A COMPARATIVE STUDY OF LEARNING CURVE MODELS IN DEFENSE
AIRFRAME COST ESTIMATING

THESIS
MARCH 2015
Justin R. Moore, Captain, USAF
AFIT-ENV-MS-15-M-182

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.



AFIT-ENV-MS-15-M-182

A COMPARATIVE STUDY OF LEARNING CURVE MODELS IN DEFENSE
AIRFRAME COST ESTIMATING

THESIS

Presented to the Faculty
Department of Systems Engineering and Management
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cost Analysis

Justin R. Moore, BS

Captain, USAF

March 2015

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT-ENV-MS-15-M-182

A COMPARATIVE STUDY OF LEARNING CURVE MODELS IN DEFENSE
AIRFRAME COST ESTIMATING

Justin R. Moore, BS

Captain, USAF

Committee Membership:

Dr. John J. Elshaw, Ph.D
Chair

Lt Col Jonathan D. Ritschel, Ph.D
Member

Mr. Michael J. Seibel, Civ., USAF
Member



AFIT-ENV-MS-15-M-182
Abstract

The goal of this research was to identify which learning curve model is most
accurate when applied to Defense acquisition programs. Wright’s original learning curve
model is widely accepted and used within Defense acquisitions, but the 75+ year old
model may be outdated. This study compares Wright’s model against three alternative
learning curve models using total lot costs for the F-15 C/D & E programs: the Stanford-
B model, the DeJong learning formula, and the S-Curve model. However, the results of
the study are inconclusive. Two of the three alternative models, the DeJong and S-Curve,
rely on the use of an incompressibility factor between 0 and 1 that represents the
percentage of the production process that is automated. A Bureau of Labor Statistics
report identifies that percentage as very low but does not give an exact number.
Therefore assumptions about that parameter were made. When the factor falls between
0.0 and 0.1 the DeJong and S-Curve models appear to be more accurate; when the
number is 0.1 or greater, Wright’s model is still the most accurate. Further research
should be targeted at the exact value of this factor to validate this, or future, comparative

studies.
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A COMPARATIVE STUDY OF LEARNING CURVE MODELS IN DEFENSE
AIRFRAME COST ESTIMATING

I. Introduction

General Issue

In 2008, the United States’ economy took a plunge that affected every industry
from the real-estate market to automobile manufacturers. This crash led to tightened
budgets throughout the country and many companies looked to operate more efficiently
with less capital. That economic turmoil is reflected in the Department of Defense (DoD)
through funding cuts and shrinking budgets at every level. The ten year sequestration
period approved by Congress with the Budget Control Act of 2011 places emphasis on
commanders and managers using funds efficiently. On a micro level, the scrutiny of
program cost estimates places more pressure on estimators than ever before. Due to the
fact that sequestration effects and cuts will continue for nearly a decade, cost estimators
and the accuracy of acquisition cost estimates play a more pivotal role than ever before in
acquisition programs. Cost estimates are no longer just a box to check at milestone
reviews; they now provide leverage for managers and valuable information in balancing
budgets. One way to assist cost estimators is to provide them with the most current and
appropriate tools in order to calculate the most accurate and reliable estimate; however,
conventional learning curve methodology has been in practice since the pre-WW!1I build
up in the in1930s, but those historical methods may be outdated in today’s fast-paced,
technological environment.

Over the past two decades, a new methodology rooted in the concept of forgetting

curves has emerged, and may provide a more accurate tool for assessing learning curves.



Forgetting is becoming more widely accepted, but its application to learning curves in
manufacturing is scarce. This thesis will examine the question of whether more accurate
learning curve models exist that could be applied to cost estimates within large
acquisition programs. Chapter | of the thesis will provide a background of modern
learning curve methodology followed by an explanation of forgetting and a description of
the problem to be investigated. Chapter | will also include a discussion of the
assumptions made in this study and a review of the research methodology that will be
used to test the theory followed by a description of the data sources collected. The
conclusion will provide a synopsis of the points covered in this chapter as well as a

blueprint for the subsequent chapters of this thesis.

Background

The concept of learning and the application of learning curves in manufacturing
has been in practical use since the height of the pre-WW!II build up in the late 1930s.
From industrial manufacturing, to avionics software, the footprint of the learning
phenomenon has been witnessed throughout both the public and private business sectors.
Early applications of learning curves in aircraft date back to T.P. Wright in 1936 and his
report while at Curtiss-Wright Corporation (Badiru, Elshaw, & Mack, 2013). Learning
curve methodology has undergone an evolution over the seventy plus years since Thomas
Wright’s report, and it has adopted other names along the way such as cost improvement
curve or experience curve; however, the theory has remained relatively unchanged
despite drastic changes in manufacturing and technology. The learning concept itself is

based on the theory that as a worker performs a task multiple times, he or she will require



less and less time to complete the same task due to familiarity with the process. A
learning curve is a mathematical representation of this theory which states that as the
quantity doubles the worker’s performance will improve at a constant rate, and is
represented in Equation 1.1 (Wright 1936). Wright’s model has many different forms, but
the basic architecture remains the same:

y = ax® (1)
In this model, y represents the estimated production hours (or cost) for the x™ unit
produced where a is the production hours (or cost) of the theoretical first unit produced,
and b is a factor of the learning rate which will be explained in greater detail in the
Literature Review.

Wright’s model shown above has been widely accepted and used in
manufacturing for years; however, in recent years a contradicting phenomenon known as
forgetting has been recognized. A 2013 Journal of Aviation and Aerospace Perspective
article titled “Half-Life Learning Curve Computations for Airframe Life-cycle Costing of
Composite Manufacturing” explains the concept of forgetting in learning curves.
Throughout the article, Badiru et al. introduce forgetting and identify learning curve
models that account for forgetting by varying the rate of learning. The authors state, “It
has been shown that workers experience forgetfulness or decline in performance even
while they are making progress along a learning curve (Badiru et al, 2013).” The article
continues to add, “contemporary learning curves have attempted to incorporate forgetful
components into learning curves (Badiru et al, 2013).” The forgetting concept and the
possible use of these models are the groundwork for this research and leads to the

question of whether contemporary learning curve models that ignore this phenomenon
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are outdated. This thesis will attempt to demonstrate that modern learning curve models
which account for forgetting are more accurate in predicting actual manufacturing hours
(or relative costs) than conventional models. Subsequent chapters of this thesis will
examine such questions in an effort to identify possible areas of improvement for
learning curve estimation.

Learning curves are widely-used and even expected throughout DoD cost
estimates. This thesis does not intend to discredit the use of learning curves, but rather
determine if the commonly-used models can be improved upon throughout acquisition
programs. Air Force guidance on learning curve theory and application primarily
originates from the Air Force Cost Analysis Handbook (AFCAH) Chapter 8 and the DoD
Basic Cost Estimating Guidebook (BCE) Chapter 17. These two resources primarily
focus on two learning curve theories: unit theory and cumulative average theory. Unit
theory focuses on the cost of a given unit and is expressed with the same equation shown
in Equation 1; “The unit theory states that as the quantity of units doubles, the unit cost
decreases by a constant percentage” (BCE, 2007).

Conversely, the cumulate average theory focuses on the average cost of all units
produced up to a certain point in production. Cumulative average theory is often
attributed to Wright himself and his 1936 article “Factors Affecting the Cost of
Airplanes” in which he states, “as the total quantity of units produced doubles, the
cumulative average cost decreases by a constant percentage” (Wright, 1936). This
equation is essentially the same equation as the unit theory equation, but it differs in that
y and x represents cumulative average costs and unit values respectively. These are the

two primary methods currently accepted in DoD acquisition programs.
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As an example, assume an avionics manufacturer wants to produce eight units of
given aircraft component. The company believes the first unit will cost $100,000 and the
plant will experience an 80% learning curve. The chart below in Table 1 provides
estimates of both the unit and cumulative average (Cumm Avg) theories. The table
shows that the estimate for a given unit will always be higher with the cumulative
average theory because it takes into account all of the previous units produced at a higher
cost. In DoD cost estimating, cumulative average theory is considered conservative, but
it can also provide more consistent analysis of the data due to the fact that actual costs are

often reported in annual lot totals rather than individual unit costs.

Table 1: 80% Learning Curve Estimates (in $K)

Unit Unit Theory Cumm Avg Theory
1 S 100.00 | $ 100.00
2 S 80.00 | $ 90.00
3 S 70.21 | $ 83.40
4 S 64.00 | S 78.55
5 S 59.56 | $ 74.75
6 S 56.17 | S 71.66
7 S 53.45 | $ 69.06
8 S 51.20 | $ 66.82

Problem Statement/Research Objectives

Both unit and cumulative average theories are used by cost estimators to better
forecast total system costs, but in this fiscally constrained economic period, it may be
time for the DoD to examine more modern methods in its forecasting techniques. This
thesis will attempt to answer the question of whether DoD cost estimates can be
significantly improved upon with the application of alternative learning curve models.

Current DoD models assume a constant rate of learning, while many of the alterative



models incorporate some aspects of forgetting and thus a declining learning rate. With
that research focus, the following investigative questions are presented:
1- Can any of the modern learning curve models be applied to current DoD
aircraft cost estimating procedures? If so, which ones?
2- Are learning curve models that account for forgetting more accurate than the
conventional learning curve model commonly used today? If so, which ones?
3- Which learning curve model is most accurate at predicting the actual cost of

an acquisition system?

Subsequent chapters of this thesis will attempt to answer these questions as well as
outline the research findings that apply to each. These results could prove to be
paramount in an ongoing attempt to increase estimate accuracy and improve the

efficiency of DoD acquisition spending.

Methodology

Once the data are collected and standardized for this research, the analysis should
be straightforward for readers to follow. Each of the three models identified in the
screening process for this study will be used to predict total airframe lot costs for the F-15
C/D & E. The three models and their formulations will be explained in-depth in Chapters
Il and I11. Each of the predicted airframe lot costs for the three alternative models will
then be compared to Wright’s model and the actual lot costs to calculate the error, also
known as the residual. The percent error for each of the models will be compared to the
other models using an Analysis of Variance (ANOVA) and Dunnett means test, which

will each be explained in Chapter III. A significance value or alpha (o) of .05 will be



used to determine whether at least one of the models has a mean residual value different
from the rest.
Implications

If significant results are discovered as stated above, the final piece of analysis will
be to determine which model is the best predictor of actual production costs. One simple
way to compare the models will be to compare which model has the least amount of
standard error expressed as a percentage. The smallest percent error will reflect the most
accurate model. As aresult, if it is supported that one of the modern learning curve
models is a more accurate predictor than the conventional method used today, then those
results could be presented for further analysis and potentially enacted into future Air

Force and DoD guidance, or at a minimum provide a proxy for further research.

Assumptions/Scope

One of the greatest challenges of this research will be the application of variables
used for the more modern learning curve formulas. Several of these formulas use
constants or other learning factors that allow the models to compensate for the loss of
learning. Variables such as previous experience units and incompressibility factor, which
will be explained in Chapter 11, must be correctly predicted in order for the models to be
accurate. However, many of those factors will be estimated based on certain criteria that
is extracted from the data set or calculated given other values in the formula. Constants
and factors used in the models will be included based on the data provided and on

reasonable assumptions rooted in expert opinion. A further description of these factors



and the assumptions made to apply the formulas can be found in Chapter 111 of this
report.

This research contains a fairly narrow scope and focus solely on fighter aircraft
costs within the Air Force, specifically the F-15. Analysis will focus on the airframe
costs of the Air Force F-15 A-E spread over a 17 year period. This scope was narrowed
by the availability and applicability of data, which will be detailed in Chapter I11.
Application to additional platform types such as cargo aircraft or bombers and even
different system types such as ships, ground vehicles, or satellites is an area for potential

follow on research.

Conclusion

The primary goal of this thesis is to address the research question of whether the
application of modern learning curve models that account for performance decay predict
actual production costs more accurately than the conventional models often used today.
The data analysis involved will statistically compare the accuracy of three selected
learning curve models against the conventional model used throughout DoD. Significant
results and the identification of the most accurate model will provide a stepping-stone to
possible methodological changes within the Air Force and DoD and provide increased
accuracy of acquisition costs estimates.

The next chapter will provide a more in-depth look into the literature surrounding
the concepts of learning and unlearning in manufacturing both inside and outside the
government. Chapter 11 will also examine current DoD and Air Force guidance on

learning curve methodology and application of learning curves in cost estimates, as well



as provide in-depth descriptions of the three models presented. Chapter 111 will step
through the methodology used to test the investigative questions as well as provide
details into the data sets collected for the study. Chapter Il will also provide analysis of
the data set needed for the application of the alternative learning models. Chapter 1V will
contain the data results compiled from the methods described in Chapter I11 including
relevant charts and graphs from the analysis. The thesis will conclude with Chapter V,
which will contain a discussion of the significance of the results as well as the potential
impact of the findings on learning curve methodology both inside and outside of DoD.
Chapter V will also include areas that require additional research, limitations to this

study, and possible follow-on thesis topics.



I1. Literature Review

Introduction

Very few things in business are constant; performance is no exception to that
uncertainty. Performance varies externally from worker to worker, division to division,
and internally from day to day, season to season, or year to year. Take for instance the
production of an automobile. While the process and parts are always the same, a savvy
car buyer may want to avoid cars that were built on a Monday or Friday. The worker and
even the entire assembly line may suffer a loss in performance due to working at the
beginning or end of the week. This concept of uneven and even degrading performance
over time is the root of forgetting theory and the foundation for this research.

The Budget Control Act of 2011, which calls for a $1.5 trillion deficit reduction
over the next 10 years, has created a fiscally constrained environment in which
competition for congressional funding is higher than ever before. On an organizational
level, DoD acquisition programs have seen budget cuts up to ten percent, changes in
acquisition schedule, reduction in the number of systems purchased, and an increased
scrutiny over cost estimates. Adopting models and theories that potentially increase cost
estimating accuracy can prove beneficial to organizations and provide leverage for
leaders defending their budget position.

Learning curve theory has been debated and modified for decades; however, the
theory and its application to Department of Defense (DoD) cost estimating has remained
relatively unchanged and has not readily adapted to current industrial theories or trends.

While many unanimously agree with the psychological effects associated with learning

10



and process improvement, the application of learning toward manufacturing and
production is debated. In recent years, several learning curve models have attempted to
capture the recently-identified phenomenon of forgetting, in which a worker’s
performance begins to decrease over time.

This chapter will deliver an in-depth review of present day learning theories and
modern forgetting curve methodology including the models that attempt to relate the two
together. The theory and methodology will be followed by a description of the issue and
provide a look into current DoD learning methodology and application. This chapter will
examine any prior research in the area, look at similar approaches found in the literature,
as well as provide a description of other appropriate methodologies and applications
adopted over the past two decades, and conclude with obstacles and limitations to the

literature and research.

Theory Review

Learning Curves

Learning curves started being used by practitioners in the manufacturing world in
the late 1930s. At the height of the pre-World War |1 build-up, the importance of aircraft
production costs was realized to be equally as important as developing and producing the
aircraft themselves. T. P. Wright (1936) first identified the existence of the learning
relationship. He correctly theorized that as a worker performs the same task multiple
times, the time required to complete that task will decrease at a constant rate. The
workers are learning from previous experience and thus becoming more efficient in

completing the task. Wright also identified the 80 percent learning effect in aircraft
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production. He believed that organizations would observe a learning rate of 80%, or a
20% production improvement, as the number of units produced doubled (Wright, 1936).
This rule would serve as a suggested standard, but has been changed and modified over
time to fit different industries. A graphical representation of Wright’s 80% learning
curve where the first unit costs $100,000 can be seen below in Figure 1. As you can see
in the graph, when the number of units produced doubles (from 1 to 2, 2 to 4, 4 to 8 and

so on) the average cost to produce the unit is reduced by approximately 20%.

80% Cumm Avg Learning Curve
$120.00

— $100.00 Q
=
s
Z
& $80.00 fo}
@
% o}
o Q
2 56000 o)
cu 9.2 5
% Qg Q-Q O
= $40.00 Q-0
£
£
=
“ 52000

G-

0 2 4 6 g 10 12 14 16 18

Cummulative Unit Number

Figure 1: Wright’s 80% Learning Curve Example

This classical learning curve model, often referred to as Wright’s Learning
Model, gives mathematical representations of Wright’s basic learning theory. The model,
shown in Equation 1 below, follows the assumption that as the quantity produced

doubles, the cost will decrease at a constant rate.
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y = ax” 1)

Where

y = the cumulative average time (or related cost) after

producing x units

a = hours required to product (theoretical) first unit

X = cumulative unit number

b = log R/log 2 = learning index

R = learning rate (a decimal)
For the remaining sections of this chapter, Wright’s model will be referred to in its more
modern form of T, = T;x~P. This model can also be expressed linearly by transforming
the equation through simple algebra. This transformation to a linear relationship
becomes useful in regression analysis, in which practitioners attempt to fit a straight line
to the transformed data. The log-linear form of Wright’s equation, seen in Equation 2,
can be derived through simple logarithmic algebra:

Iny=Ina+blnx @)

Using the log-linear form of the equation, the constant learning curve rate can be seen in

linear form:

Log-Linear Learning Curve

45 @
o o

4 e} Q-0
o -0 9090000
35

2.5

In(y)

1.5

05

0 0.5 1 15 2 2.5 3

In(x)

Figure 2: Log-Linear Learning Curve Example
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The graph shows that Wright’s Learning Curve assumes a constant learning rate over
time illustrated by the straight line. At any point in production, the learning rate, and thus
performance, are constant.

J. R. Crawford (1944) adopted a similar learning curve approach in the individual
unit model that he introduced in a training manual at Lockheed Martin. Crawford’s
model uses the same basic formula as Wright’s model, but attempts to estimate individual
times (or related cost) to produce a given unit by changing which variables are input into
the model. An example of this model can be seen in Figure 3 below. This model proved
to be beneficial because it can be applied to individual workers or projects rather than to

the organization as a whole (Jaber, 2011).

80% Unit Theory Learning Curve

$120.00

$100.00 Q
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Figure 3: Unit Theory Learning Curve Example

Both unit theory and cumulative average approaches are used in acquisition cost
estimating depending on the amount and validity of historical program data. However,
contractor reports often come in the form of lots. This form of data is usually more
advantageous to using a cumulative average learning curve. The AFCAH illustrates how

14



such data can be used as a lot average in the cumulative average learning curve theory
rather than finding a theoretical lot midpoint as with the unit theory.

[Alpply the Cum Avg formulation to contractor lot information, add the

hours/costs for a given lot to the hours/costs of all previous lots. The hour/cost

plot value (Y axis) of a given lot is the total hours/costs through that lot divided
by the last unit number of that lot, while the unit plot point (X axis) is the last unit
number of that lot. Lot midpoints are not used with the Cum Avg formulation

(AFCAH, 2007).

Furthermore, Hu and Smith (2013) identify a method for plotting and predicting
learning curves using lot data. “If the cumulative average costs for all consecutive lots
are present, then the direct approach can be applied to the lot data with the last unit in the
lot as the lot plot point (LPP).” This LPP is the same as unit plot point described in the
AFCAH and provides a means for plotting lot data against individual units (on the X axis)
in order to determine the learning parameters. Hu and Smith describe this process saying,
“T1, b, and other exponents can be obtained directly from the ordinary least squares
(OLS) method by regressing [cumulative average costs] vs. cumulative quantities” (Hu &
Smith, 2013). The application of this process to the F-15 data will be described in greater
detail in Chapter I1I.

Since Wright’s initial theory, several other models have been adopted in learning
curve literature. One of the earliest modifications to the learning curve model came

along with introduction of the Stanford-B model shown below in Equation 3.
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T; =Ti(x +B)™ (3)
Where:

T; = the cumulative average time (or related cost) after

producing x units

T; = hours required to product (theoretical) first unit

X = cumulative unit number

b = log R/log 2 = learning index

B = equivalent experience units (a constant); slope of the

asymptote of the curve.

(Yelle 1979)

This model is first attributed to Louis E. Yelle (1979) during a government funded
research initiative at Stanford. It introduces the equivalent experience unit parameter to
Wright’s original equation. This parameter, represented by B, is a constant from zero to
ten accounting for the number of units produced prior to start of production of the first
unit and is the slope of the asymptote of the learning curve. If this factor is zero, the
model reverts back to Wright’s original learning model shown earlier in Figure 1 (Badiru
2012). Conversely, if the factor is ten, the effects of learning will begin at the eleventh
unit and the decrease in performance will occur much sooner causing the learning curve
slope to flatten quickly. The effect of a high B constant on the same data set used earlier
can be seen below is Figure 4, which assumes that 10 units have been produced on a
previous contract. The prior experience parameter allows the formula to account for prior
learning and essentially continue learning from some previous point in time rather than
starting the learning process over from zero. Chapter I11 will address the use of the

equivalent experience unit parameter in this study and how those values were determined

for each of the models.
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80% Stanford-B
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Figure 4: Stanford-B Model Example with B=10

When the Stanford-B model is graphed in log-linear form as shown in Figure 5, one can
see a slow build up in performance that is attributed to the production of prior experience

units.

Stanford-B Log-Linear Model
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Figure 5: Stanford-B Model Example in Log-Linear Form

Another variation of learning curve models is DeJong’s Learning Formula.

DeJong’s model, seen below in Equation 4, is another derivation from Wright’s original
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function in which the incompressibility factor is introduced. Represented by the constant
M, this factor represents the relationship between manual processes and machine-
dominated processes. Incompressibility factor is a constant between zero and one in
which a value of zero implies a fully manual operation and a value of one denotes a
completely machine dominated operation (Badiru et. al, 2013).

Te =Ti[M + (1 - M)x™"] (4)

Where:

T; = the cumulative average time (or related cost) after
producing x units

T; = hours required to product (theoretical) first unit
X = cumulative unit number
b = log R/log 2 = learning index
M = incompressibility factor (a constant)
Wright’s original model, which inherently assumes an incompressibility factor of

zero, fails to account for the advances in manufacturing technology that drive a major
percentage of the production industry. A graph with an incompressibility factor of 0.70 is

shown in Figure 6 to illustrate the difference in the models.
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Figure 6: DeJong Learning Curve Example with M =0.70
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As the graph demonstrates, a high incompressibility factor reduces the effects of learning
and causes a much quicker flattening of the curve. Figure 7 below shows the log-linear
graph from the model, in which the loss of learning and decrease in performance can be
seen over time.

Production of something as complex as a military aircraft, and a fighter aircraft in
particular, will likely fall much closer to zero than one on that scale due to the
specialization needed in the production process similar to that of a high end sports car.
However, there is no literature on the exact value of that figure for aircraft production and
may vary from company to company. Therefore, this research will assume a highly
manual process and look at a range of incompressibility factors (from 0.0 to 0.2) to see if
changes in M has an effect on the results. Explanation of how the factors for this study
were determined can be found in the methodology section of Chapter IlI.
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Figure 7: DeJong Model Example in Log-Linear Form
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One of the potential weaknesses of the two previous models is that the Stanford-B model
does not account for incompressibility, and DeJong’s model does not account for
previous units produced.

The S-Curve model, however, accounts for both of these factors together. Carr
(1946) believed that there was an error in Wright’s constant learning assumption and
hypothesized that the effects of learning and thus performance followed the S-Curve

shape seen below in Figure 8.
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Figure 8: Carr’s (1946) S-shaped Learning Curve

The S-Curve model assumes a gradual build up in the early stages of production followed
by a period of peak performance. This build up is typically attributed to personnel and
procedural changes as well as time needed for new machinery set-ups that occur early in
the production process. Using the theory hypothesized by Carr, Towell and Cherrington
(1994) developed a model that followed the S shaped pattern. The S-Curve model,
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shown below in Equation 5, assumes that learning takes the S-shaped curve often seen in
a cumulative normal distribution.

At the top of the curve, from points A to B, there is a slow build up period before
the worker/ organization can be fully proficient in accomplishing the task. Then, from
points B to C, there is a gradual improvement in production time due to repetition of the
process. The trailing off effect, from points C to D, is referred to as the slope of
diminishing returns and is similar to the trends seen on the tail of the log-linear form of
the DeJong Model; after a worker or organization has reached maximum efficiency, he or

she will experience forgetting and other inefficiencies in their production

T,=T,+M(x+B)™? (5)

Where:

T; = the cumulative average time (or related cost) after
producing x units

T; = hours required to product (theoretical) first unit

X = cumulative unit number

b =log R/log 2 = learning index

M = incompressibility factor (a constant)

B = equivalent experience units (a constant)

Badiru et al describe the slope of diminishing returns with the following scenario:
[Clonsider when a worker begins learning a new task. The individual is slow
initially at the tail end of the S-Curve, but the rate of learning increases as time
goes on, with additional repetitions. This helps the worker to climb the steep-
slope segment of the S-Curve very rapidly. At the top of the slope, the worker is
classified as being proficient with the learned task. From then on, even if the
worker puts much effort into improving upon the task, the resultant learning will

not be proportional to the effort expended. (Badiru et al, 2013)
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This concept captures the impact of forgetting. Even as the worker is progressing along
the learning curve, forgetting will eventually take place. Use of this model in research
may provide a more accurate look at the actual learning and forgetting that occurs over a
production life-cycle.

Several other learning models have been identified in other literature. Models
such as Levy’s adaptation function which uses a k constant to level off the learning curve,
Knecht’s upturn model that uses a ¢ constant to reverse the diection of the learning curve
at higher cumulative volumes, Glover’s learning formula which applies individual
learning results at an organizational level,

Pagel’s Exponential Function which uses parameters based on empirical analysis,
and the Cobb-Douglas model which applies independent variables to the learning
function have all been used and applied in other areas of research (Kar 2007). The three
models that will be used in this research will be the Stanford-B Model, DeJong’s
Learning Formula, and the S-Curve Model. A graphical comparison of these models is
shown below in Figure 10. Several of the other models require additional information
and data that is not available. Also, the three models listed have similar parameters that
can be easily identified or assumed making them more useful to cost estimators who put
them to practical use. The goal is to make the estimator’s job easier, not complicate it
with a series of equations that cannot easily be explained to decision makers. The
following section will investigate some of the literature regarding forgetting theory and

some of the modern forgetting models and how they are used.
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Figure 9: Learning Curve Models (Badiru 1992)

Forgetting and Forgetting Curve Models

Learning and unlearning often take place simultaneously in manufacturing and
production environments. Learning has been recognized and modeled in these
environments, but the unlearning, or forgetting, aspect is often neglected. Forgetting
simply refers to the concept that workers will inevitably see a decline in performance
(from many potential sources) while still theoretically moving along the learning curve
(Badiru 1995). Badiru (2012) also expresses this concept visually in a chart that displays
a worker’s performance over time shown below in Figure 10 below. Unlike the constant
rate of learning first proposed in Wright’s original model, this figure illustrates that a
worker or organization will experience intermittent periods of forgetting that cause the

performance to be lower than anticipated
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Figure 10: Effects of Forgetting on Performance

. This decline in performance leads to longer production times and thus higher costs than
estimated. This assumption may be one of many reasons that DoD cost estimates have
been inaccurate in the past. Understanding the forgetting phenomenon and successfully
applying it to Air Force and DoD acquisition programs can be an integral step in
improved estimate accuracy.

In recent decades, several learning curve models have been applied to a number of
manufacturing and production settings. Increasingly, contemporary models have
attempted to incorporate the forgetting concept to measure the impact of forgetting on
overall performance. Jaber and Sikstrom (2004) identify the potential for forgetting
curve research.

Learning and forgetting processes have received increasing attention by

researchers and practitioners in the field of production and operations

management for the last two decades. A handful of theoretical, experimental and
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empirical mathematical forgetting models have been developed, with no

unanimous agreement among researchers and practitioners on the form of the

forgetting curve.

One potential cause for forgetting is production breaks. Nembhard and Osothslip
(2001) performed a comparative study of 14 different forgetting curve models designed
to account for production breaks. The study tested the models against the three pre-
determined criteria of efficiency, stability and parsimony. The study showed that the
Recency Model produced the best results and had the ability to capture multiple
production breaks along the same learning curve (Nembhard and Osothslip 2001).
However, the limitations of this model were scrutinized by Svikstrom and Jaber who
argued that the findings were not consistent with fundamental memory literature and
there is still no consensus today on the best forgetting model.

Many forgetting models have useful aspects from an internal perspective in the
private sector, but their use may be limited for the government. These models are used to
predict starting costs after production breaks or evaluate individual performance. One
argument against the use of forgetting curves in military production is that while military
budgets are turbulent, military production is fairly constant and spans over several years.
While production numbers may change and production schedules may slip and cause
programs to extend the life of their contract, production breaks are very rare. Benkard
(2000) explains, “Because of the regularity in military programs, organizational
forgetting and spillovers of production experience are less apparent.” This makes the
application of forgetting models difficult and at times inappropriate within the DoD.

However, this research applies the concept of forgetting over time even while progressing
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along a learning curve rather than forgetting due to production breaks. The theory at
work in this research is that learning rates are not constant (due to forgetting) and models
that do not assume a constant learning rate may be more applicable to DoD estimating.

There is some DoD literature regarding learning lost due to production breaks
despite how rarely they occur. DoD guidance references the Anderlohr method as a way
to determine the amount of learning lost during a production break. George Anderlohr
(1969) identifies five factors that influence the amount of learning lost: personnel
learning, supervisory learning, continuity of production, methods, and special tooling.
Personnel learning refers to the physical loss of personnel due to regular movement or
lay-offs, and supervisory learning refers to supervisory personnel lost due to regular
movement. Continuity refers to the production line itself, and how closely integrated the
workers and stations are. The methods of production are typically recorded and
documented, so there is very little if any learning lost in this area. Special tooling refers
to wear and physical damage of tooling and the possible need of newer and better
equipment.

These five factors are weighted as a percentage summing up to 100% and then
those weights are multiplied by the percentages of learning lost in each category. The
sum of all of the percentages reflects the total learning lost within the organization. Once
this percentage is calculated, it is added to the production cost of the last unit produced to
estimate the cost of the first unit after production break. The programs used in this
analysis do not have any production breaks and therefore calculating learning lost using
the above methods is not required. However, this is significant because it begins the

progression towards accepting a learning rate that is not constant and accepts the
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principle behind forgetting within the DoD. Conversely, up to this point, that
methodology has not been applied to the learning curve models used. This research will
look to build upon that progress and assess if modern models can be applied to DoD cost

estimates. The next section will address this issue and the purpose of this research.

Problem Statement

Learning curve literature and theory have evolved over the decades and the
negative effects of forgetting are widely accepted by researchers and practitioners alike.
Technology in both aircraft design and manufacturing has also continued to improve over
the years since Wright first identified the relationship between learning and production
costs. However, some learning curve methodology has failed to keep pace with this
improvement. DoD guidance in both the AFCAH and BCE refer to Wright’s model as the
appropriate learning curve application for cost estimators. While the validity of the
Wright’s original theory has long been accepted, the need to integrate the impact of
forgetting into learning curves to improve accuracy cannot be ignored.

Badiru et al address the issue saying, “In defense-contractor manufacturing of
airframes, where a mix of contract employees, government civilians, and military
coordinators can exist, the issues of overall learning, unlearning, or half-learning can
become very significant” (Badiru et al, 2013). In a time of such financial turmoil and
uncertainty amid government furloughs and sequestration, exercising every tool and
method available to improve estimating accuracy should be paramount. Badiru et al also
address the need for forgetting curves within defense cost estimating by adding, “With

life-cycle costing that stretches over generations of airframes, breaks in production are
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not the exception, but rather, the rule. Coping with these production gaps and properly
estimating the associated costs is of primary concern.” This paper will address that very
issue of forgetting curves in DoD aircraft production. Later chapters investigate whether
defense cost estimators should incorporate more modern learning curve models into their
estimate and which model is the best predictor.

The Air Force initiated the Better Buying Power (BBP) Initiative in 2010. This
initiative, currently under its third iteration, sets forth a group of core acquisition
principles aimed at increasing affordability and making the DoD acquisition process
more efficient. BBP encourages innovation and elimination of wasteful practices. BBP
consists of seven core focus areas: Achieve affordable programs, control costs throughout
product lifecycle, incentivize productivity and innovation in industry and government,
eliminate unproductive processes and bureaucracy, promote effective competition,
improve tradecraft in acquisition of services, and improve professionalism of the total
acquisition workforce.

One possible application from the findings of this research is in should-cost
estimates. The should-cost initiative falls within the cost control focus of BBP and is
focused around setting cost savings goals. Should-cost is the concept of setting cost
targets that are below those figured from independent and internal program cost estimates
(Better Buying Power 3.0, 2013). These targets are achieved through efficiencies and
changes in DoD practices and culture that center around driving down program costs.
Finding a more accurate tool for predicting the effects of learning may be a way of setting

and achieving these targets.
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Towill and Cherrington (1994) identify three primary sources for estimating error.
The first of which being errors due to inevitable fluctuations in performance that occur
naturally. Estimators have little if any control over this source. The second is
psychological, physiological or environmental cause that affect deterministic errors.
These can be accounted for by estimators, but again this lays largely outside of their
control. The final source for prediction error is modelling error, meaning that the form of
the model used may be inappropriate and therefore not fit the trend line of the data. This
thesis will address the third issue and determine the model form which is most
appropriate to fit Defense aircraft over a production life.

Addressing the issue identified by Towill and Cherrington led to the necessity for
this research. This thesis will focus around a comparison of three modern learning curve
models (Stanford-B, DeJong, and S-Curve) to Wright’s learning curve model which is
still used in DoD cost estimating today. This comparison has led to research questions
mentioned in Chapter I and the following hypotheses:

H1: One or more of the four models compared will have Mean Average Percent

Error (MAPE) significantly different from the others.

H2: One of more of the modern learning curve models will be significantly more

accurate than Wright’s learning model in predicting aircraft costs.

H3: The S-Curve model will have the lowest MAPE and prove to be the most

accurate predictor of aircraft costs over time.
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Conclusion

This chapter serves as the foundation for the rest of this paper by providing
readers with a basic understanding of some of the primary concepts that lead to the
research. Learning and forgetting are both evident in aircraft manufacturing and failing
to incorporate both into cost estimating can be detrimental to the accuracy of future cost
estimates. The following chapter will give a detailed description of the dataset used, the
methods applied to compare the four models and any assumptions or ranges of values that

were used in each of the models.
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I11. Methods

Introduction

The primary theory behind this research is that modern learning curve models,
which do not assume a constant learning rate, provide a more accurate estimate of annual
aircraft production costs than the conventional learning curve models used by estimators
today. There is a growing interest in finding ways to improve the accuracy of cost
estimates within the DoD; one way of doing so may be improving the accuracy of
learning curves, which are used in a large majority of estimates, especially those
extending over long life-cycles (sometimes over 30 years). If finding a more accurate
forecasting model is possible, then finding which model is best will be of great value.
Part of that theory is to test whether the results of these models are significantly different,
and if so, which one is the best predictor. Current Department of Defense (DoD)
methodology institutes Wright’s basic learning curve equation of T; = T;x?, which is
described in detail in Chapter II. While Wright’s model has long been used successfully,
it neglects to include the effects of forgetting, or a decline in performance over time.
Forgetting theory has several applications that can be applied in multiple learning curve
models that do not assume a constant rate of learning.

The initial task is to determine which of the models should be used in comparison
to conventional learning curves, and how to improve upon conventional learning curve
application. Several learning and forgetting curve models were identified for application
in this study, but three models were selected for analysis based on expert opinion from

cost analysts who confirmed the three models used were applicable to cost estimators and
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the relevance to the available data from Life Cycle Management Center Cost Staff
(AFLCMC/FCZ) at Wright-Patterson AFB, OH (WPAFB) and other on-line repositories:
the Stanford-B model, DeJong’s Learning Formula, and the S-Curve model. The
conventional model lacks the application of key factors that affect learning: prior
experience and incompressibility. Accounting for these factors can reduce the amount of
estimating error for airframe costs, and even an error reduction of up to 5% could save
millions of dollars in cost overruns over the life of a program. The three models above
account for one or more of these un-learning factors, which can be easily determined by
cost estimators and quickly applied to their models. That applicability and ease of use is
the another driver behind using the three afore mentioned models in this study. Providing
a model that takes hours or days of secondary analysis and data collection is of little
practical value to estimators, even if it is more accurate. This chapter explains how those
models will be applied to the data in this study, which methods will be used to compare
them, the data analyzed in this research, and limitations in the data that will need to be

addressed.

Data Collection

Having identified the three models for analysis, a key step in the process is
collecting the data needed to complete a meaningful and useful comparison. When
initially approached by the members of AFLCMC/FCZ to find a more accurate way of
predicting the effects of learning, they were confident that they had a great deal of
relevant data to assist with the task. AFLCMC/FCZ provided learning curve data for 17

Major Acquisition Programs (MDAPS). These data files consisted of Learning Curve

32



Reports of Annual Unit Cost (AUC) averages as well as the Special Program Office’s
(SPO) estimate methods using the conventional learning curve model. Many of the
programs were already completed and only those with ten or more years of data had
enough information to be useful. However, those costs were the unit flyaway cost, for
which learning curves have very little practical use. A flyaway cost for aircraft consists
of prime mission equipment such as basic structure, propulsion and electronic systems,
systems engineering and program management (SE/PM), allowances for engineering
changes (ECO) and warranties (AFSC Cost Estimating Handbook Series, 1986). Areas
such as SE/PM, ECO and warranties do not experience learning in the way the learning
models depict and therefore make the use flyway costs in this analysis irrelevant.
Airframe costs were chosen for this analysis for a number of reasons. First, using
airframe costs allows for the assumption of homogeneity over multiple model types. Itis
safe to assume that the F-15 A/B, C/D &E all have similar if not identical airframes
making it easier to possible to compare the costs and continue the assumption of learning.
Also, in foreign military sales (FMS) to the allies of the U.S., the airframe of the aircraft
will likely not change despite changes to avionics or electronics systems. Also, Badiru et
al (2013) state, “as rapid emergence of new technology necessitates that airframe designs
and manufacturing processes be upgraded frequently... the opportunity for forgetting
clearly increases.” Therefore, the application of airframe costs to this study will provide
results consistent with that theory.

After some initial research, fighter aircraft became the primary platform-type for
this analysis for a multitude of reasons. The first reason being that several years of

production data exist and hundreds of units were produced for these aircraft; over 1150
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aircraft were produced in a twenty year span for the F-15 alone. Bailey (1989) stated that
forgetting is a function of both the amount of learning and the passage of time. This
makes the analysis of aircraft production cycles spanning over several years a prime
candidate to exhibit the declining performance rate attributed to forgetting. The second
reason is that there are several models of fighters (F-15 A-E and F-18 A-F to name a few)
all of which are variants of the same basic airframe making the assumption for
comparison of airframe costs from model to model possible. The final re