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ABSTRACT: The model development process created at the TBRL has successfully created models from LVC 
simulation data, simulated models over time to generate simulated crowd data per condition, performed analysis of 
observed and simulated data, and compared simulated and observed data against crowd behavioral measures. The 
process allows for quantitative means for validation of both the mathematical (statistical) and computational models 
against empirical data. These findings support the claim that more accurate human behavioral models may be derived 
using laboratory observed data. Furthermore the findings support the necessity of a continuation of the work to explore 
ways to improve the model development and validation processes.

1. Introduction 
 
Analyzing the behavior of crowds has been of interest 
to the Department of Defense for years (Loftin 2005, 
McKenzie 2008). With the rise of urban warfare, an 
understanding of crowd behavior has become even 
more urgent, in particular to help decrease civilian 
casualty during rioting events and protests. Past and 
current civil unrest have shifted from peaceful to 
violent in moments, leaving military and law 
enforcement personnel with little time to strategize safe 
de-escalation. Understanding a crowd’s dynamics, 
decision making, leadership, momentum, division of 
roles and motivation sources are essential to 
developing technology to deter, deny, suppress, 
disperse and de-escalate a crowd.  This understanding 
is not gained by merely reviewing archived reports and 
videos of crowds in volatile states, but is gained 
through scientific analysis of the components that 
predict crowd behavioral response. 
 
Live Virtual Constructive (LVC) simulations can help 
to build the understanding of crowds under controlled 
but realistic environments. LVC simulations allow for 
crowds to be immersed in operationally relevant 
scenarios, where each aspect that contributes to their 
behavior can be analyzed to determine the internal 
mechanisms that influence decision making. Non-
Lethal Weapons (NLW) have been the primary force 
option during civil unrest.  NLW manufacturers are 
challenged to design their products to be effective in 

managing crowds while providing sufficient safety for 
its users and targets.  LVC simulations are ideal venues 
to test NLW to evaluate their effectiveness in crowd 
management situations and to determine crowd 
responses to technology developed to mitigate their 
volatile effects.   
 
The Target Behavioral Response Laboratory (TBRL) 
has deployed numerous LVC Simulations over the past 
eight years that have led to the determination of the 
effectiveness of several NLW energies and 
technologies. (Mezzacappa, E. S; Cooke, G. et al 
(2008); Short K. et al (2010)). TBRL researchers have 
leveraged data generated from LVC simulations to 
generate computational models to predict human 
behavior in tactically relevant scenarios; bridging the 
gap between laboratory data and modeling. This 
approach to modeling and simulation uses behavior of 
real persons as the analytical link to modeling and 
simulation. TBRL researchers have created a process 
using MATLAB software to develop and validate 
models for simulating human behavior with the use of 
data gathered during crowd management LVC 
simulations.  The process discussed in this paper was 
developed to evaluate the effectiveness of crowd 
control weapon systems, but can be used in the 
evaluation of other systems. It is comprised of several 
modules that work together to produce simulated data 
for crowd locomotive behavior; estimating crowd 
responses to several non-lethal technologies and their 
surrogates. 
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2. Background 
 
Human behavioral science studies human actions and 
seeks to generalize behavior in society. LVC 
simulations have a direct link to behavioral science in 
that it facilitates the studies necessary to gain the 
understanding to generalize human behavior. Like most 
research efforts there is a hypothesis at the onset that 
drives the testing, however the analysis of the data 
leads the investigator to the actual finding. This is the 
concept behind TBRL’s LVC simulations: LVC 
simulations are deployed to investigate the behavioral 
response of individuals when faced with NLW to 
determine quantitative measures of effectiveness.  The 
data from these simulations can be used to understand 
the general principles behind human behavior and 
serve as the input for building models that represent 
human behavior. With accurate validated models, 
virtual simulations can be developed to predict human 
behavior that will fill some of the military’s need to 
“understand the motivations and influences underlying 
adversarial behavior, behavior of contested 
populations, and populations with whom US Forces 
have not yet interacted, how they vary cross-culturally, 
and what is innately human behavior that extends 
across cultural boundaries is required at all levels of 
military operations.” (Office of Naval Research, 2008). 
 
The TBRL has developed a scientific approach to 
solving the military’s needs to understand crowd 
behavior. The conceptual model for the TBRL crowd 
research program is built on Lewinian Field Theory, 
which proposes that human behavior can be explained 
as attractions and repulsions toward and away from 
goals (Lewin, 1935). The TBRL has used their Crowd 
Behavioral Test-Bed to gather locomotive, 
psychosocial, and effectiveness data from several 
groups of crowds to develop models that use vector 
regression methods to identify attributes of a crowd 
that influence predictive variables. The steps can be 
summarized as collecting crowd behavioral data, 
processing the data to serve as an input to a model 
building algorithm, computing a mathematical 
(statistical) model, computing simulations of crowd 
locomotive behavior, processing both experimental and 
simulated data to gather crowd metrics, and comparing 
experimental and simulated crowd metrics to determine 
validity. 
 
3. Methods 
 
3.1 Crowd Behavioral Data Collection 
 
TBRL’s Crowd LVC simulation was deemed as human 
subject research by the ARDEC Human Subjects 
Protection Administrator and was vetted through an 
Institutional Review Board (ARDEC IRB# 10-0002 

Effectiveness Testing for Crowd Management). The 
simulation involved the configuration of an indoor test 
bed (See Figure 3.1.1), recruitment of human subjects, 
collection of data, processing and analysis of data, and 
reporting of results and conclusions. 
 
The primary elements of the test-bed were developed 
and verified during the implementation of the Crowd 
Behavior Test bed (CBT) that incorporated Vicon® 
Motion Capture (MoCap) hardware and software, 
digital video cameras (Cooke et al, 2010).  Simulated 
crowds with up to 25 subjects during a trial, wore 
uniquely configured helmets to allow for capture of 
their location with six degrees of freedom.  In addition 
to these elements there was a need to construct a linear 
goal system as shown in Figure 3.1.1, install a Medium 
Range Acoustic Device (MRAD), develop a simulated 
Area Denial Technology (ADT) non lethal weapon 
output, and develop custom LabVIEW software for 
data collection and device triggering. 

 
Figure 3.1.1: Crowd Behavior Testbed 

Human subjects were recruited from the local and 
surrounding communities via flyers, and 
communication with previous volunteers.  Subjects 
were paid $20 per hour of participation and had the 
ability to earn more during participation. Experimental 
conditions consisted of the subjects seeking an 
opportunity to successfully get their simulated rock 
into the linear target while the target was defended by a 
non-lethal device.  In two of the five conditions the 
target is defended by a Control Force (CF) that uses a 
non-lethal device. In both scenarios the CF defends the 
target with a simulated hand-held standoff non-lethal 
device. One of these devices represents a projectile 
weapon and the other a visible directed energy device. 
For two other conditions, the target is being defended 
by either an Medium Range Acoustic Device (MRAD), 
or a simulated invisible directed energy (IDE) weapon.  
The Projectile, the VDE, and the IDE weapons had 
effects of financial loss for the targeted participant, 
while the MRAD yielded its own penalty through loud 
sound exposure. No-weapon conditions were also run 
to provide baseline comparison data. 
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3.2 Model Building 
 
Data from LVC simulations are useful within 
themselves, however the TBRL has constructed a novel 
process to re-use this data to build and validate models, 
which in turn can create additional simulated data 
(Patent Submission Docket 2011-047). This simulated 
data is very useful for instances where LVC 
simulations are not feasible or possible.  The method of 
building models from LVC simulations gives more 
validity and confidence to the simulated data, since it is 
generated from real data and not subject matter expert 
opinion. The goal of creating a model building and 
validation process yielded the requirements: to create 
software to automate the creation of mathematical 
models for motion of individuals in a crowd from the 
data collected in TBRL crowd experimentation, to 
create software to allow running simple simulation of 
the above model to generate simulation data, to create 
software for the calculation of crowd level metrics 
from laboratory and simulated data, and to create 
software to compare simulated data with observed data.  
The block diagram in Figure 3.2.1 outlines the modules 
created in MATLAB to satisfy the requirements.  
 
3.3 Pre Process Module 
 
The pre-process module processes the raw motion 
capture data into a form that can be used in subsequent 
processes to derive the mathematical model. Vicon 
MoCap system exports location data in comma 
separated value format, storing all subject data for each 
trial in one file where each subject’s data are appended 
to the end of the preceding subject. For the purpose of 
modeling, there is a need to have a standard format for 
model input where data are organized in a manner so 
that the dependent and independent variables are easily 
distinguished for each condition.  This requirement led 
to the development of the pre-process module in 
MATLAB to restructure the location data file into an 
ASCII text file where each row within a two-
dimensional matrix represents data for one subject for a 
time step and is followed by additional data for other 
subjects for that same time step and is followed in the 
same order for additional time steps.   

 

3.4 Input Module 

The input module parses the formatted data from the 
previous step into three elements: a header vector, an 
output matrix and a predictor matrix. The header vector 
is derived from the first row of the data file and 
includes the headers of all the columns that are 
included in the predictor matrix.  The output matrix (n 
x 2) consists of the ‘Vx’ and ‘Vy’ velocity vector 
values (‘n’ represents the number of data points). The 
predictor matrix (n x p) consists of all data included in 
the data file excluding the output matrix and the header 
vector (‘p’ represents arbitrary number of predictor 
variables). The predictor matrix is formatted, where 
Columns 1 through 5 are designated to subject 
identification number, time elapsed (seconds), ‘X’ 
location relative to CF, ‘Y’ location relative to CF, and 
run identification number respectively.  

3.5 Modeling Module 

The modeling module accepts as input, the predictor 
and output matrices to create the mathematical 
equations reflecting the relationship between 
predictor/input and predicted/output variables using 
non-linear regression. There are two testing paradigms 
in the Crowd Management experiment; a condition that 
only uses the target (baseline) with no protection by 
non-lethal devices and another where the target is 
protected by either a control force member and/or a 
non-lethal device.  To accurately model the behavior of 
the person, their behavior from the single influence of 
the target alone (baseline) was used to generate a 
model of the attractive force generated by the target.  
This model was used to subtract the force created by 
the target out from the data collected when both the 
target and a non-lethal device were present; the result 
of the subtraction provides values for the influence of 
the non-lethal device alone.  

The module uses the non-linear fit function from the 
(Mathworks, Inc. Nonlinear Regression, 2011) 
Statistical Toolbox to perform the non-linear 
regression. The syntax for the non-linear fit MATLAB  

 

Figure 3.2.1: TBRL Model, Simulation and Validation Process 
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function is [beta, r, J, COVB, mse] =  nlinfit(X, y, fun, 
beta0), where ‘beta’ are the fitted coefficients, ‘r’ are 
the residuals, ‘J’ is the Jacobian of the function (fun), 
COVB is the estimated covariance matrix for the fitted 
coefficients, and ‘mse’ is an estimate of the variance of 
the error term. In the syntax ‘X’ stands for the predictor 
variables, ‘y’ represents the responses/output, ‘fun’ 
represents a model function and ‘beta0’ represents the 
starting coefficients.  

The module does the regression of velocity vectors in 
both ‘X’ and ‘Y’ axes against the predictors, generating 
model coefficients for change in location in ‘X’ and 
‘Y’ coordinates, along with confidence intervals for 
input values. The model, the predictors, and responses 
are then processed to determine the model errors that 
are then fit to the Weibull distribution. The module is 
designed to incorporate the effects of the CF differed 
from the above description in that it also converts the 
coordinates from Cartesian to polar coordinates with 
the origin at the CF location. The polar coordinates are 
used to fit the model instead of the Cartesian 
coordinates. 

3. 6 Simulation Module 
 
The simulation module is built to execute a time 
stepped simulation of each subject’s behavior based on 
the derived model, start conditions, average time 
between samples, and duration of simulation.  At each 
time step the change in distance traveled, the change in 
position, and velocities are calculated for each subject 
and concatenated to a simulated data file, structured in 
the same manner as the predictor matrix. In addition to 
the basic simulation module that simulates the baseline 
conditions, there is one that is designed to incorporate 
CF effects by transforming the coordinates of the 
baseline model to fit that of the CF model, where the 
CF location is the origin for polar coordinates. 
 
3.7  Crowd Metric Module 
 
The crowd metric module calculates the leading edge 
(LE), trailing edge (TE), centroid, geometric center, 
and dispersion for the crowd (Cooke et al, 2010).  
These measures are considered aggregate metrics of 
crowd behavior as a whole, rather than individual paths 
taken by each subject. The LE is defined as the location 
of the forward most crowd member for each 
experimental trial with respect to the target or CF for 
each data time-step.  The TE is defined as the location 
of the crowd member that is furthest back for each 
experimental trial with respect to the target or CF for 
each data time-step. The centroid is the location of the 
crowd member that is at the midpoint between the LE 
and TE during each time-step. The measures are 

calculated using a sorted matrix, ‘y_data’, in which 
rows represent each time step and columns represent 
individual subjects. The function calculates the LE by 
finding the maximum ‘y_data’ point for each run.  The 
TE is calculated similarly but with the minimum 
‘y_data’ point.  The centroid is calculated by taking the 
mean of the ‘y_data’. The geometric center is 
calculated by taking the average of the leading and 
trailing edge. Dispersion is calculated by evaluating the 
average displacement in the ‘X’ and ‘Y’ direction. The 
function then plots the LE and centroid for visual 
verification. 
 
3.8 Model Comparison 
 
The model comparison module compares, statistically, 
the output of the simulation with the observed human  
data collected in the laboratory.  The observed data 
used in the comparison is a set collected under the 
same conditions as the data used for modeling.   For 
example, an available data set can be split into data for 
modeling and data for comparison with simulation 
output.  This process is akin to establishing “split-half 
reliability” in behavioral science. This module uses two 
sample Kolmogorov-Smirnov (K-S) goodness of fit 
(GOF) test (kstest2) to determine goodness of fit for 
crowd metrics (Mathworks, 2011). The function 
accepts two sets of data, significance level (α), and 
type of alternative hypothesis test.  We used the kstest2 
function to compare the cumulative distribution 
functions (CDF) of the observed and simulation data to 
determine: if the simulated data follows the same 
distribution as the observed data (hypothesis 
acceptance), the asymptotic p-value, and k-statistic.  
The null hypothesis is that both observed and 
simulation data are from the same continuous 
distribution. If the null hypothesis (h) is accepted, ‘h’ 
value is 0, but 1 if rejected. The k-statistic is the 
greatest distance between the CDF plots of the 
observed and simulation. For the model comparison 
module 5 % significance level was used and the default 
of unequal alternative hypothesis test.  
 
4. Results and Discussion 
 
In this section we discuss the results of the 
comparisons between 1) the output of the simulation 
based on the mathematical model developed from the 
empirical data and 2) the human behavior data 
collected in the lab.   A successful comparison is 
indicated by derivation of quantitative metrics of the 
goodness of fit between the output and the data.  The 
efforts in this project developed methods to quantify 
improvements to the model, that is, quantitative metrics 
of model validation.  
 
Both the mathematical model (the equation derived 
from the data) and computational model (the equation 
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used in the simulation) were compared to the data 
collected in the laboratory.   The mathematical models 
generated through the process were evaluated based on 
root mean squared error (RMSE) and graphical 
comparison.  The computational model was evaluated 
by the K-S GOF test.  
 
4.1 Mathematical Model Validation:  RMSE 
 
This exercise was done using individual locations at 
time-points during the experimentation. A 
mathematical model predicting current location of a 
crowd member based on previous location, and 
velocity was derived using regression methods.  The 
RMSE is a comparison between the expected values 
calculated from the regression equation and the data 
observed in the laboratory.  The RMSE derived for the 
models of the LVC simulations can be found in Table 
4.1.1; the larger the RMSE, the greater the discrepancy 
between the expected values and observed values of 
behavioral measures in the laboratory.  As seen in 
Table 4.1.1, the largest error is with the radial model 
for the projectile weapon, where the error is equivalent 
to approximately 2 ft. This error is acceptable when we 
consider most individuals being modeled are 
approximately 2 ft wide. The RMSE for all models are 
below 0.66 meters, which would generally mean the 
model is a good representation of the input data, 
however the graphical comparison shows that there is a 
discrepancy when the model is run through 
simulations. 
 

Table 4.1.1: Model mean standard error values 

 
 

 
 

 

4.2 Graphical Comparisons 
Graphical comparison involved graphing the 
experimental trials for each condition adjacent to the 
simulation results derived from applying the model  
over numerous iterations for each respective condition. 
This provided a quick examination whether or not the 
model generated simulation results were visually 

similar to the observed movement patterns.  The 
graphical comparison of the observed and simulated 
data for the models with largest and smallest RMSE 
from Table 4.1.1, the projectile weapon and MRAD 
respectively are graphed in Figures 4.1.1 and 4.1.2.   
 
The graphical comparison of the projectile weapon, in 
Figure 4.1.1 shows a very similar representation of the 
observed data. The comparison reveals that the model 
does not account for some situations where crowd 
members take a direct or a diagonal approach. Since 
these were the minority, it would be expected that the 
model may treat these data as outliers during model 
regression.  The RMSE associated with the projectile 
weapon is the largest of the five conditions, even 
though the graphical comparison may be judged to 
show the best visual representation.   
 
The MRAD comparison in Figure 4.1.2 shows that the 
simulation trends to the extreme of having crowd 
member approach from either the right or left of the 
stimulus which is not representative of the observed 
data, which shows some crowd member taking a direct 
approach.  With this comparison it can be seen that 
even though the RMSE indicates the best fit, the model 
does not account for the common behavior of taking a 
direct approach from the center. This effect may be due 
to the density of the paths on the sides versus the 
density in the middle and how those data points were 
weighted in the model generation.    
 
4.3 Computational Model Validation 
 
The computational model used to generate the 
simulations consisted of the regression equation, that 
is, the mathematical model, plus a stochastic 
component derived from the data.  This stochastic 
component consisted of a randomly generated error 

Figure 4.1.1: Baseline Observed vs. Simulation 

Figure 4.1.2: MRAD Observed vs. Simulation
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term that was selected from a distribution of the error 
between the observed and predicted data for all crowd 
members.  The validity of the computational model, 
was tested using the K-S GOF test on aggregate crowd 
measures (LE, TE, and Centroid) comparing the CDF 
of forecasted behaviors to the CDF of observed 
behaviors.   
 
The K-S GOF was performed using crowd aggregate 
measures to determine if the simulated crowd produced 
similar crowd aggregate locomotive behavior to the 
observed.  The K-S Statistic, which represents the 
largest vertical distance between the observed and the 
simulated CDF plots, is a measure of how closely the 
simulated fits to the observed data.  The mean crowd 
aggregate measures: LE, TE, and centroid of the 
simulation data were compared to the observed data at 
an α of 0.05.  The results for the K-S GOF are shown 
in Table 4.3.1 and Figures 4.3.1, 4.3.2, and 4.3.3. 
 
The K-S GOF test failed to reject the null hypothesis 
for LE, Centroid and TE for the baseline and The VDE 
weapon conditions since p-values exceeded α.  All 
other conditions rejected the null hypothesis except the 
LE for VDE weapon. The K-S Statistics were 
correspondingly lower for the measures that failed to 
reject the null hypothesis.  The CDF plots for Baseline 
and MRAD conditions in Figures 4.3.1 and 4.3.2 show 
a very similar locomotive behavioral response to the 
stimulus by the simulated crowd compared to the 
observed. 
 
Table 4.3.1: K-S Goodness of fit results 

 
For the projectile weapon it can be seen from Figure 
4.3.3 that the model estimated the crowd would 
approach the goal location, however, the actual crowd 
chose to stay back and try to achieve their goal from a 
distance (they threw from farther away, rather than 
approaching closer to the target). This is indicative that 
the model does not accurately predict the locomotive 
behavior of the crowd during this condition.  This 

reveals a possible problem in the weighting of location 
data in the model development process.  If the model is 
solely developed from the regression of location data, it 
will have limitations as seen in these conditions.  Since 
crowd members did travel to the goal location for each 
condition, the regression analysis considered those 
locations, however from the CDF plots it can be shown 
that on average the crowd approaches the goal location 
more cautiously and sometimes hangs back for the 
entire trial. If the LE, TE, and centroid are incorporated 
in the model building process it may account for these 
crowd behaviors that are not replicable through 
regression analysis.  
 
All methods of analyzing the simulated data proved 
useful, the RMSE revealed the estimation error of the 
mathematical model. The graphical comparison of the 
observed and the simulation data revealed that even the 
small error in estimation shown in Table 4.1.1, can 
drive the simulated data outside the bounds of the 
observed behavior.  The K-S GOF test identified 
aspects of the computational model of crowd behavior 
 

 
Figure 4.3.1: Baseline Crowd Measures K-S GOF comparisons 
(Leading Edge, Centroid, and Trailing Edge) 

that may need to be included to yield a correct 
representation of how the crowd behaves in response to 
various stimuli. All methods highlight limitations to the 
models generated, but show promise that the process 
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developed is capable of accurately predicting crowd 
behavior in response to stimuli. 
 
 
5.  Summary and Conclusion 
 
The model development process created at the TBRL 
has successfully created models from LVC simulation 

data, simulated models over time to generate simulated 
crowd data per condition, perform analysis of observed 
and simulated data, and compared simulated and 
observed data against crowd behavioral measures.  The  
process allows for quantitative means for validation of  
both the mathematical and computational models 
against empirical data, such as in the following 
example.   
 
 The models created for the baseline and The VDE 
weapon conditions successfully estimated crowd 
locomotive behavior based on their RMSE values of 
0.5 and 0.37 meters respectively and further validated 
by the K-S GOF test. The K-S GOF test determined 
that the simulated data generated from the models of 
the baseline and MRAD are from the same distribution 
as that of the observed data at an α of 0.05.  The K-S 
statistic for the crowd measures LE, TE, and centroid 
for the baseline condition are 0.5, 0.375, and 0.375 
respectively. The K-S statistic for the crowd measures 

for the VDE weapon condition is 0.286 for all 
measures. 
 
The models created for a projectile weapon, the 
simulated VDE weapon, and the simulated IDE 
weapons still need refinement based on the graphical 
comparison of the simulated and observed data in 
addition to the K-S GOF test.  The RMSE values were 

favorable, and the graphical comparison for the 
projectile weapon and VDE weapon were relatively 
precise, however the K-S GOF test revealed that the 
mean LE, TE, and centroid of the simulated data were 
not from the same distribution as the observed data for 
those conditions at an α of 0.05 with p-values 
significantly lower than α.     
 
There are several identified areas for improvement 
which include, 1) using additional or new regression 
methods that yield more accurate models reflected by 
smaller RMSE; 2) Accounting for error during 
simulation and making necessary adjustments to 
produce data that more closely represent observed data; 
3) The incorporation of crowd metrics for the observed 
data set into the model development process to 
improve the goodness of fit for the observed and 
simulated data; and 4) the use of additional goodness of 
fit test to validate the model.  
 

Figure 4.3.2: MRAD Crowd Measures K-S GOF 
comparisons 

Figure 4.3.3: Projectile Weapon Crowd Measures K-S GOF 
comparisons 
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In conclusion, these findings support the claim that 
more accurate human behavioral models may be 
derived using laboratory observed data.  Furthermore 
the findings support the necessity for a continuation of 
the work to explore ways to improve the model 
development and validation processes to derive a 
robust model that can be used to simulate crowd 
behavior for the purpose of evaluating effectiveness of 
weapons systems used to defend against hostile 
crowds.   
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