
A MONOCULAR SLAM METHOD TO
ESTIMATE RELATIVE POSE DURING
SATELLITE PROXIMITY OPERATIONS

THESIS

Scott J. Kelly, Captain, USAF

AFIT-ENY-MS-15-M-219

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENY-MS-15-M-219

A MONOCULAR SLAM METHOD TO ESTIMATE RELATIVE

POSE DURING SATELLITE PROXIMITY OPERATIONS

THESIS

Presented to the Faculty

Department of Aerospace Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Scott J. Kelly, B.S., Mechanical Engineering

Captain, USAF

March 9, 2015

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENY-MS-15-M-219

A MONOCULAR SLAM METHOD TO ESTIMATE RELATIVE

POSE DURING SATELLITE PROXIMITY OPERATIONS

THESIS

Scott J. Kelly, B.S., Mechanical Engineering
Captain, USAF

Committee Membership:

Dr. Jonathan Black
Chair

Dr. Alan Jennings
Member

LtCol Daniel Doyle, PhD
Member

AFIT-ENY-MS-15-M-219

Abstract

Automated satellite proximity operations is an increasingly relevant area of mis-

sion operations for the US Air Force with potential to significantly enhance space

situational awareness (SSA). Simultaneous localization and mapping (SLAM) is a

computer vision method of constructing and updating a 3D map while keeping track

of the location and orientation of the imaging agent inside the map. The main ob-

jective of this research effort is to design a monocular SLAM method customized for

the space environment. The ultimate goal is to design a complete control system for

satellite proximity operations and provide the ability to perform accurate motion and

structure estimation on an unknown space object based on relative motion, leveraging

this SLAM method. The method developed in this research will be implemented in

an indoor proximity operations simulation laboratory. Development is constrained to

a monocular system to minimize the required size, weight, and power (SWAP) and

allow implementation on a spacecraft as small as a CubeSat. A run-time analysis is

performed, showing near real-time operation. The method is verified by comparing

SLAM results to truth vertical rotation data from a CubeSat air bearing testbed.

An adjustable parameter sensitivity analysis is performed as well. This work enables

control and testing of simulated proximity operations hardware in a laboratory en-

vironment. Additionally, this research lays the foundation for autonomous satellite

proximity operations with unknown targets and minimal additional SWAP require-

ments, creating opportunities for numerous mission concepts not previously available.

iv

Acknowledgements

I would like to thank of my friends, family, and faculty for their help and support

during my thesis work. Thank you Dr. Black for your guidance and motivation

while I worked to create these results. Thank you Dr. Jennings for going above and

beyond with your time commitment as only a committee member. Thank you mom

for all of the time spent proof reading. Thank you to my peers for contributing to the

productivity of brainstorming sessions. Finally, a big thank you to my girlfriend and

my dog for the continued support while withstanding a moderate level of neglect.

Scott J. Kelly

v

Table of Contents

Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Tables . xii

List of Abbreviations . xiii

I. Introduction . 1

1.1 Background . 1
1.1.1 The GEODETICA Tool . 2

1.2 Research Focus . 3
1.2.1 Motivation to Use Computer Vision for Proxops 3
1.2.2 Proxops From a CubeSat . 4

1.3 Goals . 6
1.4 Document Layout . 7

II. Literature Review . 8

2.1 Relevant Theory . 8
2.1.1 The Pinhole Camera Model . 8
2.1.2 Multiple View Geometry . 10
2.1.3 Pose Estimation . 15
2.1.4 Feature Detection . 23
2.1.5 Two-dimensional Point Tracking . 25
2.1.6 Binary Feature Descriptors . 27
2.1.7 Bundle Adjustment . 29

2.2 Similar Approaches . 31
2.2.1 Survey of Monocular SLAM Research . 32

2.3 Summary . 33

III. Methodology . 35

3.1 Research Platform, Devices, and Software . 35
3.1.1 Hardware . 35
3.1.2 Software . 36

3.2 Creating Robust Point Tracks in a Video Sequence 37
3.2.1 Initial Point Detection . 38
3.2.2 Minimizing Point Detections to a Region of

Interest . 39

vi

Page

3.2.3 Point Tracking . 41
3.2.4 Methods to Eliminate Point Drift . 43
3.2.5 Handling Additional Outliers . 46
3.2.6 Detecting New Points . 47

3.3 Simultaneous Localization and Mapping . 48
3.3.1 Structure and Motion Initialization . 48
3.3.2 Sequential Model Construction and Pose

Estimation . 53
3.3.3 Bundle Adjustment Integrated with SLAM 57

3.4 Method Summary . 59

IV. Results and Analysis . 61

4.1 Results of Space-Related Video Sequences . 61
4.1.1 HOMER . 61
4.1.2 Orbital Express . 65
4.1.3 PRISMA . 73

4.2 Accuracy Analysis Using a CubeSat Air Bearing Testbed 76
4.3 Accuracy Analysis Using Synthetic Video Sequences 81
4.4 Run-time Analysis . 88
4.5 Parameter Sensitivity Analysis . 90
4.6 Summary . 92

V. Conclusions and Recommendations . 93

5.1 Key Advantages . 93
5.2 Key Limitations . 94
5.3 Future Work . 96
5.4 Summary . 97

Appendix A. Dependencies . 98

Bibliography . 99

vii

List of Figures

Figure Page

1 Example RSO Discrimination and Tracking in a
Simulated Scenario [40]. 3

2 A Unique Way to Launch CubeSats: From the ISS [31]. 5

3 Increased Uncertainty As Relative Camera Separation
Decreases [16]. 6

4 The Pinhole Camera Model [16]. 9

5 The Epipolar Plane. Depth Information is Revealed
From Multiple Views [16]. 13

6 Initial Set of Point Correspondences (Credit: S. Kelly). 18

7 Point Correspondence Inliers After RANSAC (Credit:
S. Kelly). 18

8 Relative Rotation and Translation From Essential
Matrix Decomposition [10]. 20

9 Decomposing the Essential Matrix: Two Views of the
Twisted Pair Ambiguity. 20

10 The FAST Corner Detector [39]. 25

11 Different BRIEF Sampling Approaches Tested in [12]. 29

12 Hamming Distance Distribution for Matching and
Non-Matching Points [12]. 30

13 Sample Image for Feature Extraction. 38

14 Six Features from Figure 13. 38

15 FAST Algorithm Applied for Corner Detection. 39

16 FAST Algorithm Applied for Corner Detection in a
Motion-Based Region of Interest. 40

17 KLT Track Points. 42

viii

Figure Page

18 The History of a Drifting Translation-Only KLT Track
from Figure 17. 43

19 Hamming Distance with No Feature Updates on the
Drifting Points from Figure 18. 45

20 Hamming Distance with Motion-Based Feature
Updates. Point Tracks End When Hamming Distance
Threshold is Exceeded. 45

21 FAST Algorithm in Sub-regions with Point Density
(Original Picture Credit: [37]). 48

22 Increased Uncertainty As Relative Camera Separation
Decreases [16]. 49

23 Epipolar Lines Shown For Fundamental Matrix
Estimation. 50

24 Structure and Motion Initialization. 51

25 Updated Camera Poses Based On Initialization Point
Cloud. 54

26 Initial Point Cloud and First Subsequent Point
Projection. 55

27 Isolating Targets From Dynamic Backgrounds Using
Point Life. 57

28 HOMER Video Sequence [20]: Sample Frames. 63

29 HOMER Video Sequence [20]: SLAM Results. 63

30 HOMER Video Sequence [20]: Point Cloud. 64

31 Orbital Express Concept [33]. 66

32 Orbital Express Simulation [33]: Sample Frames. 67

33 Orbital Express Simulation [33]: SLAM Results. 67

34 Orbital Express Simulation [33]: Point Cloud. 68

35 Orbital Express Proxops Video [33]: Sample Frames. 69

ix

Figure Page

36 Orbital Express Proxops Video [33]: SLAM Results. 69

37 Orbital Express Proxops Video [33]: Point Cloud. 70

38 Orbital Express Self Inspection Video [33]: Sample
Frames. 71

39 Orbital Express Self Inspection Video [33]: SLAM
Results. 71

40 Orbital Express Self Inspection Video [33]: Point Cloud. 72

41 Prisma Video Sequence [37]: Sample Frames. 74

42 Prisma Video Sequence [37]: SLAM Results. 74

43 Prisma Video Sequence [37]: Point Cloud. 75

44 The AFIT 6U CubeSat Air Bearing Testbed. 77

45 SLAM Results of a Single Axis CubeSat Rotation Test. 78

46 Single Axis CubeSat Rotation Test Results. 79

47 Single Axis CubeSat Rotation Test Results. 79

48 SLAM Accuracy Analysis of the CubeSat Single Axis
Rotation Test Series. 80

49 CubeSat Structural Point Cloud Dimensional Analysis. 81

50 Synthetic Sequence 1 (Simple Motion): Sample Frames. 83

51 Synthetic Sequence 1 (Simple Motion): SLAM Results
and Known Poses. 83

52 Synthetic Sequence 1 (Simple Motion): Vertical Axis
Rotation Results. 84

53 SLAM Accuracy Analysis of Synthetic Sequences. 84

54 Synthetic Sequence 15 (Complicated Motion & Multiple
Objects): SLAM Results and Known Poses. 85

55 Synthetic Sequence 17 (Dynamic Background): Sample
Frames. 87

x

Figure Page

56 Synthetic Sequence 17 (Dynamic Background): SLAM
Results and Known Camera Poses. 87

57 SLAM Sequence Run-time Results with Video
Resolution. 89

58 Sensitivity Analysis of the Relative Pixel Motion
Threshold for Initialization. 91

59 Orbital Express Self Inspection Video [33]: Saturation
from Direct Sunlight in the FOV. 95

xi

List of Tables

Table Page

1 Computer Specifications . 35

2 Camera Specifications . 36

3 Lens Specifications . 36

xii

List of Abbreviations

Abbreviation Page

SWAP size, weight, and power . 1

NASA National Aeronautics and Space Administration 1

AFRL Air Force Research Laboratory . 2

DARPA Defense Advanced Research Projects Agency 2

ANGELS Automated Navigation and Guidance Experiment
for Local Space . 2

AVGS Advanced Video Guidance Sensor . 2

DART Demonstration for Autonomous Rendezvous
Technology . 2

ISS International Space Station . 2

GEODETICA General Electro-Optical DEtection, Tracking,
Identification, and Characterization Application 2

AFIT Air Force Institute of Technology . 2

RSO resident space object . 3

RLS Rendezvous LiDAR Sensor . 4

CV computer vision . 4

SLAM simultaneous localization and mapping . 6

CCD charge-coupled device . 9

PnP perspective-n-point . 15

SVD singular value decomposition . 19

SIFT Scale Invariant Feature Transform . 23

SURF Speeded-Up Robust Features . 23

FAST Features from Accelerated Segment Test . 24

KLT Kanade-Lucas-Tomasi . 26

xiii

Abbreviation Page

BRIEF Binary Robust Independent Elementary Feature 28

SFM structure from motion . 31

GPU graphics processing unit . 32

PTAM Parallel Tracking and Mapping . 33

HOMER Holonomic Omni-direction Motion Emulation
Robot . 38

LEO low Earth orbit . 39

PRISMA Prototype Research Instruments and Space
Mission technology Advancement . 47

ASTRO Autonomous Space Transport Robotic Operations 65

NEXTSat Next Generation Satellite and Commodities
Spacecraft . 65

RMS root mean squared . 77

xiv

A MONOCULAR SLAM METHOD TO ESTIMATE RELATIVE

POSE DURING SATELLITE PROXIMITY OPERATIONS

I. Introduction

1.1 Background

The ability of a satellite to rendezvous with another satellite provides the Air

Force with an immense set of capabilities. Performing maneuvers near another satel-

lite, known as proximity operations or proxops, allows the user to collect data and

interact with the target satellite in many ways that are impossible from the surface

of the Earth. Reliable proxops technologies enable numerous mission concepts, some

of which include inspection and maintenance satellites, refueling, and debris removal.

The ability to perform these operations autonomously further enhances mission ca-

pabilities and minimizes the required on-orbit size, weight, and power (SWAP).

However, a satellite performing proxops with an unknown or uncooperative space

object must be able to, at a minimum, estimate its relative position with respect to

the target object to be able to successfully perform relative navigation. Additionally,

a spacecraft must be able to accurately estimate the target object’s orbit to develop

a maneuver strategy. As the distance between the two satellites decreases, knowledge

of the target spacecraft’s orientation and dimensions may be required as well to avoid

a collision, especially if docking or other physical interaction is required.

In the early years of space exploration, spacecraft rendezvous was performed be-

tween two manned spacecraft under the command of an astronaut [15]. In more recent

years, missions from the National Aeronautics and Space Administration (NASA), the

1

Air Force Research Laboratory (AFRL), the Defense Advanced Research Projects

Agency (DARPA), SpaceX, and Orbital Sciences Corporation aim to advance prox-

ops technology and demonstrate capability to rendezvous with various spacecraft,

each with different levels of autonomous operation and sensor data from the target

satellite (hence a cooperative target).

AFRL’s Automated Rendezvous System uses an active LiDAR sensor on board

XSS-11 (eXperimental Satellite System 11), which is matched to a known model of

the spacecraft to estimate the relative pose between the two spacecraft [1]. AFRL

more recently launched the Automated Navigation and Guidance Experiment for Lo-

cal Space (ANGELS) satellite which hosts a sensor payload to evaluate techniques

for detecting, tracking, and characterizing space objects [2]. DARPA utilizes a sys-

tem they developed called the Advanced Video Guidance Sensor (AVGS) on board

their Orbital Express spacecraft and the Demonstration for Autonomous Rendezvous

Technology (DART) spacecraft, which irradiates retro-reflectors of a known orienta-

tion with a laser to solve the relative pose problem [11]. The SpaceX Dragon capsule

and Cygnus by Orbital Sciences Corporation both send unmanned resupply capsules

to the International Space Station (ISS) that perform autonomous rendezvous (also

based on a known model of the target) until within reach of a robotic arm on the ISS.

1.1.1 The GEODETICA Tool.

The General Electro-Optical DEtection, Tracking, Identification, and Character-

ization Application (GEODETICA) is a tool being developed by the Air Force Insti-

tute of Technology (AFIT), Virginia Tech, and AFRL in order to provide a software

suite for processing unresolved space-based imagery. Currently, the tool detects and

tracks objects in a continuous stream of unresolved imagery (long range images in

which target objects and stars appear as points or streaks) [40]. With the track point

2

Figure 1. Example RSO Discrimination and Tracking in a Simulated Scenario [40].

information, the tool can perform attitude determination, angular rate estimation,

and resident space object (RSO) detection. Figure 1 shows a simulated RSO dis-

crimination and tracking scenario. The concept for the future of GEODETICA is

a complete end-to-end tool to perform the image processing and CV algorithms for

RSO detection, long distance rendezvous, and close range proxops with an uncoop-

erative space object, and provide the information for the autonomous control of the

spacecraft throughout the process.

1.2 Research Focus

1.2.1 Motivation to Use Computer Vision for Proxops.

The proxops methods listed in Section 1.1 have limitations. A LiDAR sensor

for range finding requires an additional sub-system with additional hardware. Size,

weight, and power each come at a very expensive premium in space. AVGS alone

weighs approximately 8 kilograms, occupies slightly more than 10 liters of volume,

and draws 30 watts of power during tracking mode [11]. Additionally, the Rendezvous

3

LiDAR Sensor (RLS) and methods based on fiducial markings both require detailed

knowledge about the target object. These methods may provide less uncertainty for

a single view of the target, but severely limit the capabilities of the proxops satellite

if the mission requires approaching an unknown or uncooperative object.

Designing an image-based computer vision (CV) method to perform these required

tasks that only uses a camera and a CPU (and very sophisticated software) would

greatly minimize the additional sub-system requirements on the spacecraft. Most

spacecraft already have star trackers, which use dedicated CPUs to perform stellar

rectification with a catalog for attitude determination. Suddenly, with a dual purpose

image processing sub-system that performs attitude determination and CV-based

proxops navigation, the required SWAP to perform a proxops mission may be much

smaller than previously imagined (possibly no additional hardware).

Once within range to acquire resolved imagery, it may also be possible to construct

a model of the target spacecraft using a CV-based proxops system, using multiple view

geometry methods [16]. This type of method removes the requirement for a priori

knowledge of the shape and structure of the spacecraft in question. This method fur-

ther expands the potential mission areas into operations near uncooperative targets,

which may include sequential rendezvous with space debris for removal, or operations

with a damaged or unresponsive spacecraft for information gathering purposes.

1.2.2 Proxops From a CubeSat.

CubeSats are becoming increasingly popular as alternatives to much larger space-

craft [42]. With a smaller and lighter platform, flexible launch options become avail-

able, making CubeSats a viable and affordable space platform for universities. Ad-

vances in technology are allowing CubeSat designers to fit an incredible amount of

mission capability into very small spaces as well. Figure 2 shows one unique method

4

Figure 2. A Unique Way to Launch CubeSats: From the ISS [31].

for deployment, launching three 1U CubeSats from the ISS [31].

Two-camera CubeSat star trackers that occupy 1/2U to 1U are commercially

manufactured as mission attitude knowledge requirements increase [6]. Developing

CV algorithms and implementing them on a star tracker-like platform seems to be

the most feasible implementation of an autonomous proxops system on a CubeSat.

One popular concept for proxops satellites is the inspector/maintenance satellite.

An inspector satellite can gather valuable data from space about its target satellite,

potentially providing the right information to extend the target satellite’s time on-

orbit (therefore decreasing the cost per year). To make the inspector satellite a feasible

idea, it needs to be a cheaper alternative to replacing the original satellite a few years

early. Flexible and affordable launch options provide a significant motivation behind

implementing a CV-based proxops method on a CubeSat. Additionally, sharing a

ride with a larger spacecraft automatically places the inspector in the same orbit as

its target and removes long range rendezvous from the list of required capabilities.

Spatial information is capable of being extracted from a stereo rig of two cam-

eras with known relative pose (a fixed relative rotation and translation). However,

5

Figure 3. Increased Uncertainty As Relative Camera Separation Decreases [16].

accuracy of the spatial information decreases as the distance from the target in-

creases relative to the camera separation. As the distance from the target continues

to increase, eventually no additional information providing a second perspective is

provided, shown by Figure 3.

Since CubeSats have very little linear dimension to provide separation between

cameras, and distances in the space environment can be quite large, no additional

useful information is gained by utilizing a stereo camera setup until the target is in

extremely close proximity. The small relative space places an additional constraint on

the method to be implemented: the algorithms developed herein are to be calculated

from the motion of a single camera, or a monocular system. Estimating camera pose

from corresponding features between multiple views from one camera, projecting the

tracked features to a 3D map, and localizing the camera in the map is known as

simultaneous localization and mapping (SLAM).

1.3 Goals

The main goal of this research is to design a monocular SLAM method for im-

plementation in an indoor proxops simulation laboratory and eventual integration

with the GEODETICA tool. The main product of this method will be relative pose

6

(position and orientation) and 3D structure estimates through relative motion with

a target object. The SLAM method will be robust enough to handle the specifics

of the space environment, including reflective surfaces, dynamic backgrounds, and

changes in lighting. Key considerations to be addressed are the accuracy of the re-

sulting structure and motion estimates in comparison to truth data. Near real-time

operation is required as well to eventually provide state information for a hardware

control system.

Another important aspect of this research is the ease of interpretation, customiza-

tion, and testing. It is very important that the code is written in an easily understood

format, is well commented, and ties directly to the explanation provided by this thesis.

Successors to this research will use this software to perform testing, customization,

and inevitably optimize this implementation. Writing the method developed here in

a manner that promotes efficiency and rapid prototyping for its successors ensures it

plays a part in meeting the larger goal of developing a space-rated monocular SLAM

proxops system.

1.4 Document Layout

Chapter II provides a literature review of CV topics and algorithms used in this

research, such as point tracking methods, multiple view geometry, pose estimation,

projecting 2D point matches to 3D space, bundle adjustment, and a survey of other

researchers performing monocular SLAM. Chapter III delves into the specific method-

ology that ties the chosen CV algorithms together to create a product that performs

structure and motion estimation. Chapter IV presents SLAM results on space re-

lated video sequences, as well as an accuracy analysis, a processing time study, and

a parameter sensitivity analysis. Finally, Chapter V presents the conclusions of this

research, recommendations for future work, and the summary.

7

II. Literature Review

2.1 Relevant Theory

This section provides an overview of relevant theory necessary to design a monoc-

ular SLAM system for use in the space environment. It begins with a description of

the multiple view geometry theory1 that leverages changes in perspective of multiple

points on an object from different views, including epipolar geometry, pose estimation,

and methods to estimate spatial information. Three dimensional information can only

be extracted from a series of images if there are accurate point correspondences on

an object in multiple images throughout relative motion between the camera and the

object. The next section will explore methods of obtaining 2D point correspondences

throughout a series of frames, while keeping in mind that it needs to occur near

real-time (as close to 30 frames per second as possible). Finally, the theory behind

bundle adjustment is discussed, which is a method of reducing the reprojection error

to refine estimated 3D motion and 3D point projections from multiple 2D images of

each point.

2.1.1 The Pinhole Camera Model.

The pinhole camera model defines the geometric relationship between a 3D scene

and a 2D image in an ideal camera with no lens, where the camera aperture is defined

by a single point. Using the pinhole camera model, the 3D scene is projected on to

a 2D plane at a distance f from the camera center, where f is the camera’s focal

length. A point in space is mapped on to the image plane at the intersection of a

1Richard Hartley and Andrew Zisserman provide what may be the industry standard for a col-
lection of theory behind geometry from multiple perspective views in their text Multiple View
Geometry in Computer Vision [16], as well as descriptions of numerous algorithms. This text is
frequently cited during the review of applicable theory, especially through the assistance of their
figures, to accompany a hopefully simpler and more concise explanation.

8

Figure 4. The Pinhole Camera Model [16].

line from the camera center to the point’s 3D location (X, Y, Z) and the image plane.

Figure 4 shows that through similar triangles, the 3D point at (X, Y, Z) is mapped

to the 2D image plane to the coordinates (fX/Z, fY/Z). The pinhole camera model

is a popular approach in computer vision due to its simplicity. However, since it

does not incorporate image distortions, camera calibration is required to account for

deviations from the model.

Camera Calibration.

Real-world cameras do not perform the ideal projection described by the pinhole

camera model. Lenses are used which introduce nonlinear distortions in imagery.

Short focal length cameras and low-cost cameras compound these distortions. Dis-

tortions internal to the camera, or the camera’s intrinsic parameters, are accounted

for through the use of a camera calibration matrix K. Equation 1 shows the general

form of the calibration matrix of a charge-coupled device (CCD) camera, where f

is the camera’s focal length (in mm), sx and sy are the ratio of physical size of the

imaging sensor per number of pixels (mm/pixel) in the x and y directions on the

image plane, and (x0, y0) is the location of the camera’s principal point, or image

center, relative to the center of the image plane. A skew parameter is included as

well, where Θ represents the angle between the x and y axes, which is usually π/2.

9

Additional parameters defining radial and tangential distortion can be included as

well, but it is often not necessary to use them to their full extent with standard field

of view cameras (non wide-angle lens).

K =

f/sx f/sx cot Θ x0

0 f/sy y0

0 0 1

 (1)

Calibration of the camera’s internal parameters is typically performed experi-

mentally through the use of a calibration checkerboard. Zhang describes the theory

behind this process [49]. Numerous packages exist to automate the procedure: a

well-known toolbox for MATLAB by Bouget [8], a MathWorks implementation in

the MATLAB Computer Vision System Toolbox [30], as well as an implementation

of Bouget’s algorithm in the open source computer vision library, OpenCV [9].

2.1.2 Multiple View Geometry.

As shown by the pinhole camera, a single image from a camera takes the 3D

world and projects it into 2D space on the image plane. Unfortunately, during this

process, all the important depth information is lost. At least one more perspective

is required to recover depth information. Human eyes work in this manner: with

two perspectives taken from a fixed distance apart (stereo vision), humans are able

to perceive depth because each eye receives a slightly different view of the world (or

knowledge of an object’s size).

Suppose the world coordinate frame is defined by the left eye (zero rotation and

translation). From the center of the right eye, in the right eye’s coordinate frame,

the origin of the world coordinate frame (and location of the left eye) is defined

by the vector t
R/W
R . The subscript on this notation signifies the vector’s coordinate

10

frame: the right eye’s coordinate frame. The superscript signifies the vector direction:

pointing from the center of the right eye to origin of the world coordinate frame.

The standard notation that follows will represent all quantities in a camera-centered

coordinate frame unless otherwise stated. The shorthand version of this vector and

the notation implemented is tR, which identifies the location of the world origin in

the right eye’s coordinate frame, with the vector originating from the right eye.

Orientation is defined in a camera-centric format as well. A change in orientation

of the right eye with respect to the world coordinate frame is represented by the 3 x

3 rotation matrix RRW, which rotates vectors from the world frame to the right eye’s

frame. Equation 2 shows the calculation for the location of the right eye in the world

coordinate system, nR
W.

nR
W = −[RRW]−1tR (2)

It is possible to construct a matrix (known as the camera matrix, P) that identifies

the location and orientation (pose) of each eye with respect to the world frame.

The result is a 3 x 4 matrix that is a concatenation of the camera-centric rotation

matrix and translation vector, with respect to the world coordinate system, shown

by Equation 3. The left eye is represented in Equation 3 by PL and the right eye by

PR, where KL and KR are each cameras’s respective intrinsic calibration matrices

from Equation 1. Since the world coordinate system is aligned with the left eye, no

rotation or translation is required. This is represented in Equation 3 by I, the 3 x 3

identity matrix, and 0, a 3 x 1 vector of zeros.

PL = KL [I |0] PR = KR [RRW | tR] (3)

Using P, the 2D projection of a 3D point on the image plane for camera n occurs

11

according to Equation 4, where s is an unknown scale factor. In Equation 4, the

lowercase x on the left side represents the 2D location of a point on the image, while

the uppercase X on the right side represents the same point in 3D space.

sxn = PnX (4)

Equation 5 shows a summary of all of the quantities assembled in the 2D pro-

jection operation from Equations 1, 3, and 4. The quantities rmn and tm represent

the individual elements of the appropriate rotation matrix and translation vector.

The lowercase quantities x and y represent the image coordinates of point x. The

uppercase quantities X, Y , and Z represent the spatial coordinates of point X.

s

x

y

1

 =

f/sx f/sx cot Θ x0

0 f/sy y0

0 0 1

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

X

Y

Z

1

(5)

The Epipolar Plane.

As a camera moves in 3D and gains additional information through a second view

(like your eyes), additional depth information about the 3D scene becomes available.

However, unlike your eyes, the location of the camera which captures the second

image is unknown. In order to gather any information about an object’s 3D location

through triangulation, the pose of the second camera must be known. The pose of

the second camera is estimated through the use of epipolar geometry.

Epipolar geometry describes the relationship between two perspective views of

the same 3D object. The epipolar plane is the plane passing through three points:

the two camera centers and a corresponding point in each view. Figure 5 shows the

12

C
2C

1

π

X

epipolar plane

im
a
g
e
 p

la
n
e
 1

x
2

x
1

X ?

X ?

X

epipolar line

for x1

x1

e1
e2

l2

Figure 5. The Epipolar Plane. Depth Information is Revealed From Multiple Views
[16].

epipolar plane. When observing the 3D point X from C1, all that is known is the 2D

location of that point in the image, represented by x1. The 3D location could exist

anywhere on the line C1 −X. However, when a second view is incorporated from

camera C2, the exact point on that line can be identified, revealing the depth from

camera C1. This concept leads to an important realization: a corresponding point

in one image must lie on a particular line in the second image. The line that the

corresponding point x2 must exist on is the intersection of epipolar plane with the

second image plane, and is called an epipolar line, l2 in Figure 5.

The line connecting the base of the triangle from C1 −C2 is called the baseline.

At the intersection of the baseline with each image plane is each image’s respective

epipole, e1 and e2. Since the baseline is shared by any epipolar plane formed between

two camera locations, only one point in the first image is needed to determine the

epipolar line in the second image, on which the corresponding point must be found. If

the images from C1 and C2 are not taken at the same time, one important assumption

when applying these geometric relationships is that the scene must be rigid and non-

changing.

13

The Essential and Fundamental Matrices.

Suppose three vectors are created along each edge of the triangle forming the

epipolar plane, in the frame of camera C2. The first vector points from C2 to x2,

x2. The second vector points from from C2 to C1 and is equivalent to the relative

translation between the two cameras, t2. The third vector points from C1 to x1,

translated to the C2 frame. As a reminder, the notation for the rotation matrices is

camera-centered, so R2 brings vectors from C1 to C2. The vector pointing from C1

to x1 is then equivalent to R2x1. Since all three vectors are coplanar, Equation 6 is

true (using homogeneous image coordinates) [25],

xT
2 (t2 ×R2x1) = xT

2 ([t2]xR2x1) = 0 (6)

where the cross product is expressed as the product of the skew-symmetric matrix,

[t2]x. Substituting E = [t2]xR2, the essential matrix, yields Equation 7 (the epipolar

constraint equation).

xT
2Ex1 = 0 (7)

The essential matrix is the algebraic representation of the epipolar geometry for

a known camera calibration, constraining a point in one image to a corresponding

epipolar line in a second image (through a change in camera pose, and at a mini-

mum, a non-zero translation vector; otherwise no additional perspective information

is gathered). It is possible to convert the essential matrix from the camera coordinate

system to image points in pixels using the inverse of the camera calibration matrix.

Equation 8 shows the essential matrix rewritten in image coordinates, known as the

fundamental matrix, F [14].2

14

F = K2
−TEK1

−1 = K2
−T[t2]xR2K1

−1 (8)

Equation 9 shows the epipolar constraint equation rewritten with the fundamental

matrix, giving the relationship between corresponding image points in pixel coordi-

nates.

xT
2Fx1 = 0 (9)

2.1.3 Pose Estimation.

The motivation behind explaining the fundamental matrix is that it can be derived

experimentally through multiple point correspondences in different images. Finding

the fundamental matrix reveals the essential matrix if the camera calibration param-

eters are known. Then, the essential matrix is a combination of the relative rotation

and translation between camera locations, E = [t]xR, and can be decomposed to

estimate the relative pose between cameras. This section first includes a review of

commonly used algorithms to estimate the fundamental matrix from point correspon-

dences, followed by a description of an iterative method to estimate a parameter in a

data set that contains outliers called random sampling and consensus (RANSAC). A

method of triangulating 2D point matches to a 3D location is described. This section

concludes with a description of a method to estimate pose from a set of point corre-

spondences with known 3D locations, called the perspective-n-point (PnP) problem.

2The fundamental and essential matrices have many different properties and uses not included
here. Many nuances exist regarding obtaining optimal camera motion and degenerate cases that are
not explained. This document seeks to reach a balance between including the relevant information
without omitting important details. The bibliography includes numerous sources with additional
information.

15

Algorithms to Estimate the Fundamental and Essential Matrices.

The simplest calculation of the fundamental matrix is the Normalized 8-point

Algorithm [25]. From eight point matches in two images, the fundamental matrix

is found by constructing the epipolar constraint equation for each, which is shown

by Equations 9 and 10. The resulting linear equations formed are represented by

Equation 11, and are followed by a least-squares solution. Only eight points are

required as the fundamental matrix is a 3 x 3 matrix determined up to an arbitrary

scale factor, which yields one constraint:

[
x′i y′i 1

]
f1 f2 f3

f4 f5 f6

f7 f8 f9

xi

yi

1

 = 0 (10)

and can be rearranged to represent n linear equations from n sets of point matches:

x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

= 0 (11)

Another algorithm exists for calculating the fundamental matrix that enforces an

additional constraint: the fundamental matrix must be a singular matrix of rank two.

The result is seven degrees of freedom and the seven-point algorithm, which is the

16

minimum case for calculating the fundamental matrix, but introduces a nonlinear

constraint equation. Additional details are available [16].

The essential matrix, on the other hand, only has five degrees of freedom. Three

degrees of freedom are from the rotation matrix, R, three are from the translation

vector, t, and the scale constraint is applied again, reducing the number of degrees

of freedom by one. A fairly complicated five-point algorithm exists for estimation of

the essential matrix by Nister [32]. Nister shows that the five-point method clearly

outperforms the other methods for sideways motion and the eight-point method is

best for forward motion. Another drawback of the five-point method is it requires that

the camera intrinsics be known, while the seven-point and eight-point methods can

operate independently of this knowledge. An implementation of Nister’s algorithm is

included in OpenCV 3.0 [35].

RANSAC.

Typically, more point matches will exist than are required by the estimation algo-

rithm. One of the most difficult aspects of implementing a CV routine is gracefully

implementing a method to select the best points. Anomalies affect even the best

point trackers. Image noise occurs as well. A common method implemented to re-

move outliers is RANSAC. Consider developing a solution to a problem based on a

set of data points that contains outliers. Using a least-squares type solution, outlying

points will skew the results. RANSAC, on the other hand, randomly samples groups

of test points, computes a solution based on the reduced set, and estimates the total

error between the remaining points and the solution based on the minimized set. Af-

ter a number of iterations, the returned solution is the set that has the least overall

error and the outliers are the points which deviate from that solution greater than a

threshold value. In this manner, identified outliers do not affect the solution.

17

Figure 6. Initial Set of Point Correspondences (Credit: S. Kelly).

Figure 7. Point Correspondence Inliers After RANSAC (Credit: S. Kelly).

Figures 6 and 7 show RANSAC applied to a series of image point matches. Figure 6

shows initial point matches, with some outliers present. Figure 7 shows the remaining

points after RANSAC has selected the least-error solution and removed outliers that

don’t meet a certain threshold.

RANSAC has advantages and disadvantages. In a group of data points that con-

tains outliers, a big advantage of RANSAC is its ability to perform robust estimation

of model parameters. However, approximately 50% of the points need to be inliers to

converge on an accurate solution. Depending on the confidence level required, there

is no upper bound on the time it may take to determine a solution. Limiting the

18

number of iterations may result in a solution that is less accurate than the least-

squares solution of all available points. To obtain timely and accurate results, the

points provided to RANSAC need to be carefully selected while using an appropriate

number of iterations. MATLAB includes a RANSAC function implementation in the

Computer Vision Systems Toolbox with the number of iterations and error threshold

value as input options.

Decomposing the Essential Matrix to Estimate Pose.

Since the essential matrix confines points to exist on a plane, it is a singular

matrix of rank 2. More specifically, a 3 x 3 matrix is an essential matrix if and

only if two of its singular values are equal, and the third is zero. Using a method

called singular value decomposition (SVD), it is possible to extract the translation

and rotation information shown in Figure 8 from the essential matrix. The specifics

of this method can be found in [16].

However, as a result of essential matrix decomposition, an ambiguity arises for

the direction of rotation and translation. The result is four possible combinations,

meaning four potential camera poses (a twisted pair). Using a test point, or a series

of test points from point matches, it is trivial to determine which of the four relative

pose combinations is correct, as only one will exist in which the test points occur

in front of both cameras. Figure 9 shows two perspective views of this phenomenon

for clarity. The original camera pose is represented by the green camera, pointing

toward the projected points. The other four cameras represent the twisted pair, with

the correct pose in blue, and the other three incorrect solutions in red. Notice the

blue camera is pointing toward the points, while the other three cameras are not.

19

Figure 8. Relative Rotation and Translation From Essential Matrix Decomposition
[10].

Y
m

-0.5

0.5

0

1

1.510.5

Xm

0-0.5-1

6

4

5

2

1

0

3

Z
m

Ym

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

0

1

1.51

Xm

0.50-0.5-1

5

4

6

2

1

0

3

Z
m

3D scene points

C1

4 potential pose solutions:

-2 rotations possible (R, R-1)

-2 translations possible (t, -t)

Correct combination:

-3D scene in view of C1 and C2

-Green C1 and blue C2

-Red C2 options show

 incorrect pose combinations

Essential Matrix Decomposition

Figure 9. Decomposing the Essential Matrix: Two Views of the Twisted Pair Ambigu-
ity.

20

Triangulation.

Triangulation is the process of using two known camera poses, P1 and P2, and a

point correspondence in each image, x1 and x2 to find the point’s actual location in

3D space, X. Geometrically, triangulation is the process of finding the location of the

intersection of the epipolar lines. A linear method exists to perform triangulation.

Working in reverse, the 2D point location in each image is found from the camera

matrix and the 3D point location through a 2D projection on to a surface. For

each image projection, a 3D point is projected on the image plane using Equation

4. Using two images of the same point (Figure 8), x1 = P1X and x2 = P2X. Since

the quantities on each side of the equation are equal, a cross product between them

equates to zero. For the first image, x1× (P1X) = 0. The results of carrying out the

cross product are shown in Equations 12 through 14, where p1
i represents the i-th

row from the corresponding camera matrix, P1.

x1(p1
3X)− (p1

1X) = 0 (12)

y1(p1
3X)− (p1

2X) = 0 (13)

x1(p1
2X)− y1(p1

1X) = 0 (14)

Constructing a matrix with four rows, A, consisting of Equations 12 and 13 for

each view (Equation 15), allows for the solution of the 3D point location of the form

AX = 0. Equation 15 shows the final system of equations for linear triangulation

[16].

21

x1(p1
3)− (p1

1)

y1(p1
3)− (p1

2)

x2(p2
3)− (p2

1)

y2(p2
3)− (p2

2)

X = 0 (15)

However, due to image noise and track point error, these lines do not intersect

perfectly at X. Numerous triangulation methods exist to attempt to reduce this error

[18].

Estimating Pose with the Perspective-n-Point Problem.

The PnP problem is a CV topic that is used to determine calibrated camera

pose from one image based on a series of 2D points in the image with known 3D

locations. This process can be seen as roughly the opposite of triangulation. Rather

than solving for the location of X in 3D space based on two perspectives (P1 and

P2) and a 2D point match (x1 and x2), Pn is unknown and is estimated based on

i 2D point locations xi
n and their known 3D spatial locations Xi. Another notable

difference is the number of points and perspectives required. Triangulation requires

two separate known perspectives to estimate the location of one or more 3D points.

The PnP problem solves for only one perspective, but requires at least three 2D-3D

point correspondences. Numerous approaches exist to solve this problem.

One linear algorithm establishes a set of quadratic equations with coefficients

depending on image measurements and distances to 3D points. These equations

solve for the camera pose by finding the intersection of the rays at the optical center

from the 3D points through the image plane. The main advantage of this algorithm

is a fast calculation of a set of linear equations, which guarantees the correct solution

in a noiseless case. This linear method also avoids local minima solutions which are

22

possible when using iterative algorithms [3]. However, iterative approaches typically

result in reduced error when image noise exists [19].

The iterative method is based on Levenberg-Marquardt optimization of the camera

matrix to minimize reprojection error. A point is projected to the 2D image plane

from 3D using Equation 4. Reprojection error is the Euclidean distance, represented

here by dist(x1,x2), between the location of the 2D image point to the projected point

location through a camera matrix P. This iterative method serves as a maximum

likelihood estimator for P, even in the presence of image noise. Equation 16 shows

the minimization function where i is the total number of points.

min
P

m∑
i=1

dist(xi,PXi) (16)

Additional methods have been developed in an attempt to reduce the number

of operations required while maintaining the robustness of the iterative approach

[50, 24, 36]. OpenCV includes numerous algorithm implementations for performance

comparisons if desired [35].

2.1.4 Feature Detection.

Numerous methods exist for detecting features to track in an image. Two of the

most popular algorithms for robustness and matching accuracy commonly found in a

literature search are the Scale Invariant Feature Transform (SIFT) [27] and Speeded-

Up Robust Features (SURF) [5], each of which contain their own proprietary feature

detection and descriptor-extractor routine. These types of feature descriptors excel at

extracting features from a known object and identifying the same object in a different

scene.

The SIFT algorithm has been demonstrated to generate a descriptor for a patch

of an image that is invariant to scale, rotation, and illumination. A SIFT descriptor

23

patch consists of 128 floating-point values. The SURF feature was developed following

SIFT in an effort to reduce computational complexity. The SURF descriptor consists

of 64 floating-point values, which is faster to compute and can be more robust than

the original SIFT descriptor [5]. Figures 6 and 7 in Section 2.1.3 show an example of

SURF feature extraction and matching with the MATLAB Computer Systems Vision

Toolbox implementation.

While SIFT and SURF are popular algorithms that yield high quality features,

they are too computationally expensive to implement in a real-time application that

runs at or near 30 fps on a one core single-board computer. The entire series of

events to determine a series of point matches can take roughly half a second to

multiple seconds, depending on image resolution, feature density, and the RANSAC

confidence threshold desired [13].

Feature descriptors that operate more quickly than SIFT or SURF exist. However,

unlike SIFT and SURF which have a detection step and an extraction step, most

faster running descriptors only describe a location in an image via a specific set of

metrics. For this reason, reviewing other feature detection algorithms is required prior

to running a point tracker or feature descriptor. When identifying points in an image,

it is important to select unique and identifiable locations that are unambiguous to

their surroundings. In [41], Shi and Tomasi identify good features to track based

on “some measure of texturedness or cornerness such as a high standard deviation

in the spatial intensity profile, the presence of zero crossings of the Laplacian of the

image intensity, and corners.” Figures 13 and 14 in Section 3.2 show the importance

of selecting good feature locations.

A standard in the machine learning field for corner detection is the Features from

Accelerated Segment Test (FAST) algorithm by Rosten and Drummond. In real-time

applications with 30 fps video, the available time for processing before the next frame

24

Figure 10. The FAST Corner Detector [39].

is captured is 1/30th of a second. The FAST algorithm can fully process a frame in

less than 7% of the available processing time. As a comparison, the Harris corner

detector operates in 120% of the available time, and only the detection phase of SIFT

in 300%. The FAST detector uses a circle of 16 pixels to test if a specific point is

a corner. Figure 10 shows the circle around the candidate point, p, with the pixels

in the circle labeled from 1 to 16. A point is a corner if N continuous points in the

circle have an intensity greater than the intensity of p plus some threshold value t.

A point is also a corner if N continuous points have an intensity less than p minus t.

The original FAST algorithm uses an N value of 12 [39].

2.1.5 Two-dimensional Point Tracking.

In [13], Doyle, a predecessor to this research at AFIT, performed a run-time

and accuracy comparison of numerous methods of feature tracking. As expected

with such a popular but costly descriptor, SIFT and SURF returned the highest

accuracy results. SIFT is also the slowest tracking algorithm in the study, with

25

a series of tracks between two frames with a dynamic background taking nearly 3

seconds. SURF resulted in a slight decrease in accuracy during Doyle’s test, but ran

faster than SIFT, achieving a track in the same scenario in approximately 1 second.

In off-line implementations where accuracy is more important than run-time, SIFT

or SURF are most likely the descriptors of choice. The fastest method in this test,

while only sacrificing a slight amount of accuracy, is the pyramidal implementation

of the Lucas-Kanade method. As a side note, FAST was not considered in Doyle’s

study.

The Lucas-Kanade method considers a small window of an image at an interest

point in one frame, and searches for the most similar window in a subsequent frame by

assuming that the flow of the pixels is essentially constant in the local neighborhood.

Using this assumption, the optical flow equation, Equation 17, must apply for all the

pixels in the current window around the track point [28]. In Equation 17, Vx and Vy

are the optical flow velocity components, and ∂I
∂x

, ∂I
∂y

, and ∂I
∂t

are the image derivatives.

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (17)

Rearranging Equation 17 and representing the image derivatives with Ix, Iy, and

It results in the series of equations applied to each pixel (q1 through qn) during the

Lucas-Kanade method, shown by 18. Solving for the velocity vector using least-

squares results in the updated window location.

Ix(q1)Vx + Iy(q1)Vy = −It(q1)
...

Ix(qn)Vx + Iy(qn)Vy = −It(qn)

(18)

The Kanade-Lucas-Tomasi (KLT) feature matching algorithm is an improvement

26

to the least-squares approach. One drawback of the Lucas-Kanade method is that

the flow velocity vector between frames must be small enough to find a solution,

which is often less than the pixel spacing. The KLT method solves this problem

by creating a reduced-scale version of the images, or pyramids, for tracking large

scale motion. Two papers contributed to the KLT tracker [28, 44]. The MATLAB

Computer Vision toolbox includes an implementation of the KLT tracker. OpenCV

includes an implementation as well, known as pyramidal Lucas-Kanade optical flow.

In [41], Shi and Tomasi propose using an affine transformation on the tracking

template in addition to the translation-based system. Using an affine motion model,

a deformation matrix, A, modifies the track template to further minimize the dissim-

ilarity between frames as a result of changes in camera perspective. Using this model,

an image point x in the first image I is tracked to Ax+d in the next image, J . The

tracker works by finding the parameters A and d that minimize the dissimilarity, ε, in

Equation 19, where W is the given template window and w(x) is a weighting function

(typically w(x) = 1 or a Gaussian function are chosen to emphasize the center of the

window).

ε =

∫ ∫
W

[J(Ax + d)− I(x)]2w(x)dx (19)

2.1.6 Binary Feature Descriptors.

SIFT and SURF are based on histograms of gradients, which means the gradient

of each pixel in the feature window must be computed, a computationally expensive

process. However, when it comes to feature descriptors, SIFT and SURF are not

the only choices available. Binary feature descriptors describe a point in an image

based on a binary string of intensity measurement comparisons. Computing and

storing a binary feature into memory is very efficient with typical descriptor sizes

27

of 128, 256, or 512 bits. Additionally, comparing binary strings to test a feature

match involves computing the Hamming distance, which only requires a bit count or

XOR operation between the two strings, a very efficient calculation compared to the

Euclidean distance calculation required for SIFT and SURF.

Binary feature descriptors create a binary string to describe an image patch based

on a series of point pairs from a sampling pattern. In a 256-bit descriptor, 256 point

pairs are chosen. For each entry in the binary string, the intensity values of the

two points in a pair are compared. If the intensity value of the first point is greater

than the second point, the binary value for that point pair is 1; otherwise, it is 0.

Comparing two features then only involves a binary comparison of the feature strings

to find the Hamming distance.

Numerous binary feature descriptors exist. The Binary Robust Independent El-

ementary Feature (BRIEF) descriptor, introduced by Calonder, is chosen based on

successful matching results, comparable to SURF while obtaining the efficiency ad-

vantages of binary features in [12]. Calonder shows, through a series of tests, that a

random sampling of point pairs in an isotropic Gaussian distribution, G II in Figure

11, gives the best results in terms of recognition rate.

When dealing with point comparisons via the Hamming distance, it is important

to determine a value under which two features will be considered a match. In [12] a

Hamming distance comparison test between actual matching points and non-matching

points is performed. Figure 12 shows the results of the Hamming distance comparison

test, where the blue lines are the Hamming distance between matching points, and the

red lines are the Hamming distance between non-matching points. The distribution

of distances for non-matching points is roughly Gaussian and centered around the

middle of the possible range. As the plots progress in Figure 12, camera separation

increases, causing an increase in dissimilarity between points and a corresponding

28

Figure 11. Different BRIEF Sampling Approaches Tested in [12].

increase in the Hamming distance for positive matches.

2.1.7 Bundle Adjustment.

In [45], bundle adjustment is defined as “the problem of refining a visual recon-

struction to produce jointly optimal 3D structure and viewing parameter (camera

pose and/or calibration) estimates. Optimal means that the parameter estimates are

found by minimizing some cost function that quantifies the model fitting error, and

jointly that the solution is simultaneously optimal with respect to both structure and

camera variations.” The name bundle adjustment refers to adjusting the bundles of

light rays that point from each structure point to the camera centers.

Bundle adjustment begins with a set of initial 3D scene and camera parameter

estimates based on a set of 2D image observations. A nonlinear cost function is

developed in which the set of 2D points, x, are typically compared with a projection

of the 3D points on the image plane based on the camera parameters (Equation 4).

The 2D Euclidean distance between a reprojected 3D point from its initial 2D image

29

Figure 12. Hamming Distance Distribution for Matching and Non-Matching Points
[12].

30

0.035

0.03

[>
c 0.025
G)
::>
CF
~ 0.02

~
~ 0.015
Qi
0:::

0.01

0.005

.. --- Matching points
- Non-matching point

·Wall ·112

00~----~---~~~~==--~~--~~~----~~
50 100 150 ?00 ?50

Hamming distance

0.035 ... ~· ·~ . --- Matching points
- Non-matching point

0.03 . ' " "•" ' ' ' " " " ' " i· "" " " ' " ... " ' " " "" "•" ' " " " '

[>
c 0.025
G)
::>
CF
~ 0.02
G)
>
~ 0.015
Qi
~

0.01

0.005

~
~ 0.015
Qi
0:::

· .; ·· WaH 114 .. ; . .

Hamming distance

.... · : ... ---Matching points
- Non-matching point

.. ~. <·

Wa111 l6 ;

0oL---~~----~--~------~1~50~~~--20•0-------2~5~0

Hamming distance

location yields a quantity known as the reprojection error. Numerical techniques

are then used to minimize the total reprojection error of m 2D point projections

across n views by optimizing camera pose estimates Pn, the 3D scene points Xi, and

even calibration parameters K if desired. Equation 20 is the nonlinear cost function

constructed if only one camera is used and there is no change in calibration parameters

between views. Bundle adjustment is the model refinement portion of this problem.

min
Pj ,Xi,K

n∑
j=1

mj∑
i=1

dist(xi
j,PjX

i) (20)

There are many different ways to incorporate bundle adjustment into a 3D re-

construction method. Various strategies exist for the number of frames, structure

points, and parameters to modify. For off-line systems that do not require high-speed

run times, an entire set of observations can first be made prior to running bundle

adjustment. Using these observations, there is no time limit to optimize the resulting

nonlinear system and globally converge on a solution. However, in on-line systems

that require performance at live video rates, performing the problem incrementally

with a higher threshold for allowable error may be a requirement. Section 2.2.1 ex-

plores various research approaches and numerous bundle adjustment strategies.

A range of numerical methods may be implemented for optimization of the cost

function as well. The Levenberg-Marquardt Algorithm is a popular approach and

is implemented in the generic C/C++ sparse bundle adjustment package, SBA [26]

(further discussed in Chapter III).

2.2 Similar Approaches

This section reviews similar approaches other researchers have taken. Specific

works are mentioned due to unique bundle adjustment approaches implemented, as

well as accurate and fast running structure from motion (SFM) and SLAM systems.

31

2.2.1 Survey of Monocular SLAM Research.

VisualSFM [47] is a software package for performing 3D reconstruction on an

unordered set of images. It uses a graphics processing unit (GPU) implementation of

SIFT to identify accurate point matches significantly faster than the traditional SIFT

algorithm. It also exploits multi-core bundle adjustment, and despite its operation on

a batch of images, still performs SFM in an incremental fashion. In [46], Wu describes

the strategy behind the approach to minimize bundle adjustment run-time in the

VisualSFM implementation. Incremental SFM is known to accumulate error over

multiple relative camera pose calculations. Wu proposes an approach in which failed

feature matches are regularly re-triangulated during the incremental SFM process to

reduce error. Principles from VisualSFM can be applied to this research, however

run-time limitations of an off-line SFM software package prevent direct application.

In [4], Balzer and Soatto describe a method they call CLAM: Coupled Localization

and Mapping with Efficient Outlier Handling, which generates a model of a small-

scale object from a video. It excels at handling self-occlusions from in-plane rotation,

which challenges other SFM/SLAM systems. They implement the KLT tracker and

a method to apply a consistency check using binary features and an affine trans-

formation of the track window to increase similarity for successful matches. Their

outlier handling techniques specifically avoid the use of expensive RANSAC tech-

niques. This work achieves very impressive results considering accuracy and run-time

in comparison with other on-line SLAM algorithms. Bundle adjustment is only run

on a two-frame basis to minimize computation times; as a result, the global accuracy

suffers in comparison to off-line methods. In addition, Balzer generated a series of

synthetic scenes using Blender to benchmark his algorithm and shared them online

to save time for other CV researchers. Some of these scenes are used in this work,

with results shown in Chapter IV.

32

Another SLAM method developed by Klein and Murray called Parallel Tracking

and Mapping (PTAM) [22, 23] uses parallel processors to separate the tracking and

mapping tasks. The tracking thread processes the input video and tracks the pose

of the camera relative to the map. The mapping thread creates the map, selects the

appropriate video frames to expand the map, and triangulates new features to the

map that exist in two camera poses. It also performs bundle adjustment to optimize

pose estimates and feature positions. Point tracks are initiated based on the FAST

corner detector. A search along the point’s matching epipolar line in the subsequent

frame minimizes the search area required for updating point tracks.

PTAM allows the mapping thread to perform local bundle adjustment in which

only a subset of poses is adjusted. For example, only the parameters for the most

recent 3 frames are optimized. These optimizations, however, are based on measure-

ments from the 7 prior frames. PTAM also interrupts the bundle adjustment process

if a new frame is available to be added to the map, which serves to integrate the

newest information as soon as possible. On the other hand, when no additional in-

formation is provided from updated frames because no new track points have become

visible, the mapping thread uses this free time to improve the map. Klein and Murray

present creative hardware implementations of PTAM as well. In one implementation

they perform augmented reality in real time on the touch screen of a camera phone.

2.3 Summary

The intent of this work is to use the theory described in this chapter to write

a modular SLAM method for implementation in an indoor proxops simulation lab-

oratory. Specifically, the SLAM method will be written to handle the demands of

the space environment. First, the method should be robust enough to manage point

tracks on reflective surfaces with changes in lighting. Isolating target points from a

33

dynamic background, such as the Earth or stars, is a key design parameter as well.

Finally, the method should automate the rate at which pose is estimated to handle

varying rates of relative motion.

Other SLAM codes, such as PTAM and CLAM, are shared on the internet. How-

ever, a direct implementation of another researcher’s code without a detailed un-

derstanding of the underlying theory makes testing and customization for the space

environment nearly impossible. Nevertheless, this thesis does share many of the same

fundamentals and leverages applicable lessons learned by other researchers. The fol-

lowing chapters of this thesis and the included set of (thoroughly commented) MAT-

LAB routines provide this foundation in an environment that is easily interpreted

and enables rapid prototyping.

34

III. Methodology

This chapter provides a description of the SLAM method developed to meet the re-

search objectives. First, Section 3.1 details the specifics of the hardware and software

systems used for development. Next, Section 3.2 shows how 2D point correspondence

data is acquired across video frames. Section 3.3 describes how these 2D points are

used for structure and motion estimation. Finally, Section 3.4 provides a summary

of the method developed.

This implementation is unique because it is designed to operate on objects in the

space environment. It stands out from other proxops methods because it is able to

operate without any knowledge of, or cooperation from, the target object, using only

one camera. This process is based on the theory explained in Chapter II. The ease

of prototyping new ideas is a key aspect of the design as well. This implementation

will inevitably be improved upon by future researchers.

3.1 Research Platform, Devices, and Software

3.1.1 Hardware.

A Dell M6600 Precision laptop was used for development and prototyping. Table

1 shows the computer specifications.

Table 1. Computer Specifications

Manufacturer: Dell
Model: M6600 Precision
Processor: Intel Core i7-2820QM @ 2.30 GHz
Installed memory (RAM): 16.0 GB
Graphics Card: NVIDIA Quadro 4000M
Dedicated Graphics Memory: 2.0 GB RAM
Processor Cores: 4
System type: 64-bit

35

A Point Grey Research Flea 3 camera was used to acquire video sequences ana-

lyzed in Chapter IV. Table 2 shows the camera specifications and Table 3 shows the

specifications of the attached lens.

Table 2. Camera Specifications

Manufacturer: Point Grey Research, Inc.
Product Name: Flea 3 USB 3.0
Model: FL3-U3-13S2C/M-CS
Megapixels: 1.3
Imaging Sensor: Sony IMX035 CMOS, 1/3”
Max Resolution: 1328x1048
Max Frame Rate: 120 fps
Pixel Size: 3.63µm
Transfer Rate: 5 GBit/sec
Digital Interface: USB 3.0

Table 3. Lens Specifications

Model: LENS-30F2-V80CS
Focal Length: 2.8 ∼ 8mm
Angle of View (H × V) : 100◦00′ × 73◦45′

Angle of View (H × V) : 109◦45′ × 59◦51′

Operation: Manual zoom, focus and iris
Iris Range: F1.2 ∼ Close

3.1.2 Software.

The methods developed in this thesis were written in MATLAB r2014b. The

MATLAB Computer Vision Systems Toolbox and the open computer vision library

(OpenCV 2.4.10) with the MEX-file (MATLAB Executable) interface [48] were also

utilized. MATLAB is the development environment of choice because of its simplicity

and speed in quickly prototyping new ideas. Unfortunately, MATLAB is not the most

computationally efficient programming language and is not tailored for large image

36

sequences. Near real-time operation has been achieved despite the inefficiencies asso-

ciated with MATLAB. Porting the methods developed to a more suited environment

for CV applications such as Python or C++ is not exceedingly difficult should it be

necessary, and MATLAB code will be the easiest to interpret for a successor of this

work.

3.2 Creating Robust Point Tracks in a Video Sequence

Selecting good features to track is a critical part of this process since 2D point

locations and correspondence between images make up the source data from which

motion and structure are estimated. Uncertainty in the location of point matches will

cause error to propagate during subsequent steps and serve as a poor foundation for

calculations. An important aspect of generating accurate point tracks is identifying

image features that are the best for tracking. The goal for detecting features in an

image is finding unique and identifiable points which are easy to compare and track.

Figure 13 is shown for demonstrating the importance of selecting features that are

ideal for tracking. Figure 14 shows six small windows of individual features extracted

from Figure 13 for demonstration purposes only. The locations of some features are

more easily identified in Figure 13 than others. Features 14a and 14b are nearly

impossible to identify due to being mostly a flat surface. Features 14c and 14d are

easier to identify, but uncertainty still exists. Since they are edge features, it is trivial

to match them with other edges; but the exact point on the edge is very difficult to

identify. Finally, features 14e and 14f are very easily identifiable because they occur

at corners, removing much of the ambiguity with edge features. This analogy can

be made for the ability of a computer to track specific features as well. If a feature

is difficult for a human to identify, it will most likely be difficult for a computer to

identify as well. These issues were described in detail by Shi and Tomasi who reviewed

37

Figure 13. Sample Image for Feature Extraction.

(a) (b) (c) (d) (e) (f)

Figure 14. Six Features from Figure 13.

the methods for selecting the best features to track and demonstrated quantitatively

that corner points and features with texture are ideal choices for tracking [41].

3.2.1 Initial Point Detection.

The FAST algorithm (Section 2.1.4) was selected for corner point detection pri-

marily for its improved speed when compared with other options. While FAST is not

as robust to high levels of noise, it is several times faster than other existing corner

detectors [39]. Figure 15 shows the results of applying the FAST corner detector

to an image of Texas A&M’s Holonomic Omni-direction Motion Emulation Robot

(HOMER) [20].

38

Figure 15. FAST Algorithm Applied for Corner Detection.

3.2.2 Minimizing Point Detections to a Region of Interest.

A challenge using CV pose estimation methods for a proxops simulator such as

the one shown in Figure 15 is the satellite model moves independently from the

environment. Typically, background features of a scene provide reference points for

updating pose estimation based on the camera’s motion. However, in this case, the

relative motion results from the rotation of the satellite model while the camera stays

fixed. Any background points identified must be ignored, as they do not follow the

same motion model as the target. Any points from the background that are included

in the fundamental matrix estimation step will undoubtedly cause erroneous results

as there is no relative pose change with respect to the background.

The same concept applies to a background of stars or the Earth’s surface for a

satellite in low Earth orbit (LEO) facing the nadir direction. Just like the lab proxops

simulator example, to obtain relative pose between spacecraft, track points on the

target object must be isolated from points identified in the environment. Dealing

39

Figure 16. FAST Algorithm Applied for Corner Detection in a Motion-Based Region
of Interest.

with the Earth’s surface in the background is less of a concern for satellites at higher

altitudes, such as geosynchronous orbit, since the Earth will subtend a significantly

smaller solid angle.

To isolate background points for the proxops simulator case, a background subtrac-

tion/motion detection algorithm written here is used, defining a smaller sub-region

to apply the FAST algorithm. Applying the FAST algorithm to this sub-region of

interest has a secondary benefit of reducing the number of operations that must be

performed. The first step is a normalized image difference, followed by convolution

with a Gaussian filter to smooth image noise, and finally a thresholding operation

to define a convex polygon that encapsulates a region of interest. Figure 16 shows

the FAST corner points detected inside blue rectangular region of interest, with the

convex polygon shown in red.

40

3.2.3 Point Tracking.

Once points are identified on the object using the FAST algorithm, the tracker

developed by Kanade, Lucas, and Tomasi is used to track these points through sub-

sequent frames (the KLT tracker, introduced in Section 2.1.5). The KLT tracker

is a sparse optical flow algorithm that tracks a feature by minimizing an objective

function to update the location in the next frame. A translation-only model exists

in which a small image patch in one frame is compared with image patches in the

next frame in order to estimate the most likely updated location based on an iterative

search. Figure 17a shows the initial corner point detection using the FAST algorithm

(a minimized set for demonstration). Figures 17b through 17i show the subsequent

results of the KLT tracker through the rotation of the satellite model.

In Figures 17b through 17i, general KLT track point motion appears to move

consistently with the rotation of the model. Upon further analysis, a few observations

can be made. First, the points are drifting from the initially detected location on the

model. Ideally, each point track should exist the entire time it is in view, from

detection until the point rotates out of view. Drift occurs in a few different instances

in the series of point tracks. A close-up view of one point track is shown in Figures

18a through 18l in which a point is initially detected and tracked as the model rotates.

However, as the point moves to one side of the object, the corner begins to look more

like an edge. Once the KLT track point is aligned with the side of the model as it

rotates, the small window extracted near the point looks very similar from frame to

frame and it continues to be detected as a successful track even though the actual

point is occluded. Drifting points can cause gross errors on the subsequent position

estimation.

Another observation from Figure 17 is the disappearance of points as motion

occurs, which is expected. As an object rotates, eventually all the initial point detec-

41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17. KLT Track Points.

42

(a)
Detection

(b)
Good Track

(c)
Good Track

(d)
Good Track

(e)
Good Track

(f)
Minor Drift

(g)
Increasing Drift

(h)
Increasing Drift

(i)
Drifted to Edge

(j)
Tracking Edge

(k)
Tracking Edge

(l)
Tracking Edge

Figure 18. The History of a Drifting Translation-Only KLT Track from Figure 17.

tions will be facing the opposite direction and no longer visible. This disappearance

of points, however, requires the implementation of a method to detect when a new

area of the object has appeared and requires point detection, while gracefully being

combined with the previously tracked motion.

3.2.4 Methods to Eliminate Point Drift.

A significant issue with the KLT point tracker presented is point drift. The KLT

translation-only tracker identifies a point track in frame n based on the best match

in frame n-1. For example, the window in Figure 18a is very similar to 18b, and 18b

is very similar to 18c. However, 18a and 18f begin to show dissimilarities, and the

deviation becomes significant with windows 18i through 18l. Updated versions of the

KLT tracker utilize a method known as an affine consistency check [41, 7], an iterative

method that computes the translation and iteratively applies an affine transformation

to the feature window to additionally minimize error against the initial occurrence.

Implementation of the affine consistency check on a large scale with hundreds of

point tracks has been prohibitively slow; therefore, a separate secondary comparison

43

is utilized.

The BRIEF Feature.

A secondary method to verify point tracking with the KLT tracker was explored

to recognize and remove drifting point tracks. One of the goals of this secondary

approach is to keep the process as simple as possible, still able to run in real time,

while being universal and robust. As described in Section 2.1.6, calculating a BRIEF

feature is incredibly fast. Comparing BRIEF features to one another is also very

efficient, only requiring the calculation of the Hamming distance, a significantly faster

computation than the typical Euclidean distance.

The secondary verification method starts with extracting a BRIEF feature upon

initial point detection (the library BRIEF feature). As the translation-only KLT

tracker updates the point location, another BRIEF feature is extracted. The new

BRIEF feature is compared to the library feature via the Hamming distance. If

the Hamming distance exceeds a threshold value, then the track point is ended.

An issue that arises from analysis of Figure 12 is, as in-plane rotation increases

and the perspective of the target changes, determining a positive match using the

Hamming distance becomes increasingly ambiguous. To reduce this ambiguity, the

library BRIEF feature is periodically updated (if it is still a match) based on the

amount of relative motion that has occurred since initial detection or the last update.

Figure 19 shows the result of no updates to the BRIEF feature without ending

any tracks from Figure 18. The blue line corresponds to the feature windows in

Figure 18 with the letters corresponding to each specific figure along the top of the

plot, starting with Figure 18a. The other two lines represent other point tracks from

Figure 17 to show the similarity. Figure 20 shows the resulting Hamming distance

history if the source BRIEF feature is periodically updated automatically based on

44

Total Target Rotation (deg)
0 10 20 30 40 50 60 70 80 90 100

H
am
m
in
g
D
is
ta
nc
e:
In
iti
al
to
C
ur
re
nt
F
ea
tu
re

0

0.1

0.2

0.3

0.4

0.5

1
(a) (b) (c) (d) (e) (f) (g) (h)

0.9

0.6

0.7

0.8

Figure 19. Hamming Distance with No
Feature Updates on the Drifting Points
from Figure 18.

TotalOTargetORotationO(deg)
0O 5O 11 17 24 31 38 44 51H

am
m

in
gO

D
is

ta
nc

e
:OU

pd
at

ed
Oto

OO
rig

in
al

OF
ea

tu
re

0.1

(a) (b) (c) (d) (e) (f)

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 20. Hamming Distance with
Motion-Based Feature Updates. Point
Tracks End When Hamming Distance
Threshold is Exceeded.

camera translation. In the current example, this method ends the track between

Figures 18e and 18f. In this example, rotation estimates on the X-axis of Figures 19

and 20 are made by running the completed version of the SLAM code on the same

video sequence and correlating the frame numbers to the amount of rotation.

The Hamming distances for BRIEF feature comparison shown in Figure 12 are for

a single comparison only. A Gaussian distribution exists for incorrect matches around

the 50% similarity point. However, the method of implementation in this thesis

compares the current feature to the library feature, at a minimum, on the order of 10

to 20 times before the library feature is updated (depending on the relative motion

rate, which determines the rate at which the library feature is updated). Statistically,

it becomes very difficult for an incorrect match to exist over this many comparisons.

Even with a Hamming distance threshold as high as 50%, if track points are not

projected to 3D until they exist through a minimum amount of relative motion and

a comparable number of Hamming distance tests, the result is removing the majority

of drifting and incorrect points matches. However, statistically, some successful point

tracks are ended prematurely as well. The probability of a successful match with a

Hamming distance greater than 50% is small (the blue lines in Figure 12), but it does

45

increase when multiple comparisons are performed over increasing relative separation.

An additional verification method for the KLT tracker is to perform the track in

reverse to the previous frame. The difference in pixel distance from the location in

which the track originated to the reverse track location is called the bi-directional

error. A threshold is set for the maximum allowed bi-directional error. If the point

track exceeds a threshold for the bi-directional error, then the point track is ended.

This additional verification method succeeds in ending point tracks which contain

ambiguous features, such as edges, which contribute to inaccurate point tracks. A

maximum bi-direction error value of 0.1 pixels is used in this method.

The BRIEF feature update method is very quick to calculate and successfully

eliminates the majority of point drift. Unfortunately, some point tracks are ended

prematurely while the point is actually still in view. Ending point tracks early is not

ideal from the standpoint of minimizing error across numerous views. Maximizing

point track life and accuracy while in view is one area that should be considered for

future work and is discussed in Chapter V.

3.2.5 Handling Additional Outliers.

Outliers still exist that can’t be discovered locally. Glossy surfaces can be incred-

ibly difficult to maintain accurate point tracks and the external surfaces of spacecraft

can be very reflective. For example, a bright reflection on a shiny surface may change

gradually, resulting in a point track that follows the reflection rather than the physical

surface location. For this reason, global outliers are detected and removed separately.

These outliers are dealt with based on global motion and reprojection error and are

discussed in Section 3.3.2.

46

3.2.6 Detecting New Points.

As relative motion occurs and point tracks disappear, it is necessary to detect

new points for continuous tracking and motion estimation. It is also important to

proactively detect new points and initiate new tracks as points appear, rather than

retroactively detecting points once all tracks have ended. The methodology used

for performing structure and motion initialization and the subsequent perspective

calculations will highlight the importance of incorporating new points in Section 3.3.1.

The detection of new points is based on the density of currently visible point

tracks in sub-regions of the target region of interest. The region of interest (discussed

in Section 3.2.2) is divided into n sub-regions. If the number of points in any sub-

region falls below a specific threshold value, the FAST algorithm is used to detect

new points, applied only to this specific sub-region. In this manner, track points are

gradually added to the image in sub-regions that have recently rotated into view or

are becoming unobscured for other reasons. Figure 21 shows a sample point density

calculation with 9 sub-regions in a video from the Prototype Research Instruments

and Space Mission technology Advancement (PRISMA) Satellite [37] performing on-

orbit formation flying.

47

Figure 21. FAST Algorithm in Sub-regions with Point Density (Original Picture Credit:
[37]).

3.3 Simultaneous Localization and Mapping

The methodology for generating point tracks implies it is a sequential process:

points are identified, points are tracked to subsequent frames, and new points are

identified and tracked. The track point locations provides the data for the structure

and motion estimation, a separate process, relying on an entirely different foundation

of CV theory. Contrary to the sequence in which these two topics are presented, they

occur together in this section; they are simultaneously performed and jointly reduce

error to optimize the structure and motion estimation.

3.3.1 Structure and Motion Initialization.

Initially, point correspondences are generated between two frames. Nothing is

known about the location of either of the cameras capturing the points or the 3D

location of the points themselves. Section 2.1.2 introduced multi-view geometry the-

ory, including the fundamental and essential matrices. Section 2.1.3 utilized the

essential matrix to estimate the relative pose between two cameras, based only on

48

Figure 22. Increased Uncertainty As Relative Camera Separation Decreases [16].

point matches between two different views. Once two camera poses are estimated,

the 2D point matches are triangulated to determine a 3D location. Performing the

first set of relative pose estimates and projecting the initial set of 2D point matches

to 3D will be referred to as initialization.

It is important that initialization is accurate as subsequent pose estimates will

rely on the estimates generated during this step. Gross error during this step will

most likely cause complete failure of the method in future steps. A very important

nuance during this step that has a significant effect on accuracy is the variation in

pose between camera views. If two frames from a video or live feed are selected to

perform initialization, there must be adequate relative translation between cameras.

Figure 22 depicts this phenomenon: if there is small relative motion (or only camera

rotation) no additional depth information is acquired and the fundamental matrix

will be poorly conditioned. An additional note is that a pure rotation of the target

object (the case with the HOMER video sequence in Figure 17) provides the relative

rotation and translation required from the perspective of the camera for successful

initialization.

The first step in initialization is calculating the fundamental matrix using the

Normalized 8-point Algorithm (Section 2.1.3) [17]. The essential matrix is then cal-

49

Inliers and Epipolar Lines in First Image Inliers and Epipolar Lines in Second Image

Figure 23. Epipolar Lines Shown For Fundamental Matrix Estimation.

culated using the camera intrinsics and the fundamental matrix. Figure 23 shows the

point matches and epipolar lines described by the fundamental matrix.

Using singular value decomposition, the relative rotation, R, and translation,

t, are decomposed from the essential matrix. Since only relative motion is known,

the frame of the first camera can be placed in any location and orientation desired

based on external information (a star tracker, for example). For simulation, the first

camera is placed at the origin of the world frame, [0, 0, 0]T, pointing along the z-axis

(the x-axis and y-axis being in the image plane and the z-axis toward the scene being

imaged). In this manner, the camera matrix for camera one is represented by P1 in

Equation 21. The relative rotation and translation is used to construct the camera

matrix for camera two, P2. Since the camera intrinsics do not depend on the scene

being imaged, the same K matrix can be used as long as the focal length is fixed.

This is an adequate assumption as long as a variable zoom lens is not used.

P1 = K [I |0] =

f/sx f/sx cot Θ x0

0 f/sy y0

0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 (21)

50

Ym

-0.5

0.5

-1

0

1

1.51

Xm

0.50-0.5-1

0
1

2
3

Z
m

4
5

6

Figure 24. Structure and Motion Initialization.

P2 = K [R2 | t2] =

f/sx f/sx cot Θ x0

0 f/sy y0

0 0 1

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 (22)

The next step is to use triangulation to localize points in 3D based on two known

perspectives and their 2D image locations. Figure 24 shows the result of initialization.

The green camera model represents the pose of the first camera at the world origin.

The blue camera model represents the pose of the second camera (a counter-clockwise

rotation of the satellite model, or a relative translation and clockwise rotation of the

camera). Finally, the triangulated points on the model are represented by the point

cloud.

One important note regarding the specific size and units of the model is that

they are unknown. The relative dimensions of the size of the model compared to

51

the motion of the camera are maintained, but the scale of the scene is ambiguous.

Without additional information about the scene, the scale ambiguity remains. Recall

the scale factor s (Equation 4 in Section 2.1.2). In a spacecraft performing proxops, a

common choice for the data providing scale information may be the range (depth) to

the target. The range will most likely be available from previous steps in the process

based on the knowledge of the target object’s orbit, which is required to rendezvous

with a RSO. Section 4.2 shows the results of performing this scaling operation based

on camera depth in a laboratory-acquired training video.

When performing initialization, a balance is made between obtaining a maximum

amount of motion (more frames apart) versus maintaining enough point matches to

perform pose estimation. Using a standard number for frame separation to perform

initialization is not an adequate method as variable relative motion rates are possible.

To automate the initialization process, the distance between each track point’s

current location at frame n, xi
n, and the track point’s initially detected location in

frame 1, xi
1, is calculated. Comparing the average translation of m track points

that still exist in image n,

[
m∑
i=1

dist(xi
1,x

i
n)

]
/m, to the diagonal dimension of the

image (the distance from one corner to the opposite corner in pixels) yields a relative

value for average pixel motion to the image size. Initialization is performed when the

average pixel translation of all track points in the image sequence is at least equal

to the relative pixel motion threshold. Section 4.5 shows the results of a sensitivity

analysis of this parameter on the average success rate of initialization and subsequent

SLAM steps for the training videos used in Chapter IV. The required relative camera

translation issue (Figure 22) still exists. It is up to the user to ensure initial relative

motion occurs in an adequate manner. However, following initialization, no motion

constraint exists.

The number of track points remaining is an important consideration for initializa-

52

tion as well. As a fail safe to only using the relative pixel motion threshold method,

initialization is automatically performed if less than 20% of the initially detected

points remain. As an additional method of reducing error and ensuring a successful

initialization, bundle adjustment is performed on the first three structure and motion

estimates, incorporating an additional view in case the first initialization was not a

complete success (discussed further in Section 3.3.3).

3.3.2 Sequential Model Construction and Pose Estimation.

The PnP Problem.

Once initialization has been performed, subsequent iterations of structure and

motion estimation build iteratively on the initial map created. In an image, if a set of

2D points is found with known 3D locations, calculating the potential camera pose to

view the subject points in their current orientation is referred to as the PnP problem.

The required relative camera translation in Figure 22 is also no longer a constraint

since pose is estimated with the PnP problem from only one image.

The points used for initialization now have a 3D location associated with each

specific 2D point. Continuing the tracking process to the next frame yields a new

set of 2D image coordinates for points with known 3D locations. To estimate the

new camera pose based on these 2D-3D correspondences, an iterative implementa-

tion of the PnP problem based on Levenberg-Marquardt optimization is utilized and

requires at least three points. In this implementation, the function finds a pose that

minimizes reprojection error, essentially performing bundle adjustment on only one

frame. Finally, RANSAC is applied to the PnP problem as a method of eliminating

points in which the reprojection error exceeds a user defined threshold. The motion-

based RANSAC method succeeds in eliminating points that may experience drift in

special cases, such as following a surface reflection rather than a point on an object,

53

Ym

-0.5

0.5

-1

0

1

1

Xm
0-1-2-3

0

2

4

Z
m

6

(a)

Z
m

0

1

2

3

4

5

6

Xm
-3 -2 -1 0 1

(b)

Figure 25. Updated Camera Poses Based On Initialization Point Cloud.

as long as at least roughly 50% of the remaining points are motion inliers. Points

are eliminated in this implementation with a reprojection error greater than 4 pixels.

Figure 25 shows subsequent pose estimates through relative motion in blue, all based

on the initial set of projected 3D points by solving the PnP problem.

Projecting Newly-Detected Points.

The initial point cloud, in the case of Figure 25, can only continue to provide

pose estimates while the 2D point tracks remain in view. As these points become

occluded due to rotation, the track points end and there are no 2D image points to

3D model point correspondences to provide a pose estimate. To solve this issue, as

new points become visible and tracked through multiple views, they are continuously

projected into 3D space using triangulation. These updated point projections con-

54

Ym

-0.5

0.5

-1

0

1

1

Xm
0

-1
-2

0

1

2

3

Z
m

4

5

6

Figure 26. Initial Point Cloud and First Subsequent Point Projection.

tinue to provide a 3D source for pose estimates when the initialization point cloud

has disappeared. Figure 26 shows the initial point cloud in blue and the first subse-

quent projection from newly-detected points through rotation in green. Continuing

the process of performing pose estimates and projecting points as they exist over

multiple images results in continuous construction of the structure of the model and

knowledge of relative pose. Chapter IV shows the results of the continuation of the

SLAM process.

Selecting Points for Projection and Removing Additional Outliers.

As it turns out, the point detection process and KLT tracker result in hundreds

of points being detected in a scene. However, each of these points is not utilized

for SLAM. Numerous outlier methods previously described pare down the tracked

points over a portion of a video sequence. The BRIEF feature descriptor is utilized

to remove KLT points which have undergone drift. Applying RANSAC to the PnP

55

problem removes points with greater than a certain reprojection error threshold. Still,

this may not solve the problem of a dynamic background (the Earth) and results in

an overwhelming number of points for calculation.

A very simple, yet very effective, method found to solve the dynamic background

problem is to track the number of frames a point is visible. The number of frames

that a point track has existed will be referred to as the point life. Utilizing a method

that selects points with a life greater than a certain threshold, yet have survived the

previous outlier removal techniques, ensures that only the most sustained point tracks

on the object will be used for calculations. Tracks in dynamic backgrounds are typi-

cally short lived. This point life method results in dynamic background points being

ignored. Combined with the region of interest method in Section 3.2.2, backgrounds

are successfully isolated from the object of interest in the frame.

The point life threshold is assigned based on the rate of relative motion. Auto-

mated initialization based on initial track point motion results in two pose estimates.

The amount of translation between the first two pose estimates serves to provide a

value for the current rate of relative motion. Restricting triangulation to points that

exist through pose estimates, with a change in position at least equal to the current

motion rate, succeeds in isolating points to the target.

Figure 27 shows track points detected on the Space Shuttle performing rendezvous

pitch maneuvers with the Earth in the background. Since motion is slow, the motion-

based point life threshold will be large, isolating points to the Space Shuttle. In Figure

27, all tracked points are shown by yellow crosses. Track points with a life greater

than the motion-based point life threshold (which is updated each iteration based on

the rate of motion) are emphasized with a cyan circle around the cross.

Another benefit of using point tracks that meet a point life threshold is a reduction

in error. Each iteration of estimating pose with PnP, detecting new points, and

56

Figure 27. Isolating Targets From Dynamic Backgrounds Using Point Life.

projecting to 3D results in an increase in overall error. Maximizing the track point

life results in utilizing a set of points over more frames for pose estimation. This

reduces error by minimizing the number of times new points are detected, projected,

and used for pose estimates.

Using these methods, a few outliers may still sneak through the cracks. The

resulting projections to the point cloud typically appear visibly to be incorrect. Some

examples are a 3D point at an abnormally large depth or a negative depth (behind

the camera). At this stage of the process, if bad points do exist, they are usually

very few. Performing basic statistics on the location of the 3D points is an effective

method of removal. Points are removed with a distance greater than three standard

deviations from the center of the point cloud. Points are also removed with a negative

depth. The 2D point tracks are also ended in these infrequent cases.

3.3.3 Bundle Adjustment Integrated with SLAM.

The First Increment of Bundle Adjustment.

The accuracy of 3D point locations is limited based on image resolution, image

noise, track point drift, and errors during the fundamental matrix estimation process.

57

Performing bundle adjustment after initialization and one additional pose estimate

succeeds in reducing this error. P1 and P2 are estimated during initialization. A

third pose, P3, is selected based on the translational distance between the current

pose estimate and P2. Once the current camera translation has at least exceeded

the distance between P1 and P2, the third pose estimate, P3, is included in an error

reduction operation using the cost function in Equation 23 (without optimizing K).

In this manner, three different perspectives provide the most accurate initialization

with the data available without a superfluous use of computational resources on a

larger number of images. Error reduction on initialization is incredibly important to

prevent additional propagation of error to subsequent structure and motion estimates.

min
P1:3,Xi

3∑
j=1

mj∑
i=1

dist(xi
j,PjX

i) (23)

The C/C++ package for generic sparse bundle adjustment called SBA is imple-

mented for this application [26]. Using SBA provides numerous benefits: a well doc-

umented software package with instructions, implementation examples, and a MAT-

LAB MEX interface that runs more efficiently external to MATLAB.

Incremental Bundle Adjustment.

Additional increments of bundle adjustment can be performed to minimize error

throughout the SLAM process. Many different strategies exist for error reduction.

Bundle adjustment implementations range from optimizing parameters across two

sequential images, to a global manner over all possible images. The bundle adjustment

implementation strategy is very important as processing time can escalate quickly as

the number of nonlinear equations grows. Tailoring the bundle adjustment approach

for specific applications is very important and is another candidate for future work.

Currently, this implementation does not utilize bundle adjustment following the first

58

three pose estimates (except for the iterative PnP method to solve for camera pose

between only two frames).

3.4 Method Summary

Algorithm 1 provides a summary for the specific implementation of the SLAM

method described.

59

Algorithm 1 Monocular SLAM Method Summary

Load video, extract two frames, find target ROI
Detect corners in ROI using FAST and extract BRIEF features in frame 1
Create KLT tracker
Set mode to initialization, initialize threshold variables
for i = 2 to the total number of frames do

Update current video frame
Use KLT tracker to find new point locations
Extract BRIEF features from current frame
if current-library feature Hamming distance is > threshold then

End point track
end if
if a BRIEF feature has not been updated within the feature update rate then

Update library BRIEF feature to current feature
end if
if initialization mode then

Calculate relative point track motion
if relative point track motion > initialization threshold then

Estimate F using Norm-8-point, convert to E using K
Decompose E to extract R and t
Triangulate the same points used for F to 3D
Set mode to PnP, set motion threshold and feature update rate

end if
end if
if in PnP mode & motion threshold is reached then

Find visible 2D track points that match a projected 3D point
Solve PnP with RANSAC to estimate updated pose (Pn), remove outliers
Find 2D track points without a 3D projection that existed in Pn−1
Triangulate points to 3D using Pn, Pn−1, xi

n, and xi
n−1

Clean up bad points, update motion threshold and feature update rate
Incremental BA if desired

end if
if the number of pose estimates == 3 then

Perform BA to optimize motion (P1:3) and structure (Xi
1:3) estimates

end if
for k = 1 to the number of ROI sub-regions do
if point density in sub-region < threshold value then

Detect new points in sub-region using FAST and extract BRIEF features
end if

end for
Update the KLT point tracker to the remaining inliers

end for

60

IV. Results and Analysis

The results in this chapter were generated by applying Algorithm 1 to various

video sequences. Section 4.1 presents the results generated from space-related video

sequences. This data was used for a significant portion of the development of this

monocular SLAM algorithm to ensure its operation on data generated during prox-

ops. No quantitative accuracy analysis is performed in this section as no truth data

is available. However, a qualitative inspection yields visibly successful structure and

motion estimations. Section 4.2 shows results generated from a CubeSat air bearing

testbed. The air bearing tests provide a known orientation for results verification.

Section 4.3 provides a similar verification of results from a series of synthetic video

sequences with known camera orientation. A run-time analysis and parameter sensi-

tivity analysis are performed in Sections 4.4 and 4.5.

4.1 Results of Space-Related Video Sequences

4.1.1 HOMER.

Texas A&M University’s Aerospace Engineering Department designed an indoor

proxops simulator called the Holonomic Omni-directional Motion Emulation Robot

(HOMER) [20], which provides ideal relative motion and video sequences for testing

a space-customized monocular SLAM algorithm. HOMER data is advantageous for

development and testing because it provides smooth and untethered motion using

space-representative hardware and lighting. Figure 28 shows ten sample frames from

the HOMER video sequence that was used extensively for monocular SLAM devel-

opment. In this sequence, the smooth, reflective surfaces and target rotation result

in a challenging scenario for maintaining accurate point tracks. Figure 29 shows the

SLAM results, in which the green camera model represents the initial camera pose

61

with each subsequent camera pose estimate represented by the blue camera models.

Figure 30 shows a close-up and different perspective of the estimated 3D point cloud

with color variations by location to show depth.

In the HOMER video sequence, one unique aspect is that the camera is stationary

while the rotation of the target provides the change in perspective required for struc-

ture and motion estimation. This is unique in the fact that the relative rotation and

translation of the camera is a result of only a rotation by the target. A very important

note is that if the roles were reversed and the only relative motion is pure rotation by

the camera, structure and motion estimation is impossible as there is no gain in the

additional perspective information required. One final note is that performing SLAM

on this sequence requires the elimination of any background points that are detected,

as the results will be grossly erroneous in an attempt to match one relative motion

solution to two separate motion models.

62

Figure 28. HOMER Video Sequence [20]: Sample Frames.

6420

Xm

-2

12

10

8
Zm

6

-4

4

2

0

-1

0

1
Ym

Figure 29. HOMER Video Sequence [20]: SLAM Results.

63

-0.5

1.5

0.5

-1

0

1

1.510.50
55.566.5

Figure 30. HOMER Video Sequence [20]: Point Cloud.

64

4.1.2 Orbital Express.

Orbital Express is an on-orbit rendezvous mission managed by DARPA that

launched two spacecraft in 2007. The purpose of the program was to develop “a

safe and cost-effective approach to autonomously service satellites in orbit.”[34] The

first spacecraft, represented as the larger spacecraft in the foreground of Figure 31,

is a servicing satellite called the Autonomous Space Transport Robotic Operations

(ASTRO). The other spacecraft is the Next Generation Satellite and Commodities

Spacecraft (NEXTSat), which serves as the target spacecraft for ASTRO’s proxops

maneuvers. DARPA continues to share still image and video clips from this satellite’s

on-orbit missions for research purposes [33].

The first set of results related to the Orbital Express mission is a computer sim-

ulation of ASTRO and NEXTSat rigidly connected together [33]. Ten frames from

the video are shown in Figure 32. Figure 33 shows the SLAM results, including the

pose estimates through relative motion and the structure points on the spacecraft.

The green camera model represents the first pose, with subsequent pose estimates

shown in blue. Figure 34 shows a larger and different perspective of the structure

point cloud estimated in Figure 33. Since only one side of the spacecraft is seen in

the simulation sequence (through less than a quarter of a full rotation), points only

exist on one side of the model.

The next set of Orbital Express data is a composition of still images taken of

NEXTSat from the ASTRO spacecraft during a decoupling maneuver [33]. Figure 35

shows ten sample frames from the sequence. Figure 36 shows the SLAM results and

37 shows a side perspective of the structure point cloud. In this sequence, the solar

panel provides the best visual features for tracking, which account for the majority

of the point cloud. SLAM ends relatively soon as the DARPA video is low resolution

(320 x 320 pixels), which leaves very few features for tracking as depth to the target

65

Figure 31. Orbital Express Concept [33].

increases.

The final set of Orbital Express data is captured from a camera on ASTRO’s

robotic arm during a self inspection procedure. Figure 38 shows ten sample frames

from the video sequence captured by the arm. Figure 39 shows the SLAM results, with

the camera models representing the relative pose estimates of the camera on the arm.

Figure 40 shows another perspective of the point cloud. Additional video sequences of

the arm exist; however, quick movements and numerous sequential estimations from

close-up views cause significant errors to propagate and build up over time. Increasing

robustness and reducing error over a long sequence like this is a useful topic to pursue

in future work.

66

Figure 32. Orbital Express Simulation [33]: Sample Frames.

Ym

-6

-4

-2

4

0

2

5

Xm
0-5-10

0

5

10

15

20

Z
m

25

Figure 33. Orbital Express Simulation [33]: SLAM Results.

67

86420-2-4

25

20

-6

15

-6

-4

-2

0

2

4

Figure 34. Orbital Express Simulation [33]: Point Cloud.

68

Figure 35. Orbital Express Proxops Video [33]: Sample Frames.

Xm
0

-5
-30

-25
-20

-15
-10

-5

Z
m

0
5

10
15

20

Figure 36. Orbital Express Proxops Video [33]: SLAM Results.

69

-10

-8

-6

-4

-2

-5

0

2

4

6

8

05

5101520

Figure 37. Orbital Express Proxops Video [33]: Point Cloud.

70

Figure 38. Orbital Express Self Inspection Video [33]: Sample Frames.

Ym

-2
-4

2
4
0

4
2

0
-2

-4

Xm

-6
-8

-10
-12

-14
0

2

4

6

8

10

12

Z
m

14

16

18

Figure 39. Orbital Express Self Inspection Video [33]: SLAM Results.

71

-2

-4

0

4

2

4
2

0
-2

-4
-6

10

12

14

16

18

Figure 40. Orbital Express Self Inspection Video [33]: Point Cloud.

72

4.1.3 PRISMA.

PRISMA is a proxops mission designed by the Swedish Space Corporation for on-

orbit guidance, navigation, and control demonstrations [37]. Similar to the Orbital

Express mission, PRISMA consists of two spacecraft: one that is advanced and highly

maneuverable called Main, and a second smaller spacecraft without maneuvering

capability called Target which is stabilized by means of magnetic control only. As

the names suggest, Main performs proxops around Target. The SSC has shared a

selection of relatively low-resolution proxops videos from the Main spacecraft toward

Target during proxops maneuvers. Figure 41 shows ten sample frames from the most

dynamic proxops sequence shared, including an approach, partial orbit, and recede

maneuver. Figure 42 shows the SLAM results, and Figure 43 shows the point cloud

of the Target spacecraft structure estimates.

Rapid scale changes and varying levels of relative motion in the PRISMA sequence

make this a difficult sequence to maintain accurate point tracks. During the approach

portion of the video, significant scale changes occur due to large relative linear motion.

However, during the middle portion of the video, relative motion and scale changes

are small, but target rotation is large. Finally, during the recede operation, relative

motion occurs extremely fast. The varying motion rates in this sequence contributed

significantly to automating the rates at which the library BRIEF feature updates and

pose estimates occur.

Jumpiness due to (what appears to be) dropped frames is also an attribute of

this video sequence that is yet to be completely solved. The result is a significant

amount of lost point tracks which are still in view, followed by point re-detection in

subsequent frames, which introduces additional error and no correlation to the point’s

initial detection.

73

Figure 41. Prisma Video Sequence [37]: Sample Frames.

Ym

-0.5

0.52.5

0

21.510.5

Xm

0-0.5-1

0

1

2

3

Z
m

4

5

Figure 42. Prisma Video Sequence [37]: SLAM Results.

74

-0.6
-0.8

5.8

-1

5.6

-1.2

5.4
5.2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Figure 43. Prisma Video Sequence [37]: Point Cloud.

75

4.2 Accuracy Analysis Using a CubeSat Air Bearing Testbed

Determining accuracy of a computer vision algorithm can be challenging. Early

in the design stages of this SLAM algorithm, success was based on generating a

reconstruction that simply looked like the the object in question. With the synthetic

sequences in Section 4.3, truth data is very easy to come by as an output from the

modeling software used to generate the scenes. With other sequences analyzed, such

as actual space based proxops data, a set of truth data may be impossible to obtain

if the specific sensors on-board the spacecraft do not provide the required data at a

reasonable level of accuracy. An accuracy analysis approach is therefore used in which

video sequences are acquired in a laboratory setup that allows for the measurement

of truth rotation values.

A commonly used test platform at AFIT is the air bearing, which creates a near

frictionless environment. A typical test setup involves the AFIT 6U CubeSat chassis

mounted to the air bearing inside a Helmholtz cage to simulate on-orbit magnetic

fields. This platform allows for the development of the CubeSat’s attitude determi-

nation and control sub-system, enabling unlimited rotation about the vertical axis

and approximately 60 degrees in the second and third axes. Figure 44 shows the

CubeSat-air bearing testbed.

Performing a series of tests constrained to rotate mainly about the vertical axis

allows for trivial truth measurements to be taken throughout the sequence of each

test. The SLAM algorithm is then used to estimate the relative pose (position and

orientation) of the camera with respect to the CubeSat throughout the test sequence.

Performing a series of coordinate transformations allows for the extraction of the

vertical axis rotation of the CubeSat, which is compared with the truth vertical axis

rotation values to determine accuracy of the SLAM method. Truth rotation values

are obtained from the spot of a laser pointer that is fixed to the CubeSat and points

76

Figure 44. The AFIT 6U CubeSat Air Bearing Testbed.

to degree increments on the lab wall. The accuracy of the truth rotation data is

±0.25◦ [43].

The first test performed involves a clockwise (CW) vertical axis rotation from 0◦

to approximately 45◦, followed by a roughly 90◦ counter-clockwise (CCW) rotation,

and finally a CW rotation toward the starting position. Figure 45 shows the SLAM

scene results, with a coordinate axis drawn on the CubeSat point cloud, and the

coordinate axes for each estimated camera pose shown. The black arrows show the

rotation sequence described above as relative rotation and translation from the cam-

era’s perspective. Figure 46 shows the truth and SLAM-estimated vertical rotation.

In this test, it appears each pose estimate introduces slight error that builds up over

time. At the end of the test sequence, the truth vertical axis rotation is −26.5◦ and

the SLAM estimated vertical axis rotation is −28.1◦. The result is an average error

per pose estimate of 0.10◦ with a standard deviation of 0.53◦. Analyzing the quantity

of error introduced by each pose estimate yields a root mean squared (RMS) value

of 1.05◦. In Figure 48, these error values correspond to test sequence 1 where the

77

Figure 45. SLAM Results of a Single Axis CubeSat Rotation Test.

green squares represent the average error, the red error bars represent the standard

deviation, and the blue bars represent the RMS value.

To observe the effect of the accumulation of error over a longer test sequence,

the next test results shown include additional CW and CCW rotations. Figure 47

shows the truth and SLAM estimated vertical rotation in the test sequence. This

data shows that over a longer test sequence, error does accumulate and continues to

occur proportional to each pose estimate.

Unfortunately, a constant error value cannot be generalized for all targets. The

error is due to a number of factors, but depends on the target being tracked. Figure

48 shows the accuracy analysis results for a series of nine tests using the method

described for test sequence 1. Ending track points early due to the CubeSat’s reflective

aluminum surfaces contribute to error propagation. As new points are detected, their

baseline location is derived from a measurement that now has a slight amount of error

introduced. Accurately extending track point life for all of the frames a point is in

78

Time (sec)
2 4 6 8 10 12 14 16

V
er

tic
al

 A
xi

s
R

ot
at

io
n

(d
eg

)

-40

-30

-20

-10

0

10

20

30

40

50
Actual Rotation
SLAM Estimated Rotation

Figure 46. Single Axis CubeSat Rotation Test Results.

Time (sec)
0 5 10 15 20 25 30 35 40

V
er

tic
al

 A
xi

s
R

ot
at

io
n

(d
eg

)

-60

-40

-20

0

20

40

60

Actual Rotation
SLAM Estimated Rotation

Figure 47. Single Axis CubeSat Rotation Test Results.

79

CubeSat Vertical Rotation SLAM Test Sequences
1 2 3 4 5 6 7 8 9

V
er

tic
al

 A
xi

s
R

ot
at

io
n

E
rr

or
 V

al
ue

s
(d

eg
re

es
)

-0.5

0

0.5

1

1.5

2

2.5
RMS Value
Avg. Error with Std. Dev.

Figure 48. SLAM Accuracy Analysis of the CubeSat Single Axis Rotation Test Series.

view will reduce error and should be considered for future work.

Results also vary from test to test in Figure 48 because feature density on the

CubeSat is not constant. Some areas of the CubeSat have a higher number of easily

tracked features than other areas. Depending on the side of the CubeSat that is in

the camera’s field of view during initialization, there may be more points to track

which will increase the accuracy of initialization. Improving performance during

operation on targets with a small number of features to track is an important area

for improvement as well.

Next, the dimensions of the estimated 3D structure point cloud are compared

with the physical dimensions of the AFIT 6U CubeSat. Without a known reference

distance, the units of the scene are meaningless. In this test scenario, the depth of

the scene from the camera to the center of the front plane of the CubeSat is 140 cm,

which is used to scale the scene. Figure 49 shows the resulting dimensions of the

80

Figure 49. CubeSat Structural Point Cloud Dimensional Analysis.

estimated CubeSat point cloud on the left side, with a picture of the CubeSat and its

physical dimension on the right side. The resulting error is 0.2 cm in the x-axis, 0.8

cm in the y-axis, and 1.6 cm in the z-axis. The measurements in Figure 49 yield an

average error of 5.9%. This is in part due to the uncertainty associated with selecting

the location on the point cloud that matches the location on the CubeSat.

4.3 Accuracy Analysis Using Synthetic Video Sequences

In [4], Balzer and Soatto share 19 synthetic video sequences created using the

3D computer graphics software package Blender. In these sequences, relative motion

occurs around a synthetic object. Balzer and Soatto also publish truth camera pose

data specifically for the purpose of characterizing error in CV-based structure and

motion methods. Various types of motion are implemented from a simple vertical axis

rotation to more complicated motion that introduces additional sinusoidal translation

in other directions. Varying levels of occlusion, edge clipping, translation, and scale

changes occur. Dynamic backgrounds and motion blur are included in some videos

81

as well, increasing the level of complexity and representative nature of a real-world

video. Nevertheless, the nature of the features in the scenes and the lighting simplify

point tracking in comparison to a real-world video sequence.

Figure 50 shows ten sample frames from synthetic sequence 1 which contains the

simplest motion case (vertical axis rotation only). Figure 51 shows SLAM results

on synthetic sequence 1. The blue camera models represent the SLAM camera pose

estimates. The magenta camera models represent the known camera poses throughout

the sequence. The thick red line in the foreground of Figure 51 represents the error

in the position of the final pose estimate.

To analyze the accuracy of the SLAM results for synthetic sequence 1, the esti-

mated vertical axis rotation is compared to the known vertical axis rotation. Figure 52

shows the truth and SLAM-estimated vertical axis rotation throughout the sequence.

At the end of sequence 1 the SLAM-estimated total vertical axis rotation is 347.2◦

while the truth vertical axis rotation is 360◦, resulting in 12.8◦ of error. Throughout

sequence 1, 42 pose estimates were made. The result is an average vertical axis error

of 0.31◦ per pose estimate with a standard deviation of 0.27◦. Analyzing the quantity

of error introduced by each pose estimate yields a RMS value of 0.46◦. Figure 53

shows these error values for synthetic sequence 1 in comparison with the results from

the remainder of the synthetic sequences. In Figure 53 the green squares represent the

average error for each sequence, the red error bars represent the standard deviation,

and the blue bars represent the RMS value.

Figure 54 shows the results of the SLAM method performed on synthetic sequence

15, which contains more complicated motion and multiple objects. The thick red line

represents the error in the position of the final pose estimate.

Sequence 17 is the final set of synthetic results shown, incorporating complicated

motion with a dynamic background. Figure 55 shows ten sample frames from this

82

Figure 50. Synthetic Sequence 1 (Simple Motion): Sample Frames.

Ym

-4
-2
0
2

20151050-5

Xm

-10-15-20

0

10

20

30

40

Z
m

Figure 51. Synthetic Sequence 1 (Simple Motion): SLAM Results and Known Poses.

83

Frame Number
50 100 150 200 250

V
er

tic
al

 A
xi

s
R

ot
at

io
n

(d
eg

)

0

50

100

150

200

250

300

350

Actual Rotation
SLAM Estimated Rotation

Figure 52. Synthetic Sequence 1 (Simple Motion): Vertical Axis Rotation Results.

SLAM Test Sequences Using Synthetic Data
1 3 5 7 9 11 13 15 17 19

V
er

tic
al

 A
xi

s
R

ot
at

io
n

E
rr

or
 V

al
ue

s
(d

eg
re

es
)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

RMS Value
Avg. Error with Std. Dev.

Figure 53. SLAM Accuracy Analysis of Synthetic Sequences.

84

Ym

-6
-4
-2

2
0

20
15

10

Xm

5
0

-5
-10

-15
-20

0

10

20

Z
m

30

40

Figure 54. Synthetic Sequence 15 (Complicated Motion & Multiple Objects): SLAM
Results and Known Poses.

85

synthetic sequence. Figure 56 shows the SLAM results and known camera poses.

Using the accuracy analysis method described for synthetic sequence 1, Figure 53

shows the average error per pose estimate, standard deviation, and the RMS value

for each of the 19 synthetic sequences. The level of motion complexity increases

as the sequence number increases. All sequences result in a final error between 0◦

and 0.5◦ except sequence 10. Adjusting parameters to reduce the error in sequence

10 is possible, but the default parameters are maintained for transparency of this

SLAM method and to detail areas for improvement. RMS values vary more than the

average error because they account for deviations from the truth in each individual

pose estimate.

One way to interpret the RMS value is a representation of the accuracy of motion

estimation throughout the entire sequence. The standard deviation shows that the

amount of error varies throughout the sequence. Only expressing the average error at

the end of the sequence does not account for deviations in intermediate pose estimates.

Sequences 16 through 19, which are the most complicated, end with a small average

error but the complexity of motion results in additional error in intermediate pose

estimates, which is represented by a higher RMS value as well as a higher standard

deviation.

86

Figure 55. Synthetic Sequence 17 (Dynamic Background): Sample Frames.

Ym

-5

5

0

20

15

10

5

Xm

0

-5

-10

-15

-20

-25
0

5

10

15

20

Z
m

25

30

35

40

Figure 56. Synthetic Sequence 17 (Dynamic Background): SLAM Results and Known
Camera Poses.

87

4.4 Run-time Analysis

For a selection of the video sequences analyzed, a run-time analysis is performed.

Figure 57 shows the frame rate achieved for each video sequence as a separate bar,

with the height representing the average frame rate over the length of the analysis.

The video resolution in megapixels is also shown by the red line overlay.

The resulting frame rate correlates roughly inversely with resolution. This re-

lationship is intuitive, as an increase in the number of pixels results in an increase

in the number of corner tests to perform as well as features to track. One benefit

of increased resolution is a decrease in 2D image location uncertainty for the points

being tracked. This results in higher accuracy of the resulting structure and motion

estimation. Unfortunately, truth data for the higher resolution videos is unavailable,

so any increase in accuracy is difficult to quantify.

Other variables that affect the frame rate are feature density of the target, distance

to the target, and feature density of the background. Objects with a high density of

visual features are a double-edged sword. On the one hand, they provide plenty of

features to track for a high confidence in motion concurrence. On the other hand,

each track point requires additional computational resources. One area for future

work is implementing a more efficient method of handling objects very rich in visual

features other than finite thresholds for the number of tracked features in sub-regions

of interest.

As distance to the target increases, the percent of the image occupied by the target

and resolution of specific features decreases. The result is a decrease in the number of

points tracked and an increased frame-rate, but issues may arise if not enough track

points are available to perform the required motion estimates.

Another factor that potentially contributes to longer run time is the choice of

programming languages. MATLAB is an interpreted programming language, which

88

SLAM Test Sequences
1 5 10 15 20 25 30 35

F
ra

m
e

R
at

e
(f

ps
)

0

5

10

15

20

25

V
id

eo
 R

es
ol

ut
io

n
(M

P
)

0

0.5

1

1.5

2

2.5

Figure 57. SLAM Sequence Run-time Results with Video Resolution.

is excellent for fast prototyping. However, run time suffers when compared to a

compiled language such as C++. Despite the efforts made to optimize run time in

MATLAB using pre-compiled binaries, logical indexing, and other efficient program-

ming practices, a C++ implementation will still likely increase speed.

However, for proxops, typically the rate of relative motion is small. Specifically in

the Orbital Express proxops sequences, the video analyzed is already at an advanced

frame rate achieved by skipping many frames. For this reason, decreasing the frame

rate in exchange for increased accuracy through incremental bundle adjustment or an

iterative method of verifying point tracks may turn out to be an ideal implementation.

Chapter V includes additional discussion on this topic.

89

4.5 Parameter Sensitivity Analysis

The success of SLAM hinges on the success of initialization and the relative pixel

motion threshold used to automatically perform initialization. Subsequent 3D tri-

angulations depend on relative motion levels which are determined initially by the

amount of motion that occurred during initialization. Due to the importance of the

relative pixel motion threshold parameter used for automating initialization, select-

ing an optimal default value is critical. Figure 58 shows the sensitivity of the results

based on adjusting the relative pixel motion threshold. The relative pixel motion

threshold value is varied from .0625% to 16% of the diagonal image dimension and

appears on the X-axis of Figure 58. The bars represent the resulting performance

of SLAM based on adjusting these parameters across all of the training videos. The

height of the thick blue bar represents the success rate of initialization. The height

of the thin red bar represents the success rate of subsequent structure and motion

estimates after initialization. Success is determined based on the accuracy of pose

estimates, visible point cloud accuracy, and model completeness.

Figure 58 shows that initialization is robust to variations in the relative pixel

motion threshold. A large range in values yields a high success rate for initialization,

likely due to the fact that bundle adjustment is performed on the first three frames

of structure and motion estimates, compensating for potential error in the two image

initialization. The success of subsequent SLAM varies more as numerous additional

parameters are set based on the current rate of motion. For example, subsequent

point triangulation occurs if a 2D track point exists for the same amount of camera

translation that occurred in pose estimates 1-3. If pose estimates 1-3 occur very

close together, subsequent triangulations will occur at a much higher rate and 2D

tracks with a very short life will be triangulated quickly. The result is a very densely

populated point cloud, but a higher potential for error.

90

Relative Pixel Motion Threshold for Initialization (%)
0.06 0.13 0.25 0.5 1 2 4 8 16

A
ve

ra
ge

 In
iti

al
iz

at
io

n
S

uc
ce

ss
 R

at
e

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 S
ub

se
qu

en
t S

LA
M

 S
uc

ce
ss

 R
at

e

0

0.2

0.4

0.6

0.8

1

Figure 58. Sensitivity Analysis of the Relative Pixel Motion Threshold for Initialization.

On the other hand, a higher relative pixel motion threshold for initialization results

in a sparse point cloud with estimates occurring at a longer interval. Additionally,

only the point tracks with a relatively long life still exist and contribute to the tri-

angulation step. In some cases, not enough point tracks are maintained to perform

subsequent SLAM estimates, resulting in complete failure. The results of Figure 58

are used to select an optimal balance. A default value of 1% is selected for the relative

pixel motion threshold for initialization. While this default value is not the best in

every circumstance, it serves as a widely applicable starting point. The user may

need to adjust this parameter, with the biggest contributing factor being the target’s

depth from the camera.

This sensitivity analysis is performed with the assumption that all motion begins

with, at a minimum, relative translation of the camera, through which the camera

obtains different perspectives of the target. Applying this method requires that the

91

end user ensures initialization is performed with adequate relative motion. If no

additional perspective information is obtained in an initialization attempt, a failure

rate of 100% is guaranteed. This failure is easily avoided though. Additionally, to

obtain transparency into the actual sensitivity of the relative pixel motion threshold,

the fail safe of automatically performing initialization during diminishing numbers of

initial point tracks (introduced in Section 3.3.1) is not applied.

4.6 Summary

This chapter presented the results of this space-customized SLAM method applied

to space-related video sequences, laboratory-acquired video sequences of a CubeSat

testbed, and a series synthetic video sequences with known camera poses. An accuracy

analysis using truth rotation values from the AFIT CubeSat testbed resulted in an

average rotation estimation error per pose estimate of 0.60◦ with a standard deviation

of 0.62◦ and a RMS value of 1.08◦. The second accuracy analysis using the synthetic

scenes resulted in an rotation estimation error per pose estimate of 0.29◦ with a

standard deviation of 0.36◦ and a RMS value of 0.45◦. Additionally, a run-time

analysis of all video sequences analyzed resulted in operation at an average value

of 11.8 fps. Finally, a parameter sensitivity analysis on the relative pixel motion

threshold value used for initialization resulted in selecting 1% for the default value.

92

V. Conclusions and Recommendations

5.1 Key Advantages

This thesis presents a simultaneous localization and mapping method tailored

for relative motion with objects in the space environment at a near real-time frame

rate. One significant accomplishment of this implementation is the ability to perform

SLAM based on relative motion from a single object in the image field of view without

the assistance of pose estimation from background motion. The method is designed

to exclude dynamic backgrounds that follow a different motion model from the target

object, such as the Earth or stars in the space environment. The feature based

detection and motion estimation method is designed to run quickly while being robust

to reflective surfaces that are typically difficult to track, which are also common in

the space environment.

An acceptable level of accuracy is achieved for a near real-time implementation.

This SLAM algorithm is tailored to the available resources on a small space-based

platform and target objects in the space environment. Two accuracy tests from a

CubeSat testbed rotation test and synthetic video sequences with known poses result

in average vertical axis rotation estimation values of 0.60◦ and 0.29◦. One note about

accuracy in SLAM is that perfection is not necessarily a requirement. The requirement

is a level of accuracy that complies with the operational control system in which the

algorithm is implemented. A run-time analysis resulted in algorithm operation at an

average frame rate of 11.8 fps.

A significant advantage of this method over currently employed state-of-the-art

automated proxops technology is the independence of the target object. Certain

pose estimation methods involve the placement of fiducial markings on targets with

a known 3D location to estimate pose. Other CV methods match the current view

93

of a known target with a model or a database of views to estimate pose. Operation

of this method does not require any knowledge of the target object for a relative

pose estimate. Estimating the structure also allows for automated avoidance if close

proximity navigation is required. Cooperation from the target is not a requirement.

Another advantage of this work is its low SWAP requirements on the spacecraft.

One of the goals of this thesis is to investigate the feasibility of employing prox-

ops technology on a CubeSat-sized platform. The nature of this monocular method

constrains operations to images from one camera, as a stereo camera rig offers no

additional information on such a small platform. Additionally, low power is obtained

through the use of a passive imaging system as opposed to active LiDAR sensors.

Leveraging pre-existing hardware that exists on star trackers minimizes the use of

additional physical space on the spacecraft.

5.2 Key Limitations

Despite the list of advantages of the method developed, limitations exist. The

method is designed to be robust to lighting changes; however, certain constraints of

passive imaging systems cannot be ignored. One large issue is saturation if the sun is

in the direct path of the camera or a specular reflection off of targets. Figure 59 shows

this issue in another portion of the Orbital Express robotic arm self-inspection video.

A method to mitigate this problem is to modify the maneuver strategy. Maintaining

a pointing direction that is perpendicular to the sun vector when orbiting another

space object yields a more consistent level of illumination and avoids placing the

sun directly in the field of view. Applications in geosynchronous orbit also minimize

abrupt lighting changes and Earth eclipse which in turn minimizes the possibility of

excessively low light.

There are additional nuances that require understanding by the operator in or-

94

der to customize and test this method. Structure and motion initialization requires

relative camera translation, not just rotation. Very reflective targets with very few

additional features result in a difficult situation to maintain enough accurate point

tracks for successful SLAM.

A cooperative target is not required but a rapidly spinning out-of-control target

will likely cause difficulty in detecting corner features with the FAST algorithm due to

motion blur. Any rapid motion with a significant amount of image blurring will likely

cause failure of the algorithm. Changes in structure, such as a change in orientation

of solar panels will cause issues as well, as this method assumes one fixed object with

all parts following one motion model. Additional work is required to recognize and

adapt to structural changes and separate motion of independent parts of the object.

Anomalies do exist as well. In general, the sensitivity of specific adjustable param-

eters has been tested with a series of training videos to converge on globally optimal

values. However, some tweaking may be required to obtain application-specific results

in challenging scenarios. Future work may implement additional methods to remove

the requirement for adjusting certain parameters for successful results in anomalous

cases.

Figure 59. Orbital Express Self Inspection Video [33]: Saturation from Direct Sunlight
in the FOV.

95

5.3 Future Work

The lowest hanging fruit for improvement is additional research to accurately

extend point tracks to their entire time in view (from initial detection until they

rotate out of view). Scale changes (motion toward or away from the target) and

perspective change (relative target rotation) are challenges for point trackers, but this

type of motion is exactly what is required to perform monocular structure and motion

estimation. The KLT tracker with an affine consistency check on the feature window is

a concept implemented during the testing phase of this research to accurately extend

point tracks; however, the specific implementation slowed algorithm run-time to less

than 1 Hz.

Additional research into typical relative motion rates during proxops is important

as well. One of the goals of this research was to create a method that operates near

real time. However, this rapid rate may not be necessary. An idea for future iterations

may be more robust point tracking methods and additional error reduction through

bundle adjustment schemes in exchange for a decrease in frame rate. This method

includes the functionality to test various implementation techniques.

Another creative area for future research is incorporating motion estimates based

on sensor inputs, such as an inertial measurement unit with SLAM. In [21], Kim,

Hwangbo, and Kanade use sensor inputs to assist in point tracking of a fixed scene.

Implementing a Kalman filter is potentially useful as well to provide an initial guess

and outlier recognition for subsequent pose estimates. However, replacing the Kalman

filter for SLAM with a particle filter has been shown to increase resiliency to rapid

camera motions [38].

96

5.4 Summary

The SLAM method presented accomplishes the goals of this research. This work

is the first step toward controlling an indoor proxops simulator from one camera,

independent of the target. Innovate methods are presented to handle the challenging

demands of the space environment. Additionally, numerous lessons learned by those

at the forefront of the computer vision field have been leveraged. The thoroughly

commented MATLAB routines included provide the foundation for testing and cus-

tomization of the SLAM method in an easily understandable format, enabling pro-

ductivity for future work. This research paves the way for proxops using a platform

as small as a CubeSat.

97

Appendix A. Dependencies

The software written in this thesis is dependent on the following pieces of software:

• MATLAB r2014b

• MATLAB Computer Vision Systems Toolbox

• OpenCV 2.4.10, the open source computer vision library [9]

• Mexopencv, a development kit of MATLAB MEX functions for OpenCV [48]

• SBA, a software package for generic sparse bundle adjustment [26]

• Additional acknowledgement: the MATLAB 3D plot camera model is used from

the epipolar geometry toolbox [29]

98

Bibliography

1. Andrew C. M. Allen, Christopher Langley, Raja Mukherji, Allen B. Taylor, Man-
ickam Umasuthan, and Timothy D. Barfoot. Rendezvous lidar sensor system for
terminal rendezvous, capture, and berthing to the international space station. In
Proc. of SPIE, volume 6958, pages 69580S–69580S–8, 2008.

2. Angels fact sheet. The Air Force Research Laboratory. 377 ABW/Public Affairs,
2013.

3. Adnan Ansar and Konstantinos Daniilidis. Linear pose estimation from points
or lines. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen,
editors, ECCV (4), volume 2353 of Lecture Notes in Computer Science, pages
282–296. Springer, 2002.

4. Jonathan Balzer and Stefano Soatto. Clam: Coupled localization and mapping
with efficient outlier handling. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2013.

5. Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up
robust features (surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

6. Blue canyon technologies. High Performance CubeSat Systems and Compo-
nents. World Wide Web Page, accessed 6-December-2014. Available at http:

//bluecanyontech.com/all_products/cubesats/.

7. Jean-Yves Bouguet. Pyramidal implementation of the lucas kanade feature
tracker. Intel Corporation, Microprocessor Research Labs, 2000.

8. Jean-Yves Bouguet. Camera calibration toolbox for matlab. World Wide Web
Page, accessed 8-December-2014. Available at http://www.vision.caltech.

edu/bouguetj/calib_doc/index.html.

9. G. Bradski. The open source computer vision library, opencv. Dr. Dobb’s Journal
of Software Tools, 2000.

10. Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly, 2008.

11. T.C. Bryan, R. Howard, J.E. Johnson, J.E. Lee, L. Murphy, and S.H. Spencer.
Next generation advanced video guidance sensor. In Aerospace Conference, 2008
IEEE, pages 1–8, March 2008.

12. Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief:
Binary robust independent elementary features. In Proceedings of the 11th Euro-
pean Conference on Computer Vision: Part IV, ECCV’10, pages 778–792, Berlin,
Heidelberg, 2010. Springer-Verlag.

99

13. Daniel D. Doyle. Real-Time, Multiple Pan/Tilt/Zoom Computer Vision Tracking
and 3D Positioning System for Unmanned Aerial System Research. PhD thesis,
Air Force Institute of Technology, 2013.

14. Olivier D. Faugeras. What can be seen in three dimensions with an uncalibrated
stereo rig? In G. Sandini, editor, Computer Vision ECCV’92, volume 588 of
Lecture Notes in Computer Science, pages 563–578. Springer Berlin Heidelberg,
1992.

15. B.C. Hacker and J.M. Grimwood. On the Shoulders of Titans: A History of
Project Gemini. NASA History. U.S. Government Printing Office, 2010.

16. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, ISBN: 0521540518, second edition, 2004.

17. R.I. Hartley. In defense of the eight-point algorithm. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 19(6):580–593, Jun 1997.

18. Richard Hartley and Peter Sturm. Triangulation, 1996.

19. Joel A. Hesch and Stergios I. Roumeliotis. A direct least-squares (dls) method
for pnp. In Dimitris N. Metaxas, Long Quan, Alberto Sanfeliu, and Luc J. Van
Gool, editors, ICCV, pages 383–390. IEEE, 2011.

20. Homer: Texas a&m’s proximity operations simulator robot. World Wide
Web Page, accessed 12-December-2014. Available at http://lasr.tamu.edu/

research/proxops/.

21. Jun-Sik Kim, Myung Hwangbo, and T. Kanade. Realtime affine-photometric klt
feature tracker on gpu in cuda framework. In Computer Vision Workshops (ICCV
Workshops), 2009 IEEE 12th International Conference on, pages 886–893, Sept
2009.

22. Georg Klein and David Murray. Parallel tracking and mapping for small ar
workspaces. In Proceedings of the 2007 6th IEEE and ACM International Sym-
posium on Mixed and Augmented Reality, ISMAR ’07, pages 1–10, Washington,
DC, USA, 2007. IEEE Computer Society.

23. Georg Klein and David Murray. Improving the agility of keyframe-based SLAM.
In Proc. 10th European Conference on Computer Vision (ECCV’08), pages 802–
815, Marseille, October 2008.

24. V. Lepetit, F.Moreno-Noguer, and P.Fua. Epnp: An accurate o(n) solution to
the pnp problem. International Journal Computer Vision, 81(2), 2009.

25. Longuet. A computer algorithm for reconstructing a scene from two projections.
Nature, 293:133–135, September 1981.

100

26. M.I. A. Lourakis and A.A. Argyros. SBA: A Software Package for Generic Sparse
Bundle Adjustment. ACM Trans. Math. Software, 36(1):1–30, 2009.

27. David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, November 2004.

28. Bruce D. Lucas and Takeo Kanade. An iterative image registration technique
with an application to stereo vision. In Proceedings of the 7th International Joint
Conference on Artificial Intelligence - Volume 2, IJCAI’81, pages 674–679, San
Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

29. Gian Luca Mariottini and Domenico Prattichizzo. The Epipolar Geometry Tool-
box. IEEE Robotics and Automation Magazine, 1070-9930:2–16, 2005.

30. MathWorks. Single camera calibration using the camera calibrator app. World
Wide Web Page, accessed 8-December-2014. Available at http://www.vision.

caltech.edu/bouguetj/calib_doc/index.html.

31. NASA. International space station imagery. World Wide Web Page, accessed
6-December-2014. Available at http://spaceflight.nasa.gov/gallery/

images/station/crew-33/html/iss033e009286.html.

32. David Nistér. An efficient solution to the five-point relative pose problem. IEEE
Trans. Pattern Anal. Mach. Intell., 26(6):756–777, June 2004.

33. DARPA Tactical Technology Office. Orbital express data archive. World Wide
Web Page, accessed 11-November-2014. Available at http://archive.darpa.

mil/orbitalexpress/index.html.

34. Andrew Ogilvie, Justin Allport, Michael Hannah, and John Lymer. Autonomous
robotic operations for on-orbit satellite servicing. Proc. SPIE, 6958:695809–
695809–12, 2008.

35. Opencv 3.0.0 dev documentation: Camera calibration and 3d recon-
struction. World Wide Web Page, accessed 10-December-2014. Avail-
able at http://docs.opencv.org/trunk/modules/calib3d/doc/camera_

calibration_and_3d_reconstruction.html.

36. A. Penate-Sanchez, J. Andrade-Cetto, and F. Moreno-Noguer. Exhaustive lin-
earization for robust camera pose and focal length estimation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(10):2387–2400, 2013.

37. Prisma satellites: About prisma. World Wide Web Page, accessed 14-December-
2014. Available at http://www.lsespace.com/about-prisma.aspx.

38. M. Pupilli and A. Calway. Real-time camera tracking using a particle filter. In
Britich Machine Vision Conference (BMVC’05), pages 519–528, Sept 2005.

101

39. Edward Rosten and Tom Drummond. Machine learning for high-speed corner
detection. In European Conference on Computer Vision, volume 1, pages 430–
443, May 2006.

40. Brad Sease and Brien Flewelling. GEODETICA: A General Software Platform
For Processing Continuous Space-based Imagery. AAS (Preprint), 2014.

41. Jianbo Shi and Carlo Tomasi. Good features to track. Technical report, Cornell
University, Ithaca, NY, USA, 1993.

42. Space news. Cubist Movement, 2012.

43. Michael Tibbs. Conversation about laboratory setup and equipment, 2015.

44. Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Tech-
nical report, International Journal of Computer Vision, 1991.

45. Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgibbon.
Bundle adjustment - a modern synthesis. In Proceedings of the International
Workshop on Vision Algorithms: Theory and Practice, ICCV ’99, pages 298–372,
London, UK, UK, 2000. Springer-Verlag.

46. Changchang Wu. Towards linear-time incremental structure from motion. In
Proceedings of the 2013 International Conference on 3D Vision, 3DV ’13, pages
127–134, Washington, DC, USA, 2013. IEEE Computer Society.

47. Changchang Wu. Visualsfm: A visual structure from motion system. World Wide
Web Page, accessed 8-January-2015. Available at http://ccwu.me/vsfm/.

48. Kota Yamaguchi. mexopencv: Collection and a development kit of matlab mex
functions for opencv library. World Wide Web Page, accessed 15-December-2014.
Available at https://github.com/kyamagu/mexopencv.

49. Zhengyou Zhang. Flexible camera calibration by viewing a plane from unknown
orientations. In Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on, volume 1, pages 666–673 vol.1, 1999.

50. Yinqiang Zheng, Yubin Kuang, S. Sugimoto, K. Astrom, and M. Okutomi. Revis-
iting the pnp problem: A fast, general and optimal solution. In Computer Vision
(ICCV), 2013 IEEE International Conference on, pages 2344–2351, Dec 2013.

102

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

6–03–2015 Master’s Thesis Oct 2013 — Mar 2015

A Monocular SLAM Method To Estimate Relative Pose During
Satellite Proximity Operations

Kelly, Scott J, Captain, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENY-MS-15-M-219

Daniel D. Doyle, LtCol, USAF
Aerospace Vehicles Division
Air Force Research Laboratory
WPAFB OH 45433
Email: daniel.doyle@us.af.mil

AFRL/RQV

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Automated satellite proximity operations is an increasingly relevant area of mission operations for the US
Air Force with potential to significantly enhance space situational awareness (SSA). Simultaneous localization and
mapping (SLAM) is a computer vision method of constructing and updating a 3D map while keeping track of the
location and orientation of the imaging agent inside the map. The main objective of this research effort is to design a
monocular SLAM method customized for the space environment. The method developed in this research will be
implemented in an indoor proximity operations simulation laboratory. A run-time analysis is performed, showing near
real-time operation. The method is verified by comparing SLAM results to truth vertical rotation data from a CubeSat
air bearing testbed. This work enables control and testing of simulated proximity operations hardware in a laboratory
environment. Additionally, this research lays the foundation for autonomous satellite proximity operations with unknown
targets and minimal additional size, weight, and power requirements, creating opportunities for numerous mission
concepts not previously available.

Computer vision, SLAM, proximity operations, pose estimation, rendezvous, controls, automation

U U U U 118

Dr. Jonathan Black, AFIT/ENY

(540) 231-0037; jonathan.black@afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	The GEODETICA Tool

	Research Focus
	Motivation to Use Computer Vision for Proxops
	Proxops From a CubeSat

	Goals
	Document Layout

	Literature Review
	Relevant Theory
	The Pinhole Camera Model
	Multiple View Geometry
	Pose Estimation
	Feature Detection
	Two-dimensional Point Tracking
	Binary Feature Descriptors
	Bundle Adjustment

	Similar Approaches
	Survey of Monocular SLAM Research

	Summary

	Methodology
	Research Platform, Devices, and Software
	Hardware
	Software

	Creating Robust Point Tracks in a Video Sequence
	Initial Point Detection
	Minimizing Point Detections to a Region of Interest
	Point Tracking
	Methods to Eliminate Point Drift
	Handling Additional Outliers
	Detecting New Points

	Simultaneous Localization and Mapping
	Structure and Motion Initialization
	Sequential Model Construction and Pose Estimation
	Bundle Adjustment Integrated with SLAM

	Method Summary

	Results and Analysis
	Results of Space-Related Video Sequences
	HOMER
	Orbital Express
	PRISMA

	Accuracy Analysis Using a CubeSat Air Bearing Testbed
	Accuracy Analysis Using Synthetic Video Sequences
	Run-time Analysis
	Parameter Sensitivity Analysis
	Summary

	Conclusions and Recommendations
	Key Advantages
	Key Limitations
	Future Work
	Summary

	Dependencies
	Bibliography

