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Abstract 

Decontamination activities following a chemical warfare agent (CWA) incident 

may generate significant quantities of contaminated wash water.  The disposal method 

identified for this water will be specific to each location, with some communities 

choosing to utilize the local wastewater treatment plant to process the waste.  This raises 

concerns about the effects of CWAs on treatment facilities, which utilize biological 

wastewater treatment methods.  These facilities serve as an important line of defense 

against the spread of pollutants to the aquatic environment. The presence of CWAs in the 

influent stream may inhibit the microbial action that is responsible for remediating 

contaminated wastewater. 

The goal of the current study was to evaluate the effect of malathion on the 

activity and performance of activated sludge bioreactors.  Malathion is one of many 

organophosphate (OP) based pesticides and is considered a well-rounded surrogate for  

O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX), an OP based 

CWA.  This study employed respirometry, short term batch tests, and long-term exposure 

experiments to investigate the effects of different concentrations of malathion on 

activated sludge performance.   

Respirometry results showed that the maximum respiration rates were 

approximately 45 µg O2 min-1 when the sludge was not exposed to malathion.  However, 

when malathion was added over a range of concentrations between 0.1 µg L-1 and  

5 mg L-1, the maximum respiration rates varied between 33 and 59 µg O2 min-1.  The 

oxygen consumption curves were similar in each case, beginning with rapid oxygen  
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consumption for the initial 2.5 – 3 hours, followed by a gradual, nonlinear decline in the 

respiration rates until the experimental time reached approximately 5 hours when the 

respiration rates were generally between 5 – 15 µg O2 min-1.   

Short-term batch tests showed that chemical oxygen demand (COD) removal was 

not negatively impacted by the presence of malathion concentrations of 0.1 or 3 mg L-1.  

However, ammonia removal was slowed by the presence of malathion at both 0.1 and  

3 mg L-1 with a positive correlation of the removal rate to the quantity of total suspended 

solids.  Despite variations in the ammonia removal rate, the final ammonia concentrations 

were unaffected by the presence of malathion at both 0.1 or 3 mg L-1 when compared 

against the control. Long-term exposure experiments demonstrated that both COD and 

ammonia removal were negatively affected at concentrations of 3.0 mg L-1 and 

unaffected at concentrations of 0.1 mg L-1.   

Short-term exposure to malathion is unlikely to interrupt microbial respiration, 

COD removal, or nitrification in the range of concentrations tested in this study.  

However, long-term exposure to malathion has the potential to negatively impact COD 

removal and nitrification processes at or above 3.0 mg L-1. 
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1 

THE EFFECT OF MALATHION ON THE ACTIVITY AND 

PERFORMANCE OF ACTIVATED SLUDGE 

I.  Introduction 

History of Chemical Weapons 

 Man has always been looking for ways to generate an advantage for themselves 

on the battlefield.  The development and use of chemical warfare agents has been an 

integral part in this effort. Chemical weapons, as we think of them today, made their first 

appearance in WWI.  The first gas attack in WWI took place in Ypres, 22 April 1915, 

when the Germans discharged 5,730 cylinders of chlorine gas along a 6 km front (Spiers, 

2010; Maynard, 2007). Despite their first large industrial scale use in WWI, chemical 

weapon usage dates back as far as 2000 B.C.E. (Coleman, 2005).  Examples include 

ancient myths of armors dipped in venom, poisoned water, plagues, secret formulas, and 

combustible weapons.  Specific examples of these weapons can be found in Greek myths 

starting in 750 B.C.E., as well as in descriptions of Greek fire by Byzantine, and Islamic 

sources in the 7th to 14th century C.E. (Salem, Ternay Jr., & Smart, 2008).   

 During WWI, chlorine gas was the first chemical agent used by Germany on a 

large scale.  It was first recognized as a potential asphyxiating agent by Swedish chemist 

Karl Wilhelm Scheele in 1774 (Salem, Ternay Jr., & Smart, 2008).  Like chlorine gas, 

many of the other chemical weapons were used during WWI.  Many were discoveries of 

the 18th and 19th century; hydrogen cyanide in 1782, cyanogen chloride in 1802, 

phosgene in 1812, mustard in 1822, and chloropicrin in 1848 (Salem, Ternay Jr., & 
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Smart, 2008).  During WWI, 125 K tons of gas was used.  This produced 1.32 M 

casualties, 1.2 M wounded and 91 K killed (Salem, Ternay Jr., & Smart, 2008) which 

was a relatively small percentage when compared to the approximate 8.5 M killed during 

the war (Showalter, 2014).  

 From the beginning of WWI until 1936, phosgene and mustard gas were 

considered the most dangerous chemical weapons.  On 23 Dec 1936, while continuing 

research that began in 1934 looking for new insecticides, Dr. Gerhard Schrader of I.G. 

Farben in Germany accidentally isolated the first organophosphate nerve agent, tabun, 

which was later designated by the United States as GA (Salem, Ternay Jr., & Smart, 

2008).   Two years after the discovery of tabun, Dr. Schrader, along with Ambrose, 

Rudriger, and Van Der Linde working at I.G. Farben, synthesized sarin, which was 

designated Trilon-46 or T-144 by Germany and designated as GB by the United States. 

During the latter part of WWII, in 1944, Germany discovered soman (GD) which 

combines the features of both sarin and tabun (Salem, Ternay Jr., & Smart, 2008; Kikilo, 

Fedorenko, & Ternay Jr., 2008).    

Following WWI, public and governmental opinion had shifted away from the use 

of chemical weapons.  Despite superiority in the field of chemical weapons, their 

potential for providing a significant advantage and having produced 12,000 tons of tabun, 

Germany chose not to use their chemical weapon stockpile during WWII (Maynard, 

2007). While the Americans and the English also conducted research during WWII, it 

was not until after the Allies learned of the German research into nerve agents that they 

took extensive interest in the development and production of this new class of chemical 

weapons (Szinicz, 2005). 
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 In the early 1950’s, a subsidiary of the Imperial Chemical Industry in Britain and 

Bayer in Germany both independently discovered VX during studies of potential 

insecticides (Coleman, 2005; Marrs, 2007). The G-series agents which preceded VX were 

more volatile and, as such, evaporated much more quickly.  This greater persistence 

along with a higher acute toxicity are the primary factors why VX is considered the most 

effective chemical warfare agent ever produced.  The United States produced GB at the 

Rocky Mountain Arsenal, CO and produced VX at the Newport Army Ammunition Plant 

in Indiana from 1961 to 1968 (MacNaughton & Brewer, 1994). 

 Chemical warfare agents have not used on a large industrial scale since WWI.  

However, smaller regional conflicts have seen or had alleged usage of chemical warfare 

agents.  Egypt reportedly used tear and mustard gas and possibly nerve gas against the 

Yemen Royalists during the Yemen Civil War (1963 – 1967) (Salem, Ternay Jr., & 

Smart, 2008).  Allegations have been made that the Soviets used nerve agents, phosgene 

and tear gas in Afghanistan (1979 – 1989) (Salem, Ternay Jr., & Smart, 2008; Maynard, 

2007).  In the Iran-Iraq War (1980 – 1988), there was extensive use of mustard and 

probably nerve gas.  Initially, the attacks were conducted as an Iraqi defensive tactic in 

response to Iranian human wave attacks in November 1980. In one attack, 5,000 Iranians 

and Kurds were reported to have died, which was the highest single combat related death 

toll from chemical weapons since WWI (Maynard, 2007).  It was also reported that Libya 

used mustard agent against Chad in 1987 (Salem, Ternay Jr., & Smart, 2008). 

 In addition to the direct usage of chemical weapons, the testing and storage 

associated with their presence in a country’s military stockpile presents a risk to the 

country’s population.  While the United States has never used nerve agents on the 
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battlefield, nor have they been used against the United States civilian population, two 

non-hostile incidents greatly affected the United States chemical weapons program.  The 

first at Dugway Proving Ground in Utah involved leakage from an aerial spray tank, 

which was supposedly empty.  The resulting contamination migrated over the borders of 

the installation into Skull Valley.  As a result, 6,000 sheep were sickened or killed 

(Salem, Ternay Jr., & Smart, 2008).  The second incident, on the island of Okinawa in 

1966, was the result of Sarin (GB) leaking from a navel bomb that was part of a secret 

stockpile that was kept on the island.  The leak resulted in injuries to 23 soldiers and 1 

civilian.  These two incidents directly contributed to President Nixon halting all United 

States’ production of chemical weapons in 1969 (Salem, Ternay Jr., & Smart, 2008). 

The chemical weapons convention that went into effect in 1997 called for halting 

programs currently developing chemical warfare agents and the destruction of all existing 

stockpiles.  While the United States had already stopped production in 1969, it ratified 

the chemical weapons convention treaty and as of 18 April 2014, destroyed 28.8 K tons 

of its original supply of 31.5 K tons of chemical weapons, which included mustard 

agents, sarin, and VX (Centers for Disease Control and Prevention, 2014; Osborn, 2010). 

Current schedules have the stockpile in Pueblo, CO scheduled for destruction by 2017 

and the stockpile in Blue Grass, KY scheduled for destruction by 2021.  Even with the 

destruction of known stockpiles and international prohibitions on the future development 

and usage of chemical weapons, it is difficult to prevent rogue nations and terrorists from 

obtaining and using chemical weapons (Talmage, Munro, Watson, King, & Hauschild, 

2007).  The relative simplicity of production, the low cost, stability, and potency when 
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compared to both biological and nuclear weapons ensures chemical weapons will 

continue to maintain an appeal to both rogue nations and terrorist organizations. 

The relative ease and low cost involved in manufacturing chemical weapons was 

shown in 1994 and again in 1995 when Aum Shinrikyo, “Supreme Truth”, conducted 

sarin gas attacks in Japan.  The first attack targeted three judges and was conducted 

outside their apartment complex in the town of Matsumoto.  Seven people were killed 

and 600, including the three judges, were injured or showed symptoms typically 

associated with nerve agent exposure (Maynard, 2007; Vale, Rice, & Marrs, 2007).  The 

second attack targeted Tokyo subway stations that served governmental agencies.  The 

cult members punctured plastic bags containing sarin, which is liquid at temperate 

temperatures, with the tips of umbrellas.  In total, 5 subway cars were targeted on three 

different subway lines causing 5,000 people to report to medical facilities as casualties.  

Of those 5,000 people, 984 experienced moderate nerve agent poisoning, 54 experienced 

severe nerve agent poisoning and 12 people were killed (Vale, Rice, & Marrs, 2007).  

The severity of the attack was limited, however, because the sarin used was only 30% 

pure.  Had additional effort been made to increase the purity, the number of people killed 

and contaminated would have been much higher (Talmage, Munro, Watson, King, & 

Hauschild, 2007). 

Additional acts of terrorism have taken place with the use of chemical warfare 

agents.  In 1982, in Chicago, Tylenol capsules were laced with 95-100 mg of cyanide, 

with the lethal does being approximately 70 mg for an adult. This product tampering style 

terror attack was copied in 1986 with Lipton Cup of Soup, Excedrin, and Tylenol.  In 

1991, Sudafed was tampered with and in 1992 Goodies Headache Powder was also 
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tampered with (Salem, Ternay Jr., & Smart, 2008).  In addition to the product tampering, 

it was reported that sodium cyanide was included as part of the bomb that was used in the 

first world trade center attack in 1993.  Speculation exists that had the cyanide existed 

and aerosolized, it could have killed everyone in the north tower (Salem, Ternay Jr., & 

Smart, 2008). 

Efforts to restrict access to chemical weapons and limit people’s ability to use 

them is made difficult by the beneficial commercial uses of many chemical warfare agent 

precursor chemicals.  Precursor chemicals for tabun (GA) can be found in petrol 

additives, hydraulic fluids, insecticides, flame-retardants, pharmaceuticals, detergents, 

pesticides, missile fuels, chemicals for the vulcanization of rubber, and chemicals used 

for the extraction of gold and silver ores.  Precursor chemicals for sarin (GB) can be 

found in flame-retardants, petrol additives, paint solvents, ceramics, and antiseptics. 

Precursor chemicals for soman (GD) can be found in lubricants, cleaning and disinfectant 

products used in breweries, dairy processing and various other food processing 

equipment.  Precursor chemicals for VX can be found in pyrotechnics, lubricant oil, 

insecticides and chemicals used for organic synthesis (Coleman, 2005).  Efforts can be 

made to track the purchase and shipment of key precursor chemicals.  However, the wide 

range of legal applications for chemicals capable of aiding in the synthesis of chemical 

warfare agents allows for relatively easy acquisition of the supplies needed to create a 

variety of chemical warfare agents.  

Recently, exposure to sarin or sulfur mustard agents has been reported by military 

personnel serving in Iraq.  At least 25 service members have come forward as part of a 

New York Times investigation claiming exposure to chemical warfare agents.  A recent 
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review of Army Post Deployment Health Assessment Surveys indicates that 629 people 

answered, “yes” when asked if they thought they were exposed to chemical, biological, or 

nuclear warfare agents (Chivers, 2014).  The sources of individual exposure varies but 

the primary exposure mechanism appears to be an improvised explosive devices either 

made from an old chemical weapons shell that still contained small amounts of agent, or 

an improvised explosive device purposefully filled with a chemical agent. 

With the current state of conflict within the Middle East and Africa, the 

availability of chemical weapons production knowledge from countries who formerly 

possessed a chemical weapons program could be utilized by terrorist organizations.  In 

2002, an FBI bulletin indicated that al-Qaeda was trying to gain access to United States 

water supplies and waste water treatment plants.  The FBI report was based on 

documents found in Afghanistan, including maps of United States municipal public 

drinking water systems and an intelligence report that indicated terrorists trained in 

Afghanistan were planning on attacking the United States water supply with cyanide 

(Salem, Whalley, Wick, Gargan II, & Burrows, 2008).  Additionally, the National 

Research Council of the National Academy of Sciences reported that the disruption and 

contamination of the nation’s water supply should be considered as a possible terrorist 

objective (National Research Council, 2004).  

This is not the first targeting of an adversary’s water supply.  In 600 B.C.E., the 

Assyrians poisoned wells, in 430 B.C.E. the Spartans were accused of poisoning water 

supplies with the plague, and in the American Civil War, Confederate troops, during their 

retreat from Vicksburg, contaminated both surface and subsurface water sources (Salem, 

Whalley, Wick, Gargan II, & Burrows, 2008).  As a community’s water supply is vital to 
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not only human health, but is also integrated into manufacturing, power production, 

transportation, and many other facets of industry (McDonough & Romano Jr., 2008).  It 

is important that we better understand the effects that chemical weapons would have, 

were they to be introduced into the water supply. 

Nerve Agent Chemical and Toxic Properties 

Nerve agents are considered one of the most deadly chemical weapons, falling 

into the class of chemical compounds known as organophosphates, which makes nerve 

agents chemically related to insecticides such as parathion and malathion (Romano Jr., 

McDonough, Sheridan, & Sidell, 2001).  The toxicity of organophosphates is derived 

from their ability to cause inhibition of acetylcholinesterase (AChE), which is responsible 

for breaking down the neurotransmitter acetylcholine (ACh).  The accumulation of 

acetylcholine in the synaptic space between the transmitting and receiving neuron causes 

an overload to the receptors resulting in the degradation of both voluntary and 

involuntary nervous system functions (MacNaughton & Brewer, 1994; Waymire, 1997).  

Under normal conditions, acetylcholine is hydrolyzed by acetylcholinesterase into acetate 

and choline; this is illustrated in Figure 1.  
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Figure 1: Acetylcholinesterase Hydrolysis Process 

 
 

There are two types of cholinergic receptors with which acetylcholinesterase is 

associated.  Nicotinic receptors are located in the skeletal neuromuscular junctions, the 

sympathetic and parasympathetic nervous system, the autonomic ganglia, and the central 

nervous system.  Muscarinic receptors are located in the parasympathetic nervous system, 

the sympathetic nervous system, and the central nervous system (CDC, 2012).  If 

overstimulation of these receptors occurs, a variety of symptoms can be produced 

depending on the system impacted.  For low dose exposures, expected symptoms are 

running nose, contraction of the pupils, blurred vision, slurred speech, nausea, and 

hallucinations (Coleman, 2005).  For high dose exposures, expected symptoms are 

difficulty breathing, convulsions, deep coma, and death.  For very high dose exposures, 

the symptoms are the same as for low and high dose exposures, however, symptoms 
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onset rapidly, with victims dying of suffocation as the respiratory and nervous systems 

fail at the same time (Coleman, 2005). 

Treatment for exposure to nerve agents consists of three drugs: atropine, 

pralidozime chloride (2-PAM Cl), and diazepam.  Atropine blocks the effects of excess 

ACh at muscarinic receptor sites relieving the effects of further ACh stimulation.  

However, atropine has little effect on the nicotinic sites that control skeletal muscles.  2-

PAM Cl is an oxime that breaks the organophosphate enzyme bond allowing for the 

reactivation of AChE inhibited sites, restoring normal strength and muscle skeletal 

control.  Currently, 2-PAM Cl is the oxime of choice for the U.S. military (Moore & 

Alexander, 2001).  Diazepam is an anticonvulsant drug and, unlike atropine and 2-PAM 

Cl, which are standard antidotal therapy drugs for most nerve agent poisonings, diazepam 

is only administered when severe nerve agent poisoning is observed.   Diazepam is used 

to prevent brain damage associated with seizures that can result from severe nerve agent 

poisoning.  When convulsions are not present but other symptoms of severe nerve agent 

poisoning are present, diazepam is still administered (Moore & Alexander, 2001).   

Table 1 outlines key characteristics of each of the four most prevalent nerve 

agents along with malathion.  While all four common nerve agents are highly toxic for 

their individual ability to inhibit ACh, VX is significantly more lethal than GA, GB, GD.  

The lethality stems from three different areas.  First, its high LD50, that is the dosage 

expected to cause death in 50% of an exposed population.  As indicated Table 1, the LD50 

for VX is between 0.043 – 0.143 mg kg-1 that is equivalent to a 3 to 10 mg dose for a  

70 kg adult.  This is 34 times lower than the closest G agent, soman, which has an LD50 of 

5 mg kg-1.  Second, VX is extremely persistent in the environment.  The high persistence 
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is due to its very low volatility of 10.5 mg m-3.  This makes it the least likely of the four 

nerve agents to transition from a liquid to a gaseous state.  The third component that 

makes VX so dangerous is its stability in water.  At a neutral pH of 7, VX has a 

hydrolysis half-life of 1,000 hrs, which is 22 times greater than its closest counterpart, 

GD.  The combination of these three properties is the driving factor behind this research. 

The long-term presence of VX in water, at a neutral pH, presents significant concern for 

any water or wastewater treatment system that is operating in the vicinity of any potential 

VX contamination.   
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Table 1: Identity, Chemical and Physical Properties of Nerve Agents and Malathion 
(Munro, et al., 1999; NPIC, 2009; ATSDR, 2003; MacNaughton & Brewer, 1994; Kikilo, 

Fedorenko, & Ternay Jr., 2008; CDC, 1994; Bartelt-Hunt, Knappe, & Barlaz, 2008; National 
Research Council, 1997) 

 Chemical 
Property GA (Tabun) GB(Sarin) GD(Soman) VX Malathion 

Chemical formula C5H11N2O2P  C4H10FO2P  C7H10FO2P  C11H26NO2PS  C10H19O6PS2 
CAS # 77-81-6 107-44-8 96-64-0 50782-69-9 121-75-5 

Molecular Weight 163.1 140.1 182.2 267.4 330.36 
Physical State Oily Liquid Liquid Liquid Oily Liquid Liquid 

Color Colorless to 
Brown Colorless Colorless Light 

amber/amber 
Deep brown 

to yellow 
Odor Fruity N/A Fruity N/A Garlic 

Melting point (°C) -50 -57 -42 -39 2.9 
Boiling Point (°C) 220-246 158 198 298 156-157 

Density, liquid 
(g/ml) 

1.0733  
(25 °C) 

1.102  
(20 °C) 

1.022  
(25 °C) 

1.008  
(20 °C) 

1.23  
(25 °C) 

Vapor Pressure 
(mmHg) 

0.037  
(20 °C) 

2.10  
(20 °C) 

0.27 
(20 °C) 

0.0007 
@ 20 °C 

1.78  
(25 °C) 

Volatility (mg/m3) 610 2200 3900 10.5 * 
Vapor density 

(air =1) 5.6 4.9 6.3 9.2 11.4 

Water solubility 
(mg/L) 

98000  
(25 °C) Miscible 21000  

(20 °C) 
30000 
(25 °C) 

145 
(20 °C) 

Hydrolysis rate 
(half-life) 

8.5 hr  
(pH 7) 

39 hr  
(pH 7) 

45 hr  
(pH 6.6) 

1000 hr  
(pH 7) 

100 hrs  
(pH 7) 

Henry’s Law 
Constant 1.52 x 10-7 5.4 x 10-7 4.6 x 10-6 3.5 x 10-9 4.9 x 10-9 

Log Kow 0.384 0.299 1.824 2.09 2.36 
Log Koc 2.02 1.77 1.17 2.5 3.25 

LD50 
(mg/kg) 21 28 5 0.043 - 0.143 246 - 471 

* Not available 
 

It is important to note differences between nerve agents and pesticides. 

Organophosphates, both nerve agents and pesticides, have similar anticholinesterase 

inhibitory capabilities and as a result, the general medical treatment strategies are similar 

(Marrs, 2007). While both cause cholinergic crisis as a result of acute intoxication, the 

effects of nerve agent intoxication, while more severe, are generally experienced over a 

much shorter time frame than pesticide intoxication.  Additionally, pesticides have 
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exhibited the ability to produce both a delayed peripheral neuropathy and manifestation 

of organophosphate poisoning that is not typically seen in nerve agent poisoning 

(Benschop & De Jong, 2001). 

Due to its highly toxic nature, the use of VX outside of nonsurety laboratories is 

restricted.  This necessitates the use of a surrogate compound for research within our 

laboratory.  Ideally, a VX surrogate would have similar physical and chemical properties 

that would allow for similar interactions within the environment of interest, while 

limiting or eliminating the risk of human toxicity (Bartelt-Hunt, Knappe, & Barlaz, 

2008).  Commonly used VX surrogates are Amiton (VG), O, S-diethyl 

phenylphosphonothioate (DEEP), malathion and parathion (Bartelt-Hunt, Knappe, & 

Barlaz, 2008).  In the selection of a VX surrogate, the intended use is a critical factor as a 

given surrogate may only closely represent the physical or chemical properties of the 

agent of interest within only a single type of experiment.  The following are areas that 

should be closely examined when choosing a surrogate chemical: sorption and desorption 

properties, volatility, biodegradability, hydrolysis, and toxicity (Bartelt-Hunt, Knappe, & 

Barlaz, 2008).   

The rate of sorption and desorption from organic carbon is governed by the 

octanol water partition coefficient (log Kow).  VX and malathion have log Kow values of 

2.09 and 2.36, respectively, indicating similar sorption and desorption properties (Bartelt-

Hunt, Knappe, & Barlaz, 2008).  Volatility, the likelihood that a substance will vaporize, 

is governed by constants derived from Henry’s Law.  The Henry’s Law constant for VX 

is 3.5 x 10-9 and a value for malathion is 4.9 x 10-9.  As both numbers are on the same 

order of magnitude, they both should exhibit similar distribution between a liquid and 
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gaseous state (Bartelt-Hunt, Knappe, & Barlaz, 2008).  Biodegradation is significantly 

affected by the compound of interest’s chemical structure.  It can also be affected by the 

compounds solubility in water.  While all potential surrogates are significantly different 

in their chemical structurally, when compared to VX, malathion and amiton (VG) provide 

the closest representation.  Hydrolysis, like biodegradation, is dependent on the chemical 

structure. In order for a surrogate to demonstrate similar hydrolysis rate reactions, the 

chemical bounds that are responsible for hydrolysis within the target compound must be 

present or be very similar to chemical bounds within the surrogate (Bartelt-Hunt, Knappe, 

& Barlaz, 2008).   

As mentioned above, structurally, malathion and VX are different, however, 

under alkaline conditions, malathions hydrolysis rate is reasonably similar to VX 

(Bartelt-Hunt, Knappe, & Barlaz, 2008).  While other surrogates, such as amiton, may 

provide a better representation of VX, its current classification as a schedule 2 substance 

and its higher mammalian toxicity make it a less than ideal choice.  The selection of 

malathion provides the surrogate for VX with the lowest possible human toxicity while 

providing a compound that is impacted similarly by hydrolysis, biodegradation, and 

sorption/desorption (Bartelt-Hunt, Knappe, & Barlaz, 2008).  

In addition to its physical and chemical similarities, the use of malathion has the 

additional benefit of providing insight into its own reactions within a waste water 

treatment plant.  Malathion is used in insect eradication programs as well as on food 

crops, home mosquito control, and to medically treat head lice (Cox, 2003).  The EPA 

estimates that the annual usage of malathion nationwide is over 30 million pounds, 

making it the most used insecticide in the United States (Cox, 2003).  The results of any 
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test using malathion as a VX surrogate can be directly applied to any potential situation 

involving malathion contamination within a waste water treatment facility. 

Low Level Exposure 

A low dose exposure to chemical warfare agents is defined in terms of exposure 

to levels that can be described as asymptomatic: they do not induce overt acute signs or 

symptoms (Scott, 2007).  The primary concern of most research with regards to exposure 

to any nerve agent is focused on a large single dose due the agent’s extraordinarily high 

acute toxicity (Romano Jr., McDonough, Sheridan, & Sidell, 2001).  While studies have 

been done looking at both acute low dose and chronic repeated subclinical exposures to 

organophosphates, there is no common consensus among the results (Benschop & De 

Jong, 2001; Somani & Husain, 2001).  However, studies have indicated that long term 

OP pesticide exposure in greenhouse workers may be associated with subtle adverse 

behavioral effects.  The effects can be characterized by increased tension and anxiety, 

depression, fatigue, and a reduction of perceptual motor functions (Benschop & De Jong, 

2001). The importance of better understanding the effects of short and long term low 

dose exposures is important for the development of safe standards for water quality with 

regards to nerve agent contamination.  Currently, the Tri-Service Standards set acceptable 

exposure limits to military personnel.  However, they are not considered acceptable for 

civilian populations or applicable to water quality standards (Salem, Whalley, Wick, 

Gargan II, & Burrows, 2008).   

Human testing of VX has been limited.  Nevertheless, testing on 54 subjects was 

conducted to examine the incipient toxicity, which occurs when erythrocyte 
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cholinesterase activity is inhibited 70% or more, as a result of being exposed to various 

types of drinking water that had been contaminated with VX. (Sidell, 2007).  These tests 

indicated that the quality of water with which the VX was consumed greatly affected the 

time it took to experience incipient toxicity. Outward symptoms of VX ingestion are 

colicky pain, nausea, vomiting, diarrhea, and involuntary defecation (Sidell, 2007).  

Table 2 shows various lengths of time at which ingesting of VX, in different sources of 

water, can cause incipient toxicity.  

 

Nerve Agent Decontamination 

The presence of chemical warfare agents is difficult to detect when active 

detection instrumentation is not used.  Outside of a terrorist organization announcing 

their use or a known spill or leak, the first signs of the presence of a chemical weapon 

will most likely be the signs and symptoms of the personnel exposed (Moore & 

Alexander, 2001).  If a chemical incident were to take place, hazardous material 

(HAZMAT) response teams would most likely be the ones responsible for initial 

interaction and decontamination of civilian casualties.  These teams are typically located 

within existing fire departments and are equipped and trained to deal with accidental and 

intentional release of toxic chemicals.  HAZMAT teams are well prepared and equipped 

Table 2: Incipient Toxicity from VX ingestion 
(Sidell, 2007) 

Type of Water Dose Time until Effect 
Distilled water 400µg per 70 kg 1 day - fell to 22% of control 

Distilled water with 
Tetra glycine hydroperiodide 400µg per 70 kg 16 hrs - fell to 17% of Control 

Water treated with standard field kit 400µg per 70 kg Day 4, in 4 or 8 subjects 
Tap water 400µg per 70 kg Day 4, in 6 or 9 subjects 



 

17 

to facilitate decontamination of the team following an incident response.  However, they 

are not capable of providing that same level of decontamination to a large population 

(Moore & Alexander, 2001). 

The three primary ways of decontamination of large populations depends on the 

hazard type.  For a vapor hazard, simply removing victims from the area may be 

significant enough to prevent further intoxication.  For a contact hazard, visible droplets 

may be wiped or blotted off of equipment and personnel utilizing chemical absorption.  If 

chemical absorbents are not available, personnel and equipment may be flushed with 

copious amounts of water (Moore & Alexander, 2001; Vale, Rice, & Marrs, 2007).  In 

order to facilitate large scale decontamination, many emergency response plans call for 

the use of water as it is readily available to first responders at an incident site.   

Studies have examined the three primary decontamination methods utilizing water 

alone, water with soap, and water with sodium hypochlorite solution (bleach).  The use of 

water and soap provides slight improvement over water alone in the decontamination 

process.  While beneficial, the use of soap creates a logistical problem for response 

personnel.  The emergency responders would have to either keep an adequate supply of 

soap in their vehicles, which could limit space for other supplies, or they would have to 

find a local source to procure the soap.  Both of these options would in some way limit 

the overall effectiveness of the responders.  The use of bleach along with water is by far 

the most effective as both GB and GD are rapidly hydrolyzed at high pH levels (Vale, 

Rice, & Marrs, 2007).  However, like the use of soap, the logistics of ensuring adequate 

quantities of bleach combined with the time it would take to mix the appropriate solutions 

would limit its effectiveness in a mass casualty situation (Moore & Alexander, 2001).  
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While the addition of soap and or bleach may produce a greater level of decontamination 

and potentially degradation of the chemical warfare agent, the use of water alone is very 

effective.  The shearing force and dilution effects achieved while using a high volume of 

water at around 60 psi is sufficient to provide decontamination for large populations 

(Moore & Alexander, 2001).   

The basis of civilian decontamination is the multistage showering of patients with 

as little clothing as possible (Roberts & Maynard, 2007).  While ideal, logistically this 

may not always be possible.  The situation and location of an incident will play a 

significant factor in what land and facilities are immediately available for 

decontamination efforts.  Expedient decontamination with copious amounts of water, as 

already discussed, by the use of a fire hoses directly, is a possibility if other facilities are 

not immediately available.  If time and facilities permit, makeshift showers may be 

created by utilizing the fire suppression system within a parking garage or other outdoor 

structure that allows for adequate air flow, ensuring that vapors do not linger in the 

decontamination area (Roberts & Maynard, 2007). 

A potential negative consequence with using large amounts of water for 

decontamination efforts is that it generates a large quantity of contaminated wastewater 

that must be treated.  Depending on the severity of the incident, it is possible that the 

water contamination could reach a concentration capable of producing casualties.  This 

risk requires the close monitoring and treatment of water used for decontamination in 

order to limit the overall impact of the incident (Moore & Alexander, 2001). Wastewater 

may be collected inside a designated containment area protected by inflatable bunds or 

other impermeable barriers (Roberts & Maynard, 2007).  If the wastewater is not 
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collected on site, depending on the type of drainage system being utilized, the 

contaminated wastewater could either be sent directly to local waterways via the storm 

water system or it could be sent to the local wastewater treatment facility via the sewage 

system.  In either case, local utility companies should be informed so that they can take 

appropriate action (Roberts & Maynard, 2007).   

Wastewater Treatment Facility Operations 

Most wastewater treatment is either done in a private septic system or in a larger 

scale wastewater treatment system designed to support a community’s needs.  While 

direct research concerning the degradation of VX in a wastewater treatment facility is 

very limited, work can be found looking into other organophosphate chemicals, such as 

pesticides, as well as VX hydrolysis products, and their interactions within a wastewater 

treatment facility. 

Each individual wastewater treatment facility is designed for specific parameters 

dealing with both the physical aspects of the facility as well as anticipated typical influent 

concentrations.  The general process, however, for all plants is essentially the same.  

Municipal wastewater treatment systems generally begin with a preliminary treatment 

phase, which consists of bar screens or racks which are designed to physically remove 

coarse, non biodegradable debris (Droste, 1997).  The primary treatment process removes 

large organic partials that have passed through the preliminary treatment.  The 

wastewater is allowed to slowly pass through a clarifier which allows particles with a 

higher density than water to settle to the bottom and particles less dense than water, such 

as grease, to float to the surface.  The solids are removed from the bottom and skimmed 
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off the top and are later processed along with the activated sludge.  Removing a majority 

of the solids prior to the secondary treatment is more cost effective than aerobically 

treating all the waste in the secondary treatment phase (Droste, 1997). 

The secondary treatment process consists of a series of aeration tanks and at least 

one if not multiple secondary clarifiers.  Aerobic biological treatment takes place within 

the aeration tanks.  Air is supplied to microorganisms which metabolizes organic material 

into CO2 and various other end products.  Activated sludge is a common aerobic 

biological treatment utilizing a suspended growth process.  Air is pumped into the 

chamber to supply oxygen for microbial growth as well as ensuring that the chamber is 

thoroughly mixed.  The activated sludge process can be designed to support nitrogen 

carbonaceous oxidation along with nitrification (Droste, 1997).  Carbonaceous oxidation 

produces CO2, H2O, and NH3 while nitrification, the oxidation of ammonia to nitrate, 

results in NO3 and H2O.  Nitrification occurs in a two-step process which is shown in 

equations (1) and (2).  

Equation 1: Nitrification Step 1 – NH3 Oxidation 

𝑵𝑯𝟑 + 𝟑
𝟐� 𝑶𝟐 → 𝑵𝑶𝟐

− + 𝑯+ + 𝑯𝟐𝑶 (1) 

Equation 2: Nitrification Step 2 – NO2 Oxidation 

𝑵𝑶𝟐
− + 𝟏

𝟐� 𝑶𝟐 → 𝑵𝑶𝟑
− (2) 

 

Following the biological treatment within the aeration basin, aeration basin 

effluent is allowed to settle in the secondary clarifier to separate the water from the 

activated sludge.  The activated sludge is then either recycled back into the aeration basin 

or thickened and further digested and dried before disposal in landfills or utilized in land 
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applications such as gardening and farming.  The wastewater leaving the secondary 

clarifier then may go through a final treatment process to reduce any remaining 

pathogens within the water.  The two primary sources of pathogen removal are either the 

addition of chlorine to the water or exposure to ultraviolet light (Droste, 1997).   

Following the disinfection process, the wastewater treatment process is considered 

complete and the water is discharged into a local waterway.  

The amount of solid material that is removed from the system is driven by the 

facilities solid retention time, or the mean solids retention time.  The sludge age, sludge 

retention time, and the mean solids retention time are all ways to determine the length of 

time, in days, the activated sludge stays within the system, shown in Equation 3 – 

Equation 5 (Kentucky Department for Environmental Protection, 2012).  The sludge 

retention time is an important parameter within wastewater treatment plant design and an 

important factor for determining the types of microorganisms within the system.  This is 

primarily driven by the amount of time a given type of microorganism needs to consume 

substrates within the wastewater and then reproduce.  A sludge retention time set below 

the time needed for the microorganism to reproduce will result in the activated sludge 

being removed from the system faster than it can replenish itself (Droste, 1997).  A 

sludge retention time that is set too high results in the activated sludge experiencing an 

environment with too little substrate, putting the organisms into a starved/stressed state.  

Sludge age can also have an impact on the food to microorganism ratio.  If the food to 

microorganism ratio is not properly maintained, the settling rate can be affected, resulting 

in sludge making it past the secondary clarifiers and being discharged into the receiving 

body of water (Droste, 1997). 
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Where 

MLSS = Mixed Liquor Suspended Solids 

TSS = Total Suspended Solids 

MCRT = Mean Cell Retention Time 

 

A wide variety of bacteria can be present within a biological based treatment 

system, with each type of bacteria removing specific types of influent contamination and 

at times requiring specific growth conditions.  Bacteria with specific growth requirements 

can be very susceptible to changes within their environment as well as the chemicals 

within the influent. 

Equation 3: Sludge Age 

Sludge age (days) =
𝑇𝑜𝑡𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑀𝐿𝑆𝑆 𝑖𝑛 𝑎𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑖𝑛
𝐷𝑎𝑖𝑙𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑇𝑆𝑆 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

 (3) 

Equation 4: Sludge Retention Time 

Sludge Retention Time (days) =

𝑘𝑔
𝑑𝑎𝑦  of 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑠𝑜𝑙𝑖𝑑𝑠 𝑖𝑛 𝑎𝑟𝑒𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒

𝑘𝑔
𝑑𝑎𝑦 𝑜𝑓 𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑 𝑠𝑜𝑙𝑖𝑑𝑠 𝑤𝑎𝑠𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚

 (4) 

Equation 5: Mean Cell Retention Time 

MCRT (days) =
𝑘𝑔 𝑀𝐿𝑆𝑆 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑦𝑠𝑡𝑒𝑚

𝑘𝑔
𝑑𝑎𝑦  𝑜𝑓 𝑆𝑆 𝑤𝑎𝑠𝑡𝑒𝑑 + 𝑘𝑔

𝑑𝑎𝑦 𝑜𝑓 𝑆𝑆 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡
 (5) 
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By mass, heterotrophic bacteria comprise the largest portion of the activated 

sludge and are the most tolerant to a variety of environmental changes.  Heterotrophic 

bacteria are responsible for the removal of the majority of the organic content within the 

wastewater stream (Rittmann & McCarty, 2001, p. 309).  The minimum sludge age to 

ensure adequate heterotrophic bacteria is 0.11 days.  To account for variations in 

environmental conditions, the application of a safety factor of 36 dictates that facility 

design should allow for a sludge age of 4 days (Rittmann & McCarty, 2001, p. 309). 

Heterotrophic bacteria growth can be slowed or inhibited by a number of substances.  

Pesticides and antibiotic contamination are two primary chemicals that inhibit 

heterotrophic bacteria that can be found in domestic waste water.  In addition to 

pesticides and antibiotics, heavy metals, aromatic hydrocarbons, and chlorinated solvents 

can be generated by industrial functions and can be found in the influent to a treatment 

facility.  The presence of any of these substances can result in the inhibition of 

heterotrophic bacteria. (Rittmann & McCarty, 2001, p. 191).   

In contrast to heterotrophic bacteria, which is fast growing and relatively tolerant 

to a variety of physical environments, nitrifying bacteria is slow growing and requires 

specific conditions in which to thrive.  Nitrifying bacteria require significant amounts of 

oxygen to function; levels that heterotrophic bacteria could continue to thrive in would 

limit catabolic rate of nitrifying bacteria (Rittmann & McCarty, 2001, p. 471).  In 

addition to the need for a high dissolved oxygen content, nitrifying bacteria is slow 

growing and sensitive to the sludge age maintained within the system.  At 20 °C, the 

minimum sludge age is 1.5 days.  Applying a safety factor of 5 gives a designed sludge 

age parameter of 18 days (Rittmann & McCarty, 2001, p. 473).  The combination of a 
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slow growth rate in specific growing conditions makes nitrifying bacteria inhibition, 

potentially extremely detrimental to the treatment systems effective operation.  Potential 

sources of nitrifying bacteria inhibition come from a variety of inorganic and organic 

compounds, such as unionized NH3, undissociated HNO2, anionic surfactants, heavy 

metals, and chlorinated organic chemicals.  In addition to causing direct inhibition, some 

chemicals responsible for nitrification inhibition are also responsible for the reduction of 

dissolved oxygen concentrations further limiting nitrification (Rittmann & McCarty, 

2001, p. 474). 

Problem Statement 

The effect of nerve agents on human populations is relatively well understood.  

Numerous studies have looked into the toxicity and specific characteristics of a variety of 

nerve agents with respect to their effects on humans.  Research is currently very limited 

in examining the specific effects of these compounds when introduced into a municipal 

wastewater treatment system.  In the event of a nerve agent incident, it is possible that 

these chemicals may enter a wastewater treatment facility, either as a direct result of an 

attack, an accidental discharge, or as the result of a community’s emergency response 

plan calling for the treatment of water used in decontamination efforts by the local 

municipality.  If significant concentrations of organophosphates enter a biological 

treatment facility, the activated sludge responsible for the treatment of the water may be 

unable to simultaneously degrade the organophosphate while simultaneously producing 

effluent concentrations of Chemical Oxygen Demand (COD), Ammonia (NH3), Nitrate 

(NO2) and Nitrite (NO3) that meet the treatment facilities discharge permit requirements.  
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Research Objectives 

The purpose of this study was to determine experimentally the inhibition 

threshold of a municipal wastewater treatment facility’s activated sludge when exposed 

to malathion, an organophosphate insecticide and surrogate for VX.  Additionally, this 

study aimed to identify potential respiration rate indicators, the malathion degradation 

potential, and the effect on COD oxidation and nitrification process of activated sludge 

when exposed to various malathion concentrations.  

Scope and Approach 

This research was designed to replicate the secondary treatment phase within a 

waste water treatment plant utilizing 2.0 L sequenced batch reactors.  The initial batch 

reactor was seeded with activated sludge obtained from the Fairborn Water Reclamation 

Facility, Fairborn, OH.  The initial reactor was allowed to stabilize for two months while 

being fed simulated wastewater designed to replicate the chemical structure typically 

found in the water being treated within a municipal wastewater facility.  After the initial 

reactor stabilized, it was used to seed two additional 2.0 L batch reactors which in turn 

were allowed to operate until effluent testing indicated stabilization. 

Respirometry experiments were conducted to examine the respiration rate of 

activated sludge over a twelve hour period when exposed to various concentrations of 

malathion.  The respirometry results were then used to determine malathion 

concentrations for a series of bench scale batch tests looking at COD oxidation, 

nitrification, and malathion degradation.  The concentrations used in the batch tests were 

then replicated within the 2.0 L batch reactors to examine the effects on effluent quality 
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of sustained long term exposure to malathion contaminated influent.  This work builds 

upon experiments done to determine the ability of activated sludge to sorb and 

biodegrade malathion as well as ethyl methylphosphonic acid (EMPA) (Janeczko, et al., 

2014). Malathion was selected as a surrogate for organophospahte based chemical 

weapons, nerve agents and specifically VX, due to similar chemical structure and mode 

of toxicity (Table 1).  A significant difference, however, and one important to this 

research, is that malathion is much safer to handle than VX. 

Significance 

In the event that a chemical warfare incident should occur, contamination has the 

potential to be widespread.   Expedient mass causality decontamination efforts will most 

likely involve copious amounts of water that may be inadvertently or intentionally 

directed into a wastewater treatment facility.  There is a risk that these chemical warfare 

agents may have an adverse impact on a wastewater treatment plant’s ability to continue 

to operate at high enough efficiency to ensure effluent water qualities are within 

standards.  Effluent discharge that has not been fully treated can pose significant risk to 

the environment downstream of plant discharge, which can translate into human health 

concerns for communities who use downstream bodies of water as sources of food, 

drinking water or other industrial purposes.  It is important to understand the behavior of 

these organophosphate based compounds within an activated sludge treatment systems so 

that early warnings of system degradation can be detected and appropriate action taken to 

mitigate against low quality effluent discharge.  
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Preview 

This thesis is written in the scholarly article format.  Chapter 2 is a journal article 

produced with this research for future journal submission.  It is written as a standalone 

chapter and includes an abstract, introduction, materials and methods, results, discussion, 

and conclusions.  Chapter 3 provides final discussion of the conclusions presented in 

Chapter 2.  It also summarizes pertinent findings, limitations identified within the 

research, and future research options not discussed in Chapter 2. 
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II. Scholarly Article 

Abstract 

Decontamination activities following a chemical warfare agent (CWA) incident 

may generate significant quantities of contaminated wash water.  The disposal method 

identified for this water will be specific to each location, with some communities 

choosing to utilize the local wastewater treatment plant to process and the waste.  This 

raises concerns about the effects of CWAs on treatment facilities, which utilize biological 

wastewater treatment methods.  These facilities serve as an important line of defense 

against the spread of pollutants in the aquatic environment; however, the presence of 

CWAs in the influent stream may inhibit the microbial action that is responsible for 

remediating contaminated wastewater. 

The goal of the current study was to evaluate the effect of malathion on the 

activity and performance of activated sludge bioreactors.  Malathion is one of many 

organophosphate (OP) based pesticides and is considered a well-rounded surrogate for 

VX, an OP based CWA.  This study employed respirometry, short term batch tests, and 

long term exposure experiments to investigate the effects of different concentrations of 

malathion on activated sludge performance.   

Respirometry results showed that the maximum respiration rates were 

approximately 45 µg O2 min-1 when the sludge was not exposed to malathion.  However, 

when malathion was added over a range of concentrations between 0.1 µg L-1 and  

5 mg L-1, the maximum respiration rates varied between 33 and 59 µg O2 min-1.  The 

oxygen consumption curves were similar in each case, beginning with rapid oxygen 
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consumption for the initial 2.5 – 3 hours, followed by a gradual, nonlinear decline in the 

respiration rates until the experimental time reached approximately 5 hours when the 

respiration rates were generally between 5 – 15 µg O2 min-1.   

Short term batch tests showed that chemical oxygen demand (COD) removal was 

not negatively impacted by the presence of malathion concentrations of 0.1 or 3 mg L-1.  

However, ammonia removal was slowed by the presence of malathion at both 0.1 and  

3 mg L-1 with a positive correlation of the removal rate, to the quantity of total suspended 

solids.  Despite variations in the ammonia removal rate the final ammonia concentrations 

were unaffected by the presence of malathion at both 0.1 or 3 mg L-1 when compared 

against the control. Long term exposure experiments demonstrated that both COD and 

ammonia removal were negatively affected at concentrations of 3.0 mg L-1 and 

unaffected at concentrations of 0.1 mg L-1.   

Short-term exposure to malathion is unlikely to interrupt microbial respiration, 

COD removal, or nitrification in the range of concentrations tested in this study.  

However, long-term exposure to malathion has the potential to negatively impact COD 

removal and nitrification processes at or above 3.0 mg L-1.  

Key words: Organophosphate, malathion, activated sludge, respiration, 

performance degradation 
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Introduction 

Chemical weapons have been widely used throughout history dating back to 

around 2000 B.C.E. (Coleman, 2005).  While chemical weapons have a long history, the 

beginning of industrial level chemical warfare began on 22 Apr 1915 when the Germans 

launched a chlorine gas attack against Allied positions at Ypres (Maynard, 2007; Spiers, 

2010).  Following World War I, during research intended to find a more effective 

pesticide; Dr. Gerhard Schrader of Germany isolated the first organophosphate based 

chemical warfare agent, tabun, later referred to as GA.  Following this initial discovery of 

tabun, sarin (GB) was discovered in 1938, and soman (GD) was discovered in 1944 

(Salem, Whalley, Wick, Gargan II, & Burrows, 2008), each discovery resulting in a more 

toxic compound.  In 1952, O-ethyl S-[2-(diisopropylamino)ethyl] 

methylphosphonothioate (VX), considered to be the most toxic chemical warfare agent, 

was discovered.  The discovery of VX happened simultaneously by a subsidiary of the 

Imperial Chemical Industry in Britain and Bayer in Germany, both attempting to develop 

more effective pesticides (Coleman, 2005; Marrs, 2007).   

VX was chosen as the chemical warfare agent of interest, out of the four primary 

nerve agents, GA, GB, GD, and VX for three reasons: its toxicity, volatility and 

hydrolysis rate.  VX is the most toxic of the 4 nerve agents with an LD50 of 0.143 mg/kg 

or 10mg for a 70kg adult.  This quantity is the dosage that is expected to cause death in 

50% of an exposed population.  Second, VX is the least likely to enter a vapor form as it 

has the lowest volatility with a vapor pressure of 10.5 mg/m3.  Finally, the hydrolysis rate 

at a neutral pH is 1000 hours allowing VX to remain in its original form, within water, 

the longest of the 4 nerve agents.   
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While the chemical properties of each agent may differ, the lethal properties of all 

organophosphate compounds are primarily owed to their ability to irreversibly inhibit 

acetylcholinesterase, resulting in the breakdown of both the voluntary and involuntary 

nervous system functions (MacNaughton & Brewer, 1994).  Symptoms of 

organophosphate exposure range from a runny nose and contraction of the pupils to 

breathing problems, convulsions and death from suffocation (Coleman, 2005).  Low-level 

exposures are defined as exposure to levels that are asymptomatic in that they do not 

induce overt acute signs or symptoms.  Low-level exposure can stem from inhalation or 

ingestion of, or contact with a chemical warfare agent.  The concern over low level 

exposure stems from a lack of understanding of the effects of both acute low dose and 

chronic repeated subclinical exposures to organophosphates (Benschop & De Jong, 2001; 

Somani & Husain, 2001).   

Due to the restrictions placed on live agent testing and the limitations of our 

laboratory, malathion was selected as safe surrogate for VX during our experimentation.  

Malathion closely resembles VX in four areas important in environmental degradation.  

The Log Kow for VX and malathion are similar, 2.09 and 2.36 respectively, indicating that 

their affinity for sorption and desorption to organic carbon will be similar.  Both VX and 

malathion’s Henry’s Law constant are on the same order of magnitude, 3.5 x 10-9 for VX 

and 4.9 x 10-9 for malathion, indicating that they both have a very low volatility.  

Additionally, malathion and VX share similar characteristics in their chemical structure, 

which allows malathion to mimic the biodegradation properties of VX.  Furthermore, the 

similar chemical bonds also allow for malathion to have similar hydrolysis rates as VX, 

when operating under alkaline conditions.  Of the potential VX surrogates, malathion 
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provides reasonable representation of VX in four key areas of environmental interaction 

while processing the lowest mammalian toxicity level (Bartelt-Hunt, Knappe, & Barlaz, 

2008). 

In the event of a chemical incident, a widely accepted option for first responders 

in decontamination of large populations is the use of large quantities of water.  While 

each situation is unique, first responders have a variety of options for the use of water in 

the decontamination process.  The use of fire hoses directly is a possibility if other 

facilities are not immediately available.  Makeshift showers may be created by utilizing 

the fire suppression system within a parking garage or other outdoor structure, which 

allows for adequate ventilation (Roberts & Maynard, 2007).  The resulting contaminated 

water may be diverted to a wastewater treatment facility for processing.  If 

organophosphates are sent to an activated sludge treatment system, they may pass 

through the system without experiencing significant degradation depending on the 

compound and the influence of heterotrophic and nitrifying bacteria (Janeczko, et al., 

2014).  However, the threshold concentration of organophosphates in the influent, which 

results in decreased plant performance is largely unknown.  If the treatment plant 

performance decreases, effluent concentrations of Chemical Oxygen Demand (COD), 

Ammonia (NH3), Nitrite (NO2), and Nitrate (NO3) could reach levels that negatively 

impact the local ecosystem, which is dependent on the discharge waterway. 

The goal of this research was to examine the threshold concentration of malathion 

within a municipal waste water treatment systems, utilizing activated sludge, that would 

allow for continuous operation while functioning within its normal operating parameters.  

This was accomplished by utilizing bench scale tests, which focused on the activated 
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sludge’s respiration rate and its ability to continue to perform COD oxidation and 

nitrification.  Additionally, tests were performed to assess activated sludge’s ability to 

degrade the malathion contamination. 

Materials and Methods 

Sequencing Batch Reactors 

Three 2.0 L sequencing batch reactors were constructed and tested for operation 

capability using water, ensuring accurate pump calibration and verifying computer 

controlled solenoids integrated into the pneumatic control system produced the desired 

results.  The sequencing batch reactor configuration was developed utilizing a method 

adopted from Racz, et al. (2010) and is diagrammed in Figure 2. After the controls were 

verified, a single sequencing batch reactor was seeded with activated sludge from the 

Fairborn Water Reclamation Facility, Fairborn, OH, with 4 L of initial seed sludge 

collected 4 April 2014.   

The Fairborn Water Reclamation Facility has a designed treatment volume of 6.0 

million gallons per day.  The daily plant flow rate is between 3.4 and 10 million gallons 

per day with an average of 4.2 million gallons per day.  The Fairborn Water Reclamation 

Facility averages 98% removal of all suspended solids, biological oxygen demand, and 

ammonia as well as an average removal of 82% of all phosphorus (Fairborn Water 

Reclamation Center, 2010). The Fairborn Water Reclamation Facility maintained an 

average mean cell retention time of 13.68 days between January 2014 and November 

2014 (Barosky, 2015). 
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Figure 2: Sequence Batch Reactor Setup 

 

In order to replicate the waste water stream, two feed solutions were utilized.  

Each feed solution was made exclusively, utilizing deionized water, to prevent any 

interference from ions such as calcium, magnesium, or lead that are commonly found in 

tap water (Illinois Department of Public Health, 2014).  Feed A consisted of 44.6 g 

sodium bicarbonate (NaHCO3) per liter of water.  The sodium bicarbonate provided for a 

pH between 6.5 and 7.5, allowing for a relatively consistent alkalinity as well as acting as 

an inorganic carbon source during nitrification.  Feed B acted as the waste water simulant 

and consisted of the following per liter of deionized water: 6.0 g of peptone, 1.25 g of 

sodium acetate (C2H3NaO2), 2.26 g ammonium chloride (NH4Cl), 6.86 g of magnesium 
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chloride (MgCl2 · 6H2O), 1.72 g calcium chloride (CaCl2∙2H2O), 0.6675 g potassium 

dihydrogen phosphate (KH2PO4) and 20 ml of a trace element solution.   

The trace element solution contained the following per liter of deionized water: 

2.73 g of citric acid (C6H8O7), 2.0 g of hippuric acid (C9H9NO3), 0.36g of trisodium 

nitrilotriacetate (Na3NTA·2H2O), 0.15g of EDTA trisodium salt (Na3EDTA·4H2O), 1.5 g 

of iron(III) chloride (FeCl3·6H2O), 0.25 g of boric acid (H3BO3), 0.15 g of zinc sulfate 

(ZnSO4·7H2O), 0.12 g manganese(II) chloride (MnCl2·4H2O), 0.07 g of copper sulfate 

(CuSO4·5H2O), 0.03 g of potassium iodide (KI), 0.03 g of sodium molybdate 

(Na2MoO4·2H2O), 0.03 g cobalt dichloride (CoCl2·6H2O), 0.03g of nickel chloride 

(NiCl2·6H2O), and 0.03 g of sodium tungstate (Na2WO4·2H2O).   Additional information 

regarding the chemical feed can be found in Appendix A. 

All three reactors operated continuously on identical 12-hour cycles consisting of 

three distinct phases.  The first phase began with 1.33 L of activated sludge in each 

reactor.  Then 624 ml of deionized water, 8 ml of Feed A, and 38 ml of Feed B was 

added to each reactor, bringing the total volume within each reactor up to its 2.0 L 

operating volume.  Following this initial filling and feeding cycle, an 11-hour aeration 

cycle began. During this 11 hour cycle, the mixed liquor is aerated using laboratory 

compressed air that is passed through an M-26 motor guard submicronic compressed air 

filter utilizing an M-273 motor guard cellulose filter element and a pressure regulator.  

The compressed air ensures adequate mixing and sufficient dissolved oxygen 

concentrations within each reactor to support nitrification.  During the aeration phase, 

each reactor was set to waste between 30 and 50 ml of mixed liquor keeping the solids 

retention time to an average of approximately 27 days.  The solids wasting took place at 
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hour 6, halfway through the aeration cycle.  The third phase began with a 1 hour settling 

period, ensuring all suspended biomass was able to settle to the bottom of the reactor.  

After the settling period, 670 ml of effluent was decanted from the top of the reactor, 

bringing the volume back down to the first phase starting volume of 1.33 L.  This 

removal process results in a 36 hour hydraulic retention time.  

During the initial months of testing, the reactors were continually monitored for 

COD, NH3, NO2, and NO3 concentrations in the effluent.  This period allowed for the 

development of long-term baseline data and for the activated sludge to stabilize in its new 

environment.  Additionally, this period allowed for periodical removal of activated 

sludge for both the respirometry and bench scale batch test experiments to be carried out 

without creating a significant impact to overall reactor performance.  Over the course of 

simultaneous reactor operations, 4 April 2014 to 9 Dec 2014, reactors 1, 2, and 3 

facilitated the average reduction of chemical oxygen demand over the 12 hour reaction 

period from approximant 116 mg L-1 to 14.61 mg L-1 (87.29%), 15.10 mg L-1 (86.87%), 

and 16.45 mg L-1 (85.70%) respectively.  Additionally, over this period, each reactor 

reduced the initial concentration of ammonia from approximately 12.21 mg L-1 down to 

below the 0.4 mg L-1 detection limit.  Reactor 1 had an average suspended solids 

concentration of 2800 ± 648 mg L-1 with volatile suspended solids comprising an average 

of 89.76% of the total suspended solids.  Reactor 2 had an average total suspended solids 

concentration of 2643 ± 802 mg L-1 with volatile suspended solids comprising an average 

of 94.53% of the total suspended solids.  Reactor 3 had an average total suspended solids 

concentration of 1971 ± 365 mg L-1 with volatile suspended solids comprising an average 

of 91.39% of the total suspended solids. 
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 Following the respirometry and batch tests experiments, reactor 1 and reactor 3’s 

supply of deionized water was substituted with an aqueous solution of malathion in 

deionized water at concentrations of 0.3205 mg L-1 and 9.615 mg L-1 respectively.  The 

malathion concentrations supplied to each reactor, along with feed A and feed B volumes 

mentioned earlier, brought the concentration within reactor 1 to 0.10 mg L-1 and the 

concentration within reactor 3 to 3.00 mg L-1.  This design concentration was in addition 

to any malathion that may not have been degraded or removed though effluent or mixed 

liquor discharges.  This substitution of the supply water allowed for the reactors to 

operate within the same mechanical parameters as they had previously while simulating a 

long term exposure to a malathion contaminated waste stream. 

 

Respirometry  

This experiment was conducted with 8 Pyrex - 250 ml - #1395 bottles.  To 

replicate the environment within the sequence batch reactors, 275 ml of activated sludge 

was taken from reactor 1 and combined with 275 ml of solid purge waste sludge, also 

from reactor 1.  This was done to decrease the impact to the bacterial community within 

reactor 1 while maintaining a consistent source for the activated sludge.  Replicating the 

cycles within the sequencing batch reactors, 550 ml of activated sludge was allowed to 

settle for one hour in a 1000 ml beaker.  After the one-hour settling period, 184.25 ml of 

effluent was decanted off the top of the beaker.  The decanted volume was then partially 

replaced with 171.6 ml of deionized water.  The activated sludge was then placed on a 

stir plate to completely suspend all solids.  With the solids in suspension, 100 ml was 

distributed to two 250 ml bottles, bottles 1 and 2.  The remaining six bottles each 
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received 50 ml of activated sludge, bottles 3 through 8. Feed A was then added to each of 

the 8 bottles, 400 µl to bottles 1 and 2, and 200 µl to bottles 3 - 8.  Feed B was then 

added, 1900 µl to bottles 1 and 2, and 950 µl to bottles 3 - 8.  Following the addition of 

the feed, 50 ml samples were taken from bottles 1 and 2 to establish the starting 

conditions for all eight vials.  After the samples were filtered from jars 1 and 2, malathion 

was added to bottles 3 through 8 in quantities sufficient to reach the desired starting 

concentrations shown in Table 3.   

 

 

 

 

 

 

 

Immediately following the addition of malathion, the bottles were connected to a 

respirometer which measured the oxygen consumption and carbon dioxide production 

over a twelve hour period.  The respirometer consisted of a Columbus Instruments  

micro-oxymax system sample pump, a sample drier, an oxygen sensor, a carbon dioxide 

sensor, and two 10-port expansion interface units.  The samples were continually mixed 

utilizing an IKA 15 position stirring plate set to level 3, approximately 330 rpm.  Sample 

frequency was set to auto, which equated to a 54 minute cycle between samples.  The 

oxygen refresh threshold percentage was set 0.50.  Unit parameters were selected as µg 

Table 3: Respirometry Malathion Concentrations 

Bottle Test 1 
(µg L-1) 

Test 2 
(µg L-1) 

Test 3 
(µg L-1) 

Test 4 
(µg L-1) 

Test 5 
(µg L-1) 

Test 6 
(µg L-1) 

1 0.0 0.0 0.0  0.0 0.0 0.0 
2 0.0  0.0  0.0 0.0  0.0  0.0  
3 5.0  5.0  1.0 5,000 5,000 5,000 
4 5.0  5.0  1.0 5,000 5,000 5,000 
5 1.0  1.0  0.1 1,000  1,000  1,000  
6 1.0  1.0  0.1 1,000 1,000 1,000 
7 0.1  0.1  0.05 100  100  50 
8 0.1  0.1  0.05 100  100  50 
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(gas), min (time), O2 consumption was indicated as positive.  The system was controlled 

utilizing the mciro-oxymax software V2.3.5 running on Windows 98. 

 

Inhibition and Biodegradation  

The short-term batch tests were conducted in three 1000 ml beakers.  In 

preparation for the initial batch test, 1500 ml of sludge was taken from the reactors and 

mixed with 1500 ml of wasted sludge to provide sufficient volume for the batch test 

experiments while limiting the impact to ongoing reactor performance testing. Activated 

sludge source and quantities varied between batch tests due to ongoing experiments 

within the sequencing batch reactors.  For specific information for each batch test see 

Table 4.   Similar to the respirometry experiments, the sludge was mixed in a 4000 ml 

beaker and then allowed to settle for one hour.  After the one hour settling period,  

1005 ml of effluent was decanted off the top of the beaker.  The decanted volume was 

then partially replaced with 936 ml of deionized water.  Each beaker was then supplied 

with activated sludge, feed A, feed B and a 100 mg L-1 solution of malathion in water to 

replace the remaining volume and generate the desired operating concentration.  See 

Table 5 for specific volumes of each component.  Every hour, over a twelve-hour period, 

concentrations of COD, NH3, and NO3 were measured.  Additionally, NO2 was measured 

every 3 hours and gravimetric measurements were taken every 6 hours. These samples 

were taken from the liquid phase of the activated sludge in order to gauge the 

performance of the heterotrophic and nitrifying bacteria.  Thereby examining both the 

bacteria’s ability to process the simulated wastewater and degrade the malathion. 
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Table 4: Batch Test Activated Sludge Source Volumes 

  SBR 1 
Vol (ml) 

SBR 1 Purge 
Vol (ml) 

SBR 2 
Vol (ml) 

SBR 2 Purge 
Vol (ml) 

SBR 3 
Vol (ml) 

SBR 3 Purge 
Vol (ml) 

Batch Test 1 500 500 500 500 500 500 
Batch Test 2 750 750 750 750 0 0 
Batch Test 3 0 0 750 2250 0 0 

 

Table 5: Batch Test Set Up Volumes 

 Concentration 
(mg L-1) 

Activated 
Sludge (ml) 

Feed A 
(ml) 

Feed B 
(ml) 

100 mg L-1 Malathion  
in H2O (ml) 

Total 
(ml) 

Reactor 1 0.00 977 4 19 0 1000 
Reactor 2 0.10 976 4 19 1 1000 
Reactor 3 3.00 947 4 19 30 1000 

 

Extraction and Measurement of Malathion 

Samples of effluent were extracted using a BD Luev-lok syringe and then passed 

through a Cole-Parmer syringe filter (SFCA membrane with a GF pre-filter and an 

opening size of 0.2 µm) to remove any suspended solids and stop all biological 

degradation processes.  The filtered sample was placed in a 2 ml crimp top amber auto 

sampler vial and stored at 5°C until they could be analyzed by gas chromatography-mass 

spectrometer (GC-MS) and quantified against calibration curves of know standards.  All 

samples were taken in duplicate with the exception of the batch test samples, which were 

taken in triplicate.   

 

Gas Chromatography – Mass Spectrometer  

Malathion concentration samples were analyzed using an Agilent 7000C GC/MS 

Triple Quad, and a 7890B GC system utilizing a 7693 Auto Sampler, a 7693A Auto 

injector module with a 10 µl syringe, an Agilent 5190-2293 inlet liner, and an Agilent 
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HP-5MS Ultra inert column (0.25 µm film thickness, 0.250 mm internal diameter x 30 m 

length).  Detection and quantification of malathion was accomplished in multiple reaction 

monitoring (MRM) for a more reliable identification of detected analytes and enhanced 

sensitivity (Schreiber, 2010).  The column was held at an initial temperature of 45° C for 

2.25 minutes.  The temperature was then increased at a rate of 15° C/minute until it 

reached 260° C where it was held for 5 minutes.  Post run, the temperature was increased 

to 265° C and held for 5 minute to reduce the possibility of carryover between samples.  

The column was supplied with helium (He) as the quench gas at a rate of 1.5 ml minute-1 

and nitrogen (N2) as the collision gas at 2.5 ml minute-1.  The injection port inlet was kept 

at 175° C and a pressure of 7.3614 psi.  The total flow rate in the inlet was 24 ml minute-1 

of He, the septum purge flow was 3 ml minute-1.  The mass spectrometry transfer line 

was kept at 250° C and the triple quad MS solvent delay was set at 3.75 minute.   

During detection, the peak width filter was set at 0.8 sec with a calculate EMV 

detector voltage of 1195.9 V with a gain of 10.  Sampling was accomplished at 47 cycles 

per second with each cycle taking 21 ms.  The precursor ion was selected as 173 and the 

product ion was selected as 99, both utilizing the widest resolution setting.  The dwell 

was set to 20 and the collision was set to 10.  The sample injection volume was set at  

5 µl.  After sample injection, the syringe was rinsed two times in solvent A, methanol, 

and two times in solvent B, methanol. Prior to sample injection, the syringe was rinsed 

three times in solvent A, three times in solvent B, and then was rinsed using the sample 

solution three times.  All syringe rinses were completed utilizing the max volume setting.  

Following the pre-injection rinse cycle, the sample solution was pumped in and out of the 
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syringe 6 times prior to sample injection.  Utilizing total ion chromatography, malathion 

had a retention time of 15.5 minutes, with a total run time of approximately 32.2 minutes 

per sample; variations of total run time were primarily due to the effects of room 

temperature on system cooling between samples.  

Calibration curves were developed utilizing nine concentrations between  

10 mg L-1 and 1 µg L-1 of malathion in methanol as the initial portion of an analytical 

sequence.  All calibration curve samples were generated using an Agilent 7696A Sample 

Prep WorkBench utilizing two 7693A Auto injector modules.  The front 7693A was 

equipped with a 500 µl syringe and the rear 7693A was equipped with a 100 µl syringe.  

The WorkBench performed serial dilutions shown in Table 6 utilizing a 1000 mg L-1 

malathion in methanol solution as the initial sample concentration.  In addition to the 

calibration curve samples, multiple check samples were created with the WorkBench.  

Utilizing multiple check samples, all created from a single source sample, which was 

used to create the calibration curve, allowed for uncontaminated check samples to be 

used during each check sequences.   
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Table 6: Calibration Curve Dilution Series 

Step Target Concentration 
(mg L-1) 

Volume - Starting 
Concentration Methanol (µl) Final Vol (µl )* 

1 100  100 µl – 1000 mg L-1 900 1000 (900) 
2 10 100 µl – 100 mg L-1 900  1000 (810) 
3 5 50 µl – 100 mg L-1 950  1000 
4 1 140 µl – 10 mg L-1 1260 1400 (650) 
5 1 150 µl – 1 mg L-1 0 150 
6 1 150 µl – 1 mg L-1 0 150 
7 1 150 µl – 1 mg L-1 0 150 
8 1 150 µl – 1 mg L-1 0 150 
9 0.5 50 µl – 10 mg L-1 950  1000 
10 0.1 100 µl – 1 mg L-1 900  1000 (850) 
11 0.05 50 µl – 1 mg L-1 950 1000 
12 0.01 100 µl – 0.1 mg L-1 900 1000 (900) 
13 0.005 50 µl – 0.1 mg L-1 950 1000 
14 0.001 100 µl – 0.01 mg L-1 900 1000 

* Numbers in parentheses is volume remaining after use in subsequent steps 
 

Other Analytical Methods 

Concentrations of Chemical Oxygen Demand (COD), Ammonia (NH3-N), Nitrate 

(NO3-N), and Nitrite (NO2-N) were measured using HACH methods 8000 (low range), 

10031, 10020, and 8153.  Total suspended solid (TSS) and volatile suspend solid (VSS) 

were measured using standard methods (APHA, AWWA, WPCF, 1985).  All HACH 

measurements were conducted in triplicate; all TSS and VSS measurements were 

conducted in duplicate. 

Results and Discussion 

Effects of Malathion on Respiration 

The results showed that the maximum respiration rates were approximately 47 µg 

O2 min-1 when the activated sludge was not exposed to malathion.  When malathion was 

added, the maximum respiration rates varied between 40 and 46 µg O2 min-1.  The shape 
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of the oxygen consumption curves were similar in all cases, beginning with a rapid 

oxygen consumption rate during first 1.5 to 2 hours, followed by a gradual nonlinear 

decline in the respiration rates until the experimental time reached approximately 6 hours.  

The respiration rates after hour 6 were between 5 and 15 µg O2 min-1.  Cumulative O2 

consumption varied between 7 and 20 grams of oxygen over the 12 hour experiment 

across all 6 trials, but it was typically smaller when malathion was present. 

Figure 3 shows the cumulative oxygen consumed over a 12 hour period during 

respirometry experiment 6.  When the initial concentrations of malathion were 5, 0.1, and 

0.05 mg L-1 the average cumulative oxygen consumptions were 12.8, 13.3, and 11.4 g of 

oxygen respectively.  Carbon dioxide production profiles matched the trends shown by 

the oxygen consumption profiles.  These results showed indications that respiration rates 

may be slightly reduced by the presence of malathion. 

The previous two tests, experiment 4 and 5 with similar malathion concentrations 

in the low part per million produced similar results as experiment 6.  In experiment 4 and 

5, the two control samples are isolated at the top of the cumulative oxygen consumption 

curve and the remaining samples intermixed below the control samples with a clear 

delineation between the control sample and those exposed to malathion.  The three 

experiments conducted in the low parts per billion range, experiments 1 through 3, had 

less delineation between the control and contaminated samples with multiple samples 

consuming greater quantities of oxygen than the control samples. The results at these low 

concentrations demonstrated that concentrations of malathion in the low parts per billion 

either has no effect or potentially generates a slight increase to respiration rates.   The 

remaining five cumulative oxygen consumption graphs can be found in Appendix B. 
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Figure 3: Respirometry Test 6 – Cumulative Oxygen Consumption 
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Figure 4 shows the mean respiration rate during the first hour, the first 6 hours, 

and the full 12 hours, measured in all six experiments utilizing Standardized Oxygen 

Uptake Rates (SOUR).  The VSS concentrations utilized in generating this data was 

based off the percentage of VSS measured in reactor 1, the source of activated sludge for 

all 6 experiments, and applied to the TSS measurements taking during respirometry as 

only TSS data was calculated during respirometry experiments.  

The normalization of the oxygen uptake across all 6 experiments shows that 

during the first 60 minutes, it was observed that the addition of malathion produced a 

decrease in the SOUR for all concentrations except 5000 µg L-1 which had a measured 

increase of 2.3%.  After 6 hours of exposure, a depressed respiration rate was observed in 

all samples when compared to the control with the exception of the 50 µg L-1 which 

indicated a 9.2% increase in respiration.  After 12 hours of exposure, the trend continued 

with all samples indicating respiration rates lower than the control with the exception of 

the 50 µg L-1 sample which had a 1.6% increase in respiration rate over the control. 

The SOUR results indicate variations of expected peak oxygen consumption 

based upon the level of malathion present.  Low-level concentrations of 0.05 through  

50 µg L-1 of malathion had peak oxygen consumption rates between hours 2 and 6.   

Oxygen consumption rates above 100 µg L-1 of malathion peaked during hour 1 and then 

slowly declined over the course of the 12 hour experiment.  These results show 

indications that there is not a linear relationship between the concentration of malathion 

and the respiration inhibition for concentrations below 5000 µg L-1. 
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Figure 4: SOUR for Malathion Concentrations in Activated Sludge 
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Examination of percent inhibition provides additional insight into malathion’s 

effect on activated sludge.  Figure 5 shows the respiration inhibition plotted against 

malathion concentration.  The percentage of inhibition plot shows two models.  One 

model depicts the percentage of inhibition based upon the maximum respiration of the 

control sample against the maximum respiration rate within a sample exposed to 

malathion.  The maximum respiration rates used to develop this inhibition rate all took 

place within the first 4 hours of the experiment.  The inhibition percentage over the  

12 hour period is based on the oxygen consumed during the duration of the experiment.  

The maximum inhibition percentage averaged 16%, 3%, and 11% for malathion 

concentrations of 50, 100, 5000 µg L-1 respectively.  The overall inhibition percentage 

averaged 26%, 13%, and 15% for the same concentrations.  The linearization of these 

results shows that for both the maximum respiration rate and the overall respiration rate 

have a positive correlation between the concentrations of malathion and percentage of 

respiration inhibition, at a rate of 0.9% and 0.3% for each mg L-1 of malathion, 

respectively.  However, the R2
 values of 0.0766 and 0.0054 indicate that while the 

linearization of the data does show that there is an increase in the respiration inhibition as 

malathion concentration increases, there is only a very small correlation between the two 

variables.   

These results are further supported by the previous 5 experiments which produced 

a variety of trend lines indicating both a positive and negative correlation between 

malathion with a wide range of R2 values, the highest being 0.4534 as shown in Table 7.  

The variations between the experiments 1 – 3 and 4 – 6 indicated drastically different 

rates of change in the inhibition percentage as the concentration of malathion changes.  
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Additionally, when examined based upon initial starting concentrations, neither the first 3 

experiments in the low parts per billion nor the second 3 experiments in the low parts per 

million produced any significant correlation between the initial concentration of 

malathion and the amount of respiration inhibition that was experience; see Figure 6 and 

Figure 7.  As a result of the vastly different outcomes between experiments, that data 

does not point to a concentration of malathion where a noticeable change in respiration is 

to be expected.   

Table 7: Rate of Percentage Inhibition Change due to Malathion Exposure 

 Maximum O2 Uptake Rate Average O2 Uptake Rate 

Respirometry 
Test 

Rate of Inhibition 
Change 

% (mg L-1)-1   
R2 

Rate of Inhibition 
Change 

% (mg L-1)-1   
R2 

1 - 1,050 0.0784 - 1,650 0.0784 
2 - 1,470 0.0255 2,180 0.0642 
3 3,790 0.0198 - 22,290 0.6952 
4 - 1.0 0.2888 - 1.0 0.0714 
5 3.0 0.4534 3.0 0.1946 
6 0.9 0.0766 0.3 0.0054 

1 – 3  -760 0.0097 2,000 0.0343 
4 – 6  0.7 0.0286 0.6 0.0138 
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Figure 5: Respirometry Test 6 – Respiration Inhibition 
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Figure 6: Respirometry Experiments (1 – 3) – Respiration Inhibition 
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Figure 7: Respirometry Experiments (4 – 6) – Respiration Inhibition 
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The overall respirometry results indicate that the presence of malathion either has 

little effect or produces a decrease in the respiration rate of activated sludge with no 

discernable trends associated with the concentration of malathion.  This variability in 

respiration inhibition between samples suggests that a direct relationship between the 

concentration of malathion and the respiration rate may not exist.   

Utilizing the peak respiration rate for each sample taken during respirometry 

experiment 6, neither the substrate utilization model, Equation 6, nor the inhibition 

model, Equation 7, produced linearization lines with significant correlation to the data, 

Figure 8. The linearization of the utilization model and the inhibition model produced an 

R2 of 0.0766 and 0.066 respectively.  The low R2 values for both models further supports 

the hypothesis that malathion is not acting singularly as a substrate that inhibits or 

promotes respiration.   

 
Equation 6: Substrate Utilization Model 

𝑟 = 𝑟𝑜 + 𝑘𝐶 (6) 

 
Where 

r = respiration rate (µg min-1) 
 
ro = peak respiration rate in the absence of malathion (µg min-1) 
 
k = respiration coefficient (L min-1) 
 
C = malathion concentration (µg L-1) 
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Equation 7: Substrate Inhibition Model 

𝑟 =
𝑟𝑜

�1 + 𝐶
𝐾𝑖
�

  (7) 

 

Where 
r = respiration rate (µg min-1) 
 
ro = peak respiration rate in the absence of malathion (µg min-1) 
 
C = malathion concentration (mg L-1) 
 
Ki = inhibition coefficient (mg L-1) 

 

Examination of the other 5 respirometry experiments supports conclusions drawn 

from the data in experiment 6; see Table 8.  Of the 6 experiments, 4 produced R2 values 

smaller than 0.1 with the highest R2 value being produced by experiment 5 with values of 

0.4936 and 0.4686 for the utilization and inhibition models, respectively.  The overall 

low predictability of both of these models when compared to the measured data suggests 

that malathion could be acting as both a source of microbial respiration while 

simultaneously inhibiting respiration for concentrations at or below 5 mg L-1. 

Table 8: Substrate Utilization and Inhibition Linearization R2 Values  

Respirometry Test Utilization Model R2 Inhibition Model R2 

1 0.0363 0.0503 
2 0.0255 0.0475 
3 0.0198 0.0152 
4 0.2888 0.2499 
5 0.4936 0.4686 
6 0.0766 0.0660 
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Figure 8: Respirometry Test 6 – Substrate Utilization & Inhibition Linearization Plots 
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The additive kinetics model is based upon the application of the dual substrate 

model listed in Equation 8.  Typical representation of the model indicates microbial 

growth (𝜇).  However, to facilitate model implementation within our given data, 

respiration which is associated with growth, was substituted into the model.  To further 

simplify the model, it was assumed that the baseline respiration rate, which is dependent 

on substrate utilization without malathion present, would be consistent through all 

samples.  This assumption allowed for the control samples average respiration rate to be 

substituted for the first set of terms in the additive kinetics model.  The second set of 

terms was replaced with an Andrews Equation (Equation 9) which allows for the 

modeling of a substrate that inhibits its own biodegradation.  The modified additive 

kinetics model is shown in Equation 10. 

Within the model, use of a low Ks indicates that the substrate has a high affinity to 

encourage growth or respiration.  The use of a low Ki indicates that the substrate has a 

high affinity to inhibit growth or respiration. Values were chosen for Ks and Ki that 

allowed the model to produce results that most closely resembled that measured data.    

While this approach does not allow for an extremely accurate application of the model, it 

does provide an indication as to the relative relationship between Ks and Ki.  For example, 

Ki being lower than Ks is an indication that malathion causes greater inhibition of 

respiration than it does promoting respiration.   

The results of model manipulation utilizing respiration rates from respirometry 

experiment 6 results in a Ki value of 1 and a Ks value of 100 to produce a result that is 

close to the measured data. Further raising Ks produces a lower predicted respiration rate 
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at a malathion concentration of 5 mg L-1.  However, very little change is noticed as Ks is 

increased as a value of 100 produces essentially a flat line.  

The results indicated that in the low parts per million high values of Ks and low 

values of Ki produced results that were relatively close to the measured data.  The results 

from the experiments in the low parts per billion required low values of both Ks and Ki 

for the model to produce results consistent with the measured data.  At extremely low 

concentrations of malathion, this model will have limited use as the primary substrate 

driving respiration would greatly exceed the concentration of malathion and could 

potentially mask any effects the malathion might produce at such low concentrations. 

The values of Ks and Ki required to closely represent the data for all 6 experiments 

can be seen in Table 9, graphical representation of the models can be found in Appendix 

B.  The difficulty in consistently replicating the measured data with the application of the 

model utilizing similar values for Ki and Ks across all 6 experiments indicates that 

additional factors outside of the parameters identified in the model are potentially 

contributing to changes in respiration of the activated sludge during the 12 hours 

immediately following exposure. 

Table 9: Additive Kinetics Model Parameters 

Respirometry 
Test 

Additive Kinetics model 
Ki Ks 

1 1 1 
2 1 .05 
3 1 1 
4 1 50 
5 1 500 
6 1 100 

 

.
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Figure 9: Respirometry Test 6 – Modified Additive Kinetics Model 
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Equation 8: Additive Kinetics Model 

𝜇 =
𝜇𝑚𝑎𝑥 𝑆1 
𝐾1 + 𝑆1

+
𝜇𝑚𝑎𝑥2  𝑆2 
𝐾2 + 𝑆2

 (8) 

(Blanch & Clark, 1997, p. 195) 
Where 

µ = specific growth rate (hrs-1) 
 
µmax = maximum specific growth rate due to substrate 1 (hrs-1) 
 
µmax2 = maximum specific growth rate due to substrate 2 (hrs-1) 
 
S1 = Concentration of substrate 1 (mg L-1) 
 
S2 = Concentration of substrate 2 (mg L-1) 
 
K1 = Substrate 1 half saturation or substrate-affinity constant (mg L-1) 
 
K2 = Substrate 2 half saturation or substrate-affinity constant (mg L-1)  
 
 

 
Equation 9: Andrews Inhibitory Growth Kinetics Model 

𝜇 = 𝜇𝑚𝑎𝑥 ∗
 𝑆 

𝐾𝑠 + 𝑆 + �𝑆
2

𝐾𝑖
�
 (9) 

(TAZDAIT, et al., 2013) 
Where 

µ = specific growth rate (hrs-1) 
 
µmax = maximum specific growth rate (hrs-1) 
 
S = Substrate concentration (mg L-1) 
 
Ks = Half saturation or substrate-affinity constant (mg L-1) 
 
Ki  = Substrate inhibition constant (mg L-1) 
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Equation 10: Modified Additive Kinetics Model 

𝑅 = 𝑅𝑜 + 𝑅𝑚𝑎𝑥 ∗
 𝑆 

𝐾𝑠 + 𝑆 + �𝑆
2

𝐾𝑖
�
 (10) 

Where 
R = respiration rate 
 
Ro = Maximum respiration rate in the absence of malathion 
 
Rmax = Maximum respiration rate in the presence of malathion 
 
S = Concentration of malathion (mg L-1) 
 
Ks = Half saturation or substrate-affinity constant (mg L-1) 
 
Ki  = Substrate inhibition constant (mg L-1) 

 
 

The examination of the oxygen consumption data, the respiration inhibition, and 

substrate utilization models of activated sludge exposed to malathion did not produce any 

clear indication of a potential threshold concentration that would limit activated sludge’s 

efficiency to continue to treat waste water treatment plant influent.  The data did indicate 

a decrease respiration rate due to exposure to malathion, however, that is not necessarily 

an indication of poor performance and reduced effluent quality.  

The lack of a clear threshold concentration for respiration data fails to provide a 

concentration to base the design of the short term and long term experiments on.   

However, examination of the final concentrations of COD and NO3 for respirometry 

experiments 4 – 6 provided insight into a potential threshold concentration that could be 

used for additional experimentation.  This data analysis is limited in that initial baseline 

data was taken from just two sample jars and was assumed to be consistent across all 8 

samples within a given experiment.  This assumption is generally supported by data 
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collected in the batch testing in which initial concentrations of all measured parameters, 

with one exception, were within 10% of the average initial starting concentration. 

The results of COD concentration testing following respirometry experiment 4 

indicated that malathion concentrations of 5.00 mg L-1 have the potential to limit the 

oxidation of COD during a twelve hour exposure as shown in Figure 10.  Concentrations 

of malathion at or below 1.00 mg L-1 resulted in COD concentrations similar to the 

control with a value of 19.6 ± 1.03 mg L-1 while a concentration of 5 mg L-1 of malathion 

resulted in a COD concentration of 28.03 ± 4.66 mg L-1.  The increased COD 

concentrations were also observed in respirometry test 6. 

 

 
Figure 10: Respirometry Experiment 4 – Final COD Concentrations 
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Figure 11: Respirometry Experiment 4 – Final NO3 Concentrations 
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Short-Term Degradation and Malathion Removal 

Short term malathion degradation results, depicted in Figure 12, showed that the 

malathion concentration decreased by a measured average of 93% when exposed to an 

initial designed concentrations of 3.00 mg L-1, with a final concentration of 361 µg L-1 for 

batch test 3.  Malathion concentration decreased below detectible limits by hour 11, 

based upon a minimum GC/MS signal to noise ratio of 10, when exposed to initial 

designed concentration of 0.1 mg L-1.  The shape of the malathion reduction curves show 

similarities when examined on appropriate scales.  Each curve begins with a rapid 

removal of malathion within the first 2 hours, accounting for at least 50% of the total 

malathion removed.  Following the initial degradation, a gradual decline in malathion 

concentrations existed between hours 2 and 12.  The malathion degradation rate for 

reactor 3 during the initial 2 hours was 0.55 mg L-1 hr-1, the degradation rate for reactor 2 

during the same time period was 0.037 mg L-1 hr-1.  The degradation rates following the 

first 2 hours for reactors 2 and 3 were 65.4 and 1.9 µg L-1 hr-1 respectively.  Full results 

for batch test 3 can be found in Appendix F. 

Malathion degradation results in batch test 1 and 2 showed similar trends with 

significant reduction of malathion during the initial 2 hours, followed by a relatively slow 

removal rate after hour 2. All three testes resulted in quantities below detection limits for 

reactor 2 prior to the completion of the 12 hour cycle.  Similarly, all 3 tests resulted in 

reduction of malathion concentrations for reactor 3 to levels below 400 µg L-1 which is 

below the World Health Organizations recommended limit of 900 µg L-1 in drinking 

water (World Health Organization, 2004) but above the EPA drinking water guideline of 

200 µg L-1 (ATSDR, 2003, p. 226).  
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Figure 12: Batch Test 3 – Malathion Removal 
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The COD oxidation results for batch test 3 showed a decrease from a starting 

concentration of 105 ± 4.32 mg L-1 to a final concentration of 23.67 ± 3.82 mg L-1 after 

12 hours.  The COD oxidation rate when not exposed to malathion was 34.47 mg L-1 hr-1, 

when exposed to malathion the oxidation rate was approximately 29 mg L-1 hr-1 during 

the first 2 hours.  The shape of the COD oxidation curves were identical for all cases, 

beginning with a rapid oxidation of COD during the first 2 hours, followed by a gradual 

decline in oxidation rates between hours 2 and 4.  Following hour 4, the COD oxidation 

rate when not exposed to malathion, was 0.22 mg L-1 hr-1; when exposed to malathion, an 

average rate of 0.75 mg L-1 hr-1 was observed.   

All three batch tests indicated similar trends in COD reduction and final 

concentration; see Appendix C.  One exception to this trend existed.  The 3.00 mg L-1 

reactor during test 2 had a final COD concentration of 53.63 mg L-1.  While the final 

concentration was significantly higher within this one sample, the overall percentage of 

COD removed was similar to all other samples.  Reactor 3 in batch test 2 had an 

unusually high starting concentration of COD, 123 mg L-1, when compared to the other 

two reactors which averaged 80 mg L-1.  This variation in COD concentrations could 

potentially be from incomplete mixing of feed B into the sample or COD remaining from 

partially completed oxidation reactions taking place in the sequencing batch reactors 

which provided the batch test sample sludge.  
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Figure 13: Batch Test 3 – COD Removal 
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Similar to COD, batch test 3 NH3 concentrations decreased from starting values 

of 14.3 ± 0.24 mg L-1 to a concentration of 4.318 ± 0.208 mg L-1 by the end of the 12 

hour cycle in the third batch test.  NH3 reduction curves showed similar trends across all 

three malathion concentrations with nearly identical starting and finishing values. The 

curves remained relatively stable during the initial 2 hours.  Nitrification began following 

hour 2 with reactors 1, 2, and 3 having distinctly different removal rates until 

approximately hour 10.  The concentrations between hour 10 and 12 remained relatively 

constant for all three reactors with a nearly identical final concentration, Figure 14. 

The peak NH3 reduction rate was approximately 1.4 mg L-1 hr-1 starting at hour 2 

and ending at hour 9 when the sludge was not exposed to malathion.  When the sludge 

was exposed to 0.10 mg L-1 of malathion, the NH3 reduction rate was approximately 2.0 

mg L-1 hr-1 between hours 2 and 7.  The NH3 reduction rate when exposed to 3.00 mg L-1 

of malathion peaked between hours 2 and 10 with average rate of 1.24 mg L-1 hr-1. 

  The inability to completely remove all NH3 during the third test could potentially 

be attributed to the lower quantity of TSS and VSS during the experiment.  While the 

final concentrations of all three experiments did not indicate that malathion had an effect 

on the overall systems performance when compared to the control, the rate of NH3 

reduction did vary between the different concentrations of malathion, with a greater 

variation indicated as the concentration of TSS was reduced.  Batch test 2 produced 

similar results as batch test 3, indicating that activated sludge exposed to 3.00 mg L-1 

malathion had a slower utilization rate of NH3 than the reactor with 0.10 mg L-1 

malathion, which had utilization rates similar to the control sample, see Appendix C. 
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Figure 14: Batch Test 3 – NH3 Removal 
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The results of batch test 3 showed that NO3 production proceeded at a rate of  

0.90 mg L-1 hr-1 in the absence of malathion.  When malathion was added at a 

concentration of 0.1 mg L-1 and 3.0 mg L-1, the production of NO3 proceeded at a rate of 

0.98 and 0.87 mg L-1 hr-1, respectively.  The shape of the NO3 production curve 

maintained a relatively constant slope and similar shape throughout the 12 hour 

experiment.  Across all three concentrations of malathion, an initial average 

concentration of 12.61 ± 0.21 mg L-1 NO3 was recorded with a final concentration of 

23.15 ± 0.39 mg L-1 NO3-N (Figure 15).  Batch tests 1 and 2 produced similar results with 

all three concentrations of malathion producing NO3 at vary similar rates during the 

experiment with peak concentrations and changes in the rate of production of NO3 all 

being achieved at similar times during a given experiment. 

This data indicates overall that during the initial 12 hours of exposure to these 

concentrations, malathion had no noticeable inhibition on the overall nitrification or COD 

oxidation process.  There was a noticed difference in the rate of NH3 removal, potentially 

associated with TSS concentrations, as a result of exposure to malathion.  However, all 

three reactors reached the same final NH3 concentrations within the 12 hour reaction 

cycle.  Finally, while variations existed in the final COD concentrations, activated 

sludge’s ability to perform COD oxidation appeared to be unaffected, based upon the 

percentage of COD removal over the 12 hour period.   
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Figure 15: Batch Test 3 – NO3 Production 
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Long-Term Degradation and Malathion Removal Monitoring 

During the long term malathion exposure experiment, the concentration of 

malathion in the effluent generated by each reactor was below the detectable limit of  

1 µg L-1 for the GC/MS.  This was unexpected as Janezcko, et al., (2014) indicated that at 

the initial reactor concentrations of 5 mg L-1, effluent concentrations of malathion peaked 

at 4.5 days with an increase in the effluent concentration correlated with longer retention 

times.  It is important to note that malathion concentration samples were not taken for 

three days following addition of malathion to reactor 3. It is possible, based upon the 

batch test results, that detectible quantities of malathion were present prior to the first 

sample taken 84 hours after initial exposure.   

Figure 16, sample file 81, shows the GC/MS chromatograph results for a 1 mg L-1 

malathion in methanol check sample which had a retention time of 15.499 minutes and 

area under the peak of 48,672 and a signal to noise ratio of 9214.8. Figure 17, sample file 

36, shows a typical GC/MS chromatograph results indicative of all effluent samples taken 

over the 30 day period for both reactors exposed to malathion.  Sample 36 was the first 

recover from reactor 3, on 7 Dec 14, 84 hours following the addition of malathion.  The 

GC/MS sample retention time was 15.494 minutes with an average area of 23, 2 samples 

were tested, and an average signal to noise ratio of 3.05.  The 7 Dec 14 samples’ low 

signal to noise ratio and extremely small indicate that if malathion is present within the 

sample it is below the detection limit of 1 µg L-1.   
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Figure 16: GC/MS Results for 1.00 mg L-1 Check Sample (Sequence #81) 

 
 
 

 

 
Figure 17: GC/MS Results for Reactor 3, Day 2 (7 Dec 14 - Sequence #36) 
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Examining the COD oxidation in the long-term reactors provided insight into the 

effects of malathion on activated sludge efficiency.  The activated sludge in reactor 1, 

with an initial malathion concentration of 0.10 mg L-1, was unaffected by the presence of 

malathion. Prior to the addition of malathion, the mean effluent COD concentration was 

11.95 ± 26.16 mg L-1.  After the addition of malathion, the mean effluent COD 

concentrations were 12.47 ± 7.82 mg L-1.  A two tailed t-test, assuming unequal variance, 

indicated that there was no significant (α = 0.1) difference in effluent COD 

concentrations (p = 0.7686) when comparing the 11 samples taken before and the 11 

samples taken after the addition of malathion.  Utilizing the same statistical test, NO3 

production also did not have any significant changes (p = 0.3239) in the mean NO3 

concentrations preceding and following the addition of malathion.  Mean effluent 

concentrations of NO3 prior to the addition of malathion were 28.47 ± 5.77 mg L-1, and 

mean effluent concentrations following exposure to malathion were 27.59 ± 2.63 mg L-1 

(Figure 18). 

The lack of a statistically significant change in both the COD oxidation and the 

NO3 production indicate that at a concentration of 0.10 mg L-1, the heterotrophic bacteria 

and nitrifying bacteria were unaffected by the exposure to malathion.  Variations within 

the rate of oxidation and or nitrification may exist, as indicated by the batch test results.  

However, the overall process results, which are indicative of the values that would be 

observed at a treatment plants discharge point and the most important indication of 

performance, were unaffected. 

 



 

 

74 

 
Figure 18: Effluent COD and NO3 Concentrations Pre and Post Malathion Exposure – Reactor 1  (0.10 mg L-1) 
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The results from the activated sludge exposed to 3.00 mg L-1 shows that the mean 

effluent COD concentrations prior to malathion exposure of was 12.09 ± 21.36 mg L-1, 

and following exposure, the effluent COD concentrations were 20.54 ± 148.56 mg L-1.  

The large standard deviation can be attributed to the significant spike in effluent COD 

concentration that was observed on day 6.  The observed spike at day 6 is consistent with 

the results from Janeczko, et al. (2014) that saw a spike in effluent concentration between 

days 3 and 8 when activated sludge was exposed to 5 mg L-1.   

Utilizing the same t-test as reactor 1, assuming unequal variance, there was a 

statistically significant difference (α = 0.1) detected in the mean effluent concentration of 

COD (p = 0.0291) prior to and following the exposure to malathion.  Additional testing, 

utilizing the same t-test parameters, indicated that if the COD spike on 11 Dec was 

removed, there was still a statistically significant difference in the mean COD 

concentrations prior to and following exposure to malathion.  This exposure also 

statistically effected NO3 production (p = 0.0831).  The mean effluent concentrations 

prior to malathion exposure was 29.03 ± 1.35 mg L-1 and following malathion exposure 

the mean effluent concentrations of NO3-N were 26.46 ± 24.97 mg L-1, Figure 19.  A 

statistically significant change in both the COD and the NO3 concentrations in the 

effluent indicate that at a concentration of 3.00 mg L-1, the both the heterotrophic bacteria 

and nitrifying bacteria were negatively affected by the exposure to malathion.  
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Figure 19: Effluent COD and NO3 Concentrations Pre and Post Malathion Exposure – Reactor 3 (3.00 mg L-1). 
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Conclusions 

This study provides insight into the effect of malathion, a VX surrogate, on the 

activity and performance of activated sludge in a municipal wastewater treatment plant 

and demonstrates that concentrations of 3.00 and 0.1 mg L-1 can be tolerated by an 

activated sludge wastewater treatment facility with no significant change to the effluent 

quality during the initial twelve hours of exposure.  However, long-term exposure to  

3.0 mg L-1 does have a statistically significant effect on effluent quality.  Additionally, it 

was demonstrated though respirometry testing that malathion concentrations between  

1 – 5 mg L-1 which can have a long term effect on effluent quality produce no disenable 

respiration trends of activated sludge, other than a general suppression of respiration due 

to malathion exposure.  Furthermore, it was shown that malathion was degraded by at 

least 83% and 99+% for reactor concentration levels of 3.00 mg L-1 and 0.10 mg L-1 

during the initial 12 hours of exposure and that over a continual long term exposure to the 

same concentrations, no detectible levels of malathion were observed in the effluent.   

As a result, this study concludes that wastewater treatment facilities can continue 

to operate without any degradation to activated sludge performance at concentrations as 

high as 3.00 mg L-1 for up to 12 hours and can operate for up to 30 days at concentrations 

of 0.10 mg L-1 with no significant effect on effluent water quality.  Furthermore, at an 

operating concentration of 3.00 mg L-1, detectible quantities of malathion could be 

expected in the plant effluent, dependent on sludge age and hydraulic retention times, 

immediately following initial exposure.  After a short adaptation period, effluent 

concentrations of malathion should be well below detectable limits.  
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Limited research is available with respect to the respiration rate of activated 

sludge when exposed to malathion.  However, Aragon et al., (2010) demonstrated that it 

is possible that low levels of exposure to a manganese(II) can produce an increase in 

respiration, where high levels inhibit respiration.  It is possible that a similar situation 

exists with malathion.   

Additionally the ability to effectively degrade malathion utilizing activated sludge 

is consistent with the research of both Janeczko, et al., (2014) and Ghoshdastidar, et al., 

(2012) with one noticeable exception.  In previous research, an acclimation period has 

been observed, which has involved an increase in the concentration of malathion found in 

the effluent when exposed to influent concentrations of 3 mg L-1 and higher.  The 

acclimation period lasted between 2 and 10 days before achieving malathion reduction 

efficiency’s greater than 90%.  The results from this experiment did not indicate the 

presence of an acclimation period.  It is possible that not sampling the effluent during the 

initial two days of exposures resulted in missing the acclimation period.  However, both 

Janeczko, et al. (2014) and Ghoshdastidar, et al. (2012) indicate that acclimation periods 

were at least 5 to 10 days.  The lack of an acclimation period could be the result of 

identifying a concentration that does not required an adjustment period.  It is also 

possible that the lack of acclimation could stem from slightly different operating 

conditions and influent parameters creating a bacterial community that was much more 

tolerant and able to adapt much more rapidly to the introduction of malathion. 

In addition to the malathion degradation, short term experiments yielded similar 

results to Janeczko, et al., (2014) with respect to activated sludge’s ability to continue to 

degrade NH3 when exposed to malathion.  However, there was a significant difference in 
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the reduction of COD and the production of NO3 during the similar 12 hour batch test 

experiments. The results indicated an initial rapid decrease in COD with continual 

oxidation occurring though the full 12 hours.  Janeczko, et al., (2014) indicated the 

opposite with an increase in COD due to the exposure to malathion.  Additionally, the 

production of NO3 reported by Janeczko, et al., (2014) was significantly higher despite 

similar NH3 reduction reactions.  As with the long term removal of malathion, variations 

in the microbial community could explain differences in their ability to adapt to the 

exposure of malathion.  It is also possible that different bacterial strains are able to 

effectively utilize malathion as a substrate at various concentrations.   
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 III. Conclusion 

Chapter Overview 

This chapter discusses the findings identified while addressing the research 

questions that were posed in Chapter 1.  The review of findings section provides a 

summation of the in depth discussion, located in the scholarly article followed by brief 

discussion of the significance and limitations of the research.  Finally, areas of future 

research are discussed followed by a summary of this thesis.  

Review of Findings 

The research results show that the effects of malathion on activated sludge’s 

ability to continue to process influent wastewater between 0.1 mg L-1 and 3.00 mg L-1 is 

limited.  Both concentrations demonstrated a capability to reduce the oxygen 

consumption rate of activated sludge.  Even while operating with less oxygen 

consumption; it was shown that there was no detectible difference in nitrification or COD 

oxidation efficiency during the initial 12 hours of exposure.  Over a 30-day exposure 

period, however, at a concentration of 3.00 mg L-1, both nitrification and COD oxidation 

showed statistically significant (α = 0.1) inhibition.  In contrast to an exposure to a 

concentration of 0.1 mg L-1, which continued to produce effluent at quality similar to 

what was produce pre malathion exposure.  Finally, this work also demonstrated that 

during continual exposure to malathion, at the above concentrations, may result in the 

degradation of the primary toxicant to below detectible levels prior to the effluent being 

discharged. 
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Significance of Research 

In the response to a chemical warfare incident, decontamination efforts will need 

to be timely to ensure minimal exposure.  A widely accepted decontamination procedure 

is to use copious amounts of low-pressure water.  Water from the decontamination efforts 

could potentially be sent to a wastewater treatment facility for processing.  This research 

demonstrates that concentrations in the high parts per billion range can be safely 

processed within an activated sludge treatment system without significant effects to the 

effluent water quality from both the perspective of standard wastewater effluent quality 

metrics looking at COD, NH3, NO2, and NO3 concentrations but also organophosphate 

contamination as well. 

Limitations 

 The use of malathion as a surrogate for research into the effects of VX on an 

activated sludge based sewage treatment system allows for the close approximation of 

many of the physical and chemical characteristics of VX.  However, while similar, the 

differences between malathion and VX only provide an approximation of the interactions 

that may be expected.  Additionally, lab conditions are designed to simplify field 

conditions to facilitate a controlled and reproducible experiment. Therefore, the lab scale 

results should only be used to create a general understanding of the possible interactions 

of organophosphates within an operational system.  Parameters that were well controlled 

within the laboratory such as influent characteristics, temperature, and toxic load are 

subject to change within a municipal treatment plant.  Significant changes in any one of 
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these parameters could have an impact on the bacterial community resulting in a bacterial 

population that would be unable to reproduce the results seen in the lab. 

 Both VX and malathion have hydrolysis pathways that are pH and temperature 

dependent, with compounds of various toxicity resulting as a result of the hydrolysis 

pathway utilized. The presence of toxic hydrolysis products such as malaoxon or  

iso-malathion, may produce inhibition similar to or more severe than malathion and 

knowledge of their concentrations within the effluent could provide insight into 

experimental results.  However, no abiotic malathion degradation products were 

identified as this was outside the scope of the original research question. 

Future Research 

The research suggests that malathion may be used as a substrate with minimal to 

no impact to overall performance at low concentrations.  The manipulation of the 

synthetic wastewater to systematically eliminate phosphorus and sulfur sources from the 

influent would provide additional insight into the level at which activated sludge is able 

to metabolize malathion when it is the only source of required trace elements. 

A second area of future research is the examination of the long-term recovery 

profile based upon a variety of exposure concentrations and exposure times within the 

activated sludge. While direct impacts to effluent quality are important, an experiment 

examining the short term impact and long term recovery due to short duration high 

concentration exposures would provide insight into expected recovery times and long 

term viability of a wastewater treatment system exposed to chemical warfare agents.  A 

high concentration short term exposure would replicate the bulk of all decontamination 
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waste water reaching the treatment plant at one time and being processed as quickly as 

possible.  Similar quantities of contamination diluted over an extended period of time 

would replicate purposeful isolation of contamination as it enters the waste water 

treatment facility, followed by its slow reintroduction into the process stream at 

concentrations believed to be low enough to not impact short term effluent quality or long 

term plant operations. 

Understanding long term effects is important, as this research has shown 

concentrations of malathion that fail to impact short term quality still have the potential to 

induce enough of a sustained stress response to negatively affect treatment plant 

operations over a much longer scale. 

Summary 

This research examined the impact and fate of malathion, a VX surrogate, in a 

municipal wastewater treatment plant utilizing activated sludge.  The intent of this 

research was to identify the threshold concentration of malathion that would limit the 

activated sludge’s ability to continue to produce effluent within the ranges prescribed in 

the plants pollution discharge permit.  The research methodology involved respirometry, 

twelve hour bench scale batch testing, and long term exposure testing using activated 

sludge grown and maintained in three sequencing batch reactors seeded from the Fairborn 

Water Reclamation Facility.   

Data showed that at concentrations below 3.00 mg L-1, respiration rates were 

negatively affected by malathion concentrations when compared to the control. This 

would limit the applicability of inline respiration testing for toxicant detection.  
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Additionally, it was determined that during the initial 12 hours of exposure, effluent 

quality measured by COD, NH3, and NO3 concentrations indicated no negative impact.  

Furthermore, it was shown that long term exposure to concentrations of 3.00 mg L-1 of 

malathion resulted in a decrease in both COD removal and NO3 production.  Finally, it 

was shown that during initial exposure, the reduction of malathion concentrations reached 

96.62 ± 6.714%, with long term exposure effluent concentrations of malathion never 

exceeding the detection the limit of 5 µg L-1.   

Overall, this research indicates that an activated sludge based wastewater 

treatment systems may be able to effectively degrade organophosphate based chemical 

warfare agents similar to malathion for periods up to 12 hours with concentrations as high 

as 3.00 mg L-1, and for as long as 30 days with concentrations as high as 0.10 mg L-1 with 

no impact to effluent quality.  
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Appendix A: Feed Chemicals 
 

Chemical Name Chemical Formula Manufacture Lot No. MW (g mol-1) 
Sodium Bicarbonate NaHCO3 Fisher Scientific  84.01 

Peptone  Remel 031606  
Sodium Acetate 

Trihydrate  C2H3NaO2 • 3H2O Fisher Scientific 990232 136.08 

Ammonium Chloride NH4Cl Acros Organics A0290146 53.49 
Magnesium Chloride MgCl2 • 6H2O  Fisher Scientific 990351 203.31 

Calcium Chloride CaCl2 • 2H2O Fisher Scientific 986659 147.02 
Potassium dihydrogen 

phosphate KH2PO4 
Research 

Chemicals Ltd 87807A 136.09 

Citric Acid C6H8O7 Acros Organics A0297228 192.13 
Hippuric Acid C9H9NO3 Acros Organics A0257679 179.17 

NTA trisodium salt C6H6NNa3O6 • H2O Acros Organics A0272764 275.09 
EDTA tetrasodium 

salt 
C10H12N2O8Na4 • 

2H2O Fisher Scientific 107263 416.2 

Boric Acid H3BO3 Fisher Scientific 102615 61.83 
Potassium Iodide KI Acros Organics A0266044 166.00 
Ferric Chloride 

Hexahydrate FeCl3 • 6H2O Fisher Scientific 103005 270.3 

Zinc Sulfate 
Heptahydrate ZnSO4 • 7H2O Fisher Scientific 106404 287.56 

Manganese Chloride 
Tetrahydrate MnCl2 • 4H2O  Fisher Scientific 101852 197.91 

Copper(II) Sulfate 
Pentahydrate CuSO4 • 5H2O Acros Organics A0289795 249.68 

Sodium molybdate 
(VI) dihyrate Na2MoO4 • 2H2O Acros Organics A0289594 241.95 

Cobalt(II) chloride 
hexahydrate CoCl2 • 6H2O Acros Organics B0130899 237.93 

Nickelous Chloride 
Hexahydrate NiCl2 • 6H2O Fisher Scientific AD-10362-

24 237.71 

Sodium tungstate 
dehydrate Na2WO4 • 2H2O Acros Organics A0284287 329.85 
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Appendix B: Respirometry Data 
 

 
Figure 20: Respirometry Test 1 – Cumulative Oxygen Consumption 

 

 
Figure 21: Respirometry Test 1 – Substrate Utilization & Inhibition Linearization Plots 
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Figure 22: Respirometry Test 1 – Percentage Inhibition 

 
 
 

 
Figure 23: Respirometry Test 1 – Additive Kinetics Model 
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Figure 24: Respirometry Test 2 – Cumulative Oxygen Consumption 

 
 
 
 

 
Figure 25: Respirometry Test 2 – Substrate Utilization & Inhibition Linearization Plots 
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Figure 26: Respirometry Test 2 – Percentage Inhibition 

 
 
 
 

 
Figure 27: Respirometry Test 2 – Additive Kinetics Model 
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Figure 28: Respirometry Test 3 – Cumulative Oxygen Consumption 

 
 
 
 

 
Figure 29: Respirometry Test 3 – Substrate Utilization & Inhibition Linearization Plots 
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Figure 30: Respirometry Test 3 – Percentage Inhibition 

 
 
 
 

 
Figure 31: Respirometry Test 3 – Additive Kinetics Model 
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Figure 32: Respirometry Test 4 – Cumulative Oxygen Consumption 

 
 
 
 

 
Figure 33: Respirometry Test 4 – Substrate Utilization & Inhibition Linearization Plots 
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Figure 34: Respirometry Test 4 – Percentage Inhibition 

 
 
 
 

 
Figure 35: Respirometry Test 4 – Additive Kinetics Model 
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Figure 36: Respirometry Test 5 – Cumulative Oxygen Consumption 

 
 
 
 

 
Figure 37: Respirometry Test 5 – Substrate Utilization & Inhibition Linearization Plots 
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Figure 38: Respirometry Test 5 – Percentage Inhibition 

 
 
 
 

 
Figure 39: Respirometry Test 5 – Additive Kinetics Model 
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Figure 40: Respirometry Test 6 – Cumulative Oxygen Consumption 

 
 
 
 

 
Figure 41: Respirometry Test 6 – Substrate Utilization & Inhibition Linearization Plots 
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Figure 42: Respirometry Test 6 – Percentage Inhibition 

 
 
 
 

 
Figure 43: Respirometry Test 6 – Additive Kinetics Model 
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Appendix C: Batch Test Performance Data 
 

Table 10: Batch Test COD Removal Performance 

Malathion 
Concentration 

(mg L-1) 

Batch 
Test 

Total 
Reduction 

(%) 

Peak Utilization 
Rate 

(mg hr-1) 

Peak 
Utilization 
Time (hrs) 

Final COD 
Concentration 

(mg L-1) 

TSS 
(mg L-1) 

0.00 
1 79.1 34.18 0 – 2 20.46 1440.0 
2 85.3 23.82 0 – 2 12.53 1125.5 
3 74.6 34.47 0 – 2 28.07 663.7 

0.10 
1 81.8 19.40 0 – 2 11.49 1317.7 
2 74.7 18.27 0 – 2 18.92 1107.3 
3 79.7 28.80 0 – 2 21.21 654 

3.00 
1 79.8 12.70 0 – 2 11.49 1354.5 
2 56.7 20.75 0 – 2 53.64 1054.3 
3 78.7 29.79 0 – 2 21.72 688.2 

 

Table 11: Batch Test NH3 Removal Performance  

Malathion 
Concentration 

(mg L-1) 

Batch 
Test 

Reduction 
(%) 

Peak Utilization 
Rate 

(mg hr-1) 

Peak 
Utilization 
Time (hrs) 

Final NH3 
Concentration 

(mg L-1) 

TSS 
(mg L-1) 

0.00 
1 100* 3.51 0 – 3 0.0* 1440.0 
2 100* 2.70 1 – 4   0.0* 1125.5 
3 71 1.40  2 – 9 0.0* 663.7 

0.10 
1 100* 3.46  0 – 3 0.0* 1317.7 
2 100* 3.63 1 – 4 0.0* 1107.3 
3 69 1.99 2 – 7 0.0* 654 

3.00 
1 100* 3.29 0 – 3 0.0* 1354.5 
2 100* 1.75 1 – 7 0.0* 1054.3 
3 70 1.24 2– 10 0.0* 688.2 

* Quantities below detectable limits  

 

Table 12: Batch Test NO3 Production Performance 

Malathion 
Concentration 

(mg L-1) 

Batch 
Test 

Increase 
(%) 

Peak utilization 
rate (mg/hr) 

Peak 
Utilization 
Time (hrs) 

Final NO3 
Concentration 

(mg L-1) 

TSS 
(mg L-1) 

0.00 
1 77.9 2.44 0 – 4 20.05 1440.0 
2 134.5 1.60 0 – 7 20.02 1125.5 
3 81.5 0.90 0 – 12 23.28 663.7 

0.10 
1 93.5 2.52 0 – 4 20.82 1317.7 
2 127.2 1.71 0 – 7 20.91 1107.3 
3 85.9 0.98 0 – 12 23.45 654 

3.00 
1 80.9 2.41 0 – 4 19.39 1354.5 
2 143.9 1.46 0 – 7 19.61 1054.3 
3 83.1 0.87 0 – 12 22.71 688.2 
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Appendix D: Batch Test 1 Results 
 

 
Figure 44: Batch Test 1 – COD Removal 

 

 
Figure 45: Batch Test 1 – NH3 Removal 
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Figure 46: Batch Test 1 – NO3 Production 

 
 

 
Figure 47: Batch Test 1 – Malathion Degradation  
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Table 13: Batch Test 1 – GC/MS Data File Sample Reference 
File # Concentration  File # Reactor Hour Sample 

1 MeOH Blank   50 2 7 2 
2 MeOH Blank   51 2 7 2 
3 0.001 mg L-1  52 2 6 1 
4 0.001 mg L-1  53 2 6 2 
5 0.005 mg L-1  54 2 5 1 
6 0.005 mg L-1  55 2 5 2 
7 0.010 mg L-1  56 2 4 1 
8 0.010 mg L-1  57 2 4 2 
9 0.050 mg L-1  58 2 3 1 
10 0.050 mg L-1  59 2 3 2 
11 0.100 mg L-1  60 MeOH Blank 
12 0.100 mg L-1  61 1.000 mg L-1 
13 0.500 mg L-1  62 MeOH Blank 
14 0.500 mg L-1  63 2 2 1 
15 1.000 mg L-1  64 2 2 2 
16 1.000 mg L-1  65 2 1 1 
17 5.000 mg L-1  66 2 1 2 
18 5.000 mg L-1  67 2 0 1 
19 10.00 mg L-1  68 2 0 2 
20 10.00 mg L-1  69 MeOH Blank 
21 MeOH Blank   70 3 12 1 
22 H2O Blank   71 3 12 2 
23 MeOH Blank   72 3 11 1 
24 1.000 mg L-1  73 3 11 2 
25 1.000 mg L-1  74 3 10 1 
26 MeOH Blank  75 3 10 2 
27 MeOH Blank  76 3 9 1 
28 MeOH Blank  77 3 9 2 

 Reactor Hour Sample  78 3 8 1 
29 1 12 1  79 3 8 2 
30 1 12 2  80 3 7 1 
31 1 8 1  81 3 7 2 
32 1 8 2  82 MeOH Blank 
33 1 4 1  83 1.000 mg L-1 
34 1 4 2  84 MeOH Blank 
35 1 0 1  85 3 6 1 
36 1 0 2  86 3 6 2 
37 MeOH Blank  87 3 5 1 
38 1.000 mg L-1  88 3 5 2 
39 MeOH Blank  89 3 4 1 
40 2 12 1  90 3 4 2 
41 2 12 2  91 3 3 1 
41 2 11 1  92 3 3 2 
43 2 11 2  93 3 2 1 
44 2 10 1  94 3 2 2 
45 2 10 2  95 3 1 1 
46 2 9 1  96 3 1 2 
47 2 9 2  97 3 0 1 
48 2 8 1  98 3 0 2 
49 2 8 2      
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Figure 48: Batch Test 1 – Low Range Calibration Curve 

 

 

 
Figure 49: Batch Test 1 – High Range Calibration Curve 
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Figure 50: Batch Test 1 – GC/MS Retention Time Information 

 
 
 
 

 
Figure 51: Batch Test 1 – Signal to Noise Ratio 
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Appendix E: Batch Test 2 Results 
 

 
Figure 52: Batch Test 2 – COD Removal 

 
 

 
Figure 53: Batch Test 2 – NH3 Removal 
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Figure 54: Batch Test 2 – NO3 Production 

 
 
 
 

 
Figure 55: Batch Test 2 – Malathion Degradation 
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Table 14: Batch Test 2 – GC/MS Sequence Data File Reference  
File # Concentration  File # Reactor Hour Sample  File # Reactor Hour Sample 

1 MeOH Blank   50 2 7 2  100 MeOH Blank 
2 MeOH Blank   51 2 7 2  101 1.0 mg L-1 Check Sample 
3 0.001 mg L-1  52 2 6 1  102 MeOH Blank 
4 0.001 mg L-1  53 2 6 2  103 H2O Blank 
5 0.005 mg L-1  54 2 5 1  104 1.0 mg L-1 - Addition* 
6 0.005 mg L-1  55 2 5 2  105 MeOH Blank 
7 0.010 mg L-1  56 2 4 1  106 MeOH Blank 
8 0.010 mg L-1  57 2 4 2  107 1.0 mg L-1 Check Sample 
9 0.050 mg L-1  58 2 3 1  108 MeOH Blank 

10 0.050 mg L-1  59 2 3 2  109 H2O Blank 
11 0.100 mg L-1  60 MeOH Blank  110 H2O Blank 
12 0.100 mg L-1  61 1.0 mg L-1 Check Sample  111 MeOH Blank 
13 0.500 mg L-1  62 MeOH Blank  112 1.0 mg L-1 – Addition* 
14 0.500 mg L-1  63 2 2 1  113 MeOH Blank 
15 1.000 mg L-1  64 2 2 2  114 1.0 mg L-1 Check Sample 
16 1.000 mg L-1  65 2 1 1  115 MeOH Blank 
17 5.000 mg L-1  66 2 1 2  116 H2O Blank 
18 5.000 mg L-1  67 2 0 1  117 MeOH Blank 
19 10.00 mg L-1  68 2 0 2  118 MeOH Blank 
20 10.00 mg L-1  69 MeOH Blank  * 2 Step dilution 100 mg L-1 to 10 

mg L-1 then 10 mg L-1 to 1 mg L-1 21 MeOH Blank   70 3 12 1  
22 H2O Blank   71 3 12 2      
23 MeOH Blank   72 3 11 1      
24 1.000 mg L-1  73 3 11 2      
25 1.000 mg L-1  74 3 10 1      
26 MeOH Blank  75 3 10 2      
27 MeOH Blank  76 3 9 1      
28 MeOH Blank  77 3 9 2      

 Reactor Hour Sample  78 3 8 1      
29 1 12 1  79 3 8 2      
30 1 12 2  80 3 7 1      
31 1 8 1  81 3 7 2      
32 1 8 2  82 MeOH Blank      
33 1 4 1  83 1.0 mg L-1 Check Sample      
34 1 4 2  84 MeOH Blank      
35 1 0 1  85 3 6 1      
36 1 0 2  86 3 6 2      
37 MeOH Blank  87 3 5 1      
38 1.0 mg L-1 Check Sample  88 3 5 2      
39 MeOH Blank  89 3 4 1      
40 2 12 1  90 3 4 2      
41 2 12 2  91 3 3 1      
41 2 11 1  92 3 3 2      
43 2 11 2  93 3 2 1      
44 2 10 1  94 3 2 2      
45 2 10 2  95 3 1 1      
46 2 9 1  96 3 1 2      
47 2 9 2  97 3 0 1      
48 2 8 1  98 3 0 2      
49 2 8 2  99 MeOH Blank      



 

107 

 
Figure 56: Batch Test 2 – Low Range Calibration Curve 

 
 
 
 

 
Figure 57: Batch Test 2 – Mid Range Calibration Curve 
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Figure 58: Batch Test 2 – High Range Calibration Curve 
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Figure 59: Batch Test 2 – GC/MS Retention Time Information 

 
 
 
 

 
Figure 60: Batch Test 2 – Signal to Noise Ratio 
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Appendix F: Batch Test 3 Results 
 

 
Figure 61: Batch Test 3 – COD Removal 

 
 

 
Figure 62: Batch Test 3 – NH3 Removal 
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Figure 63: Batch Test 3 – NO3 Production 

 

 
Figure 64: Batch Test 3 – Malathion Degradation 
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Table 15: Batch Test 3 – GC/MS Sequence Data File Reference 
File # Concentration  File # Reactor Hour Sample  File # Reactor Hour Sample 

1 MeOH Blank   50 2 7 2  100 MeOH Blank 
2 MeOH Blank   51 2 7 2  101 1.0 mg L-1 Check Sample 
3 0.001 mg L-1  52 2 6 1  102 MeOH Blank 
4 0.001 mg L-1  53 2 6 2  103 H2O Blank 
5 0.005 mg L-1  54 2 5 1  104 MeOH Blank 
6 0.005 mg L-1  55 2 5 2  105 1.0 mg L-1 - Addition* 
7 0.010 mg L-1  56 2 4 1  106 MeOH Blank 
8 0.010 mg L-1  57 2 4 2  107 MeOH Blank 
9 0.050 mg L-1  58 2 3 1  108 1.0 mg L-1 Check Sample 

10 0.050 mg L-1  59 2 3 2  109 MeOH Blank 
11 0.100 mg L-1  60 MeOH Blank  110 H2O Blank 
12 0.100 mg L-1  61 1.0 mg L-1 Check Sample  111 MeOH Blank 
13 0.500 mg L-1  62 MeOH Blank  112 MeOH Blank 
14 0.500 mg L-1  63 2 2 1  113 1.0 mg L-1 - Addition* 
15 1.000 mg L-1  64 2 2 2  114 MeOH Blank 
16 1.000 mg L-1  65 2 1 1  115 1.0 mg L-1 Check Sample 
17 5.000 mg L-1  66 2 1 2  116 MeOH Blank 
18 5.000 mg L-1  67 2 0 1  117 H2O Blank 
19 10.00 mg L-1  68 2 0 2  118 MeOH Blank 
20 10.00 mg L-1  69 MeOH Blank  119 MeOH Blank 
21 MeOH Blank   70 3 12 1  * 2 Step dilution 100 mg L-1 to 10 mg 

L-1, 10 mg L-1 to 1 mg L-1 22 H2O Blank   71 3 12 2  
23 MeOH Blank   72 3 11 1      
24 1.000 mg L-1  73 3 11 2      
25 1.000 mg L-1  74 3 10 1      
26 MeOH Blank  75 3 10 2      
27 MeOH Blank  76 3 9 1      
28 MeOH Blank  77 3 9 2      

 Reactor Hour Sample  78 3 8 1      
29 1 12 1  79 3 8 2      
30 1 12 2  80 3 7 1      
31 1 8 1  81 3 7 2      
32 1 8 2  82 MeOH Blank      
33 1 4 1  83 1.0 mg L-1 Check Sample      
34 1 4 2  84 MeOH Blank      
35 1 0 1  85 3 6 1      
36 1 0 2  86 3 6 2      
37 MeOH Blank  87 3 5 1      
38 1.0 mg L-1 Check Sample  88 3 5 2      
39 MeOH Blank  89 3 4 1      
40 2 12 1  90 3 4 2      
41 2 12 2  91 3 3 1      
41 2 11 1  92 3 3 2      
43 2 11 2  93 3 2 1      
44 2 10 1  94 3 2 2      
45 2 10 2  95 3 1 1      
46 2 9 1  96 3 1 2      
47 2 9 2  97 3 0 1      
48 2 8 1  98 3 0 2      
49 2 8 2  99 MeOH Blank      
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Figure 65: Batch Test 3 – Low Range Calibration Curve 

 

 
Figure 66: Batch Test 3 – Mid Range Calibration Curve 
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Figure 67: Batch Test 3 – High Range Calibration Curve 
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Figure 68: Batch Test 3 – GC/MS Retention Time Information 

 

 
Figure 69: Batch Test 3 – Signal to Noise Ratio 
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