera installed on an aerial

multi-rotor, calculations were run through a trade study of the most effective variable settings for

the multi-rotor to follow a rover ground vehicle while keeping the rover within the stationary

camera footprint. It was seen that with a low azimuth FOV, low altitude, low ground rover speed,

and low latency, the highest ratio, or buffer, between time it would take for the rover to exit a

stationary multi-rotor camera footprint, and latency would be obtained. Ultimately, this type of

vehicle following seems to benefit surveillance missions. Heterogeneous vehicle configurations

would allow for differing views of POI. Obviously aerial vehicles would give a bird’s eye view,

107

perhaps covering more area, while a land vehicle would be able to investigate these POI with the

ability to get closer to a target getting clearer visuals.

Given the state of technology for commercially available autopilots and Remote Control

(RC) hobbyist equipment, what is the achievable performance for cooperative behavior among

heterogeneous vehicles? The research was performed to investigate this research question. By

successfully answering the investigative questions of the research, the performance of cooperative

behavior and control amongst heterogeneous vehicles can be predicted. Lowering the latency and

accuracy error provides potential for further improvements, opening the, once closed doors, of

applications discussed in the research. This sets the ground for integrating more vehicles into

heterogeneous vehicle configurations, as well as integrating new vehicles, such as planes, into

these configurations.

108

VI. Conclusions and Recommendations

Chapter Overview

The chapter discusses the conclusions of the research efforts. The differences between

theoretical and recorded data are discussed as well as confidence levels in the recorded data. The

significance of the research, such as unexpected results, is communicated. Recommendations for

further action are explained, such as how the research could have been performed differently and

experiments designed to take the research further. Finally, recommendations for future research

are offered.

Conclusions of Research

Given the state of technology for commercially available autopilot and Remote Control

(RC) hobbyist equipment, the achievable performance for cooperative behavior among

heterogeneous vehicles was observed from the answering of several investigative questions.

 Several methods currently used for cooperative behavior and control with multiple low

cost vehicles involve Mission Planner’s Swarm application and the interaction of several ground

vehicles and a multi-rotor to navigate over terrain obstacles. Mission Planner’s Swarm

application was a baseline architecture that was improved upon using Python programming skills

and implemented in the research. Some challenges of using multiple heterogeneous vehicles

from a single Ground Control Station (GCS) were found from restrictions written in policy

limiting the operation and connection of one aerial vehicle to every GCS, or operator, and an

increase in latency response between the leader and follower vehicles. Cooperative behavior and

control measures included latency and accuracy error due to their importance in several

cooperative behavior and control applications, such as close-formation flight. Given these

assessment measures, the performance limitations of the Python method included a rather high

latency, the override of the safety pilot’s manual radio control of the vehicles, and the

109

requirement of sequenced vehicle connection in a multiple vehicle configuration. With current

limitations, cooperative behavior and control applications such as target information sharing

between vehicles and GCSs, and vehicle following were found appropriate from the research.

Significance of Research

 The research cannot necessarily be defined as a success or failure based on results, but on

accomplishing the focus of the research. The performance of cooperative behavior among

heterogeneous vehicles was measured from latency and accuracy error data. Results seemed to

defy logic in several circumstances, such as a higher latency with two vehicles connected to a

single GCS rather than with each vehicle connected to its own GCS. Using the Python method, a

latency increase of 50% was experienced with two vehicles connected to a single GCS rather than

with each vehicle connected to its own GCS. The reasoning behind an expected lower latency

with the two vehicles connected to a single GCS involved signal reception delays that are

characteristic of wireless networks. These wireless networks were used with each vehicle

connected to its own GCS. However, the reasoning behind a higher observed latency with the

two vehicles connected to a single GCS involves a higher Central Processing Unit (CPU)

processing requirement when two instances of Mission Planner and sets of telemetry modems are

operating from the same GCS. Perhaps the CPU processing capabilities were not advanced

enough to offer lower latencies than with two GCS configuration.

 The original accuracy error model contained an unexpected low R2
adjusted, meaning the

model did not fit the data well. This accuracy error measurement method included recording the

GPS coordinates of the two vehicles, leader and follower, calculating the distance, and

subtracting from the actual physical distance between the two vehicles. The reasoning behind the

poor results of the model was that the measurement method was flawed and perhaps only

measured GPS error. This GPS error likely introduced noise into the model.

110

Another instance of questionable results was from the recommended high waypoint

radius and sleep time settings for low accuracy error for the figure eight measurement method. It

was originally thought that a more precise target, with a low waypoint radius, and low latency

settings, with a low sleep time, would result in lower accuracy error. However, the figure eight

accuracy error model favored a high waypoint radius. In the multi-rotor following rover vehicle

configuration, the multi-rotor seemed to occasionally experience a jerking reaction when set at a

low waypoint radius. This jerking reaction could be attributed to the precision of the waypoint.

GPS error is at least a few meters which would create an unstable waypoint in terms of GPS

coordinates. The measurement method favored a high sleep time because it allowed more time

for the follower vehicle to catch up to its waypoint, before the waypoint was updated again based

on the leader vehicle’s location. Since the leader vehicle was following a figure eight pattern, by

the time the follower vehicle’s waypoint was updated, the leader vehicle could have been in a

closer location to the follower vehicle.

 Original thoughts behind position telemetry rate were flawed as well. Telemetry rate

ranges from one hertz to ten hertz. However, the low values of telemetry rate used in the research

were three hertz because it is the default. The predicted model for both latency and accuracy

error favors a low telemetry rate. This prediction defied the logic that a higher telemetry rate

would increase the speed at which information is passed between the GCS and vehicle, thereby

lowering latency and accuracy error. Therefore, the telemetry rate was specifically tested,

keeping the other factors constant, with the heterogeneous vehicle configurations. The results did

not clearly show a lower latency with the either high or low telemetry rates, which could be

validated with the factor’s insignificance from the model. In fact, the rover following the multi-

rotor vehicle configuration had slightly lower latency with a low telemetry rate while the multi-

rotor following rover vehicle configuration had slightly higher latency with a low telemetry rate.

However, for the multi-rotor following rover vehicle configuration, a low telemetry rate reduced

111

the accuracy error by more than half of the high telemetry rate’s accuracy error. Again, the

telemetry main effect was insignificant in the accuracy error model, but was included for

hierarchy. An interaction including telemetry rate appeared significant to the model. Therefore,

theory concludes that too high of a telemetry rate could possibly lead to instability.

 One of the oddest results appeared from the Droid Planner 2 application. The application

was used for the multi-rotor following rover configuration. This vehicle configuration did appear

to exhibit more latency than with the rover following the multi-rotor. However, the Droid

Planner 2 application appeared to create more than a second and a half of extra latency between

the vehicles. Yet, this application offered an extremely low accuracy error of less than a meter.

Therefore, the Droid Planner 2 application resulted in the highest latency amongst the

heterogeneous vehicle configurations, and the lowest accuracy error. Since the accuracy error

tests usually factor in latency, the logic seems flawed. Nevertheless, the multi-rotor did seem to

follow the rover quite well with the Droid Planner 2 application. Theory behind the low accuracy

error results involves using different platforms for GPS measurements. Droid Planner 2 used the

smart phone’s GPS to identify the GCS target with the Follow Me function, while Mission

Planner used GPS measurements from the 3DRobotics GPS connected to the Pixhawk autopilot

on the leader vehicle.

 The confidence of the data and results still remains high even with unexpected outcomes.

Conclusions were drawn above that could explain the results of each action. Three to five

replications were performed for each experiment, averaging into one value, to increase

confidence. Yet, the results of the Droid Planner 2 application still seem somewhat questionable

because the application is fairly new and there was not much experience with the application.

The application was used primarily for comparative purposes.

112

Recommendations for Action

 Appropriate sample sizes to detect a specified distance between latency results from test

one should have been calculated using power analysis. Instead, an arbitrary five samples were

recorded for each configuration. Power is the probability that the test will properly identify a

significant difference between configurations, given that a difference actually exists. Large

sample sizes usually produce high power, which is desired. Having an appropriate sample size

prevents the risk of random data results.

Though the 25-1 fractional factorial design used for Design of Experiments (DOE)

resulted in useable models, more suitable designs exist. The fractional factorial design was used

to limit experiment runs, lessening experiment execution time. However, the two level design is

used with anticipation of sequential experimentation and could not test for curvature or lack-of-fit

without a third level from the factors. No sequential experimentation was performed with the

models. In the latency model, four center points were used to test for curvature because the

latency runs were the quickest to execute and because sleep time’s exponential effect on latency

looked to possibly cause curvature in the model. Once the latency model detected curvature,

there was no way to estimate quadratic terms in the model because the design was a two level

design. A minimum of three levels are required in a design to estimate quadratic effects.

Otherwise, quadratic effects are aliased into one value if curvature is detected. The curvature

detection in the latency model also led to a question of curvature in the accuracy error models.

Nevertheless, curvature was unable to be tested without center points in the accuracy error

models. Therefore, a definitive screening design should have been used instead of a fractional

factorial. The definitive screening design would have allowed a three level design to be

performed in few runs, since time was a motive in choosing the fractional factorial design.

 The accuracy models from the research led to questioning the effectiveness of the

measurement methods. The accuracy error was the intention of the measurements, but one

113

accuracy method only measured error between GPS and actual distances and the other accuracy

method included noise factors in the error. There are two types of error in a leader/follower

configuration: targeting error and guiding error. Targeting error is the error of the leader

vehicle’s position. This error is from where the follower vehicle thinks the leader vehicle is. The

guiding error involves the error of the follower vehicle’s position. This error is from where the

follower vehicle thinks it is at. One possibility of measuring guiding error could be by giving a

vehicle “Fly-to-Here” commands and finding how far away from the point the vehicle stops.

Finding an accuracy measurement method that identifies guiding error and targeting error could

produce a more effective accuracy model. Otherwise, comparing actual distance between the

vehicles to the assigned offset may produce a more effective accuracy model.

 One way of possibly measuring the GPS error for each vehicle is by putting the same

type of autopilots used on both vehicles at an established offset away from each other on a board.

By walking the board around a field, the autopilots’ GPS receivers will interpret the autopilots’

locations. Comparing these autopilot GPS coordinates to the actual offset between the autopilots

could reveal the GPS error of each vehicle.

 The original accuracy method used in tests one and two was later found to just be

measuring the error between the calculated GPS distance between the vehicles and the actual

distance. This error wasn’t the offset error of the vehicles. The figure eight position accuracy

method included latency and other factors into the error. Using a commanded offset versus actual

distance measurement would have measured the offset error while factoring out GPS error for the

vehicles, latency, and other accuracy error noise factors.

 Different factor settings for the optimum latency and accuracy models prevented a single

model from being created for both low latency and accuracy. Accuracy should have still been

measured with optimum latency settings and vice versa with latency. This would have showed

114

the effect of one of the measure of performance model’s optimum settings on the remaining

measure of performance. Unfortunately, time was a limiting factor.

 Though Droid Planner 2 was used in experimentation, there was not much experience

with the application. The functionality of the application would have been better understood with

more experience.

 The biggest regret comes from not knowing enough about the functionality of the multi-

rotors. The multi-rotors were taken out to Camp Atterbury, IN for heterogeneous vehicle testing.

Yet, the multi-rotors didn’t perform as expected. The multi-rotors would immediately start

landing at its home location once changed to Guided Mode, when another vehicle was connected

to a GCS. Troubleshooting took much time away from experimentation. Therefore, the multi-

rotors should have been experimented with a few times for familiarity before being brought out

for thesis testing. This time spent troubleshooting multi-rotors took away from expanding

experimentation with three vehicles instead of only two. Therefore, three vehicle configurations

were never performed in the interest of time.

Recommendations for Future Research

 The use of multiple vehicle configurations would be another way of expanding

cooperative behavior and control. Experimentation can first include a three rover vehicle

configuration to validate operation. DOE tests can be performed with the rover configuration to

receive optimum factor levels. These optimum factor levels could then be used towards

heterogeneous vehicle configurations, starting with two rovers following a multi-rotor. Then the

factor levels could be implemented on two multi-rotors following a rover. The altitudes of the

multi-rotors would have to be offset to avoid collision. The Python script would also require

collision avoidance algorithms to prevent collision with the other follower vehicle.

115

 With only two vehicles used in the research, multi-rotor and rover, a plane could be

integrated into further cooperative behavior and control research. The operation of the multi-

rotors with the Python script was the first true test of cooperative behavior and control with aerial

vehicles. The performance knowledge obtained from the multi-rotors gives increased confidence

in the Python script’s operation with planes. Planes can fly higher, faster, hold heavier payloads,

and withstand higher wind gusts than multi-rotors.

 Though latency was able to be reduced to about 2.5 seconds between vehicles, there may

be other methods of reducing latency further. For instance, Mavlink was researched early but the

method was unable to be executed successfully. Mavlink is a user interface operated at the GCS.

It sends messages, such as waypoints and parameter settings, to the vehicle from the GCS.

However, it doesn’t include the Graphical User Interfaces (GUIs) that Mission Planner or other

GCS software does, which could slow down processing speeds [37]. Lowering latency could

make the research beneficial to more applications.

 Although close-formation flight was concluded infeasible with the latency resulted from

the research, reducing latency between vehicles to one tenth of a second, or ten hertz could allow

for close-formation flight. Once the Python script is verified with the operation of multiple

vehicles, flocking and close-formation algorithms can be integrated into the script. The vehicles

can then use the script for close-formation maneuvers.

 Vehicle following is the primary application demonstrated with the research. However,

the theoretical camera calculations in chapter five were never implemented in experimentation in

interest of time. Introducing cameras on the vehicles could offer target identification capabilities.

These capabilities could be integrated by programming cooperative behaviors and algorithms into

the Python script associated with the research.

116

Bibliography

[1] B. Tousley, "DARPA Swarm Challenge Program: Critical Technology Review,"

2014.

[2] N. Mathews, A. L. Christensen, R. O'Grady and M. Dorigo, "Spatially Targeted

Communication and Self-Assembly," in IEEE/RSJ International Conference on

Intelligent Robots and Systems, Vilamoura, Portugal, 2012.

[3] 3DRobotics, "Swarming/Formation-Flying Interface (Beta)," [Online]. Available:

http://planner.ardupilot.com/wiki/swarming/. [Accessed 15 July 2014].

[4] D. Jacques, "Approval of AFIT Flight Test Operations Involving Small Unmanned

Aircraft Systems," Wright-Patterson Air Force Base, 2012.

[5] Air Force Institue of Technology, "Military Flight Release No. R00199," United

States Air Force, Wright-Patterson Air Force Base, 2013.

[6] National Center for Biotechnology Information, "MeSH Database," [Online].

Available: http://www.ncbi.nlm.nih.gov/mesh?term=Cooperative%20Behavior.

[Accessed 3 August 2014].

[7] J. Brosig, "Identifying cooperative behavior: some experimental results in a

prisoner's dilemma game," Economic Behavior & Organization, pp. 275-290,

2002.

[8] A. Stranieri, "Self-organizing flocking in behaviorally heterogeneous swarms,"

Universite Libre De Bruxelles, Brussels, Belgium, 2011.

[9] C. Hapka, "Flock, Swarm, Throng, Platoon, Gang: What is the difference?," 21 July

2014. [Online]. Available: http://ell.stackexchange.com/questions/29643/flock-

swarm-throng-platoon-gang-what-is-the-difference. [Accessed 3 August 2014].

[10] S. A. Songer, "Aerial Networking For The Implementation of Cooperative Control

on Small Unmanned Aerial Systems," Air Force Institue of Technology, Wright-

Patterson Air Force Base, 2013.

117

[11] V. Kumar, N. Leonard and A. S. Morse, "Cooperative Control," in Block Island

Workshop on Cooperative Control, Block Island, RI, 2003.

[12] C. W. Reynolds, "Flocks, Herds, and Schools: A Distributed Behavioral Model," in

ACM SIGGRPAH, Anaheim, 1987.

[13] J. Forsyth, "Pygame," DISQUS, [Online]. Available: http://pygame.org/project-

Flock-1094-.html. [Accessed 27 July 2014].

[14] J. L. Lambach, "Integrating UAS Flocking Operations With Formation Drag

Reduction," Air Force Institue of Technology, Wright-Patterson AFB, OH, 2014.

[15] J. P. Boire, "Autonomous Routing of Unmanned Aerial Vehicle (UAV) Relays to

Mimic Optimal Trajectories in Real Time," Air Force Institute of Technology,

Wright-Patterson AFB, OH, 2011.

[16] C. E. Booth, "Surveillance Using Multiple Unmanned Aerial Vehicles," Air Force

Institute of Technology, Wright-Patterson AFB, OH, 2009.

[17] B. T. Clough, "Metrics, Schmetrics! How The Heck Do You Determine A UAV's

Autonomy Anyway?," in Perfomance Metrics for Intelligent Systems Workshop

(PerMIS-02), Gaitherburg, MD, 2002.

[18] M. L. Cummings, P. Pina and J. W. Crandall, "A Metric Taxonomy for Supervisory

Control of Unmanned Vehicles," Cambridge, MA, 2008.

[19] J. Nielson, "Usability engineering," Academic Press, Cambridge, MA, 1993.

[20] P. Gurfil, "Evaluating UAV Flock Mission Performance Using Dudek's Taxonomy,"

in American Control Conference, Portland, OR, 2005.

[21] 3D Robotics Inc., "3DR Pixhawk," [Online]. Available:

https://store.3drobotics.com/products/3dr-pixhawk. [Accessed 17 August 2014].

[22] C. J. Neal, "Feasibility of Onboard Processing of Heuristic Path Planning and

Navigation Algorithms within SUAS Autopilot Computational Constraints," Air

Force Institute of Technology, Wright-Patterson AFB, OH, 2014.

118

[23] 3DRobotics Inc., "Using the 3DR Radio for telemetry with APM 2.x and PX4,"

[Online]. Available: http://plane.ardupilot.com/wiki/common-using-the-3dr-

radio-for-telemetry-with-apm-and-px4/#Low_latency_mode. [Accessed 6

January 2015].

[24] Traxxas, "Traxxas E-Max Brushless," [Online]. Available:

https://traxxas.com/products/models/electric/39087emaxxbrushless. [Accessed

23 February 2015].

[25] 3D Robotics Inc., "3DR X8+ Copter," [Online]. Available:

http://store.3drobotics.com/products/x8-plus/. [Accessed 17 August 2014].

[26] 3D Robotics Inc., "Mission Planner," [Online]. Available:

http://planner.ardupilot.com/. [Accessed 17 August 2014].

[27] A. Benemann, "DroidPlanner 2," Androidpit, [Online]. Available:

https://fs01.androidpit.info/a/66/db/droidplanner-2-66db06-h900.jpg. [Accessed

6 January 2015].

[28] A. Benemann, "DroidPlanner 2," Google Play Store, 1 December 2014. [Online].

Available: https://play.google.com/store/apps/details?id=org.droidplanner.

[Accessed 6 January 2015].

[29] Department of Defense, "DoD Architecture Framework Version 2.0," Department of

Defense, 2009.

[30] Sparx Systems Pty Ltd., "Enterprise Architect," Sparx Systems Pty Ltd., [Online].

Available: http://www.sparxsystems.com/products/ea/index.html. [Accessed 24

January 2015].

[31] SAS, "JMP Pro," SAS, [Online]. Available: http://www.jmp.com/software/pro/.

[Accessed 23 January 2015].

[32] D. C. Montgomery, Design and Analysis of Experiments Eighth Edition, John Wily

& Sons, Inc., 2012.

[33] Minitab, "Lack-of-fit and lack-of-fit tests," Minitab Inc., [Online]. Available:

http://support.minitab.com/en-us/minitab/17/topic-library/modeling-

statistics/regression-and-correlation/regression-models/lack-of-fit-and-lack-of-

119

fit-tests/. [Accessed 8 January 2015].

[34] M. Pursifull, "DIY Drones," 1 August 2012. [Online]. Available:

http://diydrones.com/group/arducopterusergroup/forum/topics/get-gps-position-

every-500ms-seconds. [Accessed 3 January 2015].

[35] M. Driels, Weaponeering: Convential Weapon System Effectiveness, Reston, VA:

American Institute of Aeronautics and Astronautics, Inc., 2004.

[36] S. J. Comstock, "Development of a Low Latency, High Data Rate, Differential GPS

Relative Positioning System For UAV Formation Flight Control," Air Force

Institute of Technology, Wright-Patterson AFB, OH, 2006.

[37] Q Ground Control, "MAVLink Micro Air Vehicle Communication Protocol," Q

Ground Control, [Online]. Available: http://qgroundcontrol.org/mavlink/start.

[Accessed 8 January 2015].

[38] L. Abbott, C. Stillings, C. Phillips and G. Knowlan, "Annex A, Section 3 of Risk

Management Plan For The Fleeting Target Technology Demonstrator," Air

Force Institute of Technology, Wright-Patterson AFB, OH, 2007.

120

Appendix A: Traxxas Modified Rover Ground Vehicle Setup

Figure 63. Rover Gain Settings

121

Table 18. Rover Gain Settings

Parameter Setting

Steer 2 Servo P 1

Steer 2 Servo I 0.1

Steer 2 Servo D 0.1

Steer 2 Servo INT_MAX 50

L1 Control – Turn Control Period 8

L1 Control – Turn Control Damping 0.9

Speed 2 Throttle P 0.5

Speed 2 Throttle I 0.5

Speed 2 Throttle D 0.5

Speed 2 Throttle INT_MAX 50

Throttle Cruise 33

Throttle Min 0

Throttle Max 100

Throttle FS Value 910

Rover Cruise Speed 3.5

Rover Turn Speed 1

Rover Turn Dist 2

Rover WP Radius 2.625

Sonar Trigger cm 100

Sonar Turn Angle 45

Sonar Turn Time 1

Sonar Debounce 2

122

Figure 64. Rover Steering Modes

Note: A 5V diode was placed in port 5 of the autopilot to limit the negative affecting

current from the servos. Without this diode, the current eventually affected the control of

the vehicles.

Figure 65. Rover Components

A

B

C

D

E

123

Figure 66. Traxxas Rover Battery

124

Table 19. Rover Components

Component Description

Radio Channel 8

Battery (2) Traxxas NiMH 7-Cell 8.4V 3000mAh

Battery Dimensions 6.10 in x 1.7 in x 0.91 in

Battery Weight 380 g

Battery Connector Traxxas High-Current Connectors

(A) Autopilot hardware Pixhawk v2.4.5

Autopilot firmware ArduRover v2.45

Speed Controller MXL-6s waterproof electronic

(B) Voltage Regulator CC BEC PRO: 12S max input

(C) GPS 3DR u-blox GPS with Compass

(D) Ground Station Radio 3DR Radio V2 (915 MHz)

Motors 2200Kv brushless motor

Drive System Shaft-Driven 4WD

Steering Bellcrank

Transmission Single-speed (2nd gear only)

(E) Controller Turnigy 9X 2.4Ghz Transmitter with FrSky Telemetry Reciever

Frame Type 4-wheel ground vehicle

Tires 6.3” Maxx-Sized tires

Rims Black-Chrome 3.8” Split-Spoke Wheels

Hex Hubs 17mm

Wheelbase 13.2 in

Overturn Prevention Adjustable Wheelie Bar

Vehicle Dimensions 22.5 in x 16.5 in x 9.5 in

Center Ground Clearance 4 in

Vehicle Weight with Battery 4.36 kg

Ground Control Station APM Mission Planner v1.3.7

125

Table 20. MXL-6s ESC Speed Controller Specifications

Component Description

Input Voltage (cells) 18 NiCad/NiMH 6s LiPo (max: 25.2v)

Case Size 2.2”W x 1.9”D x 1.4”H

Weight 121 g

On-Resistance (@Trans)-FWD/REV 0.0003 ohms per phase

126

Appendix B: X8 Multi-Rotor Setup

The information directly below is taken directly from: http://store.3drobotics.com/products/x8-

plus/?_ga=1.181662884.2037595726.1416447241

“Our 3DR workhorse octocopter is equal to any task. With a flight time of 15 minutes and a

payload capacity of over 800 grams, the X8+ is the perfect platform for aerial video.

The X8+ includes

 Controller with live on-screen flight data

 Flight battery and charger

 Operation Manual and Flight Checklist

 Ground station radio with USB and Android adapters

Specs:

 Battery: 4S 14.8V 10,000 mAh 10C

 Battery Dimensions: 6.6 in x 2.6 in x 1.4 in (16.7 cm x 6.5 cm x 3.5 cm)

 Battery Weight: 803 g

 Autopilot hardware: Pixhawk v2.4.5

 Autopilot firmware: ArduCopter 3.2

 GPS: 3DR u-blox GPS with Compass (LEA-6H module, 5 Hz update)

 Ground Station Radio: 3DR Radio v2 (915 MHz or 433 MHz)

 Motors: SunnySky V2216-12 KV800 II (The images above show conical nuts; X8+ ships with

hex nuts.)

 Controller: FlySky FS-TH9X with FrSky telemetry module

 Frame Type: X

 Propellers: APC Propeller 11x4.7 SF (4), APC Propeller 11x4.7 SFP (4)

 Vehicle Dimensions: 13.7 in x 20.1 in x 11.8 in (35 cm x 51 cm x 20 cm)

 Payload Capacity: 800 g (1.7 lbs). Additional payload possible up to over 1kg with reduced flight

time.

 Vehicle Weight with Battery: 2.56 kg (5.6 lbs)

 Maximum Estimated Flight Time: 15 min

Select from the options below to customize your X8+:

Frequency: Ground station radios allow you to communicate with your aircraft wirelessly in

flight. For the US, select 915 MHz. Frequency regulations vary by country, so consult your local

airspace communication authority if you're uncertain which frequency is legal in your area.

Extra batteries: The X8+ includes one flight battery. Select this option to extra batteries to your

order.

LiveView for GoPro: Select this option to stream live video from a GoPro HERO onto a wireless

monitor attached to your X8+ controller. This kit includes a video transmitter, monitor/receiver,

cloverleaf antennas, and mounting bracket. Click here for more information.

https://store.3drobotics.com/products/3dr-iris-plus-fpv-kit-for-gopro-hero/

127

Extra propellers: The X8+ includes one set of eight propellers. Select this option to add two

extra propellers to your order.

Camera gimbal: The Tarot T-2D brushless gimbal uses cutting-edge two-axis stabilization

technology to ensure great, stable video in any flight condition. The gimbal comes pre-configured

and tuned for a smooth out-of-the-box experience. The kit includes: a pre-assembled Tarot

gimbal, a mounting plate, and required cables and hardware.

Case: Select this option to add a travel case for your X8+. Please note that the case ships

separately from the X8+, and will fit up to 3 X8+ batteries.

GoPro HERO: Select this option to receive a Go-Pro HERO4+ Black Edition with your X8+!

Please note that we cannot ship GoPro internationally. When using a GoPro with X8+, please

ensure that the WiFi is turned off; this can cause interference between the X8+ and the

controller.”

Figure 67. X8 Multi-Rotor Gain Settings

https://store.3drobotics.com/products/tarot-t-2d-brushless-gimbal-kit
https://store.3drobotics.com/products/x8-case
http://store.3drobotics.com/products/gopro-hero-4-black-edition

128

Table 21. X8 Multi-Rotor Gain Settings

Parameter Setting

Stabilize Roll P 4

Rate Roll P 0.085

Rate Roll I 0.085

Rate Roll D 0.005

Rate Roll IMAX 500

Stabilize Pitch P 4

Rate Pitch P 0.07

Rate Pitch I 0.07

Rate Pitch D 0.005

Rate Pitch IMAX 500

Stabilize Yaw P 2.5

Rate Yaw P 0.16

Rate Yaw I 0.02

Rate Yaw D 0.005

Rate Yaw IMAX 8

Loiter PID P 1

Rate Loiter P 1

Rate Loiter I 0.5

Rate Loiter D 0

Rate Loiter IMAX 4

Throttle Acceleration P 0.75

Throttle Acceleration I 1.5

Throttle Acceleration D 0

Throttle Acceleration IMAX 5

Throttle Rate P 5

Altitude Hold P 1

WPNav (cm’s) Speed Up 200

WPNav (cm’s) Speed Dn 200

WPNav (cm’s) Loiter Speed 100

129

Figure 68. X8 Multi-Rotor Flight Modes

Figure 69. X8 Multi-Rotor Components

130

Figure 70. Multi-Rotor Battery

131

Table 22. X8 Multi-Rotor Components

Component Description

Radio Channel 5

Battery Tiger Power Atomic-Platinum 4S 14.8V 6000 mAh 35C

Battery Dimensions 16 cm x 5 cm x 4 cm

Battery Weight 680 g

Battery Connector 3DR Power Module with XT60 connector

Autopilot hardware Pixhawk v2.4.5

Autopilot firmware ArduCopter v3.1.4

Speed Controller 20 Amp ESCs with SimonK firmware

GPS 3DR u-blox GPS with magnetometer

Ground Station Radio 3DR Radio V2 (915 MHz)

Motors 880 Kv brushless motors

Controller FrSky 2.4 GHz ACCST Taranis x9D with FrSky telemetry module

Frame Type X

Propellers APC Propeller 10x4.7 SF (4), APC Propeller 10x4.7 SFP (4)

Vehicle Dimensions 13.7 in x 20.1 in x 11.8 in

Payload Capacity 800 g

Vehicle Weight with Battery 2.45 kg

Maximum Estimated Flight Time 12-13 min

Ground Control Station 1 APM Mission Planner v1.3.7

Ground Control Station 2 Droid Planner 2_v2.8.6_RC3

132

Appendix C: Leader Vehicle Python Script

1. #---

2. # Name: Leader Vehicle Python Script
3. # Purpose: UDP server on Mission Planner
4. #
5. # Author: AUSTIN & DR. JOHN COLOMBI
6. # Created: 13/03/2013
7. # Copyright: (c) AUSTIN 2013
8. # Modified: STEFAN HARDY
9. #---

10.
11. #import libraries for commands or functions used
12. import socket
13. import sys
14. import math
15. import clr
16. import time
17. import re, string
18. clr.AddReference("MissionPlanner")
19. import MissionPlanner
20. clr.AddReference("MissionPlanner.Utilities") # includes the Utilities class
21. from MissionPlanner.Utilities import Locationwp
22.
23. HOST = '' # Symbolic name meaning all available interfaces
24. SPORT = 4000 # Arbitrary non-privileged port
25.
26. REMOTE = '192.168.3.4' #IP address of follower vehicle GCS connecting to. Use
27. #'localhost' if on same GCS.
28. # Datagram (udp) socket
29.
30. ssock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #Creates a send socket
31. #for connection between GCSs
32. print 'Sockets created'
33.
34. address = (REMOTE, SPORT) #contains IP of follower vehicle and port number
35. #infinite loop that sends out current lat,long,heading,and alt parameters of
36. #leader vehicle
37. while 1:
38. lat = str(cs.lat) #Converts current state (cs) latitude of leader
39. #vehicle to string.
40. lng = str(cs.lng) #Converts current state (cs) longitude of leader
41. #vehicle to string.
42. heading = str(cs.yaw) #Converts current state (cs) yaw of leader
43. #vehicle to string.
44. alt = str(cs.alt) #Converts current state (cs) altitude of leader
45. #vehicle to string.
46. #List of parameters (cs.?) able to be retrieved from Mission Planner
47. #can be found at:
48. #http://copter.ardupilot.com/wiki/common-using-python-scripts-in-
49. #mission-planner/
50.
51. #Ties current leader vehicle parameters to msg for sending to follower
52. #vehicle GCS.
53. msg = lat + ' ' + lng + ' ' + heading + ' ' + alt

133

54.
55. #prints lat, lng, heading, and alt in command window
56. print lat
57. print lng
58. print heading
59. print alt
60. Script.Sleep(500) #Socket read waiting (set delay) in miliseconds.
61. #Default is 1000 ms.
62. ssock.sendto(msg,address) #Send msg to address (Follower GCS)
63. print 'sent data'
64. print time.strftime('%X %x %Z') #Local computer time stamp in command
65. #window.
66.
67. # exit
68. rsock.close() #closes socket
69. print 'Script End'

134

Appendix D: Rover Follower Distance Offset Python Script

1. #---

2. # Name: Rover Follower Vehicle Distance Offset w/ Leader Vehicle
3. # Purpose: UDP client on python
4. #
5. # Author: AUSTIN & DR. JOHN COLOMBI
6. # Created: 13/03/2013
7. # Copyright: (c) AUSTIN 2013
8. # Modified: STEFAN HARDY
9. #---

10.
11. #import libraries for commands or functions used
12. import socket
13. import sys
14. import math
15. from math import sqrt
16. import clr
17. import time
18. import re, string
19. clr.AddReference("MissionPlanner.Utilities")
20. import MissionPlanner #import *
21. clr.AddReference("MissionPlanner.Utilities") #includes the Utilities class
22. from MissionPlanner.Utilities import Locationwp
23.
24. HOST = '192.168.3.4' #IP address of Ground Control Station (GCS) of
25. #Follower Vehicle. Use 'localhost' if on same GCS.
26. RPORT = 4000 # Arbitrary non-privileged port
27.
28. REMOTE = ''
29. # Datagram (udp) socket
30.
31. rsock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) #Creates a receive
32. #socket for connection between GCSs
33. print 'Sockets created'
34.
35. # Bind socket to local host and port
36. try:
37. rsock.bind((HOST,RPORT)) #Attempts to bind socket to host, or follower GCS,
38. #and RPORT
39. except socket.error, msg: #If not bound, prints error message
40. #print 'Bind failed. Error Code:'
41. sys.stderr.write("[ERROR] %s\n" % msg[1])
42. rsock.close()
43. sys.exit()
44.
45. print 'Receive Socket bind complete on ' + str(RPORT)
46.
47. print 'Starting Follow' #Prints "Starting Follow" on the command window
48. Script.ChangeMode("Guided") #Changes follower vehicle mode to "Guided" in
49. #Mission Planner
50. print 'Guided Mode'
51.
52. #keep talking with the Mission Planner server
53. while 1:

135

54. # receive data from server (data, addr)
55. msg = rsock.recv(1024) #recieves msg, containing leader vehicle coordinates

56. pattern = re.compile("[]") #Marks at what points in msg to split up msg
57. parameters = pattern.split(msg) #Splits msg at points where pattern exist in

 #msg
58.
59. #leader vehicle coordinates are below
60. latData = parameters[0] #first parameter in split msg is latitude
61. lngData = parameters[1] #Second parameter in split msg is longitude
62. headingData = parameters[2] #Third parameter in split msg is heading
63. altData = parameters[3] #Last parameter in split msg is altitude
64.
65. #Must convert all parameters to float for calculations
66. float_lat = float(latData)
67. float_lng = float(lngData)
68. float_heading = float(headingData)
69. float_alt = float(altData)
70.
71. #Calculations for follower vehicle geodetic offset are made below based
72. #off of leader vehicle's geodetic location.
73. #These follower vehicle waypoint calculations are repeated through a loop
74. #until script is manually stopped.
75. """Follower Offset"""
76. XOffset= 1 #User Input, in meters, for x axis offset
77. YOffset= 0 #User Input, in meters, for y axis offset
78. brng = math.radians(270) #User input heading angle offset of follower in
79. #relation to leader. 0 degrees is forward. Converts heading to radians
80.
81. XOffset = float(XOffset)/10 #XOffset seems to be in decameters or 10 meters.
82. #This converts it to meters
83. YOffset = float(YOffset)/10 #YOffset seems to be in decameters or 10 meters.
84. #This converts it to meters
85. R = 637100 #Radius of the Earth in m
86. d = math.sqrt((XOffset**2)+(YOffset**2)) #Distance in m. ** is exponent
87.
88. print d #Prints calculated follower vehicle offset hypotenuse, or distance
89. #from leader to follower, to command window
90. lat1 = math.radians(float_lat) #Current leader lat point converted to
91. #radians
92. lon1 = math.radians(float_lng) #Current leader long point converted to
93. #radians
94.
95. lat2 = math.asin(math.sin(lat1)*math.cos(d/R) + math.cos(lat1)*math.sin(d/R

)*math.cos(brng))
96. #Latitude position of follower from offset
97. lon2 = lon1 + math.atan2(math.sin(brng)*math.sin(d/R)*math.cos(lat1), math.c

os(d/R)-math.sin(lat1)*math.sin(lat2))
98. #Longitude position of follower from offset
99.
100. lat2 = math.degrees(lat2) #Converts follower latitude to degrees
101. lon2 = math.degrees(lon2) #Converts follower longitude to degrees
102.
103. #Converts follower vehicle offset coordinates to float for waypoint
104. #writing
105. float_lat = float(lat2)
106. float_lng = float(lon2)
107.
108. #Prints follower vehicle offset coordinates to command window

136

109. print(lat2)
110. print(lon2)
111.
112. """Writing Waypoints"""
113. item = MissionPlanner.Utilities.Locationwp() # creating waypoint
114. MissionPlanner.Utilities.Locationwp.lat.SetValue(item,float_lat)
115. #Writes follower vehicle latitude coordinate as waypoint in
116. #Mission Planner
117. MissionPlanner.Utilities.Locationwp.lng.SetValue(item,float_lng)
118. #Writes follower vehicle longitude coordinate as waypoint in Mission
119. #Planner
120. MissionPlanner.Utilities.Locationwp.alt.SetValue(item,float_alt)
121. #Writes follower vehicle altitude coordinate as waypoint in
122. #Mission Planner
123. #Can only use lat,lng, or alt for waypoint writing
124. #MUST WRITE ALL THREE COORDINATES TO WRITE A WAYPOINT OR WAYPOINT
125. #WILL NEVER BE SUCCESSFULLY RECOGNIZED! Will just continue to loop
126. #with 0 latency.
127. MAV.setGuidedModeWP(item) #sets waypoint. The largest latency will
128. #be recognized from this line. Must go through Mission Planner
129. #to set #waypoint.
130.
131. print 'Waypoint Sent'
132. print time.strftime('%X %x %Z') #Prints time on computer in command
133. #Window.
134. #Used to show latency between leader and follower GCS
135. # exit
136. rsock.close() #closes socket between GCS
137. print 'Script End'

137

Appendix E: Rover Follower Vehicle Heading Offset Python Script

1. #---

2. # Name: Rover Follower Vehicle w/ Leader Vehicle heading offset
3. # Purpose: UDP client on python
4. #
5. # Author: AUSTIN & DR. JOHN COLOMBI
6. # Created: 13/03/2013
7. # Copyright: (c) AUSTIN 2013
8. # Modified: STEFAN HARDY
9. #---

10.
11. #import libraries for commands or functions used
12. import socket
13. import sys
14. import math
15. from math import sqrt
16. import clr
17. import time
18. import re, string
19. clr.AddReference("MissionPlanner.Utilities")
20. import MissionPlanner #import *
21. clr.AddReference("MissionPlanner.Utilities") #includes the Utilities class
22. from MissionPlanner.Utilities import Locationwp
23.
24. HOST = '192.168.3.2' #IP address of Ground Control Station (GCS) of
25. #Follower Vehicle. Use 'localhost' if on same GCS.
26. RPORT = 4000 # Arbitrary non-privileged port
27.
28. REMOTE = ''
29. # Datagram (udp) socket
30.
31.
32. rsock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) #Creates a receive
33. #socket for connection between GCSs
34. print 'Sockets created'
35.
36. # Bind socket to local host and port
37. try:
38. rsock.bind((HOST,RPORT)) #Attempts to bind socket to host, or follower
39. #GCS, and RPORT
40. except socket.error, msg: #If not bound, prints error message
41. #print 'Bind failed. Error Code:'
42. sys.stderr.write("[ERROR] %s\n" % msg[1])
43. rsock.close()
44. sys.exit()
45.
46. print 'Receive Socket bind complete on ' + str(RPORT)
47.
48. print 'Starting Follow' #Prints "Starting Follow" on the command window
49. Script.ChangeMode("Guided") #Changes follower vehicle mode to "Guided" in
50. #Mission Planner
51. print 'Guided Mode'

138

52.
53. #keep talking with the Mission Planner server
54. while 1:
55. # receive data from server (data, addr)
56. msg = rsock.recv(1024) #recieves msg, containing leader vehicle
57. #coordinates
58. pattern = re.compile("[]") #Marks at what points in msg to split
59. #up msg
60. parameters = pattern.split(msg) #Splits msg at points where pattern
61. #exist in msg
62.
63. #leader vehicle coordinates are below
64. latData = parameters[0] #first parameter in split msg is latitude
65. lngData = parameters[1] #Second parameter in split msg is longitude
66. headingData = parameters[2] #Third parameter in split msg is heading
67. altData = parameters[3] #Last parameter in split msg is altitude
68.
69. #Must convert all parameters to float for calculations
70. float_lat = float(latData)
71. float_lng = float(lngData)
72. float_heading = float(headingData)
73. float_alt = float(altData)
74.
75.
76. """Safety Manual Mode Switch"""
77. #When safety pilot radio control is switched to Manual, ch8in climbs
78. #above 1700
79. #If ch5in of follower vehicle climbs above 1700, script closes
80. if cs.ch8in > 1700:
81. #print cs.mode
82. Script.ChangeMode("Manual") #Changes mode of follower vehicle to
83. #Stabilize in Mission Planner
84. print cs.mode
85. print cs.ch8in
86. rsock.close() #closes socket between GCSs
87. sys.exit() #Ends script
88. else:
89.
90. #Else, calculations for follower vehicle offset are made below
91. #based off of leader vehicle's heading.
92. #These follower vehicle waypoint calculations are repeated through a
93. #loop until script is manually stopped or safety switch is triggered.
94. """Follower Offset"""
95. XOffset= float(0) #User Input for x axis offset
96. YOffset= float(0) #User Input for y axis offset
97. brng = math.radians(float_heading) #User input heading angle of
98. #follower in relation to leader. 0 degrees is forward.
99.
100. d = math.sqrt((XOffset**2)+(YOffset**2)) #Distance in m
101.
102. MperLat = 69.172*1609.34 #meters per degree of latitude. Length
103. #of degree (miles) at equator * meters in a mile
104. MperLong = math.cos(float_lat)*69.172*1609.34 #meters per degree
105. #of longitude
106.
107. Lat_Offset_meters = YOffset/MperLat #lat distance offset in
108. #meters
109. Long_Offset_meters = XOffset/MperLong #long distance offset in
110. #meters

139

111.
112. #Follower vehicle waypoint coordinate calculations in relation to
113. #heading of leader vehicle
114. Follower_lat = float_lat + (Long_Offset_meters*math.sin(brng)) +

(Lat_Offset_meters*math.cos(brng))
115. #rotates lat follower offset in relation to heading of leader
116. Follower_long = float_lng -

 (Long_Offset_meters*math.cos(brng)) + (Lat_Offset_meters*math.sin(brng))
117. #rotates long follower offset in relation to heading of leader
118. Follower_alt = 10 #set constant altitude of follower vehicle, in
119. #meters. Altitude must be set regardless of ground or air vehicle

120. #follower vehicle waypoint coordinates are converted to float,
121. #just in case
122. float_lat = float(Follower_lat)
123. float_lng = float(Follower_long)
124. float_alt = float(Follower_alt)
125.
126. #Prints out the follower vehicle waypoint coordinates in the
127. #command window
128. print(float_lat)
129. print(float_lng)
130. print(float_heading)
131. print(float_alt)
132.
133. """Writing Waypoints"""
134. item = MissionPlanner.Utilities.Locationwp() # creating waypoint

135. MissionPlanner.Utilities.Locationwp.lat.SetValue(item,float_lat)
136. #Writes follower vehicle latitude coordinate as waypoint in
137. #Mission Planner
138. MissionPlanner.Utilities.Locationwp.lng.SetValue(item,float_lng)
139. #Writes follower vehicle longitude coordinate as waypoint in
140. #Mission Planner
141. MissionPlanner.Utilities.Locationwp.alt.SetValue(item,float_alt)
142. #Writes follower vehicle altitude coordinate as waypoint in
143. #Mission Planner
144. #Can only use lat,lng, or alt for waypoint writing
145. #MUST WRITE ALL THREE COORDINATES TO WRITE A WAYPOINT OR WAYPOINT
146. #WILL NEVER BE SUCCESSFULLY RECOGNIZED! Will just continue to
147. #loop with 0 latency.
148. MAV.setGuidedModeWP(item) #sets waypoint. The largest latency
149. #will be recognized from this line. Must go through Mission
150. #Planner to set
151. #waypoint.
152. print 'Waypoint Sent'
153. print time.strftime('%X %x %Z') #Prints time on computer in
154. #command window. Used to show latency between leader
155. #and follower GCS
156. # exit
157. rsock.close()
158. print 'Script End'

140

Appendix F: Multi-Rotor Follower Vehicle Heading Offset Python Script

1. #---

2. # Name: Multi-Rotor Follower Vehicle w/ Leader Vehicle heading offset
3. # Purpose: UDP client on python
4. #
5. # Author: AUSTIN & DR. JOHN COLOMBI
6. # Created: 13/03/2013
7. # Copyright: (c) AUSTIN 2013
8. # Modified: STEFAN HARDY
9. #---

10.
11. #import libraries for commands or functions used
12. import socket
13. import sys
14. import math
15. from math import sqrt
16. import clr
17. import time
18. import re, string
19. clr.AddReference("MissionPlanner.Utilities")
20. import MissionPlanner #import *
21. clr.AddReference("MissionPlanner.Utilities") #includes the Utilities class
22. from MissionPlanner.Utilities import Locationwp
23.
24. HOST = '192.168.3.4' #IP address of Ground Control Station (GCS) of
25. #Follower Vehicle. Use 'localhost' if on same GCS.
26. RPORT = 4000 # Arbitrary non-privileged port
27.
28. REMOTE = ''
29. # Datagram (udp) socket
30.
31. print 'Starting Follow' #Prints "Starting Follow" on the command window
32. Script.ChangeMode("Guided")# changes follower vehicle mode to "Guided"
33. #in Mission Planner
34. print 'Guided Mode'
35.
36. rsock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM) #Creates a
37. #receive socket for connection between GCSs
38. print 'Sockets created'
39.
40. # Bind socket to host and port
41. try:
42. rsock.bind((HOST,RPORT)) #Attempts to bind socket to host, or follower
43. #GCS, and RPORT
44. except socket.error, msg: #If not bound, prints error message
45. #print 'Bind failed. Error Code:'
46. sys.stderr.write("[ERROR] %s\n" % msg[1])
47. rsock.close()
48. sys.exit()
49.
50. print 'Receive Socket bind complete on ' + str(RPORT)
51.
52.
53.

141

54. #keep talking with the Mission Planner server
55. while 1:
56. # receive data from server (data, addr)
57. msg = rsock.recv(1024) #recieves msg, containing leader vehicle
58. #coordinates
59. pattern = re.compile("[]") #Marks at what points in msg to split
60. #up msg
61. parameters = pattern.split(msg) #Splits msg at points where pattern
62. #exist in msg
63.
64. #leader vehicle coordinates are below
65. latData = parameters[0] #first parameter in split msg is latitude
66. lngData = parameters[1] #Second parameter in split msg is longitude
67. headingData = parameters[2] #Third parameter in split msg is heading
68. altData = parameters[3] #Last parameter in split msg is altitude
69.
70. #Must convert all parameters to float for calculations
71. float_lat = float(latData)
72. float_lng = float(lngData)
73. float_heading = float(headingData)
74. float_alt = float(altData)
75.
76. """Safety Manual Mode Switch"""
77. #When safety pilot radio control is switched to Stabilize, ch8in
78. #remains between 1400-1900
79. #If ch5in of follower vehicle falls in 1400-1900 window, script closes
80. if cs.ch5in > 1400 and cs.ch5in < 1900:
81. Script.ChangeMode("Stabilize") #Changes mode of follower vehicle
82. #to Stabilize in Mission Planner
83. print cs.mode
84. print cs.ch5in
85. rsock.close() #closes socket between GCSs
86. sys.exit() #Ends script
87. else:
88.
89. #Else, calculations for follower vehicle offset are made below
90. #based off of leader vehicle's heading.
91. #These follower vehicle waypoint calculations are repeated through a
92. #loop until script is manually stopped or safety switch is triggered.
93. """Follower Offset"""
94. XOffset= float(0) #User Input for x axis offset
95. YOffset= float(0) #User Input for y axis offset
96. brng = math.radians(float_heading)#User input heading angle of
97. #follower in relation to leader. 0 degrees is forward.
98.
99. d = math.sqrt((XOffset**2)+(YOffset**2)) #Distance in m
100.
101. MperLat = 69.172*1609.34 #meters per degree of latitude. Length
102. #of degree (miles) at equator * meters in a mile
103. MperLong = math.cos(float_lat)*69.172*1609.34 #meters per degree
104. #of longitude
105.
106. Lat_Offset_meters = YOffset/MperLat #lat distance offset in
107. #meters
108. Long_Offset_meters = XOffset/MperLong #long distance offset in
109. #meters
110.
111. #Follower vehicle waypoint coordinate calculations in relation
112. #to heading of leader vehicle

142

113. Follower_lat = float_lat + (Long_Offset_meters*math.sin(brng)) +
(Lat_Offset_meters*math.cos(brng))

114. #rotates lat follower offset in relation to heading of leader
115. Follower_long = float_lng -

 (Long_Offset_meters*math.cos(brng)) + (Lat_Offset_meters*math.sin(brng))
116. #rotates long follower offset in relation to heading of leader
117. Follower_alt = 10 #set constant altitude of follower vehicle,
118. #in meters
119.
120. #follower vehicle waypoint coordinates are converted to float,
121. #just in case
122. float_lat = float(Follower_lat)
123. float_lng = float(Follower_long)
124. float_alt = float(Follower_alt)
125.
126. #Prints out the follower vehicle waypoint coordinates in the
127. #command window
128. print(float_lat)
129. print(float_lng)
130. print(float_heading)
131. print(float_alt)
132.
133. """Writing Waypoints"""
134. item = MissionPlanner.Utilities.Locationwp() # creating waypoint

135. MissionPlanner.Utilities.Locationwp.lat.SetValue(item,float_lat)

136. #Writes follower vehicle latitude coordinate as waypoint in
137. #Mission Planner
138. MissionPlanner.Utilities.Locationwp.lng.SetValue(item,float_lng)

139. #Writes follower vehicle longitude coordinate as waypoint in
140. #Mission Planner
141. MissionPlanner.Utilities.Locationwp.alt.SetValue(item,float_alt)

142. #Writes follower vehicle altitude coordinate as waypoint in
143. #Mission Planner
144. #Can only use lat,lng, or alt for waypoint writing
145. #MUST WRITE ALL THREE COORDINATES TO WRITE A WAYPOINT OR WAYPOINT

146. #WILL NEVER BE SUCCESSFULLY RECOGNIZED! Will just continue to
147. #loop with 0 latency.
148. MAV.setGuidedModeWP(item) #sets waypoint. The largest latency
149. #will be recognized from this line. Must go through
150. #Mission Planner to set waypoint.
151.
152. #Prints out set waypoints through Mission Planner
153. print MissionPlanner.Utilities.Locationwp.lat.SetValue(item,float

_lat)
154. print MissionPlanner.Utilities.Locationwp.lng.SetValue(item,float

_lng)
155. print MissionPlanner.Utilities.Locationwp.alt.SetValue(item,float

_alt)
156.
157. print 'Waypoint Sent'
158. print time.strftime('%X %x %Z') #Prints time on computer in
159. #command window. Used to show latency between leader and
160. #follower GCS
161.

143

162. rsock.close() #closes socket between GCS
163. print 'Script End'

144

Appendix G: AFIT Document 5028 Test Project Technical and Safety Review

AFIT Document 5028, Apr 2013. Previous editions will not be used.

TEST PROJECT TECHNICAL AND SAFETY REVIEW

SECTION I PROJECT INFORMATION
Test Project Title Overall Risk

Level

Control # Test Dept

Co-op Behavior & Control w/ Heterogeneous Vehicles –Thesis LOW 14-04 ENV

Typed Name and Grade Signature Email Address Phone Number Date
Principal Investigator
Dr. David Jacques david.jacques@afit.edu X3329 22OCT2014

Project Safety Lead
Stefan Hardy, 1st Lt stefan.hardy@afit.edu 22OCT 2014

SECTION II TECHNICAL/SAFETY REVIEW

Typed Name and Grade

Position

Signature

Date

Coord

Comments? AFIT Flight Test Safety Officer Yes No

Jeremy Agte, Lt Col AFIT/ENY 22OCT 2014

Safety Reviewer #1
Jason Freels, Maj AFIT/ENV 22OCT 2014

Safety Reviewer #2
Mathew Dillsaver, Maj AFIT/ENY 22OCT 2014

SECTION III COORDINATING COMMENTS
(Reviewer should initial next to any comments)

mailto:david.jacques@afit.edu
mailto:stefan.hardy@afit.edu

145

PROJECT DESCRIPTION – AFIT CO-OP BEHAVIOR & CONTROL W/

HETEROGENEOUS VEHICLES

1. BACKGROUND

a. Mission Title: Autonomous leader/follower behavior between multi-rotors, and

between rovers (trucks) and multi-rotors

b. Description:

This test will utilize 3DR X8 multi-rotor small unmanned aerial systems (SUAS)

(Group I) together and with rover (trucks) vehicles. Python, a programming

language, will be used to force leader/follower behavior and relationships

between the multi-rotors and rovers. A combination of manual control and

assigned waypoints (AUTO) will be established with the multi-rotors. The tests

will measure the latency between the leader and follower vehicles, as well as the

accuracy of the position offset of the follower in relation to the leader, through a

set of controlled parameters involving Waypoint Radius, Cruise Speed,

Telemetry Rate, Max Window (3DR Radios), and Sleep Time (Python).

c. Purpose:

i. The main objective of the flight test is to determine what factor settings

from Mission Planner, the 3DR radios, and Python will achieve the

lowest latency and accuracy error of the follower vehicles. The same

optimum parameter settings found on the rovers, using Design of

Experiments (DOE), will be used on the multi-rotors to determine the

effects of the settings on latency and accuracy.

d. List of AFIT and non-AFIT assets at risk:

i. 3DR X8 multi-rotor small UAS

ii. Rovers (trucks)

iii. AFIT Personnel (a mix of several military and civilian staff and students)

iv. A vehicle and trailer owned and operated by CESI (AFIT support

contractor)

v. Support building around the Himsel Army Airfield (AAF)

vi. Any personnel within a ½ mile radius of Himsel AAF(for standard test

operations, see 4.c.vi for maximum range footprint)

e. Location of test:

Himsel Army Airfield, Camp Atterbury Joint Maneuver Training Center, IN

UAS Airstrip, Camp Atterbury Joint Maneuver Training Center, IN

146

f. Planned dates of the test:

28 – 30 October 2014

g. Number of projected flights during the test period:

Approximately 8 flights

2. MISHAP RESPONSIBILITIES

a. Should an incident occur in which one of the UAVs is damaged or destroyed, the

AFIT Flight Test Safety Officer (FTSO) will be notified via the After Action

Report (Section VII of this document).

b. If an incident occurs in which property owned by the Army, Camp Atterbury or

civilians is damaged and/or any personnel are injured, the Camp Atterbury Safety

Office will be notified immediately. That office will make a determination on

whether or not to initiate an investigation. In addition, the AFIT Safety Office

will be notified within 5 working days per AFIT’s Mishap Notification

Procedures. If an injury or illness results in lost duty time or hospitalization, then

the AFIT Safety Office will be notified immediately. The Principal Investigator

will be responsible for submitting any of the required mishap reports as defined

in AFIT’s Mishap Notification Procedures. For further information, refer to the

Mishap Notification Procedures posted in the Safety folder under the ‘Mishap

Reporting’ tab on the AFIT Intranet site.

3. TEST OBJECTIVES

Summarize the top-level objectives listed in the test plan.

a. Objective 1 – Set one multi-rotor as leader and one rover as follower, and use

DOE optimum parameter settings to find effect on latency.

b. Objective 2 – Set one multi-rotor as leader and one rover as follower, and use

DOE optimum parameter settings to find effect on accuracy.

c. Objective 3 – Set one rover as leader and one multi-rotor as follower, and use

DOE optimum parameter settings to find effect on latency.

d. Objective 4 – Set one rover as leader and one multi-rotor as follower, and use

DOE optimum parameter settings to find effect on accuracy.

e. Objective 5 – Set one multi-rotor as leader and other as follower, and use DOE

optimum parameter settings to find effect on latency.

f. Objective 6 – Set one multi-rotor as leader and other as follower, and use DOE

optimum parameter settings to find effect on accuracy.

g. Objective 7 – Incorporate 3rd vehicle (multi-rotor) as follower in leader/follower

relationship. Run optimum DOE parameter setting for latency effect

h. Objective 8 – Incorporate 3rd vehicle (multi-rotor) as follower in leader/follower

relationship. Run optimum DOE parameter setting for accuracy effect.

4. TEST ITEM DESCRIPTION

147

a. Manufacturer: 3D Robotics

b. Model: RTF X8

c. Characteristics : 24 in x 24 in x 8 in, Flying Weight 5.4 lbs (w/ battery)

d. Power Plant: 880 Kv brushless motors with 10x4.7 propellers.

e. Avionics: Pixhawk Autopilot

f. Datalink:

i. Autopilot – 3DRobotics 915 MHz FHSS modems;

ii. Safety Pilot RC Control – Spektrum DX18 2.4 GHz Tx with Spektrum

AR12020 2.4 GHz Rx.

g. Method of pilotage: Manual pilot control for takeoff and landings. First flight

Autopilot control when AGL altitude exceeds 10 feet through Python script.

Autopilot commands are provided by ground station or onboard computer. Pilot

can take manual control at any time during operations. If communications are

lost with autopilot, autopilot will fly to rally point for manual recovery by backup

R/C system.

h. Flight Altitude: Maximum altitude of 20 feet AGL with normal operating

altitudes of 10 – 15 feet AGL.

i. Range: Continuous Line-of-Sight (LOS) distances only. Maximum range of

autopilot/ ground station radio link is about 6.2 miles (10 km). Maximum range

of R/C radio link has been tested to 1 mile. Maximum duration of flight with full

battery is approximately 12-13 minutes.

j. Wind Speed: For launch/landing operations, a maximum wind speed (including

gusts) less than 10 knots, with a cross wind of less than 10 knots.

k. Launch Method: Manual pilot control via R/C pilot radio. Both pilot and aircraft

handler will maintain positive communication and ensure the aircraft is free from

obstructions.

l. Landing Method: Manual pilot control via R/C pilot console smooth runway

(grass/pavement/gravel) and free of obstructions.

m. Flight Control: Ground control station (GCS) control through COTS autopilot,

mechanically-linked servos for the model aircraft’s control surfaces including

throttle. A backup system using a COTS R/C transmitter will control same

control surfaces and propulsion motor in the event of autopilot failure.

i. Autopilot: The autopilot system consists of on-board avionics and a

ground station, communicating using the 902 – 928 MHz band with 100

mW of RF power. The COTS vendor supplies software for the GCS.

Through this software, waypoints can be entered over a geo-referenced

map, with same map displaying the GPS location of the UAV. Mission

altitude limits are established beforehand to ensure that avionics will

keep the UAV at a safe altitude if an erroneous altitude is entered into a

waypoint.

ii. Manual: Manual control is executed by the R/C safety pilot for takeoff,

landing, and in the event that unsafe flight conditions are encountered

148

while under autopilot control. This is done through a COTS R/C

transmitter and receiver system operating the same mechanical servos

and linkages.

n. Failure Modes:

i. Lost Communication Link – If communications are lost for more than 20

seconds, the vehicle enters return-to-launch mode. If communications

are reestablished, the vehicle can be commanded to resume the normal

flight path. If communications are never reestablished, the safety pilot

may use the RC link to land the aircraft under manual control.

ii. Lost GPS – If the aircraft loses GPS it will enter a hover in place until

GPS is recovered. The ground station audibly notifies the operator that

GPS is lost, and at this time the safety pilot would assume manual

control of the aircraft if GPS is not reacquired.

iii. Unresponsive Flight Controls - Visual detection will be used to identify

aircraft problems. If aircraft cannot be controlled and safely returned to

the landing site, the motor will be shut down by the operator and the

aircraft will crash land in its current vicinity. There is no servo

redundancy.

iv. Loss of Propulsion – Should the aircraft lose propulsion, the aircraft will

fall to the ground. Therefore a low altitude will be maintained to prevent

vehicle destruction. The X8 has eight propellers (2 on each leg) that will

serve as backups if one of the primary propellers fail, as a safety

procedure. In this instance, the operator has the ability to take control

and guide the aircraft to the landing site.

v. Loss of Autopilot – If the autopilot fails to function, this will typically

result in loss of power to servos. The RC transmitter will be placed in

manual mode, throttle down, with all control surfaces centered.

vi. Loss of Ground Control Station – A gas powered generator supplies AC

power to all ground station components. The autopilot ground station has

internal lithium batteries as a backup power source. If all independent

sources of ground station electrical power are lost, the communications

link will be cut, and the vehicle will fly to its “Lost Link” rally point

where battery-operated R/C control will be established for landing.

a. Describe the test facilities to be used:

i. The Himsel AAF is a fully functional airfield located on Army property

and under restricted airspace. The field has a single north/south runway.

The field is located in an isolated area of the base adjacent to the

weapons range. The field is controlled and flight operations will always

be cleared by the Himsel tower controller. The airfield operations

building is located at the north end of the runway and has restroom

facilities.

149

ii. The UAS strip contains a shed and a long gravel road in parallel with the

runway. The strip is a paved north/south runway in an open area.

iii. Yellow bounding boxes show anticipated flight areas to meet test

objectives. Left box is Himsel AAF and right box is the UAS strip.

SYSTEM MATURITY

b. Describe testing that supports readiness:

The X8 multi-rotor is an off-the-shelf hobbyist R/C multi-rotor and has been

owned and flown by hobbyists around the world. With the intent of hosting

research payloads (sensors and navigation equipment), high quality components

were selected for servos, control arms, propulsion and power distribution

systems. The Pixhawk autopilot is the latest advanced autopilot, also widely

used by hobbyists, and has been utilized on the rovers before. Previous flight

tests by the manufacturer have established a well-defined set of tuned gains,

specific to the X8, that will be used with the X8. Lab and field testing has also

verified the range and capability of the telemetry system. The safety pilot who

will be flying the X8 has numerous hours flying remote controlled airframes.

150

c. Previous lessons learned:

The team has spent 2 days TDY to camp Atterbury and has seen and operated the

air vehicles. Lessons learned include verifying software integration and radio

communication before leaving for the field. Plan for interruptions in operations

based on other users in the area. The X8 with Pixhawk autopilot and mission

planner will be the ground control system interface with the air vehicles. All

screws and motors will be verified before launch.

d. Authorized flight:

This flight is authorized by the AFIT MFR which was reviewed and approved by

the Unmanned Aerial Systems Airworthiness office at AFLCMC.

151

SUAS Preflight Checklist

Checklist to be run before each UAV flight

Before commencing preflight, calculate the operational risk with the ORM Checklist Form

 UAV Setup

Check

1. Assemble UAV Make all wiring connections. Install propeller. Do not connect

batteries yet.

2. Inspect UAV
Check props and hub for damage or fatigue. Inspect flight

control surfaces for damage. Tighten assembly as needed.

Check Center of Gravity (CG) location.

3. Install Fully Charged Battery Connect battery cable.

Adjust batteries and/or weight/ballast position as necessary to

ensure proper placement of CG.

Ensure batteries are properly secured.

Autopilot Setup

 1. Prep Transmitter Power on transmitter and set to "manual".

2. Power On Autopilot Board If no power switch is installed, you must disconnect then

reconnect the battery.

 Continue to keep the UAV level until the three colored LEDs

stop flashing on the autopilot board (~30 sec).

3. Obtain GPS Lock Watch for the blinking red light on the APM to turn solid,

indicating GPS lock. Can take up to 2 minutes.

 Communication/Ground Control

Station

 1. Establish Communications Follow Mission Planner procedures to ensure comms are

established with APM. Perform comm. ground check to ensure

proper range performance for autopilot comm. and RC receiver.

2. Ensure Proper Gains Loaded Check to make sure the correct gains are loaded for the UAV

you are flying.

3. Load Waypoints Ensure proper waypoints are loaded and that a rally point

(return to launch location) is loaded. RALLY POINT IS

REQUIRED FOR LOST COMMUNICATIONS SCENARIO

Take Off

 1. Obtain Clearance Contact the field controller and obtain clearance to launch the

UAV.

2. Launch Have assistant place aircraft at launch point.

ENSURE ALL PERSONNEL ARE CLEAR AND WARNED

PRIOR TO ENGAGING PROPELLER.

Safety Pilot starts motor and executes a takeoff

152

ORM Checklist Form

Date: ____________ Control #:______________

 GREEN YELLOW RED

Crew Rest Good Marginal Poor

Crew/Personal Concerns None Minor Major

Primary Crew Qualified All Qualified 1 Unqualified 2+ Unqualified

7+ Days TDY/Leave 2nd duty day back or later 1st duty day back

Perceived Scheduling

Pressure
None Some

Significant Pressure to

Complete Mission

Duty Day <8 hours >8 hrs <12 hours

Showtime 0600-1600 0300-0600/1600-2200 2200-0300

Planning Changes (Last 24

hrs)
Minimal/No impact Minor Major

Mission Complexity Low/Normal Demanding Extremely Demanding

Test Mission/Safety Risk Low Medium High

Cross Winds/Wind Speed <10 kts 10-13 kts 13-15 kts

Time of Day Day Night 0200-0500 TO/Landing

Airframe Modification Minor Significant Severe

Maturity-

Hardware/Software
Nothing New

1st Flight of

Hardware/Software Mod

1st Flight of NEW

Hardware/Software

Additional Risk Not

Addressed
Low Medium High

This checklist is to be briefed at the beginning of each test day.

Each green box is 0 points. Each yellow box is 1 point. Each red box is 2 points.

 A score of 0-3: Attempt to mitigate any red boxes to reduce the risk. Test

director’s discretion to continue the mission.

 A score of 3-5: If unable to lower the score to 0-3, it is the Principal Investigator’s

discretion to continue the mission.

 A score of 6 or higher: If unable to lower the score, it is the AFIT FTSO’s

discretion as to whether or not to continue the mission.

IF YOU ARE NOT READY TO FLY… DON’T!

153

TEST DESCRIPTION

Objective 1 – Use DOE optimum parameter settings for reduced latency

between 1 multi-rotor (Leader) and 1 rover (Follower)

TEST SCENARIO 1

Description Run optimum parameter settings, found from Design of

Experiments (DOE) with rovers, for the lowest latency between a

multi-rotor (set as leader) and a rover (set as follower). Leader

will be in manual. Follower will be controlled by Python script,

but can still be switched into manual at any time.

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise
Speed (m/s)/Sleep Time

(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture time from when

Leader movement starts until

Follower vehicle responds

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
The follower vehicle responds as fast (~2 seconds) or faster to the

leader vehicle as with a rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script

2. Fast user response on manual timing of vehicles

3. Functioning Stopwatch

Algorithms N/A

Expected

Results

The parameter settings allow for a quick 2 second or better

reaction time for the follower vehicle in response to the leader

vehicle.

Assets 1. 3DR X8 Multi-Rotor

2. 2 GCS (laptops)

3. Stopwatch

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

b. Load the appropriate parameter settings for the test point.

c. Preload Python Scripts on Leader GCS and Follower GCS.

154

d. Complete SUAS preflight checklist.

e. Check that weather is within limits and determine

launch/recovery locations and headings.

f. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with air vehicle. Additional

observers will assist in maintaining situational awareness

around the airfield and flight operations area.

c. Position the aircraft for launch.

d. Safety pilot executes takeoff.

e. Safety pilot announces that air vehicle is airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCS.

b. Manually move the leader multi-rotor.

c. Start the timer.

d. Wait for follower to move in response to the Leader.

e. Stop timer once Follower responds by moving towards

Leader.

f. Record test point.

g. Stop running Python scripts on Leader and Follower GCS.

h. Transition vehicles to manual for recovery.

4. RECOVERY:

a. Navigate aircraft to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilot announces landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop and ensure that data log

is saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.

d. Power off ground control station as required.

155

Objective 2 – Use DOE optimum parameter settings for reduced

accuracy error between 1 multi-rotor (Leader) and 1

rover (Follower)

TEST SCENARIO 2

Description Run optimum parameter settings, found from Design of

Experiments (DOE) with rovers, for the lowest accuracy error

between a multi-rotor (set as leader) and a rover (set as follower).

Accuracy error is determined by obtaining the average distance

from the follower vehicle to the leader vehicle through the

Telemetry Log (TLOG). Leader will be in Auto mode, following

a predefined Figure 8 pattern through waypoints. The leader

multi-rotor will be consistently held at a 10 m altitude (AGL).

Follower will be controlled by Python script, but can still be

switched into manual at any time.

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise
Speed (m/s)/Sleep Time

(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture accuracy error from

TLOG after leader vehicle

follows figure-8 pattern, with

follower vehicle following

leader vehicle

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
TLOGs and waypoint distance (WP Dist) of follower are

recorded. Accuracy error obtained is comparable (~16 inches), if

not better, than rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script

2. Recorded TLOG w/ WP Dist

Algorithms N/A

Expected

Results

The parameter settings allow for an accuracy error of 16 inches or

better for the follower vehicle in response to the leader vehicle.

Assets 1. 3DR X8 Multi-Rotor

2. 2 GCS (laptops)

156

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

b. Load the waypoints onto the leader (multi-rotor) vehicle.

c. Load the appropriate parameter settings for test point.

d. Preload Python Scripts on Leader GCS and Follower GCS.

e. Complete SUAS preflight checklist.

f. Check that weather is within limits and determine

launch/recovery. locations and headings.

g. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with the air vehicle.

Additional observers will assist in maintaining situational

awareness around the airfield and flight operations area.

c. Position vehicles for launch.

d. Safety pilot executes takeoff.

e. Safety pilot announces that air vehicle is airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCS.

b. Switch leader (multi-rotor) vehicle into Auto mode.

c. Wait for leader to travel loop 5 times, with follower

vehicle following

d. Record test point.

e. Stop running Python scripts on Leader and Follower GCS.

f. Transition vehicles to manual for recovery.

4. RECOVERY:

a. Navigate aircraft to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilot announces landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop or ensure that data log is

saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.

a. Power off ground control station as required.

157

Objective 3 – Use DOE optimum parameter settings for reduced latency

between 1 rover (Leader) and 1 multi-rotor (Follower)

TEST SCENARIO 3

Description Run optimum parameter settings, found from Design of

Experiments (DOE) with rovers, for the lowest latency between a

rover (set as leader) and a multi-rotor (set as follower). Leader

will be in manual. Follower will be controlled by Python script,

but can still be switched into manual at any time. The follower

multi-rotor will be consistently held at a 10 m altitude (AGL).

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise
Speed (m/s)/Sleep Time

(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture time from when

Leader movement starts until

Follower vehicle respond

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
The follower vehicle responds as fast (~2 seconds) or faster to the

leader vehicle as with a rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script

2. Fast user response on manual timing of vehicles

3. Functioning Stopwatch

Algorithms N/A

Expected

Results

The parameter settings allow for a quick 2 second or better

reaction time for the follower vehicle in response to the leader

vehicle.

Assets 1. 3DR X8 Multi-Rotor

2. 2 GCS (laptops)

3. Stopwatch

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

b. Load appropriate parameter settings for test point.

c. Preload Python Scripts on Leader GCS and Follower GCS.

d. Complete SUAS preflight checklist.

158

e. Check that weather is within limits and determine

launch/recovery locations and headings.

f. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with each air vehicle.

Additional observers will assist in maintaining situational

awareness around the airfield and flight operations area.

c. Position aircraft for launch.

d. Safety pilot executes takeoff.

e. Safety pilot announces that air vehicle is airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCS.

b. Manual move the leader rover.

c. Start timer.

d. Wait for follower to move in response to Leader.

e. Stop timer once Follower responds.

f. Record test point.

g. Stop running Python scripts on Leader and Follower GCS.

h. Transition vehicles to manual for recovery.

4. RECOVERY:

a. Navigate aircraft to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilot announces landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop or ensure that data log is

saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.

d. Power off ground control station as required.

159

Objective 4 – Use DOE optimum parameter settings for reduced

accuracy error between 1 rover (Leader) and 1 multi-

rotor (Follower)

TEST SCENARIO 4

Description Run optimum parameter settings, found from Design of

Experiments (DOE) with rovers, for the lowest accuracy error

between a rover (set as leader) and a multi-rotor (set as follower).

Accuracy error is determined by obtaining the average distance

from the follower vehicle to the leader vehicle through the

Telemetry Log (TLOG). Leader will be in Auto mode, following

a predefined Figure 8 pattern through waypoints. The leader

multi-rotor will be consistently held at a 10 m altitude (AGL).

Follower will be controlled by Python script, but can still be

switched into manual at any time. The follower multi-rotor will

be consistently held at a 10 m altitude (AGL).

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise

Speed (m/s)/Sleep Time
(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture accuracy error from

TLOG after leader vehicle

follows figure-8 pattern, with

follower vehicle following

leader vehicle

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
TLOGs and waypoint distance (WP Dist) of follower are

recorded. Accuracy error obtained is comparable (~16 inches), if

not better, than rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script

2. Recorded TLOG w/ WP Dist

Algorithms N/A

Expected

Results

The parameter settings allow for an accuracy error of 16 inches or

better for the follower vehicle in response to the leader vehicle.

Assets 1. 3DR X8 Multi-Rotor

2. 2 GCS (laptops)

160

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

b. Load waypoints onto leader (rover) vehicle.

c. Load appropriate parameter settings for test point.

d. Preload Python Scripts on Leader GCS and Follower GCS.

e. Complete SUAS preflight checklist.

f. Check that weather is within limits and determine

launch/recovery locations and headings.

g. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with the air vehicle.

Additional observers will assist in maintaining situational

awareness around the airfield and flight operations area.

c. Position vehicles for launch.

d. Safety pilot executes takeoff.

e. Safety pilot announces that air vehicle is airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCS

b. Switch leader (rover) vehicle into Auto mode

c. Wait for leader to travel loop 5 times, with follower

vehicle following

d. Record test point.

e. Stop running Python scripts on Leader and Follower GCS

f. Transition vehicles to manual for recovery.

4. RECOVERY:

a. Navigate aircraft to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilot announces landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop or ensure that data log is

saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.
d. Power off ground control station as required.

161

Objective 5 – Use DOE optimum parameter settings for reduced latency

between 2 multi-rotors (Leader/Follower)

TEST SCENARIO 5

Description Run optimum parameter settings, found from Design of

Experiments (DOE) with rovers, for the lowest latency between a

leader and follower multi-rotor. Leader will be in manual.

Follower will be controlled by Python script, but can still be

switched into manual at any time. Altitude of leader will remain

constant by manually controlling the vehicle at an altitude of 10m

(AGL). The follower will be consistently set at 3 m higher than

the leader to avoid collision.

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise

Speed (m/s)/Sleep Time
(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture time from when

Leader movement starts until

Follower vehicle respond

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
The follower vehicle responds as fast (~2 seconds) or faster to the

leader vehicle as with a rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script

2. Fast user response on manual timing of vehicles

3. Functioning Stopwatch

Algorithms N/A

Expected

Results

The parameter settings allow for a quick 2 second or better

reaction time for the follower vehicle in response to the leader

vehicle.

Assets 1. 3DR X8 Multi-Rotor

2. 2 GCS (laptops)

3. Stopwatch

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

162

b. Load appropriate parameter settings for test point.

c. Preload Python Scripts on Leader GCS and Follower GCS.

d. Complete SUAS preflight checklist.

e. Check that weather is within limits and determine

launch/recovery locations and headings.

f. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with each air vehicle.

Additional observers will assist in maintaining situational

awareness around the airfield and flight operations area.

c. Position air vehicles for launch.

d. Safety pilots execute takeoff.

e. Safety pilots announce that air vehicles are airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCS.

b. Manual move the leader air vehicle.

c. Start timer.

d. Wait for follower to move in response to Leader.

e. Stop timer once Follower responds.

f. Record test point.

g. Stop running Python scripts on Leader and Follower GCS.

h. Transition to manual flight for recovery.

4. RECOVERY:

a. Navigate aircraft to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilots announce landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop or ensure that data log is

saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.

d. Power off ground control station as required.

163

Objective 6 – Use DOE optimum parameter settings for reduced

accuracy error between 2 multi-rotors

(Leader/Follower)

TEST SCENARIO 6

Description Run optimum parameter settings, found from Design of

Experiments (DOE) with rovers, for the lowest accuracy error

between a leader and follower multi-rotor. Accuracy error is

determined by obtaining the average distance from the follower

vehicle to the leader vehicle through the Telemetry Log (TLOG).

Leader will be in Auto mode, following a predefined Figure 8

pattern through waypoints. Altitude of leader will remain

constant by maintaining the vehicle at an altitude of 10m (AGL)

through recorded waypoints. Follower will be controlled by

Python script, but can still be switched into manual at any time.

The follower will be consistently set at 3 m higher than the leader

to avoid collision.

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise

Speed (m/s)/Sleep Time
(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture accuracy error from

TLOG after leader vehicle

follows figure-8 pattern, with

follower vehicle following

leader vehicle

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
TLOGs and waypoint distance (WP Dist) of follower are

recorded. Accuracy error obtained is comparable (~16 inches), if

not better, than rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script

2. Recorded TLOG w/ WP Dist

Algorithms N/A

Expected

Results

The parameter settings allow for an accuracy error of 16 inches or

better for the follower vehicle in response to the leader vehicle.

Assets 1. 3DR X8 Multi-Rotor

164

2. 2 GCS (laptops)

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

b. Load waypoints onto leader vehicle.

c. Load appropriate parameter settings for test point.

d. Preload Python Scripts on Leader GCS and Follower GCS.

e. Complete SUAS preflight checklist.

f. Check that weather is within limits and determine

launch/recovery locations and headings.

g. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with each air vehicle.

Additional observers will assist in maintaining situational

awareness around the airfield and flight operations area.

c. Position air vehicles for launch.

d. Safety pilots execute takeoff.

e. Safety pilots announce that air vehicles are airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCS.

b. Switch leader air vehicle into Auto mode.

c. Wait for leader to travel loop 5 times, with follower

vehicle following.

d. Record test point.

e. Stop running Python scripts on Leader and Follower GCS.

f. Transition to manual flight for recovery.

4. RECOVERY:

a. Navigate air vehicles to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilots announce landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop or ensure that data log is

saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.

d. Power off ground control station as required.

165

Objective 7 – Run optimum DOE parameter settings with 1 rover

(leader) and 2 multi-rotors (followers) for reduced

latency

TEST SCENARIO 7

Description Run optimum parameter settings found from previous models for

lowest latency. Leader will be in manual. Followers will be

controlled by Python script, but can still be switched into manual

at any time. There will be one safety pilot for each Follower. The

altitude of the multi-rotors will remain at a constant altitude of 10

m and 13 m. The multi-rotors will be controlled by the script,

following the leader at an appropriate V configuration offset with a

staggered altitude to avoid collision.

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise

Speed (m/s)/Sleep Time
(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture time from when

Leader movement starts until

Follower vehicles respond

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
The follower vehicles responds as fast (~2 seconds) or faster to the

leader vehicle as with a rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script

2. Fast user response on manual timing of vehicles
3. Functioning Stopwatch

Algorithms N/A

Expected

Results

The parameter settings allow for a quick 2 second or better

reaction time for the follower vehicles in response to the leader

vehicle.

Assets 1. 3DR X8 Multi-Rotor

2. 3 GCS (laptops)

3. Stopwatch

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

166

b. Load appropriate parameter settings for test point.

c. Preload Python Scripts on Leader GCS and Follower GCSs.

d. Complete SUAS preflight checklist.

e. Check that weather is within limits and determine

launch/recovery locations and headings.

f. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with each air vehicle.

Additional observers will assist in maintaining situational

awareness around the airfield and flight operations area.

c. Position air vehicles for launch.

d. Safety pilots execute takeoff.

e. Safety pilots announce that air vehicles are airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCSs.

b. Manual move the leader air vehicle.

c. Start timer.

d. Wait for followers to move in response to Leader.

e. Stop timer once Followers respond.

f. Record test point.

g. Stop running Python scripts on Leader and Follower GCSs.

h. Transition to manual flight for recovery.

4. RECOVERY:

a. Navigate aircraft to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilots announce landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop or ensure that data log is

saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.
d. Power off ground control station as required.

167

Objective 8 – Run optimum DOE parameter settings with 1 rover

(leader) and 2 multi-rotors (followers) for reduced

accuracy error

TEST SCENARIO 8

Description Run optimum parameter settings found from previous models for

accuracy error. Accuracy error is determined by obtaining the

average distance from the follower vehicle to the leader vehicle

through the Telemetry Log (TLOG). Leader will be in Auto mode,

following a figure-8 pattern, but can be switched to Manual control

at any time. There will be one safety pilot for each Follower.

Followers will be controlled by Python script, but can still be

switched into manual at any time. The altitude of the multi-rotors

will remain at a constant altitude of 10 m and 13 m. The multi-

rotors will be controlled by the script, following the leader at an

appropriate V configuration offset with a staggered altitude to

avoid collision.

Stakeholders 1st Lt Stefan Hardy

Success

Criteria

Completion of the following test matrix:

Test Point Description

WP Radius (m)/Cruise

Speed (m/s)/Sleep Time
(ms)/Max Window

(ms)/Telemetry Rate

1.1

Capture accuracy error from

TLOG after leader vehicle

follows figure-8 pattern, with

follower vehicles following

leader vehicle

1/1/500/33/10

Evaluation

Criteria

Satisfactory if:
TLOGs and waypoint distance (WP Dist) of followers are

recorded. Accuracy error obtained is comparable (~16 inches), if

not better, than rover-to-rover relationship.

Data

Requirements

Required

1. Functioning Python Script
2. Recorded TLOG w/ WP Dist

Algorithms N/A

Expected

Results

The parameter settings allow for an accuracy error of 16 inches or

better for the follower vehicles in response to the leader vehicle.

Assets 1. 3DR X8 Multi-Rotor

168

2. 3 GCS (laptops)

Test

Methodology

Test Procedures
1. BEFORE TAKEOFF:

a. Setup ground control station and operating area.

b. Load waypoints onto leader vehicle.

c. Load appropriate parameter settings for test point.

d. Preload Python Scripts on Leader GCS and Follower GCSs.

e. Complete SUAS preflight checklist.

f. Check that weather is within limits and determine

launch/recovery locations and headings.

g. Open airspace with range control.

2. LAUNCH:

a. Ensure that all present personnel are aware of launch.

b. Ensure, at a minimum, one assigned observer will assist safety

pilot in maintaining visual contact with each air vehicle.

Additional observers will assist in maintaining situational

awareness around the airfield and flight operations area.

c. Position air vehicles for launch.

d. Safety pilots execute takeoff.

e. Safety pilots announce that air vehicles are airborne.

f. Climb to pre-briefed transition altitude.

g. Transition to pre-briefed test-point entry position.

3. EXECUTE TEST POINTS:

a. Start Python scripts on Leader GCS and Follower GCSs

b. Switch leader vehicle into Auto mode

c. Wait for leader to travel loop 5 times, with follower

vehicles following

d. Record test point.

e. Stop running Python scripts on Leader and Follower GCSs

f. Transition to manual flight for recovery.

4. RECOVERY:

a. Navigate vehicles to pre-briefed recovery transition location.

b. Ensure landing area is clear of personnel and equipment.

c. Begin descent and entry into landing pattern.

d. Safety pilots announce landing to all present personnel.

e. Execute recovery.

5. AFTER RECOVERY:

a. Stop telemetry capture on laptop or ensure that data log is

saved.

b. Close airspace with range control.

c. Power off RC transmitter as required.

e. Power off ground control station as required.

169

SAFETY PLAN

1. QUALIFICATION AND TRAINING

a. Dr. David Jacques – Lead Faculty member of the AFIT UAS program.

Experienced in UAS simulation and real world testing.

b. Mr. Rick Patton – CESI employee and safety pilot with many years of

experience flying R/C aircraft.

c. 1st Lt Stefan Hardy – Successfully completed the Camp Atterbury Range

Safety course and has his range control safety card.

2. GENERAL MINIMIZING CONDITIONS

The following general minimizing procedures and considerations will be followed for the

duration of this flight test program:

1. All test flights will be conducted in day VMC conditions.

2. A safety pilot will be used for all flights.

3. Communications will be maintained between the ground operator, safety

observers, sensor operator, and safety pilots at all times.

4. The safety pilots will maintain positive radio communications with Himsel

AAF Unicom at all times.

5. Flying over non-participating personnel and facilities will be avoided.

6. Personnel without assigned roles for a given test will be observers of flight

operations while outside the flight test trailer. Minimize all unnecessary

conversations and distractions during critical powered ground operations or

flight.

7. A multi-purpose fire extinguisher is readily accessible during all ground

operations, especially during engine start-up.

8. Utilize “Knock-It-Off” and “Terminate” procedures in accordance with AFI

11-214 paragraph 3.4.

9. Maintain visual contact with aircraft at all times. If visual contact is lost,

safety pilots initiate a “Return-to-Launch” via RC control.

10. A safety Manual switch was programmed into the Python script so that the

Safety Pilots’ Manual control can override the script and function of the

follower vehicle at any time deemed necessary or unsafe.

3. TEST HAZARD ANALYSES (THA’s)

A. Battery Fire

B. Collision with Object

C. Collision with Personnel

D. Total Loss of Communication with the Vehicle

E. Loss of Control

F. GPS Signal Loss

170

 Mishap Severity Category

 Catastrophic – I
Death, System/Facility
Loss, Severe
Environmental
Damage

(e.g. Class A Mishap)

Critical – II
Severe Injury,
Occupational
Illness, or Major
System/Facility/
Environmental

Marginal – III
Minor Injury,
Occupational
Illness, or Minor
System/Facility/
Environmental

Negligible – IV
Less than Minor Injury,
Occupational Illness,
or System/ Facility/
Environmental
Damage

P
ro

b
ab

ili
ty

 o
f

M
is

h
ap

 O
cc

u
rr

in
g

D
u

ri
n

g
th

e
 T

e
st

Very Likely (A)
Highly expected to occur –
Many significant concerns even
after mitigation applied.

1 3 7 13

Likely (B)
Expected to occur – Significant
concerns remain after
mitigation applied.

2

5

9

16

Less Likely (C)
Not expected but possible –
Some concern exists even with
mitigation applied.

4 6

11

18

Unlikely (D)
Unexpected – Minor concerns
after mitigation applied.

8 10 14 19

Very Unlikely (E)
Highly unexpected – Little or
no concern after mitigation
applied.

12 15 17 20

HIGH

MEDIUM

NEGLIGIBLE

LOW

A, C, D, E B, F

171

TEST HAZARD ANALYSIS (THA) Page 1/6
TEST SERIES MISHAP CAT/PROBABILITY

Lt Hardy Thesis Work (All Test Points) III/Very Unlikely

PREPARED BY SIGNATURE

Stefan Hardy, 1st Lt, USAF

AFIT FLIGHT TEST SAFETY OFFICER SIGNATURE

Jeremy Agte, Lt Col, USAF

HAZARD: Battery Fire

CAUSE:

1. Uncontrolled discharge of power from the battery leading to overheating and fire (thermal runaway)

2. Overcharging of battery leading to thermal runaway due to charger malfunction or human input error

3. Battery circuitry or subsystem component failure or wiring malfunction

EFFECT:

1. Loss of vehicle

2. Injury to personnel

MINIMIZING PROCEDURES:

1. (1,2,3) All batteries will be stored in fireproof containers.

2. (1,2,3) All batteries will be charged using authorized battery chargers and by personnel trained in the

proper recharging techniques.

3. (1,2,3) All batteries will be charged in AFIT approved locations.

4. (1,3) Only the proper battery types for the specified aircraft will be used (no smaller or larger capacity

batteries used).

5. (1,2,3) Load balancer will be used when charging flight batteries.

CORRECTIVE ACTIONS:

If the battery catches fire during ground operations:

1. The pilot in command will power off the transmitter.

2. The person nearest to the fire extinguisher will use the fire extinguisher to put out the fire.

3. The person in communication with the field controller will notify the field controller of the emergency

via the radio.

If the battery catches fire while in flight:

1. Announce battery fire.

2. The pilot in command will immediately land the aircraft (make attempt to land on hard surface).

3. If controls are not available, all personnel will maintain a visual of the aircraft and notify the field

controller of the emergency.

4. The aircraft observer (or person nearest to the fire extinguisher) will use the fire extinguisher to put out

the fire once the aircraft lands.

5. Follow mishap reporting procedures per section IV of this document.

REMARKS: None

172

TEST HAZARD ANALYSIS (THA) Page 2/6
TEST SERIES MISHAP CAT/PROBABILITY

Lt Hardy Thesis Work (All Test Points) IV/ Unlikely

PREPARED BY SIGNATURE

Stefan Hardy, 1st Lt, USAF

AFIT FLIGHT TEST SAFETY OFFICER SIGNATURE

Jeremy Agte, Lt Col, USAF

HAZARD: Collision with Object

CAUSE:

1. Bird strike

2. Collision with other aircraft

3. Collision with ground based obstructions

EFFECT:

1. Loss of vehicle

2. Property damage

MINIMIZING PROCEDURES:

1. (1,2,3) Safety observers will be used to augment operator and safety pilot.

2. (2) Communicate with the tower before testing to verify clear airspace.

3. (3) Flight path will be adjusted in order to avoid ground based obstructions.

CORRECTIVE ACTIONS:

1. Announce collision with object.

2. Discontinue testing and verify there are no injuries.

3. Notify tower if hit or near miss with non-AFIT air vehicle occurs.

REMARKS:

1. Follow mishap reporting procedures per section IV of this document.

2. Document exact damage with photos/video.

3. Examine and repair vehicle if damaged.

4. When/if operational, perform a trim flight to ensure safe, stable flight and functionality.

173

TEST HAZARD ANALYSIS (THA) Page 3/6
TEST SERIES MISHAP CAT/PROBABILITY

Lt Hardy Thesis Work (All Test Points) III/Very Unlikely

PREPARED BY SIGNATURE

Stefan Hardy, 1st Lt, USAF

AFIT FLIGHT TEST SAFETY OFFICER SIGNATURE

Jeremy Agte, Lt Col, USAF

HAZARD: Collision with Personnel

CAUSE:

1. Unexpected personnel interference during takeoff/landing

2. Loss of control of vehicle

EFFECT:

1. Personnel injury

2. Loss of vehicle

MINIMIZING PROCEDURES:

1. (1) Launch/landing area will be cleared of all nonessential personnel during these phases of flight and

launch and recovery of the aircraft will be announced loudly to all personnel.

2. (1, 2) All personnel will maintain situational awareness of vehicle/flight status and personnel in and

around the test area.

CORRECTIVE ACTIONS:

1. Discontinue testing and determine if there are injuries.

2. All emergency services will be coordinated through range control (812-526-1351) if severe; perform

any necessary first aid until help arrives.

REMARKS:

1. Follow mishap reporting procedures per section IV of this document.

2. Examine and repair vehicle if damaged

3. When/if operational, perform a trim flight to ensure safe, stable flight and functionality

174

TEST HAZARD ANALYSIS (THA) Page 4/6
TEST SERIES MISHAP CAT/PROBABILITY

Lt Hardy Thesis Work (All Test Points) III/Very Unlikely

PREPARED BY SIGNATURE

Stefan Hardy, 1st Lt, USAF

AFIT FLIGHT TEST SAFETY OFFICER SIGNATURE

Jeremy Agte, Lt Col, USAF

HAZARD: Total Loss of Communication with the Vehicle

CAUSE:

1. Outside signal interference

2. RC controller/comm box/receiver failure

3. GCS power failure

4. Vehicle out of range

EFFECT:

1. Vehicle falls to ground or flies to pre-programmed waypoint

2. Unplanned off-field landing

3. Loss of control of aircraft (early PID flights)

MINIMIZING PROCEDURES:

1. (1,2,3,4) Verify operation of communication equipment prior to test. Verify integrity of the antennae.

Verify communication equipment batteries are fully charged.

2. (1) Coordinate flight operations and frequencies with Atterbury authorities.

3. (1,2,3,4) Lost link fail-safes will be pre-programmed.

4. (1,2,3,4) Pre-flight checklist will be conducted.

5. (2,3) Computers will have backup batteries as well as external UPS.

CORRECTIVE ACTIONS:

1. Pilot and/or safety pilot will immediately announce lost communications so the test team can help

visually track the vehicle.

2. Attempt to re-establish communications while the vehicle executes its pre-programmed lost link

procedures.

3. If link cannot be re-established, discontinue testing.

4. Notify Himsel AAF UNICOM of UAV status.

5. If unplanned landing occurs, verify there are no injuries.

6. Follow mishap reporting procedures per section IV of this document.

REMARKS: None

175

TEST HAZARD ANALYSIS (THA) Page 5/6
TEST SERIES MISHAP CAT/PROBABILITY

Lt Hardy Thesis Work (All Test Points) III/Very Unlikely

PREPARED BY SIGNATURE

Stefan Hardy, 1st Lt, USAF

AFIT FLIGHT TEST SAFETY OFFICER SIGNATURE

Jeremy Agte, Lt Col, USAF

HAZARD: Loss of Control

CAUSE:

1. GCS power failure

2. Servo failure

3. Structural failure

EFFECT:

1. Damage to vehicle

2. Damage to property or injury to personnel

3. Loss of vehicle

MINIMIZING PROCEDURES:

1. (1,2) Bench-test flight configuration prior to test day.

2. (1) Back-up power supplies will be used.

3. (2, 3) Visual inspection of the air vehicle will be accomplished prior to flight.

4. (2,3) Perform preflight control check.

CORRECTIVE ACTIONS:

1. Announce loss of control.

2. If in auto mode, safety pilots take control of the UAV for emergency maneuvers.

3. Discontinue testing and verify there are no injuries or property damage.

4. Follow mishap reporting procedures per section IV of this document.

5. Examine and repair vehicle if damaged.

6. If operational, perform a trim flight to ensure functionality.

REMARKS: None

176

TEST HAZARD ANALYSIS (THA) Page 6/6
TEST SERIES MISHAP CAT/PROBABILITY

Lt Hardy Thesis Work (All Test Points) IV/Very Unlikely

PREPARED BY SIGNATURE

Stefan Hardy, 1st Lt, USAF

AFIT FLIGHT TEST SAFETY OFFICER SIGNATURE

Jeremy Agte, Lt Col, USAF

HAZARD: GPS Signal Loss

CAUSE:

1. Signal interference

2. Receiver failure

3. Poor receiver/satellite geometry

4. Connector failure

EFFECT:

1. Loss of navigation (autopilot will not fly to waypoints)

2. Unplanned off-field landing

MINIMIZING PROCEDURES:

1. (1,2,3,4) Plan for manual control changeover in event of lost GPS.

CORRECTIVE ACTIONS:

1. Announce GPS loss.

2. Safety pilots maintain controlled flight.

3. If GPS is not re-acquired as determined by test team, recover the UAV using manual mode.

REMARKS: None

177

AFTER ACTION REPORT

1. Use this section to briefly describe how the test was carried out. Were there any unusual

events?

First, waypoints were written for the rover for the accuracy figure eight loop tests.

The map loaded from Mission of the UAS strip wasn’t updated. Therefore, the

waypoints were always a little off. However, they were adjusted properly.

For the rover following the multi-rotor vehicle configuration, the rover seemed to

follow fine. However, for the multi-rotor following rover vehicle configuration, the

multi-rotor would immediately try to land at home when the Python script began running.

Troubleshooting took place soon after. A single multi-rotor was operated using Guided

Mode’s “Fly to Here” on Mission Planner. The multi-rotor operated successfully. Then

the single multi-rotor was operated from a Python script with manual waypoints set in

order to test if Python was a limitation. The multi-rotor followed the waypoint from the

script effectively. It was originally thought that writing the waypoints after switching to

Guided Mode in the Python script was the reason for the multi-rotor’s return to home

action. However, this was proven to not be a problem since this script was used in the

single vehicle multi-rotor test.

Finally, it was found that the vehicles operated in a sequence. With the rover and

multi-rotor each connected to their respective GCSs, Guided Mode’s “Fly to Here” was

repeated with the multi-rotor. This time the multi-rotor immediately tried to land at its

home location, just like when the Python script was originally run with both vehicles.

Therefore, the rover was re-connected while the multi-rotor remained on. The Guided

Mode’s “Fly to Here” was performed again while both vehicles were connected to their

GCSs and the multi-rotor performed successfully. Then the script was run and both

vehicles performed effectively. The multi-rotor successfully followed the rover. The

original vehicle configuration connections involved connecting the rover first, before the

multi-rotor, hence the errors experienced.

2. What test execution/safety lessons were learned during the test event?

Being knowledgeable about equipment is a priority before experimentation. There

wasn’t much experience with the multi-rotors and so the operation of the multi-rotors was

being learned as experimentation took place. Therefore, errors occurred when integrating

other vehicles to the configuration.

178

ACRONYMS

AAF - Army Airfield

APM—Ardupilot Mega

AFLCMC—Air Force Life Cycle Management Center
CG - Center of Gravity

DOE – Design Of Experiments

ESC—Electronic Speed Control

FTSO—Flight Test Safety Officer

GCS – Ground Control Station

GPS—Global Positioning System

HHA – Himsel Army Airfield

LOS—Line of Sight

MFR—Military Flight Release

RC—Radio Controlled

UAS—Unmanned Aerial System
UAV—Unmanned Aerial Vehicle

UNICOM—Universal Communications

VMC—Visual Meteorological Conditions

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

26-03-2015
2. REPORT TYPE

Master’s Thesis

3. DATES COVERED (From – To)

Sep 2013 – Mar 2015

TITLE AND SUBTITLE

Implementing Cooperative Behavior & Control Using Open Source

Technology Across Heterogeneous Vehicles

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Hardy, Stefan L, 1st Lt, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

 Graduate School of Engineering and Management (AFIT/ENY)

 2950 Hobson Way,

 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENV-MS-15-M-180

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

 Air Force Research Laboratory, Munitions Directorate

Attn: Kevin M. Brink

101 W. Eglin Blvd

Eglin AFB, FL 32542-6810

(850) 872-4600 kevin.brink@us.af.mil

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/RW

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United

States.

14. ABSTRACT

 This thesis describes the research effort into implementing cooperative behavior and control across heterogeneous

vehicles using low cost off-the-shelf technologies and open source software. Current cooperative behavior and control methods

are explored and improved upon to build analysis models. These analysis models characterize ideal factor settings for

implementation and establish limits of performance for these low cost approaches to cooperative behavior and control.

 The research focused on latency and position accuracy as the two measures of performance. Three different ground

control station (GCS) software applications and two types of vehicles, rover ground vehicles and aerial multi-rotors, were used in

this research. Using optimum factor settings from Design of Experiments (DOE), the multi-rotor following rover vehicle

configuration experienced almost twice the latency of other experiments but also the lowest positional error of 0.8 m. Results

show that the achieved update frequency of 0.5 Hz or slower would be far too slow for close-formation flight.

15. SUBJECT TERMS

 Cooperative Behavior & Control, Heterogeneous vehicles, SUAS, multi-rotor, rover ground vehicle, vehicle

following, Design of Experiments, Python, Mission Planner, Swarming
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

 ABSTRACT

UU

18. NUMBER

OF PAGES

194

19a. NAME OF RESPONSIBLE PERSON

Dr. David R. Jacques, AFIT/ENV
a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, x3329

david.jacques@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

	Stefan's Thesis without SF 298
	Thesis SF 298

