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Outline

• Iodine as a Hall effect thruster propellant

• Singly ionized atomic iodine (2nd spectrum)

• Selection/Analysis of a suitable transition

• Table top experimental efforts

• Conclusions

• Future work
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Alternative HET Propellants:
Iodine as a Propellant?

I2
Solid Halogen

126.9 amu
Atomic Ionization:

10 eV, 19 eV, ?? eV
4.9 g/cc solid

Xe
Noble Gas
131.3 amu

Ionization energies:
12 eV, 21 eV, 32 eV

1.4 g/cc at 3 kpsi

• Iodine is a demonstrated HET propellant
– Cheaper than xenon, similar critical properties
– 3x higher storage density
– Low pressure storage

• Issues / unknowns with iodine
– Vapor pressure requires temperature control
– New flow control system design/complexity
– Performance and lifetime?
– Safety?

Xe

I
2

3

Szabo et al 2011 JPC
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Comparison of Alternative 
Propellants

200 W HET

Hillier AFIT Thesis March 2011
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• Iodine compared to other propellants
– Atomic mass (127 amu)
– Molecular mass (254 amu)
– Relatively high pressure (for solid)

• Needs for iodine flow system
– heating
– Flow metering
– Flow control

• Iodine HET studies at Busek
– Joint effort AFRL/RV/RZ & AFIT

– Hillier AFIT thesis
– Szabo, et al (JPC 2011, JPP 2012)

– Successful operation on 200 W HET
• Iodine HET performance

– Meets or exceeds Xe performance
– High eff. at high accel. Potentials
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Considerations for Identification of 
Suitable Transitions

• Transition wavelength laser accessibility
– Laser types

• Dye – laboratory work horses

• Solid state – less messy, more limited

• Diode – easier to work with, wavelength 
limited

– Tunable diode lasers
• Broad tuning capabilities

• Low maintenance requirements

• Limited to available band gaps

• Typically ~400 nm & 650-1500 nm

– Limits interrogation to excited states

• Sufficiently populated lower state
– Non-equilibrium plasma

– Neutral / ion temperatures not clearly 
defined

– Meta-stable states!
• Optical relaxation QM not allowed

• Collisional de-excitation is allowed

• Long radiative lifetimes (seconds)

• Collisional de-excitation is allowed

• Fluorescence transition selection
– Resonant

• Detection at same wavelength as excitation

– Non-resonant
• Detection of alternative transitions from 

excited state

• Less prone to interference due to reflection

– Considerations
• Branching ratios of excited state fluorescence

• Detector QE (blue-visible preferred)

• Interference from near by transitions

• Typically ~400 nm & 650-1500 nm

PMT photocathode response
(Hamamatsu Photonics)
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Alternative HET Propellants:
I II Transition Identification
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• Second spectrum of iodine
– I+

– I II
– Not I2, I2+…

• Only 1 study of the second spectrum
– Martin and Corliss, NBS J. 1960.
– Only partially analyzed by NIST

• Quantities required for a “good” 
transition (ideally)
– Ground state not accessible
– Need to find a metastable state
– Need to find all related transitions
– Need to verify that these transitions 

actually exist (no guaranties)



Alternative HET Propellants:
I II Transition Identification

5d5D4
0 6p5P3

6s5S2
0 6 p5P3

Identified metastable 
state! 5d5D4

0

…with a laser accessible 
transition at 695.9 nm

…and non-resonant 
fluorescence at 516.2 nm
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Iodine HET Emission Spectrum:
Courtesy of Prince and Chiu (AIAA-2012-3872)

5d5D4
0 6p5P3

6s5S2
0 6 p5P3

@ 695.9 nm

@ 516.2 nm
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• Emission spectrum available
– Courtesy of Prince & Chiu
– AIAA-2012-3872
– Near plume
– Note xenon in plume (NIR)

• Only 1 study of the second 
spectrum
– Martin and Corliss (1956)
– Only partially analyzed by NIST

• Quantities required for a “good” 
transition (ideally)
– Ground state not accessible
– Need to find a metastable state
– Need to find all related 

transitions
– Need to verify that these 

transitions actually exist (no 
guaranties)



Hyperfine Spin Splitting:
Nuclear Spin Complicates the Line Shape

If odd number of 
protons or neutrons, 

then nuclear spin 
couples is angular 

momentum J to 
produce additional 

non-degenerate  
energy states

• Hyperfine spin-splitting

– Causes (Iodine has 53 protons, 74 neutrons)
• Single stable  isotope with odd number of 

neutrons and protons I127

• Non-zero nuclear spin couples to angular 
momentum of atom/ion producing additional 
energy states

– Require empirical data to model the transition 
line shape

• Empirical data required 

• No known hyperfine data

• Typically derived from nuclei structure studies

– Issues
• No known  hyperfine data for 695.9 nm transition

• Width of line shape could preclude useful 
measurements (s transitions are problematic…)
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Hyperfine Spin Splitting
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• Total angular momentum: F = I + J
– Angular momentum J of atom is no longer sufficient

– Nuclear spin I is coupled to J

– Total angular momentum is now F = I + J

– Individual values of F are given by

• Selection Rules
– Transitions between F values of upper/lower states

• Energy separation of spin split states
– Constant A is a function of magnetic dipole moment

– For I ≥ 1 electric quadrapole moments also present

– Constants A and B derived from experimental data…

• Component intensities
– Very close energy spacing

– Russell-Saunders (LS) coupling holds

– Example for J = J’



Hyperfine Spin Splitting:
I II Transition @ 695.9 nm Predictions

5d5D4
0 6p5P3
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I = 5/2

F



P vs T

695.9 nm
signal vs T

Tabletop Spectral Source
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• Tabletop spectral source
– 2.2 GHz resonant cavity (20-50 W)
– Integral cooling bulb
– Iodine density varied via temperature

• Initial results
– -12°C minimum temperature
– Reasonable signal strength

• Second lamp is under construction



Laser Diode Selection
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• Examining a number of alternatives
• Low cost COTS FP laser diode

– Low cost ($50 for diode)
– ~40 MHz line width
– ~10 GHz scanning range
– Wavelength selection is an issue
– 30 mW power levels typical
– Suitable for Doppler free spec.

• Commercial tunable lasers
– Higher cost (~$30k)
– 500 kHz line width
– 100-200 GHz scanning range
– Wavelength readily available
– 2 mW power levels typical

• Analysis of alternatives underway



Summary and Conclusions and 
Future Work
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• Iodine is a possible future HET and/or ion engine propellant
– Lower cost, relatively abundant, already demonstrated!

– Similar, possibly improved performance compared to xenon

– More complex propellant management system

• Review of limited spectroscopic data
– Metastable lower state identified for maximum lower state populations

– “Best” I II transition identified (@695.9 nm,                         )

– Verified via HET emission 695.9 nm transition populating metastable lower state

– Non-resonant fluorescence for signal collection (@516.2 nm,                        )

– Verified via HET emission 516.2 nm transition for non-resonant signal collection

– Determined number & relative magnitude of 15 hyperfine components, not separation…

• Table top experimental apparatus
– Constructed two lamps

– Second lamp (as presented) showed significant ion emission!

– Laser selection in work.

5d5D4
0 6p5P3

6s5S2
0 6 p5P3

200 W HET

Hillier AFIT Thesis 
March 2011

5d5D4
0 6p5P3



Future Work

DISTRIBUTION A:  Approved for Public Release; Distribution unlimited 15

• Improved tabletop plasma source
– 250 mTorr helium fill for Penning effect for increased Ni

– Improved cooling to minimize neutral  quenching

• Laser selection
– Choice 1 is  30+ mW tunable diode laser

– Enables Doppler free analysis

– Determination of hyperfine A & B constants

– Only useful for table top experiments

– Would (?) enable ion temperature

– Choice 2 is ~2 mW laser tunable diode laser
– Enables thruster measurements

– Insufficient for detailed hyperfine analysis

– Readily available

• Eventual goal is measurement within HET

• Are other species of interest? (e.g. I, I2, I2+)




