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* |odine as a Hall effect thruster propellant

* Singly ionized atomic iodine (2" spectrum)
* Selection/Analysis of a suitable transition

* Table top experimental efforts

* Conclusions

 Future work
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Alternative HET Propellants:
lodine as a Propellant?

* lodineis ademonstrated HET propellant
— Cheaper than xenon, similar critical properties
— 3x higher storage density
— Low pressure storage

* |[ssues/unknowns with iodine
— Vapor pressure requires temperature control
— New flow control system design/complexity
— Performance and lifetime?

— Safety?
Xe ,
Noble Gas Solid Halogen
131.3 amu 126.9 amu -
lonization energies: Atomic lonization:
12 eV, 21 eV, 32 eV 10 eV, 19 eV, ?? eV Szabo et al 2011 JPC
1.4 g/cc at 3 kpsi 4.9 g/cc solid
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\ 2 Comparison of Alternative
\;’/ Propellants

lodine compared to other propellants
— Atomic mass (127 amu)
— Molecular mass (254 amu)

0.55

o
w

— Relatively high pressure (for solid) g 045
* Needs for iodine flow system % 04
— heating 2 035 g/
— Flow metering {3 oxe
o3 % 200 W HET .
— Flow control & Busek|
0.25
100 150 200 250 350 400
Discharge Voltage
Property Units Xe Kr Bi I * J|odine HET studies at Busek
Atomic Mass amu 131.3 838 209 126.9 — Joint effort AFRL/RV/RZ & AFIT
1% Ton. Pot. eV 121 140 7.3 105 —  Hillier AFIT thesis
274 Ton. Pot. eV 21 24 167 19.1 —  Szabo, et al (JPC 2011, JPP 2012)
Stable Isotopes 9 6 1 1 — Successful operation on 200 W HET
Odd Isotopes 2 1 1 1

Den. (3000 psi) g/cc 1.11 091 9.78 4.93

* |odine HET performance

100 Pa Pressure °C  -170 -199 892 39 — Meets or exceeds Xe performance

DISTRIBUTION A: Approved for Public Release; Distribution unlimited

— High eff. at high accel. Potentials



/\/)\Congderatlons for Identification of
b 4 Suitable Transitions

* Transition wavelength laser accessibility * Fluorescence transition selection

— Laser types — Resonant
* Dye — laboratory work horses * Detection at same wavelength as excitation
* Solid state — less messy, more limited — Non-resonant
* Diode — easier to work with, wavelength * Detection of alternative transitions from

limited excited state

— Tunable diode lasers * Less prone to interference due to reflection
* Broad tuning capabilities — Considerations
e Low maintenance requirements * Branching ratios of excited state fluorescence
* Limited to available band gaps * Detector QE (blue-visible preferred)

Interference from near by transitions
* Typically ~400 nm & 650-1500 nm

* Typically ~400 nm & 650-1500 nm
— Limits interrogation to excited states

e Sufficiently populated lower state =8 %IO?M?DEP?OTOWH?D—E— eSS
— Non-equilibrium plasma ;E_’ ;‘: i},ﬁ‘_f’ssu? e /’ZL;\,(\\ Ziﬁ
— Neutral / ion temperatures not clearly = [ e ETA 1 [ NG
defined A S RSt i
— Meta-stable states! % 2 ol T J"%";'
* Optical relaxation QM not allowed % b = PMT photocaih;) " respo;se 0
* Collisional de-excitation is allowed § z: _ (Hamamatsu Photonics) !
* Long radiative lifetimes (seconds) % o1l | | Hz\ml i Llo 1400%%0300 L]

* Collisional de-excitation is allowed 5
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Alternative HET Propellants

| Il Transition Identification

e Second spectrum of iodine
|+
— 1
— Not I, I*...
Only 1 study of the second spectrum
.;::,;;.';-‘f?'zwf‘-""ﬁ-"’-ﬁ"-*f«":Ef:ﬁ::ﬁs; i R — Martin and Corliss, NBS J. 1960.
— Only partially analyzed by NIST

* Quantities required for a “good”
transition (ideally)

JOURNAL OF RESEARCH o tha Moticno Burwor of Stondards—A. Phyicy and Chamisry

The Spectrum of Singly Ionized Atomic Iodine (I Ir)
William C. Martin and Charles H. Corliss

July 11, 1960,
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/\/)\ Alternative HET Propellants:
N7 | Il Transition Identification

£ E i g
5 % g ,', ,%f /A
i g:g -?éa!"!!!
2c\0 '§ l!:’
% i' fi‘f"af,?
5 Rp0 30 o0 /| 15 €
5p 5p Pf\ S5p FE} L
AINLCA § /1 [ Identified metastable ey
| PN N ) ooz statel 5d°D)
% 5? g 77@@ )) :, f’ ’, N P‘ & . . Sgo
Y|\ AV ...with a laser accessible 7>z
7, 5p'T'S, transition at 695.9 nm
AN : 50 5
: \ o 5d°D, ->6p°P,
g LA P D ...and non-resonant
> \* 1 4%0165“
g e fluorescence at 516.2 nm
43 43 43
5p°F, 5p7°R, SpR 6s°S; —>6p°P,
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\ Z lodine HET Emission Spectrum:

S 4 Courtesy of Prince and Chiu (AIAA-2012-3872)
b

* Emission spectrum available

50 5
5d°D; —>6p°P, — Courtesy of Prince & Chiu
/ @ 695.9 nm
— AIAA-2012-3872

— Near plume
— Note xenon in plume (NIR)

A DL L B * Only 1 study of the second
692 696 700 704 spectrum
— Martin and Corliss (1956)

6s°S; —>6p°P, — Only partially analyzed by NIST
@ 516.2 nm

\ * Quantities required for a “good”

Signal (A.U.)

transition (ideally)
— Ground state not accessible

— Need to find a metastable state
l — Need to find all related
transitions
I I I I I I B .
— Need to verify that these
400 500 600 700 800 900 1000 transitions actually exist (no
Wavelength (nm) guaranties)
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/) Hyperfine Spin Splitting:
d Nuclear Spin Complicates the Line Shape

<

\‘\.

* Hyperfine spin-splitting
— Causes (lodine has 53 protons, 74 neutrons)

* Single stable isotope with odd number of
neutrons and protons 1127

®* Non-zero nuclear spin couples to angular
momentum of atom/ion producing additional
energy states

— Require empirical data to model the transition

line shape If odd number of

* Empirical data required protons or neutrons,
then nuclear spin

. _ _ _ couples is angular
* Typically derived from nuclei structure studies momentum J to

* No known hyperfine data

— Issues produce additional
non-degenerate

* No known hyperfine data for 695.9 nm transition
energy states

* Width of line shape could preclude useful
measurements (s transitions are problematic...)

DISTRIBUTION A: Approved for Public Release; Distribution unlimited 9]
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A _
&/ Hyperfine Spin Splitting

e Total angular momentum: F=1+J e Componentintensities

— Angular momentum J of atom is no longer sufficient — Very close energy spacing

— Nuclear spin I is coupled to J — Russell-Saunders (LS) coupling holds

— Total angular momentumisnow F=1+J — Example forJ =7

— Individual values of F are given by G el _K(J+F+I+1)(J+F—11)§J—F+I+ 1 -F-~1

F=J+1LJ+1I-1,...,J-1
e Selection Rules P s e LU+ D+FF+ 1)+ 1(1+ 1)TP(2F + 1)
: F(F+1)
— Transitions between F values of upper/lower states
AF = 0,21  AF=0,if F =0 e

* Energy separation of spin split states

— Constant A is a function of magnetic dipole moment

AE,(F) = %A[F(F+ D)= J(J+1)=I(I +1)]= %‘c
— For | >1 electric quadrapole moments also present
AC 4
AEp = AEy, +AE, = T+B C(C+ 1)—§J(J+ I(I+1)

— Constants A and B derived from experimental data...
DISTRIBUTION A: Approved for Public Release; Distribution unlimited 1.0



\ 2 yperfine Spin Splitting:
§’/ | 1] Transmon @ 695.9 nm Predictions

5d°D;, —>6p°P,

100

|:5/2 < 1372

11/2
5d °D, = /
4 SETE 9/2
D —
J=4 — 7/2
= 5/2
® @~ Relative Transition Strength 3/2
DISTRIBUTION A: Approved for Public Release; Distribution unlimited F 11



lodine Plasma
Tube within Ressonance Cavity

Sublimated lodine

Cooling Bulb

120x10 — o 0%
100_.. %. 1:_2_ PvsT
=) | e s 1::
S 80 o L - T T T T
(_CU 60 = ® €0 A4OTen;§:ratur2 {"C}zo 0
m .
o 40 — @
)
20 — §95.9 nm .
signal vs T ®e
0 - o0 0
| ' | ! | ' |
-10 0 10 20

Temperature (°C)

* Tabletop spectral source
— 2.2 GHz resonant cavity (20-50 W)
— Integral cooling bulb

— lodine density varied via temperature

* |nitial results
— -12° C minimum temperature

— Reasonable signal strength
* Second lamp is under construction

DISTRIBUTION A: Approved for Public Release; Distribution unlimited 12
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Lasing wavelength, Ap (nm)

b
NS
705 T
Po 30 mW
0llOpnext
p”° wered ¥ HITACHI -;r'_,.n-"fr
695 frr'_,_.—f'
690 r,ﬂf
7o
685 7 { .
80 | I I I
0O 10 20 30 40 50 60 70 80

Case temperature, T (°C)
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Laser Diode Selection

Examining a number of alternatives
Low cost COTS FP laser diode

Low cost ($50 for diode)

~40 MHz line width

~10 GHz scanning range
Wavelength selection is an issue
30 mW power levels typical
Suitable for Doppler free spec.

Commercial tunable lasers

Higher cost (~=$30k)

500 kHz line width

100-200 GHz scanning range
Wavelength readily available
2 mW power levels typical

Analysis of alternatives underway

13



(Y J)\ Summary and Conclusions and

‘% Future Work
b

* J|odineis a possible future HET and/or ion engine propellant *

05

— Lower cost, relatively abundant, already demonstrated!

=
-
&>

— Similar, possibly improved performance compared to xenon

— More complex propellant management system

Anode Efficiency
=
~

=3
w
b g

oXe

200 W HET x|

4 Busek |

* Review of limited spectroscopic data

03

— Metastable lower state identified for maximum lower state populations

100 150 00 50 300 350 400

— “Best” | Il transition identified (@695.9 nm, 5d°D; —6p°P,) T
— Verified via HET emission 695.9 nm transition populating metastable lower state

— Non-resonant fluorescence for signal collection (@516.2 nm, 6s°S) —>6p°P, )

— Verified via HET emission 516.2 nm transition for non-resonant signal collection

— Determined number & relative magnitude of 15 hyperfine components, not separation...
11/2

. L A

* Table top experimental apparatus — oz
[} A
— Constructed two lamps i s
[
— Second lamp (as presented) showed significant ion emission! v
o 5d°D{ ->6p°P,
— Laser selection in work. L 132
54 5p° — 1172
4 R 9/2
J=4 — 7/2
cr 5/2
R ——— 3/2 14
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Collection (

Chamber

Wal

Future Work

Improved tabletop plasma source
— 250 mTorr helium fill for Penning effect for increased N;

— Improved cooling to minimize neutral quenching

Laser selection

— Choice 1is 30+ mW tunable diode laser
— Enables Doppler free analysis
— Determination of hyperfine A & B constants
— Only useful for table top experiments
— Would (?) enable ion temperature

— Choice 2 is ~2 mW laser tunable diode laser
— Enables thruster measurements
— Insufficient for detailed hyperfine analysis

— Readily available
Eventual goal is measurement within HET

Are other species of interest? (e.g. |, I,, ,*)
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