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Abstract

While the Hall Effect Thruster is a relatively mature technology that has been flown in several
missions, the physics of the processes governing the thruster dynamics are not yet completely
understood. In particular, the so-called anomalous diffusion, a short term for the excessive
electron conductivity both inside and outside of the thruster, remains an unclear phenomenon.
It is commonly agreed that a central cause for the higher-than-expected electron mobility are
correlated azimuthal oscillations that create an effective azimuthal force. Recent experimental
results, obtained independently in Michigan and Princeton with modern thrusters, confirm
the existence of a low-frequency azimuthal oscillation, called rotating spoke, of similar nature
as those originally detected in the 1960’s by Janes and Lowder. This project aims at studying
theoretically these oscillations by means of a global stability analysis of the Hall discharge
against azimuthal disturbances. A central goal of the study will be to determine and quantify
in terms of scaling laws their role in anomalous diffusion.
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dimensional parameters: k̃x = 0, ṽix0 = 50, ω̃e = 106 and ν̃e = 103. Parametric
variation of: k̃y ∈ [0.1, 10] and γ̃ ∈ [−1.0, 1.0] . . . . . . . . . . . . . . . . . . 41

3.4 Growth rate of the most unstable solution of Eqs. (3.30) for the following non-
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Chapter 1

Introduction

1.1 Motivation

Over the last decade great efforts have been dedicated into the understanding of the physics of
Hall Effect Thrusters. However, there are still central phenomena that are poorly understood.
The main one is the so-called anomalous diffusion, associated to an excessive electron axial
current that cannot be explained with classical collisional theories. Forty years ago, Morozov
[2] suggested near-wall conductivity and turbulent diffusion as the two plausible causes for the
anomalous diffusion. Near-wall conductivity, also called electron-wall collisionality, is related
to the interaction of electrons with the lateral walls of the thruster and would be enhanced
by secondary electron emission. Recent advances on modelling this process by our team EP2
[3] and others [4] have concluded that electron-wall collisionality is insufficient to explain the
experimentally observed anomalous diffusion, which leaves turbulent diffusion as the main
candidate.

Many oscillation modes have been identified experimentally or theoretically in Hall effect
thrusters, propagating longitudinally, azimuthally or obliquely, the main modes ranging from
a few kHz to tens of MHz [5]. Low frequency modes are of hydrodynamic character, whereas
high frequency modes are mainly electromagnetic. In general, azimuthal modes, which involve
a higher spatial dimensionality as they combine axial inhomogeneities with an azimuthal
propagation, are less amenable to analysis and therefore are less understood.

Turbulent diffusion would be due to correlated azimuthal oscillations of plasma density
and electric field both in the ionization and acceleration regions of the thruster, but the debate
is still open on whether the relevant ones are low-frequency or high-frequency (or even both).
The study here proposed is centred on low-frequency azimuthal oscillations, more precisely,
in what is conventionally called the rotating-spoke oscillation [5], which is a firm candidate
to contribute to anomalous diffusion.

The rotating-spoke was first detected in 1966 by Janes and Lowder [6] who already sug-
gested it as a diffusion mechanism. It was later measured at Stanford by Chesta et al. [7]
on modern Hall thrusters both at low and high voltages. The rotating spoke has regained
much attention in the last years, through experiments at Princeton PPL [8, 9] and Michigan

1
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PEPL [10], which have obtained vivid videos and other detailed data of the oscillations in
Hall thrusters of different design and size, and under different operating conditions. In order
to understand the effect of this spoke on the time-averaged response of the discharge, these
experiments need to be supported by theoretical models. Due to the strong interconnection
of physical processes in a Hall discharge and large inhomogeneities, the formulation of these
models is likely to be not simple and to involve much mathematical apparel. We still hope that
the picture of the diffusion mechanism can be simplified to its essentials once it is understood.

The rotating-spoke, being a low-frequency oscillation, is basically a hydrodynamic mode,
which can be studied using fluid models of the discharge in the electrostatic and quasineutral
approximation. Since 2000 our team EP2 has been at the forefront of developing physically
well-based models of the Hall discharge [11, 12, 3, 13] and later applying them to linear oscil-
lation studies [14, 15, 16, 17]. The project aims to add the rotating-spoke to that discussion,
by comparing theoretical and experimental findings.

1.2 Activities of the project

The activities of the project can be summarized as:

- Bibliographical review: Taking the work of Choueiri [5] as starting point, a detailed
review and classification of the experimental data and theoretical studies of oscillations
in Hall thrusters will be carried out. Special attention here will be devoted to theoret-
ical studies, and the classification will be based on the different physical-mathematical
models that are proposed, the simplifications and assumptions that are made to de-
velop and solve them, and the connections among the different studies. Many of these
analyses focus on the acceleration region, where the ionization can be safely neglected,
and on the high frequency regime. However, experimental results show the presence of
azimuthal oscillations in the low frequency range located mostly in the ionization region
and appearing normally in the ionization part of the current-voltage curve.

- Local linear stability. This is the type of analysis more common in the literature. It
consists in freezing the plasma magnitudes at a fixed axial location of the steady-state
solution and carry out a normal stability analysis on the constant-coefficient equations,
which reduces to an algebraic problem. The resulting local dispersion relation is solved
either analytically or numerically. Here we will complete the work presented in Ref.
[18], where we showed results on local linear stability of the ionization region against
small perturbations. These indicated the existence of an instability that gives rise to
an azimuthal oscillation with a mode number m=1.

- Fluid model with azimuthal gradients: The axial three-fluid model we developed in 2000-
2005 for both steady-state and axial stability studies will be here extended to include
azimuthal terms. Then, temporal and azimuthal effects will be linearised yielding the
final model for our analysis.

- Global linear stability. This is the central task of this project. The above local linear
stability analysis is not consistent when the discharge is strongly inhomogeneous, as
it is the case here. The lack of consistency manifests itself in the different ways that
inhomogeneities can be frozen in the local stability analysis. This explains, for instance,
that different stability criteria are found in the literature for the same instability [19].
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The global linear stability analysis deals with the variable-coefficient differential equa-
tions. The spatial integration plus homogeneous boundary conditions yield the global
dispersion relation for the mode frequency. The solution of the dispersion relation will
determine the dominant azimuthal mode (i.e. the one with the maximum growth rate)
in terms of the parameters governing the steady-state solution (discharge voltage, mass
flow, magnetic strength). Instability thresholds can be determined too. We already
followed successfully this global procedure in Ref. [14] for longitudinal oscillations, al-
though at that time we did not recognize in the results the breathing mode mechanism
[20]. In principle, the same procedure can be followed for azimuthally non-symmetric
modes.

- Discussion of azimuthal modes. The first goal here is a comparison of our azimuthal
modes with the rotating spokes observed at Princeton and Michigan. Additionally, the
possible similarities with the breathing mode will be searched. The second goal is the
study of correlations of plasma variables that can lead to a time-averaged azimuthal force
explaining anomalous diffusion. An investigation of the influence of different control
parameters on the instability and the azimuthal force will be carried out. The derivation
of main locations, trends, and scaling laws for that azimuthal force would be a much-
desired result. Nonetheless, it must be noted that the azimuthally-correlated force is a
non-linear effect, so a fully consistent assessment is beyond the present linear analysis.

- Further actions. If the conclusions from the global linear stability study support a
relevant role of the rotating-spoke in anomalous diffusion, a proposal will be sketched,
which will set the route for affording a non-linear stability analysis of the azimuthal
modes and a consistent determination of the resulting anomalous diffusion force. Other
aspects of interest arising as the research progresses are included in this task too.

1.3 Organization of the report

This report is organized as follows:

- Chapter 1 is this introduction.

- Chapter 2 is devoted to a complete and thorough bibliography review on spoke oscilla-
tions.

- Chapter 3 focuses on local linear stability analyses both of the acceleration and ioniza-
tion regions of the HET discharge.

- Chapter 4 presents the low frequency global linear stability analysis of the Hall discharge,
starting with the development of the model, continuing with the use of the model to
obtain results and finalizing with a discussion.

- Conclusions and a list of publications derived from this study are given in Chapter 5.
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Chapter 2

Bibliography review

This chapter presents a summary of the state-of-the-art on the topic of anomalous diffusion
in Hall Effect Thrusters (HET) and its possible relation with azimuthal oscillations.

2.1 Hall thrusters

Hall thrusters are a type of electric plasma propulsion device initially developed in the 1960’s
by both the USA [21] and the former USSR [22, 23] independently. The development con-
tinued in the shadow in the USSR to reach a mature status in the 1970’s and 1980’s. In
the 1990’s the advanced state of this Russian technology reached western countries, which
rapidly restarted the analysis and development of modern Hall thrusters. Nowadays, there
are several companies manufacturing Hall thrusters for operational use in USA, Russia and
Europe. The main applications of these thrusters are low-thrust propulsion of interplanetary
probes, orbital raising of satellites, and north-south station-keeping of geostationary satellites
[24]. There are two basic variants of Hall Thrusters, the Stationary Plasma Thruster (SPTs)
and the Thruster with Anode Layer (TAL). The main difference between them is the material
of the walls of the devices, ceramic for the SPT model and metallic for the TAL.

The operation principle of a typical Hall thruster is as follows [25, 26]. A strong radial
magnetic field is imposed together with an axial electric field inside a coaxial channel where
a neutral gas, typically Xenon, is used as propellant. There are three species of particles
involved: neutrals, that are injected from the rear part of the channel and flow axially towards
the thruster exit; electrons, that are introduced by the cathode located just outside the channel
and flow towards the anode, next to the neutral injector, describing a ExB closed drift in
the azimuthal direction due to the orthogonal electric and magnetic fields; and ions, that are
created by volume ionization of neutrals from collisions with the counter-streaming electrons
and are accelerated axially by the electric field in the channel and the near plume. The
magnetic field is such that electrons are strongly magnetized (i.e., the electron Larmor radius
is much smaller than the typical length scale of the thruster) while ions are unmagnetized
(i.e, ion motion is mostly driven by the electric field).

The main control parameters of a typical HET are the mass flow of neutral gas through the
injector, the electric voltage between anode and cathode and the externally imposed magnetic
field. The current is an output of the dynamical system and depends on the ionization,
defining the ion current, and the magnetic field, controlling the electron current. It is quite
common to represent the performance of a thruster in the current-voltage map (I-V). For
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given magnetic field and mass flow rate, the variation of the current with the voltage is
characterized by two separate regimes of operation: a regime of incomplete ionization where
the current rapidly increases with the voltage and a regime of current saturation where the
current is fairly insensitive to changes in the discharge voltage. The lower the ionization
potential of the neutral gas is, the clearer the separation between the two regimes is [27].
The electron current emitted by the cathode towards the anode is needed for the ionization
process. Thus, the smaller it is the better the efficiency of the thruster is. And in fact, the
optimal point of operation of typical Hall thrusters is located in between the two regimes of
the I-V curve where the electron current is the smallest. In order to ensure that the device
does not get charged, a second electron current is emitted by the cathode to compensate the
ion current emitted by the thruster.

A list of typical operating conditions is presented below based on the SPT-100 model, a
well analysed HET model:

1. outer radius: rout = 5cm

2. inner radius: rin = 3.5cm

3. channel length: Lch = 2.5cm

4. mass flow: ṁinj = 4.8mg/s

5. discharge voltage: Vd = 300V

6. magnetic field: Bmax = 230G

7. discharge current: Id = 4.5A

8. power: Pd = 1.35kW

9. efficiency: η = 0.48

10. specific impulse: Isp = 1600s

11. thrust: T = 83mN

12. electric field: Emax = 100V/cm

13. neutral density: nn = 1019m−3

14. plasma density: n = 1017m−3

Figure 2.1: PPS-1350 Hall effect thruster
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2.2 Anomalous diffusion

Since the early stages of the Hall thruster technology development, it has been clear that the
electron conductivity inside the channel and in the plume is too high to be explained by the
classical collisional theory [27]. That is why the term anomalous diffusion is used to refer to
the higher-than-expected electron current. The radial magnetic field and the axial electric
field trap the electrons in an azimuthal closed-drift and, according to classical theory, the
only mechanism that allows the electrons to move axially are collisions with other species.
However, the electron conductivity measured experimentally is between one and two orders
of magnitude higher than the expected one from collisions. Thus, another mechanism is
suspected to modify electron dynamics and reduce the electron resistivity. Currently there
is no agreement within the Hall thruster community, but the most accepted explanations for
the anomalous diffusion are two [28]:

- plasma oscillations and turbulence (referred to as Bohm-type diffusion as well): corre-
lated azimuthal oscillations of density and electric field can induce a net axial electron
current [29, 6].

- near wall conductivity: secondary electrons emitted by the walls introduce a net axial
current [30].

Some authors propose other explanations such as very-high frequency oscillations inside
the plasma sheaths attached to the walls [31, 32], electron cyclotron orbit distortion to steep
gradients of the electric field [33, 34] or some other different mechanisms [35, 36, 37]. But
unfortunately, even though many HETs have already been flown, the underlying physics of
the electron excessive diffusion are not properly understood.
Although experimental evidence is not unanimous, most common general properties of the
anomalous diffusion are:

a) It is present in the whole channel as well as in the plume of the thruster [38]. Ex-
periments show that the electron conductivity is higher than expected both inside and
outside the thruster, even if the processes taking place in the channel and in the plume
are completely different.

b) It is higher outside than inside the channel [39]. It has been shown experimentally
that the electron conductivity seems to be higher in the near field plume than in the
channel. Furthermore, several numerical models that make use of empirical parameters
to describe the anomalous diffusion need to use different fitting parameters inside and
outside the thruster to properly match experimental results [40].

c) There is a dip of electron conductivity in the region of high magnetic and electric
fields [38, 39] or, as some authors suggest, in the region of high electron drift shear
[41, 42]. Based on this and the previous property, it has been proposed in the past that
both azimuthal oscillations and near wall conductivity enhance the electron cross field
diffusion: the former in the near plume and the latter inside the thruster.

d) The electron mobility scales as 1/B rather than as 1/B2 as verified experimentally with
laser interferometry (LIF) in [43, 44]. This fact seems to indicate that the cause of the
anomalous diffusion cannot be the near wall conductivity since in that case it would
scale as 1/B2.
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e) The magnetic field topology greatly affects the electron conductivity [2] and thus the
anomalous diffusion. A negative axial gradient of the magnetic field inside the chan-
nel increases importantly the electron current needed to sustain the discharge. This
property justifies why the magnetic field is normally designed to peak roughly at the
thruster exit in modern HETs.

From a mathematical point of view, the anomalous diffusion due to azimuthal oscillations
can be expressed as [6]:

jez =
e

AB

∫
nEθdA

where A is the cross section of the HET and the rest of symbols are as usual. The corre-
sponding Bohm diffusion coefficient can then be expressed as

α =
jez
jeθ

=
1

⟨nEz⟩
1

2π

∫ 2π

0
nEθdθ =

⟨nEθ⟩
⟨nEz⟩

where ⟨⟩ represents an average over the azimuthal direction.
Yoshikawa and Rose [29] developed a statistical theory in the 1960’s based on Fourier

expansions of electron conservation equations. This theory shows the connection between
the azimuthal oscillations and the enhanced plasma conductivity detected in experiments.
The theory states that the Bohm-type diffusion coefficient, empirically estimated by Bohm
as 1/16, can be expressed mathematically as:

α =
π

4
⟨(n− n0)

2⟩/n2
0

where n is the time-varying plasma density, n0 is its steady state value and ⟨⟩ represents an
average over time.

In the same direction, a simple model describing how azimuthal heterogeneities can en-
hance electron conductivity was presented more recently by Baranov et al. [45]. And numer-
ical simulations with artificial azimuthal electric fields superimposed to simulated r− z fields
[46, 47, 48, 49] show how electron particles drift axially due to the presence of the azimuthal
electric field.

Nevertheless, the anomalous diffusion is not believed to be a unique feature of Hall
Thrusters. That is why several experiments have been recently designed and carried out
to do basic research and analyse the anomalous diffusion mechanism in devices much simpler
than typical HETs [50, 51, 36, 52].

Near wall conductivity does not seem to explain the anomalous diffusion since many r− z
simulation codes [3, 4, 53] include a near wall conductivity model and still need a Bohm-type
diffusion contribution to reproduce the anomalous diffusion measured experimentally. Thus,
it seems that azimuthal oscillations could play a major role in explaining the anomalously
high electron mobility.

To sum up, the topic of anomalous diffusion is one of the remaining uncertainties that
need to be clarified in order to fully understand the physics of HETs. And this is the key
to improve their efficiency, increase their flexibility and enlarge their range of operation as
required for many future missions [54]. As an additional outcome, truly predictive numerical
codes could be developed that would in turn reduce the development costs of new HETs by
allowing accurate numerical simulations of processes such as wall erosion, currently the main
limiting factor of the lifetime of these devices.
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2.3 Time scales

Ions and neutrals exhibit an axial motion driven by electric acceleration and gas expansion
respectively. Based on the mass flow and typical neutral density, it is possible to estimate
the axial velocity of the neutrals as unz = ṁ/nnA ∼ 0.2km/s. The corresponding residence
time inside the thruster is tn = Lch/unz ∼ 0.12ms, which is equivalent to a frequency
of ωn = 1/tn ∼ 8kHz. In the case of the ions, their axial velocity can be estimated as
uiz =

√
ηaeVd/mi ∼ 14km/s where an efficiency of 80% (ηa ∼ 0.8) for the electric acceleration

process and the mass of the Xenon ion (mi = 2.18 · 10−25kg) have been used. The resulting
residence time is ti ∼ 1.8µs which is equivalent to a frequency of ωi ∼ 500kHz.

The motion of electron particles can be regarded as the sum of different oscillations and
drifts, each one of them characterized by a different time scale:

- gyro-motion: the usual circular motion of electrons around magnetic lines is defined by
the electron cyclotron frequency ωce = eBmax/me ∼ 4GHz

- wall-to-wall bounce: only high energy electrons overcome the potential fall of the sheaths
and hit the wall. The rest of them are trapped in a periodic motion along the magnetic
field line from one wall the other. The characteristic radial velocity is uer = 1.5·103km/s,
this is, a period of tw = ∆r/uer ∼ 0.01µs and a frequency of ωw ∼ 100MHz.

- ExB drift : the azimuthal drift velocity can be estimated as ueθ = Emax/Bmax ∼
400km/s. Based on the median radius, the estimated period is teθ = π(rout+rin)/ueθ ∼
0.66µs and the corresponding frequency is ωe ∼ 1.5MHz

- axial drift : in HET experiments the electron current is typically measured as one-third
of the ion current. Thus, making use of the quasi-neutrality condition, the electron axial
velocity can be estimated as uez ∼ −5km/s, resulting in a residence time of te ∼ 5.4µs.

Besides, the electron temperature within the channel is normally around Te = 30eV which
is equivalent to an electron thermal velocity of uet =

√
Te/me = 2 · 103km/s ≫ ueθ ≫ uez.

That is why electron inertia is sometimes neglected in some analyses and models.

2.4 Oscillations

The operation of Hall thrusters is characterized by the presence of a myriad of oscillations,
both axial and azimuthal, ranging from low (LF) through medium (MF) to high frequency
(HF), exhibiting many different phase velocities, from a few to thousands of km/s, and a
intensity that decreases with increasing frequency. The following classification of oscillations
is commonly accepted for HETs [55, 5]:

- breathing mode: also known as contour or loop oscillations, it consists of low frequency
(1-20 kHz) axial oscillations. It is related to the ionization process and is typically
described with a predator-prey model of ions and neutrals [56]. This type of oscillation
is inherent to HET operation in the whole I-V curve and its intensity can exceed the
steady state value of the discharge current. However, it tends to be minimal at the
nominal operation point. Apart from the predator-prey analytical model, the breathing
mode has been reproduced fairly well in various simulation codes. More recently, Barral
et al. [57] have unveiled the dynamics of this oscillation by means of a simplified one
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dimensional time-dependant fluid model and linear stability analyses which confirm the
initially proposed predator-prey model. The theoretical progress has allowed to propose
and simulate different mechanisms to mitigate these oscillations by acting of the power
processing unit (PPU) of the thruster [58, 59, 60].

- rotating spoke: it is a low frequency (5-25 kHz) azimuthal density oscillation charac-
teristic of the ionization part of the I-V curve. It appears as a rotating spoke that
propagates axially with 20 degrees of inclination. It seems to be related to incomplete
ionization and the velocity of the spoke is correlated with the first ionization potential
of the neutral gas. At the nominal operation point, this oscillation is not dominant. It
was first measured and studied by Janes and Lowder [6], but its origin remains fairly
an unknown at the moment. Due to its azimuthal nature, it could enhance the electron
conductivity and therefore it is analysed more in depth in the next sections.

- gradient induced oscillations: also known as drift magneto-sonic waves [1], they are low
frequency (20-60 kHz) azimuthal oscillations promoted by axial negative gradients of
the magnetic field. They typically appear at the exit of the thrusters as a wave with a
phase velocity one order of magnitude smaller than the ExB drift. The need to stabilize
the discharge inside the thruster against these oscillations explains the positive gradient
of magnetic fields in the channel of all modern HETs. These waves can also affect the
electron conductivity and, thus, are further described below.

- ion transit time oscillations: these are medium frequency (70-500 kHz) axial oscillations
associated to the ion acceleration process. They were already clearly visible in early
experiments as broad band turbulence [61, 62]. More recently, full size simulation codes
have managed to reproduce them and some theoretical analyses have been carried out
[19, 63], but their physics are not yet fully understood. Since the direction of propagation
is mostly axial, they are not believed to affect the anomalous diffusion mechanism.

- electron drift oscillations: they are high frequency (1-10 MHz) axial and/or azimuthal
oscillations connected to the electron ExB drift and normally appear during the descent
part of the discharge current variation as azimuthal waves in the near plume and as axial
ones inside the thruster. Interestingly, the presence of this oscillation was first proposed
theoretically and later on confirmed experimentally by Esipchuk and Tilinin [1]. A
few years ago, thanks to the development of precise diagnosis apparatus, the interest
in these oscillations re-appeared again and several researches have characterized them
experimentally [64, 65, 66, 67]. A more thorough description is presented below since
anomalous diffusion could be enhanced by them.

- high-frequency short-wavelength oscillations: these oscillations have been detected very
recently in experiments with an experimental set-up commonly used in nuclear fusion
[68, 69, 70, 71]. These oscillations seem caused by the interaction between the electron
gyro-motion and electric field variations [72, 73].

Depending on the operating point in the current-voltage curve (I-V), the intensity of each
one of the oscillations varies. Tilinin [74] describes up to six different regimes of operation in
the I-V curve, each one of them dominated by different oscillations. In particular, the rotating
spoke and the breathing mode appear mostly at low voltages while ion-transit time and high
frequency oscillations prevail at high voltages. More extensive and general presentations
about oscillations in HETs, in line with the previous classification, can be found in Refs. [5]
and [55, 75, 76].
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2.5 Numerical simulation

Thanks to the development of powerful computers, several numerical codes have been used
since late 1990’s to simulate the operation of Hall Thrusters. The complexity of those codes
has kept growing steadily, starting with simple one-dimensional fluid models and, currently,
reaching fully particle-in-cell (PIC) models in two or even three dimensions. Typically, the
following types of simulation models can be found:

- fluid models: particle, momentum and energy conservation equations describing the
motion of all species are solved. The main advantage of these models is the relatively
low computational cost for solving the partial differential equations compared to other
methodologies. However, the low collisionality inside Hall Thrusters hinders the appli-
cability of fluid equations for electrons and ions [77]. Most fluid models developed so
far are 1D [11, 78, 15] and more recently 2D [79, 80].

- kinetic models: Vlasov’s equations describing the evolution of the distribution function
of the different species are solved together with Poisson’s equation for the electric po-
tential. The governing equations are more difficult to solve than in fluid models and
thus only 1D codes exist currently [81].

- full PIC models: each particle species is considered as an ensemble of macro-particles
whose motion is computed by solving Newton’s law of motion while the electric potential
is obtained from Poisson’s equation. This method represents with higher fidelity the
physical processes, but is too expensive from the computational point of view, specially
when simulating two or more dimensions. The main reason for the high computational
cost is that the time-step of the numerical solver and the spatial size of the computational
grid must resolve the electron cyclotron and plasma frequencies, the electron Larmor
radius and the Debye length so that Newton’s equations of motion for electrons and
Poisson’s equation can be solved reliably. A good example of this type of models is the
code developed by Coche and Garrigues [82, 83]. Another full PIC code was developed
before by Szabo simulating the r− z space [84]. The axial-azimuthal version of Szabo’s
code was implemented by Batishchev [85]. An implicit version of the code of Coche and
Garrigues was developed by Adam et al. in early 2000’s with important time saving
due to its implicit nature. More recently, Matyash and Schneider have developed a 3-D
PIC code [86].

- hybrid models: in this case electrons are modelled as a fluid and ions and neutrals
with a PIC method. These models combine the higher fidelity of PIC methods in low
collisionality plasmas for ions and neutrals and the lower computational cost of fluid
models for electrons. The quasi-neutrality assumption is used and therefore, it is not
necessary to solve Poisson’s equation and the spatial grid does not have to resolve the
Debye length. This fact makes these methods much faster than full PIC methods. The
first 2D hybrid PIC model was developed by Fife [56] and many other similar codes have
been developed afterwards [87, 88, 53]. The success of this method for HET modelling
is quite possibly due to the best trade-off between accuracy and computational cost.
However, most of the hybrid codes developed so far are 2D in the r − z space, what
prevents the analysis of azimuthal oscillations. Recently, a new hybrid code in the
z − θ space has been developed by Lam et al. [89, 90] to evaluate the influence of
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azimuthal oscillations on the electron conductivity. The computational cost of that
code is enormous and only preliminary results have been obtained till now. The main
disadvantage of these methods is that the electrons are modelled with fluid equations
which are known to be not too adequate for HETs due, among other reasons, to the
anisotropy of the electron distribution function.

- quasineutral-PIC models: ions and neutrals are modelled with a PIC method, while
the electron species is considered as an ensemble of macro-particles representing the
guiding-centres of the electron particles. The motion of the electron guiding-centres
is computed by solving special equations of motion derived from the usual electron
equations of motion averaged over one gyro-period. Quasi-neutrality is not directly
achieved, but it is assumed when computing the electric field from electron momentum
and charge conservation. The main advantage of this method is that electrons are
modelled as macro-particles rather than as a fluid, but at the same time the time-step
and grid size constraints inherent to full PIC methods are not applicable here since
the electron gyromotion and Poisson’s equation are not solved. This method has been
recently applied successfully by Miedzik and Barral [91] to a magnetic field line of a
typical HET showing that typical fluid models are not fully correct to represent electron
dynamics in the direction parallel to the magnetic field. However, no 2D code based on
this methodology has been developed so far for HET simulation, neither in r − z space
nor in z − θ space.

The only numerical codes in the z − θ space currently existing are those implemented by
Hirakawa et al. [92], Adam et al. [93]. Batischev et al. [85], and more recently Lam et al.
[89, 90], continuing the work of Fernandez et al. [94, 95, 96], Matyash and Schneider [86] and
Coche and Garrigues [83, 82]. Theses codes need no empirical parameter to reproduce the
anomalous diffusion thanks to the presence of azimuthal oscillations. However, the oscillations
detected by those codes are not always in agreement with experimental results. Moreover,
the computational cost is enormous and makes it difficult to carry out detailed analyses with
them.

On the other hand, the rest of 2D numerical codes have focused on the radial and axial
dynamics and make use of different modelling strategies to reproduce the anomalous diffusion:

- constant Bohm-type diffusion coefficient as a empirical parameter to match numerical
results with experiments [53, 88]

- electron mobility models with two or three empirical coefficients [40, 4, 97, 98, 99]

- shear-based models and/or quench models with empirical parameters [100], [101]

- electron mobility profile derived from experimental measurements imposed in simula-
tions [102], [101], [103]

- derivation of azimuthal oscillations from axial ones based on linear stability analysis
[104, 105]

- near wall conductivity models [40, 4, 106, 107, 108]

Based on the number of different methodologies, it is clear that the topic of anomalous
diffusion is an active area of research where no general agreement has been reached. However,
in order to have accurate predictive simulation codes it is of utmost importance to understand
and model properly the electron conductivity due to its impact on the general behaviour of
the dynamical system.
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2.6 Theoretical studies: linear stability analyses

In the area of linear stability analyses, it is possible to distinguish two types of studies: linear
stability analyses of multi-fluid models that evaluate locally the potential growth of small
disturbances, where all coordinates are resolved with the usual exponential form exp(ik ·
x), and the result is a dispersion equation relating algebraically the wave vector and the
frequency of the oscillation; or global analyses where the axial coordinate is left unresolved
and the resulting dispersion relation is not an algebraic expression, but an ordinary differential
equation in x to solve for eigenfunctions and eigenvalues.

On the other hand, and depending on the hypothesis and simplifications introduced in
the governing equations, the resulting models go from simple to very complete. The following
hypothesis can be considered:

- electrostatic plasma: this hypothesis allows removing Faraday’s and Ampere’s laws from
the analysis. It is important to keep those equations in the model only for the evaluation
of very high frequency oscillations (1 GHz) and therefore, most of the stability studies
neglect the electromagnetic effects.

- no ionization: including the effect of the ionization requires accounting for additional
equations in the model to describe the motion of the neutral gas. This is normally
avoided to simplify the analysis, although it is not fully justified in the rear part of the
HET where the ionization dominates the physics of the discharge.

- quasi-neutrality : this assumption is also referred sometimes to as the dense plasma
hypothesis. It allows removing Poisson’s equation from the model since electron and
ion density are considered equal in the macroscopic scale under consideration.

- uniform plasma: the gradients of the plasma density, magnetic field and ion and electron
velocities can be excluded from the analysis for simplicity although they are believed to
influence the physics of the system significantly.

- zero electron mass: for the analysis of the low frequency regime it is normally acceptable
to neglect the electron inertia although for high frequency studies this assumption might
not be valid.

- collision-less plasma: the dominant non-ionizing collisions in the plasma inside a HET
are electron-neutral collisions. The classical theory of electron transport is based on
these collisions to justify the electron cross-field mobility. However, due to the need for
additional mechanisms to explain the anomalously high electron conductivity, electron-
neutral collisions could be neglected.

- cold plasma: it is quite common to neglect the electron temperature in the equations.
In this manner no energy or state equation is needed to include the effect of the tem-
perature. However, in order to have a complete model it is important to maintain these
effects, specially, if the ionization is included in the model.

Depending on the terms that are kept in a given model, the resulting dispersion equation
changes. That explains why there are so many studies in this topic in the Hall thruster
literature with different and sometimes contradictory results.
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2.7 Azimuthal oscillations

In the previous sections it has been suggested that azimuthal oscillations could explain the
anomalously high electron conductivity inside HETs. In fact, if the electric field perturbations
and the density variations are correlated, a net axial electron current is generated. LF and
HF azimuthal oscillations are suspected to participate in this process and enhance electron
mobility, although it is not yet clear the role of each type of oscillation. It would not be
surprising that both types of oscillations play an important role at the same and/or different
operating conditions.

2.7.1 Low frequency oscillations

Experimental results

Back in the 1960’s, Janes and Lowder[6] carried out a seminal work on low frequency azimuthal
oscillations in HETs. Even though the Hall accelerator analysed in that research differs
significantly from a modern HET, many of the conclusions are still valid. In that study, a
spoke was detected by means of azimuthally separated Langmuir probes. This spoke appeared
as a density variation rotating azimuthally in the ExB direction with a phase velocity of a
few km/s and an axial tilt of 20 degrees with respect to the azimuthal plane (i.e., with a
non-zero axial component of the phase velocity). The density variation was phase-correlated
with the oscillating electric field and, as a consequence, an enhanced electron axial mobility
was caused. The phase velocity of the rotating spoke was one order of magnitude smaller
than the local ExB drift. Moreover, as part of the research, different propellants were used
and it turned out that the phase velocity of the spoke scaled with the ionization potential of
the neutral gas: xenon, krypton or argon. All these facts seem to indicate a close connection
between the ionization process and the appearance of the spoke. Janes and Lowder made as
well use of the statistical theory of Yoshikawa and Rose[29] obtaining a good agreement with
the experiments in terms of predicted anomalous diffusion.

Esipchuk et al. [62] also reported low frequency azimuthal oscillations in a Hall thruster in
the low voltage part of the I-V curve and rotating in the ExB direction. The oscillations for
density and electric field were correlated causing enhanced electron conductivity. However,
these oscillations disappeared at higher voltage. Based on that, Esipchuk et al. claimed this
oscillation is due to incomplete ionization in the low-voltage part of the I-V curve and hence
disappears in the current saturation part of the curve.

Shortly after, Lomas and Kilkenny[109] reproduced the Janes-Lowder experimental results
and carried out an analysis of the influence of the magnetic field. According to the analysis
of Lomas and Kilkenny, the phase speed of the spoke increases with the magnetic field, an
interesting property not previously described by Janes and Lowder.

Similarly, experimental results from Sidney et al. [110] also show the presence of azimuthal
oscillations of plasma density and electric field in a Hall accelerator in the low frequency range.
In that study the influence of the magnetic field is also analysed with different propellants
reaching the conclusion that there exists a critical magnetic field that allows suppressing the
instability.

During the last two decades several experiments have been carried out with modern HETs
to characterize the low frequency azimuthal oscillations for a wide range of operating condi-
tions and thrusters, both inside and outside the channel. Next is a summary of these studies.
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In one of the first of those analyses, Hargus et al. [111] study the azimuthal oscillations in
a laboratory Hall thruster. The conclusions from that study can be summarized as follows.
First, low frequency azimuthal waves are observed at velocities of a few km/s both in the low-
ionization part and the current saturation part of the I-V curve. In the current saturation
part of the I-V curve the wave is closer to the channel exit. In the ionization part of the
I-V curve, near the knee, the wave has a lower frequency and is stronger and more spread
throughout the thruster. Finally, at very low voltages, the wave is located only near the
anode and the wave frequency is higher than in all previous cases.

Meezan and Cappelli[38, 41, 42] use several low frequency diagnosis methods to measure
experimentally the electron mobility along the thruster. The results are in line with the gen-
eral properties of anomalous diffusion presented above, and in particular, with the presence
of a dip in the electron conductivity around the region of maximum electron shear. And what
is more important, the electron mobility profile computed with the theory of Yoshikawa and
Rose[29] from the measured density oscillations matches fairly well the measured electron
mobility for various operating conditions. A possible correlation between the dip in the elec-
tron conductivity and the electron shear is suggested by Cappelli[42], although no definitive
conclusions have been reached to this respect. A similar mechanism of electron transport
barrier due to high electron shear has been proposed in the area of nuclear fusion inside
tokamaks[112], although Hall and nuclear fusion plasmas are in rather different conditions to
establish a link between them without a more detailed analysis.

In a separate study Chesta et al.[7] focus on the characterization of all low frequency
oscillations in HETs, both axial and azimuthal. In that work, the usual breathing mode
and transit time oscillations are clearly observable together with some special azimuthal
oscillations. The latter ones are caused firstly by the azimuthal asymmetry of the magnetic
field, generated by four magnetic coils, and secondly by the presence of two azimuthally
separated Langmuir probes. Apart from those oscillations, two additional azimuthal low
frequency waves with a tilt angle of 15-20 degrees and a wave mode number of m = 1 are
detected at low and at high voltage. The oscillation at low voltage has a phase velocity of
a few km/s with a frequency of 5-10 kHz and seems to match the properties of the rotating
spoke detected by Janes and Lowder[6], Esipchuk et al. [62], and Lomas and Kilkenny[109].
On the other hand, the oscillation at high voltage has a frequency of roughly 20 kHz and
could be the natural extension of the rotating spoke to the current saturation part of the I-V
curve. Moreover, the relative size of the low frequency density oscillations with respect to the
azimuthally averaged density shows a dip in most operating conditions around the region of
high magnetic field, in agreement with the results of Meezan and Cappelli[38, 41, 42].

Gascon et al.[113, 114, 115] study the propagation properties of low frequency azimuthal
oscillations and analyse the influence of the ceramic material used, either alumina or boron
nitride. In that study, gradient-induced azimuthal oscillations are detected at various axial
locations in the medium frequency range (30-200 kHz). As in previous studies, azimuthal
waves are suppressed around the region of maximum magnetic field. The main novelty of
that study is the dependence of the direction of propagation of the azimuthal waves on the
ceramic material used. The type of material affects the azimuthal oscillations by controlling
the relative position of the magnetic field and plasma density maxima via the secondary
electron emission yield of the material. Apart from these medium frequency oscillations,
Gascon et al. also observe azimuthal oscillations below 30 kHz rotating along +ExB in the
near anode region, but in the opposite direction in the near-plume.
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Smith and Cappelli [116] analyse low frequency oscillations of density, temperature and
electric field in the near field plume of a HET operating in nominal conditions. A density
oscillation is detected at the thruster exit that rotates in the -ExB direction with a phase
velocity of 1.8 km/s and a frequency of 25 kHz. The propagation properties of this oscillation
agree well with the results previously described, except for the propagation direction which
is reported to be opposite to the usual ExB drift. A similar behaviour is reported by Gascon
and Cappelli [114] in the outer region of a Hall thruster with alumina as ceramic material.

More recently, Raitses et al.[117] have observed spokes in a cylindrical Hall thruster. In
a series of experimental studies[8, 9, 118, 119, 120], this oscillation is characterized through
the use of a segmented anode and high-speed imaging. In this case, the spoke travels in the
+ExB direction with a phase speed of about 2 km/s and an azimuthal wave length of the
order of the circumference of the channel, this is, with a wave mode m = 1. These properties
agree well with other experiments described above. Additionally, the influence of the cathode
operation on the spoke and the electron mobility is analysed in that research. In particular,
if the cathode emission is increased, the spoke disappears and the electron conductivity is
greatly reduced. This is a good indication of the connection between the anomalous diffusion
and the spoke oscillation. As a continuation of those analyses, references [121] and [122]
show how it is possible to control, suppress or even promote spoke oscillations by means of a
feedback-loop control on the discharge voltage of the elements of a segmented anode.

In a parallel and independent research, McDonald et al. [10, 123, 124, 125] have used
also high-speed imaging techniques as well as a segmented anode to characterize the spoke
in a wide range of HETs, including both conventional and non-conventional designs (the H6
thruster, the NASA 173Mv1, the Busek BHT-600, the X2 dual nested channel Hall thruster,
and the Helicon Hall thruster). In those analyses, the larger the thruster is, the larger the
mode number of the spoke is. In particular, for the H6 thruster modes m = 2 and m = 3
dominate in nominal operating conditions whereas m = 4 and m = 5 are observed to be
dominant when using the segmented anode [10]. Another result from that research is that
similar azimuthal oscillations are also found in the near plume of the thruster[126].

Similarly, Liu [127, 128] also finds azimuthal oscillations in the BHT-200 and BHT-600
thrusters via high speed-imaging techniques. Although azimuthal plasma structures are found
both at low and high voltages, this is, in the ionization and current saturation parts of the
I-V curve, they are more visible at low voltage. Liu finds that the velocity and frequency of
the wave increase with the discharge voltage by carrying out several parametric variations.
Additionally, Liu also uses krypton as propellant finding similar properties for the spoke
oscillation, being the frequency and velocity of the wave higher than with xenon.

Finally, Vesselovzorov et al. [129] measure also azimuthal oscillations in a laboratory Hall
thruster. The interest in the results of that study lie on the fact that the experimentally mea-
sured electron mobility agrees rather well with that computed from the correlated azimuthal
oscillations of the plasma density and the azimuthal electric field.

Numerical results

Lomas and Kilkenny[109] support their experimental results with the numerical solution of a
simplified version of the two-dimensional fluid equations of electrons, ions and neutrals in a
Hall accelerator with hydrogen as propellant. Even though the conditions of the simulations
are far from modern HETs, it is interesting to see that low frequency azimuthal oscillations
can be promoted by the ionization in a Hall device.
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More recently, Lam et al.[89] have developed a hybrid code that is the natural extension
of Fife’s hybrid model[56, 53] to the axial-azimuthal space. Azimuthal effects are kept in
the formulation at the expense of not solving the radial direction. The results of this code
for the nominal operating point of the simulated thruster show a tilted wave with a phase
velocity of 4 km/s, a wave mode number of m = 4 and a frequency of 40 kHz. This wave
propagates inside the channel in the ExB direction and upstream whereas in the plume the
axial direction of propagation of the wave is reversed. This seems to be correlated with the
change in the gradient of the magnetic field. Moreover, in the region of maximum magnetic
field the waves are mostly longitudinal as detected experimentally[114, 115].

Theory: low-frequency local-linear-stability models

Most of the stability analyses of the Hall discharge carried out so far are local as opposed to
those where the stability is analysed globally. The few studies that do account globally for
the axial variations of the inhomogeneous plasma are focused on the high frequency range
[130, 131, 132, 133, 134, 135]. The local stability analyses covering the low and medium
frequency ranges may be grouped according to whether or not they include ionization in the
formulation. Let us start our discussion with those that do not take it into account.

Even though there exist some previous local stability analyses dedicated to Hall devices
[136, 137], Morozov et al. [2] carried out the first azimuthal stability analysis of the Hall
discharge. They used a cold, two-fluid, quasineutral, collisionless, electrostatic formulation
without electron inertia. Their main conclusion was the existence of unstable azimuthal
oscillations in regions where the gradient of the magnetic field to plasma density ratio is
negative, i.e.:

d/dx(B0/n0) < 0

Esipchuk and Tilinin [1] extended the linear stability analysis of Morozov et al. by accounting
for electron inertia, and electromagnetic and non-quasineutral effects. In the electrostatic
low frequency and quasineutral limit of the resulting dispersion relation, similar results to
those of Morozov [2] were obtained. The stability criterion derived by Esipshuk and Tilinin
seems to cover the gradient-induced oscillations measured experimentally in the medium
frequency range. Additionally, low frequency quasi-longitudinal waves are predicted when
d/dx(B0/n0) > 0. Furthermore, when electron inertia terms are retained in the model,
high frequency, azimuthal, long wavelength oscillations are predicted near the lower-hybrid
frequency.

Kapulkin and Guelman[138, 139] carry out another stability analysis with a two-fluid
formulation specifically suited for the region very close to the anode where the ionization is
negligible and the temperature and the magnetic curvature contribute to the azimuthal drift
of the electron flow. The main novelty with respect to the work of Esipchuk and Tilinin is
the inclusion of electron pressure effects. The electron temperature is included in the model
although its oscillations are neglected. The results indicate the presence of an unstable oblique
wave of low frequency that can promote electron conductivity towards the anode.

More recently, Frias et al.[140, 141] have revisited the local stability of the Hall discharge
by means of a two-fluid collision-less model and applied the resulting stability criterion to ex-
perimental and numerical profiles of the Hall discharge[142, 143]. The local stability analysis
of Frias et al. [140] resembles those by Morozov[2] and by Esipchuk and Tilinin[1]. How-
ever, the effect of the compressibility of the electron flow, which includes the ExB and the
diamagnetic drifts, is accounted for completely, yielding a stability criterion with different
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numerical factors, but qualitatively similar in form to those by Morozov et al., and by Es-
ipchuk and Tilinin. Additionally, the effect of the electron temperature oscillations on the
stability is evaluated by Frias et al.. The resulting stability criterion shows similar features to
the analysis without electron temperature oscillations, but near the stability threshold, the
differences are important, causing that stable cases become unstable if electron temperature
perturbations are accounted for. However, no attempt is done to analyse the influence of the
ionization in the stability of the discharge in the low frequency range.

Within the group of local stability analyses accounting for ionization, the first work is
due to Lomas and Kilkenny [109] in the 1970’s . Beyond reproducing the Janes-Lowder
experimental results and using numerical simulations to analyze the spoke oscillation, they
carried out a linear stability analysis of the Hall accelerator and suggested that the spokes
detected experimentally are linked to the growth of electro-thermal instabilities. However,
the analysis is performed for hydrogen, instead of a more typical propellant of Hall thrusters
like Xenon.

Chesta et al.[144] evaluate numerically the linear stability of experimental steady-state
profiles with a three-fluid description of the discharge including ionization, particle collisions
and electromagnetic effects. The main conclusion of that research is that low frequency
azimuthal oscillations are largely caused by the ionization process and driven in part by the
gradients of the magnetic field and plasma density. However, no investigation is carried out
to describe the exact mechanism of the instability by means of simple analytical expressions.

Gallardo and Ahedo[16] use a three-fluid formalism without electromagnetic terms to anal-
yse the relation of the low frequency azimuthal waves with the electron anomalous diffusion.
The main novelty with respect to previous studies is that the azimuthal three-fluid unsteady
equations are solved to observe non-linear saturation effects. The conditions analysed in that
case correspond to the ionization region of the channel. The results predict a m = 3 azimuthal
wave promoted by the ionization process with a phase velocity of 2.7 km/s travelling in the
-ExB direction.

Finally, Malik and Singh [145] perform a local stability analysis accounting for ionization
partially. The ion and electron equations do contain source terms related to ionization, but
the model does not include the neutral equations, which are important in the low frequency
range. In fact, the breathing mode, one of the main low frequency longitudinal oscillations in
Hall thrusters, cannot be reproduced without considering the neutrals as part of the model.
The results from Malik and Singh predict unstable oscillations in the range of 100 kHz, which
is above the range where the spoke is normally measured.

Conclusions

Low frequency azimuthal oscillations of plasma density and electric field have been measured
experimentally in various HETs operating at several points of the current-voltage curve and
preliminary results from existing simulation codes support the existence of these oscillations.
While oscillations in the near field plume could be promoted by the negative gradient of
the magnetic field, as originally proposed by Morozov et al. and Esipchuk and Tilinin, the
reason for the growth of instabilities inside the thruster is not so clear. It is possible that the
ionization is determinant in this case. The wave propagation is normally in ExB direction
although a few experiments report oscillations in the opposite direction. As a conclusion from
this literature review, it can be stated that it is worth to revisit the local linear stability of
the Hall discharge accounting for the ionization process completely.
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2.7.2 High frequency oscillations

Experimental results

Already in the 1970’s, azimuthal high frequency oscillations with a phase velocity close to
the ExB drift were proposed theoretically and later on detected experimentally by Esipchuk
and Tilinin [1]. Those oscillations appear in the region of negative magnetic field gradient
as long wavelength waves that rotate with no phase shift along the thruster. Tilinin [74]
continued with the analysis of these high frequency waves, confirming their previous findings
and obtaining further insights about their properties that can be summarized as: decreas-
ing intensity with increasing frequency, significant dependence on the operation point and
increasing amplitude with the magnetic field.

At the end of the 1990’s and the beginning of the 2000’s, the interest in the HF spectrum
gained inertia again and several experimental studies have been carried out with modern HETs
ever since. In particular, Guerrini et al. [64] detect azimuthal oscillations in the near field of
the SPT-50 within the 1-10 MHz range using Langmuir probes. With a similar experimental
set-up and a 900 W laboratory HET, Litvak et al. [146, 65] observe intermittent signals of a
few MHz with an azimuthal phase velocity close to the electron drift and a wave mode m = 1.
All these oscillations seem to correspond to the electron drift waves proposed by Esipchuk
and Tilinin. The frequency of the oscillation varies significantly with the operating point
of the thruster since the electron drift velocity is directly proportional to the electric field
and inversely proportional to the magnetic field. An interesting conclusion of the analysis
of Litvak et al. is the fact that the velocity of the wave is not equal to the local value of
the ExB drift, and at the same time is constant along the thruster. These facts point to a
non-local instability mechanism. Additionally, Litvak et al. also observe oscillations of higher
wave-numbers that are independent from the m = 1 oscillation.

Lately, Lazurenko et al. have performed a series of detailed studies on the HF spectrum
of two laboratory thrusters of different size and power, SPT-100-ML and PPS-X000-ML,
using various experimental techniques, both intrusive and non-intrusive: isolated antennas,
magnetic coils and electrostatic probes [147, 148, 149, 150, 151, 152, 153, 154, 155]. As a
summary of those analyses, Lazurenko presents in Ref. [155] the main properties of the HF
signals, in good agreement with the work of Esipchuk et al., Guerrini et al. and Litvak et al.:

1. frequency of a few MHz (1-10 MHz) and fundamental mode m = 1: the instability can
evolve into more complex structures with several m = 1 signals superimposed and/or
higher harmonics.

2. azimuthal propagation: the oscillations propagate mostly azimuthally in the near field
of the thruster, this is, from the magnetic field maximum to a distance of a few cm from
the thruster exit. Axial oscillations in this frequency range are also observed inside the
thruster and further downstream of the near field.

3. intermittency : the HF bursts take place only during the descent part of the discharge
current of the breathing mode oscillations.

4. electron drift velocity : the phase velocity of the azimuthal waves is close to the ExB
drift and, more importantly, constant along the thruster.
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5. azimuthal asymmetry : the azimuthal velocity of the wave is not axi-symmetric possibly
due to an asymmetry of the electric field, which, in turn, may be caused by the presence
of the hollow cathode.

6. variation of the velocity over time: the observed velocity of the instability increases
from the onset to the disappearance of the wave as a consequence of the variation of
the electric field over the breathing mode period.

7. gradient induced waves: based on the previous properties, Lazurenko suggests that these
signals correspond to the fluctuations induced by magnetic field and density gradients
proposed theoretically by Morozov [2] and Esipchuk and Tilinin [1] rather than the
resistivity instabilities suggested by Litvak et al. [156].

8. maximum frequency in optimized operation: as the mass flow is modified to study differ-
ent operating points and the magnetic field is optimized, the frequency of the instability
remains constant and maximal.

9. small azimuthal extension: it is estimated that the size of the wave is one order of
magnitude smaller than the channel circumference.

10. linear azimuthal dispersion relation: experiments show a nearly linear relation between
the frequency and the wave number of the oscillation.

Knoll et al. confirm several of the previous properties in a experimental study [157, 67]
carried out with a laboratory Hall thruster and a group of three Langmuir probes separated
axially and azimuthally that is moved along the thruster. This experimental set-up allows the
detection of axial and azimuthal waves and its variation with the axial location. The results
of the analysis also reinforce the idea of a non-local instability due to the constant azimuthal
speed of the oscillations. Interestingly, in this work it is also pointed out that the velocity of
the azimuthal waves is consistently smaller than the electron drift velocity and thus different
growth mechanisms than those indicated by Lazurenko are suggested. More recently, Tomilin
[158] has detected high frequency oscillation of similar properties in a SPT Hall thruster with
high specific impulse.

On the other hand, Albarede et al. analyse in Ref. [159] low frequency processes and
how they are related to the high frequency oscillations. In particular, as a consequence of the
breathing mode, the maximum of plasma density and the minimum of electric potential in
the near field plume take place at the same time as the high frequency bursts. According to
Albarede, this fact supports the idea that the cathode dynamics and the beam neutralization
process might promote the HF signals.

Another interesting set of experimental studies are those by Kurzyna et al. and Bon-
homme et al. [160, 161, 162, 163, 164]. In these studies, a novel technique called Empirical
Mode Decomposition is used to analyse the signals obtained from experiments. This method,
even though it lacks a strong mathematical foundation, is particularly well suited for the
analysis of non-stationary signals. For such cases, Fourier analysis tends to fail because of
the intermittency. In the first of those researches [160], a thorough evaluation is carried out
of the different oscillations detected with that technique. The usual oscillations (breathing
mode, transit-time and electron drift oscillations) are cleanly filtered and observed. In a later
research, the variation of the oscillations with the operating point is considered. It turns
out that at high voltage the breathing mode almost disappears and transit time oscillations
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become dominant. And more interestingly, the HF burst appear now during the descent part
of the latter ones, what reinforces the idea of a coupling between the dominating medium
frequency oscillation and the high frequency waves.

In line with the numerical results in Refs. [93, 83, 82], in a series of experiments, first Adam
et al. in Ref. [165] and later on Tsikata et al. [68, 69, 70, 71], have detected via collective light
scattering, a technique commonly used in nuclear fusion researches, high frequency and short
wavelength oscillations with azimuthal propagation. The experiments confirm the presence at
the thruster exit of oscillations of a few MHz (1-10 MHz) with a wavelength of the order of the
electron Larmor radius (1 mm) and a velocity of a few km/s, which is close to the ion acoustic
velocity. The results seem to indicate that the propagation velocity has a small component
in the axial direction towards the anode. Given the short wavelength of this oscillations, and
the mechanism based on the interaction between the electron gyro-motion and electric field
oscillations, it is clear that these oscillations cannot be analysed with fluid equations.

Numerical results

Hirakawa et al. [92, 166] implemented the first azimuthal numerical code for the analysis of
oscillations using a particle-in-cell method. In this numerical study, high frequency oscillations
were observed propagating in the ExB direction and enhancing the electron mobility, which
turned out to be of the order of the Bohm velocity. However, this study does not reproduce
the variation of the Hall parameter along the thruster and, in particular, the presence of a dip
of mobility around the thruster, which is one of the key properties of the anomalous diffusion.

As already mentioned, Adam et al. [93] have implemented a full PIC simulation code
in two dimensions (r − θ). Even though the computational cost is enormous, some results
have been obtained for a reduced and simplified geometry. The model does not require
adding any artificial diffusion thanks to the presence of azimuthal high frequency waves that
enhance the cross-field electron mobility. These waves have a wavelength close to the electron
Larmor radius and propagate with a velocity of a few km/s. According to the simulations,
the density variations introduced by the waves can be even higher than the average value in
some parts of the thruster. Moreover, the growth of this type of oscillations is supported by
the stability analysis carried out by Ducrocq et al. [167] who makes use of the kinetic theory
for electrons rather than the conventional fluid approach. Moreover, there are experimental
results verifying the existence of these type of oscillations. These waves could correspond to
those detected by Tsikata et al. in Ref. [69, 71]. Further numerical analyses following the
work of Adam et al. are presented in Refs. [168] and [169] and similar results are obtained
by Coche and Garrigues with an independent PIC code [83, 82].

Lately, some other bi-dimensional numerical codes have been developed. Lam et al. [89],
apart from a hybrid r − θ code, have implemented in parallel a fully fluid simulation code
following the preliminary work of Knoll et al. [170]. With this code, Lam et al. predict
tilted waves at 5 MHz with a mode number of m = 3 in the channel and the near field
plume travelling in the -ExB direction with a phase velocity of 300 km/s. The presence of
these waves gives the required conductivity to the electron flow and makes it unnecessary to
introduce in the simulation artificial mobility. However, there are two arguments against this
result worth mentioning: in first place, experiments normally detect high frequency azimuthal
waves only in the near field plume, not further upstream; and, in second place, the simulated
waves propagate in the opposite direction than what is normally measured.
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Theoretical models

Esipchuk and Tilinin [1] predict, apart from the low frequency oscillation already mentioned
above, a high frequency wave of the electron-drift type. The inclusion of the electron inertia
in the governing equations is the key to turn the dispersion relation into a cubic equation
for the frequency. If the electron inertia is neglected, the dispersion relation reduces to a
quadratic equation whose solutions are in the medium frequency range. If not, roots of the
cubic equation can appear in the high frequency range, close to the lower hybrid frequency,
for certain combinations of the parameters of the model. A wave of similar properties is
normally detected experimentally as already described above.

In a series of studies [171, 172, 173], Baranov et al. analyse separately the stability of the
different regions of the thruster accounting for different effects in each one of them: temper-
ature terms and zero electric field in the ionization region and strong electric and magnetic
fields in the acceleration region. The results predict azimuthal waves of high frequency both in
the ionization and acceleration regions. In the case of the ionization region, the temperature
seems to be the driving force. However, there is no experimental evidence of the existence of
such high frequency azimuthal waves in the rear part of the thruster. Besides, no ionization
terms and neutral gas equations are considered in the model and therefore, low frequency
phenomena are not taken into account, which could modify the behaviour of the dynamical
system.

In Ref. [156] Litvak et al. focus on the effect of the electron collisions on the stability
of the discharge. In their research, two types of unstable azimuthal oscillations appear:
an electrostatic instability and electromagnetic one. Both are promoted by the electron
collisionality, but the former rotates with a frequency close to the lower hybrid frequency (10
MHz) while the latter propagates at the Alfven speed with a frequency of 1 MHz. According
to the analysis, the higher growth rate of the electrostatic oscillation makes it more likely to
appear.

A formalism to analyse the linear stability of a two-fluid electrostatic model of the Hall
discharge is presented by Thomas et al. in Refs. [174, 175]. The result in the no-gradients
limit coincides with the expression of Baranov et al. [171], but the analysis is extended to
account for electron-drift shear, electron-neutral collisions and electron temperature by means
of an equation of state. The resulting dispersion relation is applied to the experimental profiles
of a laboratory thruster and the results indicate the presence of unstable oscillations in the
high frequency regime above 1 MHz.

In Ref. [176], Spektor uses a linear stability method including collisions, macroscopic
gradients and temperature terms to derive a dispersion relation that is used in turn to com-
pute the equivalent anomalous electron collision frequency from plasma susceptibility. This
approach has been successfully applied in the area of MPD thrusters to characterize the elec-
tron conductivity in those devices, but in the case of Hall thrusters, the results obtained by
Spektor predict an anomalous diffusion scaling as 1/B4. Clearly, this relation is against the
experimentally verified scaling law for the Bohm diffusion of 1/B [43].

On the other hand, Ducrocq et al. [167, 177, 178] use a kinetic model to describe the
electron species. In this research an electron drift instability of short wave-length, close to
the electron Larmor radius (1 mm), and high frequency (1-10 MHz), is predicted as a result
of a resonance between the gyro-motion of the electrons and oscillations of the electric field.
This analysis agrees with the numerical results of Adam et al. [93] and Coche and Garrigues
[82, 83] obtained with different PIC codes.
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A second approach to study the stability of the discharge involves analysing the eigenvalue
problem obtained when the axial coordinate is not resolved in the usual exponential form (i.e.,
exp(ikxx)). This method is used by Kapulkin et al. in several studies [131, 132, 133, 135] as
well as by Litvak et al. in Ref. [130]. The same approach is used in classical fluid mechanics to
study the well known Rayleigh instability and hence the name of Rayleigh type of instabilities
in Hall thrusters. The main advantage of this method over the previous one is that the former
is based on a local analysis, while with the latter approach the stability of the discharge is
analysed as a whole. Moreover, it has been observed experimentally that the velocity of
the azimuthal waves is constant along the near field plume. This fact points to a non-local
mechanism and supports the use of more elaborated stability methods such as those used by
Kapulkin and Litvak.

Kapulkin et al. in Ref. [131, 132] and Litvak et al. in Ref. [130] conclude separately that
Rayleigh type of instabilities appear inside the Hall thruster with frequencies higher than
the lower hybrid frequency. In both researches, the phase speed of the unstable wave is of
the order of the ratio Emax/Bmax. Moreover, the exact value of the wave velocity coincides
with the electron drift at a given point along the thruster. The influence of the density and
magnetic field gradients is highlighted by both authors: the higher the gradients are, the lower
the frequency of the wave is. As a consequence of the instability, the electric potential fall is
spread out along the thruster reducing the maximum electric field. However, it is important
to remark that these analyses focus on a frequency range above the one where high frequency
oscillations are detected experimentally since the hybrid lower frequency is in the 1-10 MHz
range for HET [5].

In a later study [133], Kapulkin et al. analyse waves in the lower-hybrid frequency range
with the same approach. The main novelty with respect to the previous formulation is the
inclusion of the ion dynamics. As a result, a resonant effect with the lower hybrid frequency
appears in the dispersion equation. However, the main driver for the instability is the same
as before, the electron drift velocity non-uniformity. This theoretical instability has several
properties in common with those measured experimentally: azimuthal propagation in the
direction of the electron drift, frequency of 1 MHz and wavelength of the order of the channel
circumference and, thus, deserves more attention.

Conclusions

To sum up, long wavelength high-frequency oscillations have been detected by different re-
searchers by means of several experimental techniques in Hall thrusters of various kinds and
sizes. Thus, it seems clear that the presence of these oscillations is an essential property of the
physics involved in HETs, rather than a particular feature of a given model. Their intensity
makes it reasonable to propose a relation with the anomalous electron conductivity. However,
it is only at the thruster exit that these oscillations are azimuthal. Thus, it is not possible
to explain the excessive electron current in the channel based solely on these oscillations. In
that part of the thruster there must be another mechanism enhancing the electron cross-field
mobility.

On the other hand, short-wavelength high-frequency oscillations have also been observed
experimentally via collective light-scattering techniques, and there are numerical results and
analytical theories supporting the presence of the oscillations. Moreover, a relation with
enhanced electron mobility has also been established theoretically and numerically. Thus,
these oscillations could also be a relevant aspect of anomalous diffusion.
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Chapter 3

Local linear stability analyses

In this chapter the local stability of the Hall thruster discharge against azimuthal perturba-
tions is analysed by means of linear methods applied to the fluid equations describing the
dynamics of HET. Local stability analyses are carried out to study the effect of the different
physics involved, starting from very simple models and introducing more and more terms in
the formulation to capture all physics. The aim is to detect possible terms that promote
instabilities in the azimuthal direction that in turn enhance the electron mobility in the axial
direction. The main results and conclusions of this chapter have been presented in Ref. [18].

3.1 General governing 2D fluid equations

The general equations of the Hall discharge are presented in this paragraph. Each one of the
species present in a HET (neutrals, electrons and ions) is accounted for with a separate set of
macroscopic fluid equations based on different conservation principles: particle, momentum
and energy conservation laws. Additionally, Poisson’s equation for the electric field and
a diffusive model for the electron heat flux are also included in the general formulation.
However, while electrons are highly magnetized, ions are considered to be unmagnetized
because the Larmor radius of the latter is much larger than the typical thruster dimensions.
At the same time, ions and neutrals are modelled as cold species, this is, no temperature is
included for them in the equations and, consequently, no energy equation is needed for those
two species. On the other hand, the electron temperature is much larger and is considered
isotropic. No multiply-charged ions are considered since their influence is not regarded crucial
for the problem under analysis. The only collisional processes introduced in the formulation
are the electron-neutral collisions for the exchange of momentum and for the generation of
ions via bulk ionization. For simplicity, no wall losses or wall recombination are included in
any of the equations although they are known to play an important role in the definition of
the axial profile of the main properties. Furthermore, the electron kinetic energy is removed
from the energy equation as it is negligible compared to the internal energy in most regions
of the Hall Thruster. And finally, the only sink of energy introduced in the energy equation
is the one associated to ionization and radiation since elastic collisions have a much smaller
order of magnitude.

25
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Under all these assumptions, the governing equations can be written as:

∂ne

∂t
+∇ · (neve) = nennξi (3.1a)

∂ni

∂t
+∇ · (nivi) = nennξi (3.1b)

∂nn

∂t
+∇ · (nnvn) = −nennξi (3.1c)

mene

(
∂ve

∂t
+ ve · ∇ve

)
= −∇(neTe)− ene(E+ ve ×B)−menennξeve (3.1d)

mini

(
∂vi

∂t
+ vi · ∇vi

)
= eniE−minennξi(vi − vn) (3.1e)

mnnn

(
∂vn

∂t
+ vn · ∇vn

)
= 0 (3.1f)

∂

∂t

(
3

2
neTe

)
+∇ ·

(
5

2
neTeve + qe

)
= −eneve ·E− enennξiαiEi (3.1g)

5

2
neTe∇Te + eqe ×B+mennξeqe = 0 (3.1h)

ϵ0∇ ·E = e(ni − ne) (3.1i)

where nn, ne and ni are the neutral, electron and ion densities, vn, ve and vi are the fluid
velocities of neutrals, electrons and ions, Te is the electron temperature, qe is the electron
heat flux, ξe and ξi represent the electron collisions for momentum exchange and ionization
respectively, E and B are the electric and magnetic fields, mi and me are the ion and electron
masses and e and ϵ0 are the electron charge and the permittivity of free space. Notice
that the usual electron-neutral collision and ionization frequencies have been expressed as
νe = nnξe and νi = nnξi to make their dependence on the neutral density explicit. Notice
as well that the induced magnetic field is neglected and thus, Maxwell’s equations are not
included in the model and the magnetic field is equal to the field externally applied, which
is stationary (∂B/∂t = 0), solenoidal (∇ · B = 0), irrotational (∇ × B = 0) and mostly
radial. And consequently, the electric field derives from a potential (∇ϕ = −E). All this
implies that electromagnetic effects are neglected completely and the problem is reduced to
an electrostatic formulation.

The quasi-neutrality assumption (ne = ni) has not been introduced in the general model
in order to evaluate its possible influence on the stability of the discharge. However, it is well
known that the plasma inside HETs is quasi-neutral and in many of the analyses presented
in this chapter this hypothesis is applied.

It is important to remark that even though the equations above can be applied to fully
three-dimensional problems, in this case the radial variation of the properties is neglected
reducing the problem to two-dimensions: axial and azimuthal. Moreover, curvature effects
are also neglected as the mean radius of the channel is typically larger than the difference
between the outer and inner radii. All in all, the problem is reduced to two dimensions: x
along the axial direction and y along the azimuthal direction.
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3.2 Simple linear stability analysis of the acceleration region

The first stability analysis of the HET discharge was carried out by Morozov et al. in Ref. [2].
A more extensive analysis was performed by Esipchuk and Tilinin in Ref. [1], which reduces to
Morozov’s results in the limit of low frequency oscillations. The very same problem is revisited
here with two goals: presenting the methodology to use with more complex models in the next
sections and checking the hypothesis and results obtained by Morozov and Esipchuk. Some
doubts have been raised by Barral in Ref. [19] about the validity of those studies due to the
use of gradients in the formulation and thus it makes sense to revisit the analyses. Including
gradients (e.g., plasma density and magnetic field) implies that the plasma is heterogeneous
and thus the local method used traditionally in stability analyses is not completely applicable
as explained in Ref. [179]. A similar argument is used by Barral [19] to prefer a WKB
approach over traditional methods to analyse the stability of transit time oscillations.

The traditional methodology used here for the linear stability analysis of the Hall thruster
discharge against azimuthal oscillations can be summarized as follows:

- derive the governing equations of the model from the general formulation under certain
simplifying assumptions

- obtain the zero-th order stationary axi-symmetric solution (∂/∂t = 0, ∂/∂y = 0)

- linearise the equations around the zero-th order solution assuming that perturbations
with respect it are much smaller

- use a Fourier-like form for the variation of the perturbations (f̂(t, x, y) = f̄ exp(−iωt+
ikxx+ ikyy)) in order to transform the differential problem into an algebraic one

- use dimensional analysis to reduce the number of variables of the problem

- derive a dispersion relationship relating the frequency of the perturbations (ω) with the
wavelengths (kx, ky)

- in case that deriving or solving the dispersion relation analytically is impossible or too
complex, derive the equivalent eigenvalue problem in matrix form

3.2.1 Stability equations

The main simplifying hypothesis in this case are: no electron collisions (ξe = 0), no bulk
ionization (ξi = 0), no electron temperature (Te = 0), no electron inertia terms (me = 0) and
quasi-neutrality (ne = ni). This model corresponds approximately to the acceleration region
of the Hall thruster. Under these assumptions, the general model reduces to:

∂n

∂t
+∇ · (nve) = 0 (3.2a)

∂n

∂t
+∇ · (nvi) = 0 (3.2b)

0 =
−e

me
(E+ ve ×B) (3.2c)

mi

(
∂vi

∂t
+ vi · ∇vi

)
= eE (3.2d)

The zero-th order solution consistent with the previous model is given by:
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n0 = n0(x) n0(x)vix0(x) = const ⇒ d lnn0

dx
= −d ln vix0

dx
(3.3a)

vix0 > 0 viy0 = 0 vex0 = 0 Ey0 = 0 Ex0 = E0(x) > 0 (3.3b)

vix0
dvix0
dx

=
e

mi
E0(x) ⇒

dvix0
dx

> 0 ⇒ dn0

dx
< 0 (3.3c)

vey0 = −E0(x)/B0(x) (3.3d)

It is interesting to note that some authors tend to neglect the gradients of the plasma
density or the ion velocity. However, in order to maintain the closed-drift motion of the
electrons, the gradients must be kept in the zero-th order solution. Based on the electron
momentum equation the electron drift is caused either by the pressure term or by the electric
field which also accelerates the ions. In both cases the gradients are needed.

Under the assumption of small perturbations (f = f0+f̂ , f̂ ≪ f0), it is possible to linearise
the previous equations around the zero-th order solution by neglecting all second order terms:

∂n̂

∂t
+ n0

(
∂v̂ex
∂x

+
∂v̂ey
∂y

)
+ v̂ex

dn0

dx
+ vey0

∂n̂

∂y
= 0 (3.4a)

∂n̂

∂t
+ n0

(
∂v̂ix
∂x

+
∂v̂iy
∂y

)
+ v̂ix

dn0

dx
+ vix0

∂n̂

∂x
+ n̂

dvix0
dx

= 0 (3.4b)

0 =
−e

me

(
−∂ϕ̂

∂x
+ v̂eyB0

)
(3.4c)

0 =
−e

me

(
−∂ϕ̂

∂y
− v̂exB0

)
(3.4d)

∂v̂ix
∂t

+ vix0
∂v̂ix
∂x

+ v̂ix
dvix0
dx

= − e

mi

∂ϕ̂

∂x
(3.4e)

∂v̂iy
∂t

+ vix0
∂v̂iy
∂x

= − e

mi

∂ϕ̂

∂y
(3.4f)

If a Fourier-like form is used for the perturbations, the formulation is transformed into:

−iωn̄+ in0(kxv̄ex + kyv̄ey) + v̄ex
dn0

dx
+ vey0ikyn̄ = 0 (3.5a)

−iωn̄+ in0(kxv̄ix + kyv̄iy) + v̄ix
dn0

dx
+ vix0ikxn̄+ n̄

dvix0
dx

= 0 (3.5b)

0 =
−e

me

(
−ikxϕ̄+ v̄eyB0

)
(3.5c)

0 =
−e

me

(
−ikyϕ̄− v̄exB0

)
(3.5d)

−iωv̄ix + vix0ikxv̄ix + v̄ix
dvix0
dx

= − e

mi
ikxϕ̄ (3.5e)

−iωv̄iy + vix0ikyv̄iy = − e

mi
ikyϕ̄ (3.5f)
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Given the previous set of equations, it is possible to make the problem non-dimensional
by choosing the following reference variables:

- mass : mi

- charge : e

- time : ωci = eB0/mi

- density: n0

- length : ln = −d lnn0/dx > 0

The non-dimensional version of the previous set of equations is reduced to:

−iω̃ñ+ i(k̃xṽex + k̃yṽey)− ṽex + ṽey0ik̃yñ = 0 (3.6a)

−iω̃ñ+ i(k̃xṽix + k̃yṽiy)− ṽix + ṽix0ik̃xñ+ ñṽix0 = 0 (3.6b)

0 = −ω̃e

(
−ik̃xϕ̃+ ṽey

)
(3.6c)

0 = −ω̃e

(
−ik̃yϕ̃− ṽex

)
(3.6d)

−iω̃ṽix + ṽix0ik̃xṽix + ṽixṽix0 = −ik̃xϕ̃ (3.6e)

−iω̃ṽiy + ṽix0ik̃yṽiy = −ik̃yϕ̃ (3.6f)

Notice that due to particle and momentum conservation, the zero-th order solution verifies
dvix0/dx = vix0/ln and ṽ2ix0 = −ṽey0.

Equations in (3.6) yield the following dispersion relationship:

0 =
(
−iω̃ + (ik̃x + 1)ṽix0

)2 (
− iω̃ + ik̃xṽix0

)
+

+
(
(ik̃x − 1)(−iω̃ + ik̃xṽix0)k̃x/k̃y + ik̃y(−iω̃ + (ik̃x + 1)ṽxi0)

)(
−iω̃ + ik̃yṽey0

) (3.7)

This dispersion relation is a cubic equation for ω̃ and defines implicitly the dependence of
the frequency on the wavelengths of the perturbation ω̃ = ω̃(k̃x, k̃y; ṽix0, ṽey0(ṽxi0)) where the
only parameter is the non-dimensional ion velocity ṽxi0. The condition for growing unstable
perturbations is Im(ω̃) > 0.

Equations in (3.6) can also be expressed in matrix form as a general eigenvalue problem
in ω̃: (Aω̃ + B)u = 0 where the vector u is defined as u = (ñ, ṽex, ṽey, ṽix, ṽix, ϕ̃) and the
matrices A and B are defined as:

A =



−i 0 0 0 0 0
−i 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −i 0 0
0 0 0 0 −i 0


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B =



ik̃yṽey0 ik̃x − 1 ik̃y 0 0 0

(ik̃x + 1)ṽix0 0 0 ik̃x − 1 ik̃y 0

0 0 ω̃e 0 0 −ik̃xω̃e

0 −ω̃e 0 0 0 −ik̃yω̃e

0 0 0 (ik̃x + 1)ṽix0 0 ik̃x
0 0 0 0 ik̃xṽix0 ik̃y


Due to the fact that electron inertia and electromagnetic terms have been neglected in the
formulation, there are no time derivatives of the variables ṽex, ṽey and ϕ̃ in the equations
(i.e., all coefficients in matrix A are zero for these variables), and this makes it possible to
pre-eliminate them. In that case, the general eigenvalue problem can be reduced to:

(Cω̃ +D)w = 0 (3.8)

where w = (ñ, ṽix, ṽix) and

C =

 −i 0 0

ik̃x/k̃y −i 0
i 0 −i


D =

 (ik̃x + 1)ṽix0 (ik̃x − 1) ik̃y
−ik̃xṽey0 (ik̃x + 1)ṽix0 0

−ik̃yṽey0 0 ik̃xṽix0


3.2.2 Comparison with Morozov and Esipchuk’s dispersion relations

In order to recover Morozov and Esipchuk’s dispersion relations, it is necessary to assume
short wavelength perturbations (k̃x ≫ 1). Under this assumption, equation (3.7) reduces to:

0 = (−iω̃ + ik̃xṽix0)
2 + (−iω̃ + ik̃yṽey0)ik̃

2/k̃y (3.9)

where k̃ =
√

k̃2x + k̃2y is the wavelength of the perturbation. Note that the trivial solution

(ω̃ = −iṽix0) yields a stable solution, and thus has been directly removed from the dispersion
relation.

The short wavelength hypothesis (k̃x ≫ 1) is equivalent to neglect the gradients of the ion
velocity, vix0, and the influence of the density gradient in the ion continuity equation. This
assumption is incompatible with the analysis of purely azimuthal waves (k̃x = 0), which are
of interest here.

Equation (3.9) is the non-dimensional version of equation (25) from Ref. [1]. The only
difference is the definition of the reference length, ln. Here, it only depends on the density
gradient, ln = d lnn0/dx, but in Ref. [1] the gradient of the magnetic field also appears,
lB = d ln(n0/B0)/dx. A similar discrepancy has been detected by Barral in Ref. [19]. The
reason for this discrepancy lies on the fact that the electron axial and azimuthal velocity
expressions deduced from the electron momentum equations are replaced in the electron
continuity equation before the linearisation and the Fourier-expansion of the equations. This
causes the gradient of the magnetic field to appear in the dispersion relation proposed by
Morozov, and Esipchuk and Tilinin. It is unclear which approach is more consistent. In fact,
this shows that the local stability analysis has its limitations while dealing with heterogeneous
plasmas.
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3.2.3 Azimuthal oscillations

In the case of purely azimuthal oscillations (k̃x = 0), the dispersion relation (3.7) is simplified
considerably. Apart from the trivial solution (ω̃ = −iṽix0), which is stable, the remaining
solutions verify the following relation:

0 = (−iω̃ + ṽix0)(−iω̃) + ik̃y(−iω̃ + ik̃yṽey0) (3.10)

In the range of low frequency oscillations (ω̃ ≪ k̃yṽey0), the dispersion relation can be
simplified to:

0 = (ω̃ + iṽix0)ω̃ + k̃2y ṽey0 (3.11)

Taking into account that −ṽey0 = ṽ2ix0, the solutions of equation (3.11) can be expressed
as:

ω̃ =
1

2
ṽix0

(
−i±

√
4k̃2y − 1

)
This dispersion relation is applicable to the low frequency range and corresponds to stable

solutions for all possible values of the wave number k̃y.

3.2.4 Influence of the electron temperature

The electron temperature has been neglected in the previous analysis. However, it is easy to
evaluate its effect in the linear stability analysis. It is possible to account for it by introducing
a constant temperature, Te0, in the electron momentum equation. No perturbations on the
electron temperature are considered at this stage and thus, the energy equation is not needed
in the formulation. The resulting dispersion relation is:

0 =
(
−iω̃ + (ik̃x + 1)ṽix0

)2 (
− iω̃ + ik̃xṽix0

)
+ (3.12)

+
(
(ik̃x − 1)(−iω̃ + ik̃xṽix0)k̃x/k̃y + ik̃y(−iω̃ + (ik̃x + 1)ṽxi0)

)(
−iω̃ + ik̃y(ṽey0 − 2Te0)

)
The difference with respect to (3.7) is the presence of the temperature T̃e0 with the electron

azimuthal velocity, ṽey0, in the last term of the dispersion relation. Besides, the zero-th order
solution verifies now (−ṽey0) = ṽ2ix0−T̃e0. With these two important differences, the dispersion
relation for purely azimuthal oscillations in the low frequency range is given by:

0 = (ω̃ + iṽix0)ω̃ + k̃2y(ṽey0 − 2T̃e0) (3.13)

whose solutions are:

ω̃ =
1

2
ṽix0

(
−i±

√
4k̃2y(1 + T̃e0/ṽ2ix0)− 1

)
Anyway, the stability of the perturbations remains unchanged with respect to the case

with cold electrons.
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3.3 Influence of additional terms

In the previous section the stability of the acceleration region was analysed with a very simple
model. In this paragraph several assumptions are relaxed in order to study the separated and
combined effects of plasma non-quasineutraility (ne ̸= ni), electron inertia (me ̸= 0), closed-
drift gradient (dvey0/dx ̸= 0) and electron-neutral collisions (ξe ̸= 0). Some authors claim that
these effects promote the growth of instabilities in the azimuthal direction and therefore it is
interesting to study them separately. The effect of the collisions is in any case small compared
to the electron Larmor frequency (i.e., meνe/eB0 ≪ 1) what ensures that electrons exhibit
the usual closed-drift motion inside the thruster. All these terms appear as small corrections
to the dispersion relation obtained previously and thus regular and singular perturbations
methods are used to analyse the influence of the different elements. Moreover, the resulting
dispersion relation is compared against those proposed by other authors.

The formulation obtained under the previous hypothesis is given by:

∂ne

∂t
+∇ · (neve) = 0 (3.14a)

∂ni

∂t
+∇ · (nivi) = 0 (3.14b)

mene

(
∂ve

∂t
+ ve · ∇ve

)
= −ene(E+ ve ×B)−meneνeve (3.14c)

mini

(
∂vi

∂t
+ vi · ∇vi

)
= eniE (3.14d)

ϵ0∇ ·E = e(ni − ne) (3.14e)

The corresponding zero-th order solution can be assumed to be quasineutral and without
terms of electron inertia. It is described by the following relations:

ni0 = ne0 = n0(x) (3.15a)

n0(x)vix0 = const ⇒ d lnn0

dx
= −d ln vix0

dx
(3.15b)

n0(x)vex0 = const ⇒ d lnn0

dx
= −d ln vex0

dx
(3.15c)

vix0 > 0 viy0 = 0 Ey0 = 0 (3.15d)

Ex0 = E0(x) > 0 (3.15e)

vix0
dvix0
dx

=
e

mi
E0(x) ⇒

dvix0
dx

> 0 ⇒ dn0

dx
< 0 (3.15f)

vey0 = −E0(x)

B0(x)
(3.15g)

vex0 =
meνe(x)

eB0(x)
vey0(x) (3.15h)

Distribution A:  Approved for public release; distribution is unlimited.



3.3. INFLUENCE OF ADDITIONAL TERMS 33

The linearised equations can be written as:

∂n̂e

∂t
+ n0

(
∂v̂ex
∂x

+
∂v̂ey
∂y

)
+ v̂ex

dn0

dx
+ vex0

∂n̂e

∂x
+ vey0

∂n̂e

∂y
+ n̂e

dvex0
dx

= 0 (3.16a)

∂n̂i

∂t
+ n0

(
∂v̂ix
∂x

+
∂v̂iy
∂y

)
+ v̂ix

dn0

dx
+ vix0

∂n̂i

∂x
+ n̂i

dvix0
dx

= 0 (3.16b)

∂v̂ex
∂t

+ vex0
∂v̂ex
∂x

+ vey0
∂v̂ex
∂y

+ v̂ex
dvex0
dx

=
−e

me

(
−∂ϕ̂

∂x
+ v̂eyB0

)
− νev̂ex (3.16c)

∂v̂ey
∂t

+ vex0
∂v̂ey
∂x

+ vey0
∂v̂ey
∂y

+ v̂ex
dvey0
dx

=
−e

me

(
−∂ϕ̂

∂y
− v̂exB0

)
− νev̂ey (3.16d)

∂v̂ix
∂t

+ vix0
∂v̂ix
∂x

+ v̂ix
dvix0
dx

= − e

mi

∂ϕ̂

∂x
(3.16e)

∂v̂iy
∂t

+ vix0
∂v̂iy
∂x

= − e

mi

∂ϕ̂

∂y
(3.16f)

−

(
∂2ϕ̂

∂x2
+

∂2ϕ̂

∂y2

)
=

e

ϵ0
(n̂i − n̂e) (3.16g)

Assuming a Fourier-like form for the perturbations, the non-dimensional version of the
resulting equations is:

−iω̃ñe + i(k̃xṽex + k̃yṽey)− ṽex + ṽex0ik̃xñe + ṽey0ik̃yñe + ñeṽex0 = 0 (3.17a)

−iω̃ñi + i(k̃xṽix + k̃yṽiy)− ṽix + ṽix0ik̃xñi + ñiṽix0 = 0 (3.17b)

−iω̃ṽex + ṽex0ik̃xṽex + ṽey0ik̃yṽex + ṽexṽex0 = −ω̃e(−ik̃xϕ̃+ ṽey)− ν̃eṽex (3.17c)

−iω̃ṽey + ṽex0ik̃xṽey + ṽey0ik̃yṽey + ṽexγ̃ṽey0 = −ω̃e(−ik̃yϕ̃− ṽex)− ν̃eṽey (3.17d)

−iω̃ṽix + ṽix0ik̃xṽix + ṽixṽix0 = −ik̃xϕ̃ (3.17e)

−iω̃ṽiy + ṽix0ik̃yṽiy = −ik̃yϕ̃ (3.17f)

(k̃2x + k̃2y)ϕ̃ = ω̃2
pi(ñi − ñe) (3.17g)

where γ̃ = −(d ln vey0/dx)/(d lnn0/dx) accounts for the gradients of the closed-drift and
plasma density, ω̃2

pi = (e2n0)/(ϵ0miω
2
i ) is the non-dimensional ion plasma frequency and

ω̃e = (eB0)/(meωi) = mi/me is the non-dimensional electron Larmor frequency. Notice that
for the zero-th order solution it still holds that (−ṽey0) = ṽ2ix0 and ṽex0 = ṽey0ν̃e/ω̃e ≪ ṽey0.

The momentum electron equations can be expressed alternatively in matrix form as:

Sṽe = ω̃eik̃ϕ̃

where the matrix S contains both the magnetic field and collisional terms as well as the
electron inertia:

S =

 −iω̃ + (ik̃x + 1)ṽex0 + ik̃yṽey0 + ν̃e ω̃e

γ̃ṽey0 − ω̃e −iω̃ + ik̃xṽex0 + ik̃yṽey0 + ν̃e


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In this case the dispersion relation is expressed more compact as an eigenvalue problem
in matrix form: (Aω̃+B)w = 0 where w = (ñe, ñi, ṽex, ṽey, ṽix, ṽiy, ϕ̃) and the matrices are:

A =



−i 0 0 0 0 0 0

0 −i 0 0 0 0 0

0 0 −i 0 0 0 0

0 0 0 −i 0 0 0

0 0 0 0 −i 0 0

0 0 0 0 0 −i 0

0 0 0 0 0 0 0



B =



(ik̃x + 1)ṽex0+

+ik̃yṽey0
0 ik̃x − 1 ik̃y 0 0 0

0 (ik̃x + 1)ṽix0 0 0 ik̃x − 1 ik̃y 0

0 0
(ik̃x + 1)ṽex0+

+ik̃yṽey0 + ν̃e
ω̃e 0 0 −ik̃xω̃e

0 0 γ̃ṽey0 − ω̃e
ik̃xṽex0+

+ik̃yṽey0 + ν̃e
0 0 −ik̃yω̃e

0 0 0 0 (ik̃x + 1)ṽix0 0 ik̃x

0 0 0 0 0 ik̃xṽix0 ik̃y

ω̃2
pi −ω̃2

pi 0 0 0 0 (k̃2x + k̃2y)



Nevertheless, the resulting dispersion relation can be expressed in general as:

1

ω̃2
pi

=
1

(k̃2x + k̃2y)

(
ñi

ϕ̃
− ñe

ϕ̃

)

ñi

ϕ̃
= −

(k̃2x + ik̃x)(−iω̃ + ik̃xṽix0) + k̃2y(−iω̃ + (ik̃x + 1)ṽix0)

(−iω̃ + (ik̃x + 1)ṽix0)2(−iω̃ + ik̃xṽix0)

ñe

ϕ̃
= ω̃e

(−iω̃ + ik̃xṽex0 + ik̃yṽey0 + ν̃e)(k̃
2
x + k̃2y + ik̃x)− iω̃ek̃y + γ̃k̃y(k̃yṽex0 − k̃xṽey0)

det(S)(−iω̃ + (ik̃x + 1)ṽex0 + ik̃yṽey0)

where det(S) is the determinant of matrix S.
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So far no assumption has been made on the order of magnitude of the different frequencies
involved in the formulation. For typical HET conditions, it is reasonable to assume ω̃e ≫
ω ∼ k̃yṽey0 ∼ ν̃e. If we neglect all second order terms in (1/ω̃e), the electron density term of
the dispersion relation is much simpler:

ñe

ϕ̃
=

1

ω̃e
(k̃2x + k̃2y + ik̃x)+

+
k̃y

(ω̃ − k̃yṽey0 + i(ik̃x + 1)ṽex0)

(
1 +

γ̃ṽey0
ω̃e

(1− ik̃x) +
iν̃e
ω̃e

(k̃2x + k̃2y + ik̃x)

k̃y

)

or equivalently:

ñe

ϕ̃
=

1

ω̃e
(k̃2x + k̃2y + ik̃x)+

+
k̃y

(ω̃ − k̃yṽey0)

(
1 +

γ̃ṽey0
ω̃e

(1− ik̃x) +
iν̃e
ω̃e

(
(k̃2x + k̃2y + ik̃x)

k̃y
− (ik̃x + 1)ṽey0

(ω̃ − k̃yṽey0)

))

There are two limits that deserve more attention. In first place, under the short wavelength
hypothesis (k̃x ≫ 1) all axial gradients can be neglected, and the dispersion relation simplifies
to:

0 =
1

ω̃2
pi

− 1

(ω̃ − k̃xṽix0)2
+

1

ω̃e
+

+
k̃y

k̃2(ω̃ − k̃yṽey0)

(
1− γ̃ṽey0

ω̃e
ik̃x +

iν̃e
ω̃e

(
k̃2

k̃y
− ik̃xṽey0

(ω̃ − k̃yṽey0)

)) (3.18)

On the other limit, purely azimuthal oscillations (k̃x = 0) are characterized by the follow-
ing dispersion relation:

0 =
1

ω̃2
pi

− 1

ω̃(ω̃ + iṽix0)
+

1

ω̃e
+

+
1

k̃y(ω̃ − k̃yṽey0)

(
1 +

γ̃ṽey0
ω̃e

+
iν̃e
ω̃e

(
k̃y −

ṽey0

(ω̃ − k̃yṽey0)

)) (3.19)

In both cases, the first term represents the influence of plasma non-quasineutrality while
the ion motion yields the second term. The third term represents the influence of electron
inertia alone, while the fourth term captures the combined effect of the plasma density gradi-
ent, closed-drift gradient (γ̃) and electron collisions (ν̃e). For typical conditions inside HETs,

it holds that ω̃2
pi ≫ ω̃e and therefore plasma non-quasineutrality can be neglected compared

to electron inertia effects. In any case, both terms affect the dispersion relation similarly. It
is also interesting to note that the influence of electron collisions and the closed-drift gradient
are of the same order magnitude as the electron inertia term. In the quasineutral and massless
electrons limit (ω̃pi ≫ 1, ω̃e ≫ 1), the dispersion relations (3.9) and (3.10) are recovered.
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3.3.1 Comparison with dispersion relations obtained by other authors

Baranov [171] analyses the stability of the acceleration region with a simplified version of the
model presented here. In particular, all gradients are neglected as well as electron collisions
under the short wavelength hypothesis. With those assumptions equation (3.18) reduces to:

0 =
1

ω̃2
pi

− 1

(ω̃ − k̃xṽix0)2
+

1

ω̃e
(3.20)

Equation (3.20) is equivalent to equation (3) of Ref. [171] in the limit of unmagnetized ions
(ωi ≪ ω) and highly magnetised electrons (ωe ≫ ω).

Esipchuk [1] derives a dispersion relation for a collisionless plasma with no velocity gra-
dients. In that case equation (3.18) reduces to:

0 =
1

ω̃2
pi

− 1

(ω̃ − k̃xṽix0)2
+

1

ω̃e
+

k̃y

k̃2(ω̃ − k̃yṽey0)

(
1− γ̃ṽey0

ω̃e
ik̃x

)
(3.21)

In the electrostatic limit, equation (22) of Ref. [1] is similar to equation (3.21). The main
difference is related to the way the closed-drift velocity gradient appears in the formulation.
Here the effect scales as (1/ω̃e) while in Esipchuk’s relation it is of order unity. The main
difference between both analysis resides in the fact that Esipchuk et al., as explained before,
replace the expressions for the axial and azimuthal electron velocity derived from the electron
momentum equation in the electron continuity equation before the linearisation and Fourier-
expansion of the equations.

Thomas [174] analyses the same problem with electron collisions and closed-drift gradient
but without plasma density gradient. Under those two hypothesis equation (3.18) can be
expressed as:

0 =
1

ω̃2
pi

− 1

(ω̃ − k̃xṽix0)2
+

1

ω̃e
+

1

(ω̃ − k̃yṽey0 + i(ik̃x + 1)ṽex0)

(
− γ̃ṽey0

ω̃e
i
k̃xk̃y

k̃2
+

iν̃e
ω̃e

)
(3.22)

Equation (3.22) is equivalent to equation (29) of Ref. [174] in the limit of unmagnetized ions
and highly magnetized electrons. It is also interesting to note that Thomas also concludes
that the closed-drift gradient term of the dispersion relation is of order (1/ω̃e) contrary to
what Esipchuk obtains.

Litvak et al. [156] analyse the influence of the collisions in the stability of the discharge
in the HF range. In that case, no gradients are included in the formulation. Under those
conditions equation (3.18) can be expressed as:

0 =
1

ω̃2
pi

− 1

(ω̃ − k̃xṽix0)2
+

1

ω̃e
+

1

(ω̃ − k̃yṽey0)

iν̃e
ω̃e

(3.23)

Equation (3.23) is equivalent to equation (16) of Ref. [156].
Spektor [176] generalizes the dispersion relation derived by Litvak to include all gradients

(except the closed-drift gradient) for purely azimuthal waves. In those conditions, equation
(3.19) can be expressed as:

0 =
1

ω̃2
pi

− 1

ω̃(ω̃ + iṽix0)
+

1

ω̃e
+

1

k̃y(ω̃ − k̃yṽey0 + iṽex0)

(
1 +

iν̃e
ω̃e

k̃y

)
(3.24)

Equation (3.24) is equivalent to equation (24) of Ref. [176].
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3.3.2 Azimuthal oscillations

Equation (3.19) is the dispersion relation corresponding to purely azimuthal oscillations. It is
valid for both the low frequency and high frequency regimes since it captures electron inertia
terms as well as collisional effects. Taking into account that in Hall thrusters ω̃2

pi ≫ ω̃e ≫
ν̃e ∼ k̃yṽey0 ∼

√
ω̃e, the dispersion relation can also be expressed as:

0 =
1

ω̃e
− 1

ω̃(ω̃ + iṽix0)
+

1

k̃y(ω̃ − k̃yṽey0 + iṽey0ν̃e/ω̃e)

(
1 +

γ̃ṽey0
ω̃e

+
iν̃e
ω̃e

k̃y

)
(3.25)

Equation (3.25) is third order in ω̃ and thus has three possible solutions: two belonging
to the low frequency regime and already analysed in the previous section and one new high
frequency solution due to the presence of the electron inertia terms. Thanks to the fact that
the electron inertia terms (including electron collisions and closed drift gradient) appear as
corrections of order (1/ω̃e), it is possible to use regular and singular perturbation methods to
determine if the solutions of the cubic equation correspond to stable or unstable solutions.

Cubic dispersion relation for HF oscillations

In the high frequency limit (ω̃ ≫ iṽix0) without collisions (ν̃e = 0) and closed-drift gradient
(γ̃ = 0) it is possible to simplify the dispersion relation (3.25) to:

0 =
1

ω̃e
− 1

ω̃2
+

1

k̃y(ω̃ − k̃yṽey0)
(3.26)

which corresponds to the following cubic equation with real coefficients:

0 = ω̃3 + ω̃2
(
ω̃e/k̃y − k̃yṽey0

)
− ω̃eω̃ + ω̃ek̃yṽey0

The exact solution of the cubic equation with real coefficients can be obtained from the
following coefficients:

Q = (3a1 − a22)/9

R = (9a2a1 − 27a0 − a32)/54

D = Q3 +R2

where a2, a1 and a0 are the coefficients of the ω̃2, ω̃ and ω̃0 terms of the cubic equation
respectively. In general, if D 6 0, then all roots of the equation are real (metastable), but if
D > 0 then there are two solutions which are complex conjugate (unstable). In our case, based
on the fact that the electron cyclotron frequency is much bigger than the rest of frequencies
involved, it is possible to compute:

D ≈ ṽey0ω̃
4
e

27k̃2y
< 0

where the relation ṽey0 = −ṽ2ix0 has been taken into account.

Consequently, there are no unstable solutions under the current hypothesis (i.e, no colli-
sions, no closed-drift gradient, high frequency range).
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Asymptotic analysis of LF oscillations

In the limit of low frequency oscillations (ω̃ ≪ k̃yṽey0), the dispersion relation (3.25) can be
expressed as:

0 =
1

ω̃e
− 1

ω̃(ω̃ + iṽix0)
− 1

k̃2y ṽey0

(
1 +

γ̃ṽey0
ω̃e

+
iν̃ek̃y
ω̃e

(1 + 1/k̃2y)

)
(3.27)

Based on the ordering of the frequencies involved (ω̃e ≫ ω̃ ∼ k̃yṽey0 ∼ ν̃e ≫ ṽix0), it is
possible to propose a solution of the form:

ω̃ = ω̃0 +

(
1

ω̃e

)
ω̃1

where ω̃0 is the solution of the equation in the limit (1/ω̃e) = 0 which was already obtained
in section 3.2.3 as:

ω̃0 =
1

2
ṽix0

(
−i±

√
4k̃2y − 1

)
The frequency ω̃1 corresponds to the solution of the equation (3.27) at the order (1/ω̃e),

this is:

0 = −k̃2y ṽey0

(
1− γ̃

k̃2y
− iν̃e

k̃yṽey0
(1 + 1/k̃2y)

)
ω̃0(ω̃0 + iṽix0) + ω̃1(2ω̃0 + iṽix0)

whose solution can be expresses as:

ω̃1 = ±
k̃4y ṽ

2
ey0√

4k̃2y − 1

(
1− γ̃

k̃2y
− iν̃e

k̃yṽey0
(1 + 1/k̃2y)

)

Depending on the value of the azimuthal wave number k̃y, there are different alternatives:

4k̃2y > 1 : Im(ω̃1) = ±
k̃3y ṽey0ν̃e√
4k̃2y − 1

(1 + 1/k̃2y)

4k̃2y < 1 : Im(ω̃1) = ±
k̃3y ṽey0√
1− 4k̃2y

(1− γ̃/k̃2y)

In the first case, for large wave numbers (k̃y ≫ 1) the imaginary part of ω̃1 is expected
to compensate Im(ω̃0) and make the overall solution unstable (Im(ω̃) > 0). This means that
electron collisions are expected to make the discharge unstable for large wave numbers. This
fact will be verified later on when solving the full dispersion relation numerically.

In the second case, the order of magnitude of Im(ω̃1) is similar to Im(ω̃0) and therefore, it is
not expected to find unstable solutions. Only in the limit k̃y → 0, the ratio of both imaginary
parts tends to a constant Im(ω̃1)/Im(ω̃0) → ±(ṽ3ix0γ̃) which can compensate the factor 1/ω̃e

and make the overall solution unstable. The numerical solution of the full dispersion relation
will determine what is the behaviour in that case.

To sum up, both the the closed-drift gradient and the electron collisions seem to promote
the growth of unstable oscillations. The former enhances the appearance of long wavelength
oscillations while the latter promotes short wavelength waves.
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Singular perturbations analysis for HF oscillations

In the previous sections the influence of electron inertia on low and high frequency solutions
has been analysed, as well as the effect of electron collisions and the closed-drift gradient
on the low frequency regime. Thus, it remains to analyse the influence of those two terms
combined with the electron inertia term on the high frequency range. For that purpose the
singular perturbations method is used.

Equation (3.25) can be rewritten in the following form:

0 =
ω̃

ω̃e
(ω̃ + iṽix0)(ω̃ − k̃yṽey0 + iṽex0)− (ω̃ − k̃yṽey0 + iṽex0)+

+
ω̃

k̃y
(ω̃ + iṽix0)

(
1 +

γ̃ṽey0
ω̃e

+
iν̃e
ω̃e

k̃y

)
Taking into account the following ordering of the frequencies involved valid for Hall

thrusters, (ω̃e ≫ ω̃ ∼ k̃yṽey0 ∼ ν̃e ∼
√
ω̃e ≫ ṽix0 ≫ 1), it is possible to apply the singu-

lar perturbations taking as small parameter ϵ̃ = (1/
√
ω̃e) ≪ 1 and propose a solution as a

series expansion in ϵ̃:
ω̃ = α̃ϵ̃−v

α̃ = α̃0 + ϵ̃α̃1 + ϵ̃2α̃2 + ...

The value of the exponent turns out to be v = 2 by analysing the dominant terms of the
previous equation.

By analysing the different orders of the equation it is possible to obtain the coefficients of
the series expansion:

α̃0 = − 1

k̃y

α̃1 =
k̃yṽey0 − γ̃ṽey0/k̃y − iν̃e√

ω̃e

The imaginary part of α̃1 is:
Im(α̃1) = −iν̃e/

√
ω̃e < 0

which yields high frequency stable solutions.

In case of no electron collisions (ν̃e = 0) the rest of coefficients are:

α̃2 = 1/α̃0

α̃3 =
1

α̃2
0

(
γ̃

k̃2y
− 2

)
k̃yṽey0√

ω̃e

α̃4 = k̃2y(−α̃2
1/α̃0 − 2α̃0α̃1α̃3 − iṽix0 − 1/α̃0)

being α̃4 the first non-real coefficient whose imaginary part is:

Im(α̃4) = −k̃2y ṽix0 < 0

which yields high frequency stable solutions even in the limit of no collisions and no closed-
drift gradient as had already been shown in a previous section.
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3.3.3 Numerical solution of full dispersion relation

The eigenvalue problem given by (3.17) can be solved numerically for azimuthal oscillations
(k̃x = 0) and typical values of the non-dimensional parameters in the acceleration region:
ṽix0 = 50, ω̃e = 106, ν̃e = 103 and γ̃ = 1.0. The aim is two-fold: first, it is interesting to verify
the conclusions derived from the previous sections via the analytical analysis, and second, it is
also important to carry out parametric variations to understand the influence of the different
parameters, specially of those with larger variability or uncertainty.

Figure 3.1 depicts the value of the largest imaginary part of the eigenvalues as a function
of the non-dimensional azimuthal wave number, k̃y and the non-dimensional electron collision
frequency, ν̃e = 103. It can be observed that for typical values of the collision frequency,
ν̃e = 103, there are no unstable solutions (i.e., Im(ω̃) < 0) for a wide range of wave numbers.
Note that for a typical HET an azimuthal oscillation of mode number of m = 1 corresponds
to a non-dimensional wave number of k̃y ∼ 0.2 assuming a density gradient such that ln is
of the order of the thruster length. Only for very large collision frequencies, ν̃e = 105, it is
possible to obtain unstable solutions with very short wavelengths (k̃y ∼ 10). At the same
time it is possible to observe two regions, depending on the value of k̃y. The limiting value
of these regions is k̃y = 0.5, as it was already anticipated via analytical derivations.
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Figure 3.1: Value of largest imaginary part of the eigenvalues of the stability analysis given
by (3.17) for the following non-dimensional parameters: k̃x = 0, ṽix0 = 50, ω̃e = 106 and
γ̃ = 1.0. Both the non-dimensional azimuthal wave-number k̃y and the non-dimensional
electron collision frequency ν̃e are parametrically varied

Figure 3.2 shows the eigenvalues in the complex plane as a function of k̃y and ν̃e. There
exists a stable high frequency eigenvalue together with two other low frequency solutions
which are stable as well for the ranges of parameters under analysis. As the collision frequency
increases, the high frequency solution becomes more and more stable. And as the wave number
increases, the real part of the high frequency solution gets closer to zero. These two trends as
well as the actual value of the high frequency solution are in good agreement with the results
from the singular perturbations analysis carried out in the preceding paragraph.
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In the no collisions limit (ν̃e = 0), the numerical results verify that the high frequency
solution is stable even though in this case the imaginary part is much closer to zero. This
is in agreement with the fact that the first non-real element of the series expansion of the
singular perturbation analysis is the fourth element.
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Figure 3.2: Eigenvalues of the stability analysis given by (3.17) for the following non-
dimensional parameters: k̃x = 0, ṽix0 = 50, ω̃e = 106 and γ̃ = 1.0. Parametrically variation
of: k̃y ∈ [0.1, 10] and ν̃e = [103, 104, 105]

Figure 3.3 shows the influence of the closed-drift gradient on the stability analysis. For
gradients of order unity the influence is negligible as was anticipated from the analytical
approximations.
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Figure 3.3: Eigenvalues of the stability analysis given by (3.17) for the following non-
dimensional parameters: k̃x = 0, ṽix0 = 50, ω̃e = 106 and ν̃e = 103. Parametric variation of:
k̃y ∈ [0.1, 10] and γ̃ ∈ [−1.0, 1.0]
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3.4 Stability analysis of the ionization region

As shown in the previous section, there is experimental evidence of low frequency azimuthal
oscillations in the ionization region of the HET discharge. In this region the ionization plays
a major role in the definition of the axial profile of the main plasma variables. In order
to account for this process in a stability analysis, a three-fluid model (ions, electrons and
neutrals) needs to be considered. This section presents results from two separate models: a
simple one, where the temperature is considered uniform and without oscillations; and a more
complete one, that includes an electron energy equation with heat conduction terms in order
to account for temperature gradients and oscillations.

Both models are based on a formulation consisting of particle, momentum and energy
conservation equations for electrons, ions, and neutrals separately:

∂n

∂t
+∇ · (nve) = nnnξi (3.28a)

∂n

∂t
+∇ · (nvi) = nnnξi (3.28b)

∂nn

∂t
+∇ · (nnvn) = −nnnξi (3.28c)

0 = −∇(nTe)− en(E+ ve ×B)−mennnξeve (3.28d)

min

(
∂vi

∂t
+ vi · ∇vi

)
= enE−minnnξi(vi − vn) (3.28e)

mnnn

(
∂vn

∂t
+ vn · ∇vn

)
= 0 (3.28f)

∂

∂t

(
3

2
nTe

)
+∇ ·

(
5

2
nTeve + qe

)
= −enve ·E− ennnξiαi (3.28g)

5

2
nTe∇Te + eqe ×B+mennξeqe = 0 (3.28h)

where i,e,n are the sub-indexes for ion, electron, and neutral species; e is the electron
charge; me, mi and mn are the electron, ion, and neutral masses; E and B are the electric
and magnetic fields; n and nn are plasma and neutral densities; vj is the velocity vector
of species j; ξi and ξe are the ionization and effective electron collision rates; Te is electron
temperature; αi is the energy loss per effective single ionization event; and qe is the electron
heat conduction flux vector. The quasi-neutrality assumption (ne = ni) has been used in
the formulation since the Debye length is much smaller than the typical dimensions of the
thruster. Finally, notice as well that the induced magnetic field is neglected and thus, the
electric field derives from an electric potential, ϕ (∇ϕ = −E), and the magnetic field is equal
to the externally applied field, resulting in an electrostatic formulation.
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3.4.1 Isothermal model

In this case electron temperature gradients and oscillations are neglected in the formulation,
and therefore the last two equations of (3.28) are not used. The corresponding steady state
(∂/∂t = 0) zero-th order solution (expressed with subindex 0) is considered azimuthally
symmetric (∂/∂y = 0). The zero-th order solution then verifies:

dnn0

dx
= −n0nn0ξi0

vnx0
(3.29a)

dvnx0
dx

= 0 (3.29b)

dvix0
dx

= nn0ξi0 − vix0
d lnn0

dx
(3.29c)

E0 =
mi

e

(
vix0

dvix0
dx

+ nn0ξi0(vix0 − vnx0)

)
(3.29d)

dvex0
dx

= nn0ξi0 − vex0
d lnn0

dx
(3.29e)

vex0 = vey0
νe0
ωce

(3.29f)

vey0 = − 1

B0

(
E0 +

Te0

e

d lnn0

dx

)
(3.29g)

where ωce is the electron cyclotron frequency, νe0 = nn0ξe0 is the electron collision fre-
quency, and the Hall parameter is assumed to be very large (ωce/νe0 ≫ 1).

As shown by Ahedo et al. in Ref. [3], the solution of Eqs. (3.29) together with the
proper boundary conditions verifies the following properties. The axial electron velocity is
negative all along the thruster channel as electrons drift from the cathode to the anode.
On the contrary, the neutral axial velocity is positive as the gas moves from the injector to
the channel exit. In the case of the axial ion velocity, it is positive in a large part of the
thruster channel due to the electric acceleration (E0 > 0), but it becomes negative in an ion
back-streaming region near the anode where the axial electric field is mildly negative and
attracts the ions to the anode (E0 < 0). The azimuthal electron velocity is also negative all
along the channel and consists of the ExB and the diamagnetic drifts, being the ExB drift
the dominant one in the acceleration region, while the diamagnetic drift dominates in the
upstream part of the ionization region. As for the plasma density gradient, it is positive from
the anode to the beginning of the acceleration region, from where it becomes negative as a
consequence of the ion acceleration.
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Assuming small perturbations with respect to the zero-th order state (f̂ ≪ f0), except for
Te which is considered constant, Eqs. (3.28) may be linearised into:

∂n̂

∂t
+ n0

(
∂v̂ex
∂x

+
∂v̂ey
∂y

)
+ v̂ex

dn0

dx
+ vex0

∂n̂

∂x
+ vey0

∂n̂

∂y
+ n̂

dvex0
dx

= (n0n̂n + n̂nn0)ξi0 (3.30a)

∂n̂

∂t
+ n0

(
∂v̂ix
∂x

+
∂v̂iy
∂y

)
+ v̂ix

dn0

dx
+ vix0

∂n̂

∂x
+ n̂

dvix0
dx

= (n0n̂n + n̂nn0)ξi0 (3.30b)

∂n̂n

∂t
+ nn0

(
∂v̂nx
∂x

+
∂v̂ny
∂y

)
+ v̂nx

dnn0

dx
+ vnx0

∂n̂n

∂x
= −(n0n̂n + n̂nn0)ξi0 (3.30c)

0 = − 1

n0

Te0

me

∂n̂

∂x
+

n̂

n2
0

Te0

me

dn0

dx
− e

me

(
−∂ϕ̂

∂x
+ v̂eyB0

)
− (nn0v̂ex + n̂nvex0)ξe0 (3.30d)

0 = − 1

n0

Te0

me

∂n̂

∂y
− e

me

(
−∂ϕ̂

∂y
− v̂exB0

)
− (nn0v̂ey + n̂nvey0)ξe0 (3.30e)

∂v̂ix
∂t

+ vix0
∂v̂ix
∂x

+ v̂ix
dvix0
dx

= − e

mi

∂ϕ̂

∂x
− nn0ξi0(v̂ix − v̂nx)− n̂nξi0(vix0 − vnx0) (3.30f)

∂v̂iy
∂t

+ vix0
∂v̂iy
∂x

= − e

mi

∂ϕ̂

∂y
− nn0ξi0(v̂iy − v̂ny) (3.30g)

∂v̂nx
∂t

+ vnx0
∂v̂nx
∂x

= 0 (3.30h)

∂v̂ny
∂t

+ vnx0
∂v̂ny
∂x

= 0 (3.30i)

where it is assumed that the collision and ionization rates are constant (ξe = ξe0, ξi = ξi0).
Equations (3.30) contain four gradients of zero-th order variables (namely, dn0/dx, dnn0/dx,

dvix0/dx, dvex0/dx). Making use of Eqs. , the last three of these gradients can be expressed
as a function of the zero-th order variables and the gradient of the plasma density, dnn0/dx.

The perturbations may be assumed to be of the following Fourier form:

f̂(t, x, y) = f̄(x) exp(−iωt+ ikyy) (3.31)

where t is the time variable, x and y are the axial and azimuthal coordinates in the quasi-
planar approximation, f̄(x) is the x-dependent coefficient of the Fourier-expanded perturba-
tion of a generic variable f , and ω and ky are the angular frequency and azimuthal wave
number respectively. Note that the y axis is along the -ExB direction and that ky may only
take a discrete number of values given the azimuthal symmetry of the problem. This type of
Fourier expansion is the basis of global stability studies, where the resulting formulation is
not algebraic, but consists of differential equations. Within the linear regime, that global ap-
proach is fully consistent for inhomogeneous plasmas as opposed to the local analysis carried
out here.

As part of the current local analysis, the axial variation of the perturbations is also
Fourier-expanded resulting in:

f̂(t, x, y) = f̄ exp(ikxx) exp(−iωt+ ikyy) (3.32)

where x is the axial coordinate, kx is the axial wave number and f̄ is the coefficient of the
Fourier-expanded perturbation. The tilt angle of the oscillation may be then expressed as
arctan(kx/ky).
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In this local analysis, it is necessary to freeze the zero-th order variables and their gradients
and consider them constant, even if in reality the plasma is inhomogeneous along x, so that the
Fourier expansion in the x direction can be carried out. This is supported by the assumption
that the length scale of the axial variation of the zero-th order variables (Lx) is much larger
than the axial wave-length of the perturbations (kxLx >> 1). In Hall thrusters this condition
is not strictly met and, in fact, some authors claim that depending on how the equations are
linearised and Fourier-expanded as part of the local stability analysis, the resulting stability
criterion may change [19]. In any case, the local analysis does provide some insights into the
stability of the Hall discharge and is an important step to take before analysing the linear
stability with a global approach.

Equations (3.30) contain gradients of zero-th order variables (dn0/dx, dnn0/dx, dvix0/dx,
dvex0/dx). Making use of Eqs. (3.29) and the length scale of the axial variation of the plasma
density, ln: ln = (d lnn0/dx)

−1 (3.33)

those four gradients may be expressed as a function only of the zero-th order variables and ln.
It is important to note that the gradient of the magnetic field does not appear in the formula-
tion as the expressions for the axial and azimuthal electron velocities in Eqs. (3.29f)−(3.29g)
have been linearised and Fourier expanded rather than introduced in the rest of expressions
in Eqs. (3.29a)−(3.29e) before the linearisation, as Esipchuk and Tilinin [1] and Frias et al.
[140] do. The consequences of this choice are discussed in reference [19] and evaluated in the
next section.

Additionally, it is possible to make the problem non-dimensional by defining the following
reference variables for mass, charge, time, density and length respectively: mi, e, Ω

−1, n0

and L, where Ω and L are arbitrary reference values here assumed to be respectively 10
kHz and 1 cm. Hereinafter non-dimensional variables are expressed with a tilde above the
variable symbol. For instance l̃n = ln/L represents the non-dimensional length scale of the
axial variation of plasma density.

The non-dimensional Fourier form of the linearised equations may be written as an eigen-
value problem in matrix form as:

(Aω̃ +B)w̃ = 0 (3.34)
where w̃ = (ñ, ñn, ṽix, ṽiy, ϕ̃, ṽex, ṽey) is the vector of non-dimensional variables, A and B are
matrices of size 7x7, which are functions of the vector of non-dimensional parameters defining
the zero-th order solution, p̃0 = (ñn0, ṽix0, ṽnx0, ξ̃i0, ξ̃e0, T̃e0, B̃0), and the non-dimensional
wave-numbers in the axial and azimuthal directions, k̃x and k̃y. Eq. (3.34) constitutes an
eigenvalue problem with one unknown, the complex oscillation frequency, ω̃ = ω̃re + iω̃im,
as function of the wave numbers and the vector of parameters, this is, ω̃(k̃x, k̃y, p̃0). Since
the electron inertia and electromagnetic and non-quasineutral terms have been neglected, no
time derivatives of ṽex, ṽey and ϕ̃ appear in the formulation. Thanks to this, three equations
may be pre-eliminated in the matrix formulation and there remain only four solutions for ω̃
in Eq. (3.34). In the remainder of the analysis, we will focus on purely azimuthal oscillations
(k̃x = 0) in an attempt to reproduce and analyse the spoke oscillations. Notice that under that
condition, the perturbations of the axial and azimuthal neutral velocity are zero (ṽnx = ṽny =
0) according to the perturbed neutral momentum equations. Moreover, we will study the
limited region of the thruster channel where dn0/dx > 0 and dvix0/dx > 0 due to ionization
and a positive zero-th order electric field (E0 > 0).
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Approximate solution

Let us first consider a particular case, where an analytical solution for the dispersion relation
is available. This consists of the collisionless case (ξ̃e0=0) at the particular cross-section where
ṽnx0 = ṽix0, located inside the ionization region. Then, the dispersion relation in Eq. (3.34)
simplifies into:

0 = (ω̃ + iñn0ξ̃ion0)

(
(ω̃ − iṽix0/l̃n)−

ñn0ξ̃
2
ion0

ω̃ + iξ̃ion0

)

+k̃y l̃nB̃0

(
ω̃ − k̃y(T̃e0/l̃n − Ẽ0)/B̃0 −

ñn0ξ̃
2
ion0

ω̃ + iξ̃ion0

) (3.35)

Equation (3.35) is cubic in ω̃ and thus has three solutions. The fourth solution of Eq.
(3.34), not captured in Eq. (3.35), comes from the ion momentum equation in the x direction
and is a stable solution (ω̃re > 0) under the current assumptions.

For typical conditions in the ionization region of a Hall thruster it holds approximately
that ñn0 ≫ 1, ξ̃i0 ≪ 1, ñn0ξ̃i0 ∼ 1 and ṽix0 ∼ 1. Taking into account those orders of
magnitude, Eq. (3.35) simplifies into the following second order equation:

0 = ω̃2 + ω̃(iñn0ξ̃ion0 − iṽix0/l̃n + k̃y l̃nB̃0)

+ñn0ξ̃ion0ṽix0/l̃n − k̃2y l̃n(T̃e0/l̃n − Ẽ0)
(3.36)

plus the marginally stable solution ω̃ ≈ −iξ̃i0. The solutions of Eq. (3.36) are in the low
frequency range, and are unstable (ω̃im > 0) when:

(k̃y l̃n)
2 <

ñn0ξ̃i0ṽix0

T̃e0/l̃n − Ẽ0

(3.37)

where the evaluation is performed in the near anode region, where the electron pressure
gradient, T̃e0/l̃n, dominates over the electric field, Ẽ0, and hence the denominator of the
expression (3.37) is positive. According to Eq. (3.36), the highest growth rate is obtained
for the perturbation with the smallest wave number allowed by the azimuthal continuity
condition, which imposes a lower limit on the azimuthal wave number. Note as well that
the most unstable solution of Eq. (3.36) verifies that the product of ω̃re and k̃y is negative,
indicating that the wave propagates in the −y direction, this is, along +ExB.

Full numerical solution

The numerical solution of the isothermal model in Eqs. (3.34) is discussed in this subsection.
To this end several parametric analyses are presented in this section with respect to different
parameters (ṽnx0, ñn0, T̃e0, ξ̃ion0 and B̃0) together with the azimuthal wave number, k̃y. In
all of them it is possible to observe unstable solutions for low wave numbers in agreement
with the particular analysis in the previous subsection.

For the resolution of Eqs. (3.34), the following typical values for the macroscopic variables
in the ionization region of a HET are used: neutral velocity at injection, vnx0 = 500m.s−1;
neutral density, nn0 = 1019 m−3; electron temperature, Te0 = 6 eV; ionization frequency,
νi0 = nn0ξion0 = 105 Hz; and magnetic field, B0 = 140 G. Additionally, the following values
for the reference parameters are used: mi = 2.2× 10−25 kg, e = 1.6× 10−19 C, Ω = 10 kHz,
n0 = 5× 1017 m−3 and L = ln = 1 cm. The resulting non-dimensional variables are: ṽnx0 =
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5, ñn0 = 20, T̃e0 = 450, ξ̃ion0 = 0.5, l̃n = 1 and B̃0 = 1. These parameters define the
reference state with respect to which the parametric variations are carried out below. It is
also interesting to point out that under these conditions a non-dimensional value of the wave
number of k̃y = −0.25 is equivalent to an oscillation travelling in the +ExB direction with
a wavelength of around 24 cm, which is the same as the perimeter of a circumference with
a mean radius of 4 cm, a typical value for a modern HET. Thus, k̃y = −0.25 corresponds
to a mode m = 1 and wave numbers below that threshold are not possible due to azimuthal
continuity.
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Figure 3.4: Growth rate of the most unstable solution of Eqs. (3.30) for the following non-
dimensional parameters: ñn0 = 20, ṽix0 = 5, ξ̃i0 = 0.5, ξ̃e0 = 0 and T̃e0 = 450. Parametric
variation of k̃y and ṽnx0
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Figure 3.5: Growth rate of the most unstable solution of Eqs. (3.30) for the following non-
dimensional parameters: ṽix0 = 5, ṽnx0 = 5, ξ̃i0 = 0.5, ξ̃e0 = 0, T̃e0 = 450 and B̃0 = 1.
Parametric variation of k̃y and ñn0

Figure 3.4 shows the influence of the neutral velocity on the growth rate of the perturba-
tions. Note that one of the cases plotted is the one studied analytically previously, ṽnx0 = ṽix0.
Figure 3.5 shows the growth rate as a function of k̃y and ñn0. The smaller the neutral density
is, the smaller the range of wave numbers for unstable perturbations. Fig. 3.6 shows both the
growth rate and the frequency of the oscillation as a function of k̃y and T̃e0. As the electron
temperature increases, the range of wave numbers for unstable solutions is reduced. In this
case, it is also possible to observe that instabilities exist with a frequency around 10 kHz,
ω̃re = 1, and a wavelength around 24 cm, k̃y = −0.25. Note that a frequency of 10 kHz and a
wavelength of 24 cm in the +ExB direction correspond to an m = 1 oscillation with a phase
velocity of about 2.4 km.s−1, very similar to the ion acoustic speed and to the velocity of the
spoke usually measured in experiments.
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Figure 3.6: Growth rate (-) and corresponding real part (-·) of the most unstable solution
of Eqs. (3.30) for the following non-dimensional parameters: ñn0 = 20, ṽix0 = 5, ṽnx0 = 5,
ξ̃i0 = 0.5, ξ̃e0 = 0 and B̃0 = 1. Parametric variation of k̃y and T̃e0
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Figure 3.7: Growth rate of the most unstable solution of Eqs. (3.30) for the following non-
dimensional parameters: ñn0 = 20, ṽix0 = 5, ṽnx0 = 5, ξ̃ion0 = 0.5, ξ̃e0 = 0 and T̃e0 = 450.
Parametric variation of k̃y and B̃0

Figures 3.7 and 3.8 show the variation of the growth rate of the most unstable perturbation
as a function of k̃y and B̃0 and of k̃y and ξ̃ion0. Fig. 3.7 shows that the higher the magnetic
field, the wider the range of wave numbers for unstable solutions. Moreover, for a given wave
number (e.g. k̃y = −0.25), the frequency of the oscillation increases with the magnetic field.
From Fig. 3.8 it can be stated that the higher the ionization rate, the wider the range for
unstable solutions. Moreover, even though the oscillation with the largest growth rate is still
the m = 1 mode, the difference in growth-rate for different wave numbers is greatly reduced
when the ionization rate is increased making it possible to have unstable oscillations with
higher wave mode numbers (m = 2, m = 3...), as found experimentally [10]. To this respect,
while it is true that the model predicts that the m = 1 mode has the largest unstable growth
rate and that other unstable modes m = 2, m = 3 and higher exist with lower growth rates,
it is also important to note that the current analysis is linear and local and that the final
dominant mode can only be fully determined if non-linear effects are accounted for. The
relevant result from our analysis is that it is for low wave numbers when the perturbations
become unstable, in line with experimental evidence and contrary to the results from the
analysis of Frias et al., where the larger the wave number, the larger the growth rate.
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Figure 3.8: Growth rate of the most unstable solution of Eqs. (3.30) for the following non-
dimensional parameters: ñn0 = 20, ṽix0 = 5, ṽnx0 = 5, ξ̃e0 = 0, T̃e0 = 450 and B̃0 = 1.
Parametric variation of k̃y and ξ̃ion0
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Figure 3.9: Growth rate of the most unstable solution of Eqs. (3.30) for the following non-
dimensional parameters: k̃y = 0.25, ṽix0 = 5, ṽnx0 = 5, ξ̃i0 = 0.5, ξ̃e0 = 0 and B̃0 = 1.
Parametric variation of ñn0 and T̃e0

Figure 3.9 depicts a map of the growth rate of the oscillation as a function of the neutral
density and the electron temperature for a fixed azimuthal wave number (k̃y = −0.25). In
our model, as the electron temperature is increased and the neutral-to-plasma density ratio
is decreased, the growth rate decreases up to the point where the perturbation is no longer
unstable. Experiments show that as the discharge voltage is increased, keeping the rest
of parameters constant, the intensity of low frequency oscillations diminishes considerably,
specially in the ionization part of the I-V curve of the thruster [5, 74]. Thus, the linear model
is in line with that experimental trend as a discharge voltage increase causes an increase of
the electron temperature in the ionization region of the thruster via ohmic heating and a
decrease of the neutral-to-plasma density ratio thanks to improved ionization.
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Relation with anomalous diffusion

So far we have only analysed the existence of unstable oscillations due to the ionization.
However, no connection has been established between the unstable oscillations and enhanced
mobility. Looking at the Eqs. (3.30), it is possible to recognize that the terms v̂exdn0/dx and
(e/me)v̂exB0 from the electron continuity and momentum equations play two roles: first, they
couple the plasma density fluctuations from the ion equations with the electron momentum
equations thanks to the presence of the zero-th order plasma density gradient in the electron
continuity equation; and second and more important, it ensures that the azimuthal electric
field and plasma density perturbations are correlated giving rise to a net axial current. This
second fact can be shown more clearly by computing the phase of the different perturbations
numerically. A similar explanation is proposed by Lomas and Kilkenny[109] with a model that
includes an energy equation without heat conduction, although in that case the instability is
fed by the coupling between ionization and bulk recombination rather than by the interaction
between ionization and the plasma density gradient.

Table 3.1 shows the eigenvectors of the eigenvalue problem for the following parameters:
k̃y = −0.25, ñn0 = 20, ṽix0 = 5, ṽnx0 = 5, ξ̃i0 = 0.5, ξ̃e0 = 0, T̃e0 = 450 and B̃0 = 1.
It is interesting to see how the plasma density and electron axial velocity perturbations are
partially correlated, this is, their phases are not 90 degrees apart, meaning that the oscillation
causes a net axial electron current. This is a good indication of net diffusion caused by the
linear oscillation.

Table 3.1: Complex eigenvalues of the stability analysis of (3.30) for the following non-
dimensional parameters: k̃y = −0.25, ñn0 = 20, ṽix0 = 5, ṽnx0 = 5, ξ̃i0 = 0.5, ξ̃e0 = 0
and T̃e0 = 450.

ñ ñn ṽix ṽiy ϕ̃ ṽex ṽey
0.10∠− 109o 0.37∠115o 0∠0o 0.88∠− 9o 40.4∠− 107o 0.60∠137o 42.6∠− 109o

Simplified model

The dispersion relation in Eq. (3.36) is equivalent to the following linearised system of
perturbation equations in non-dimensional form:

∂ ˜̂n

∂t̃
+

∂ ˜̂vey
∂ỹ

+
˜̂vex

l̃n
+ ṽey0

∂ ˜̂n

∂ỹ
= 0 (3.38)

∂ ˜̂n

∂t̃
+

∂ ˜̂viy
∂ỹ

− ˜̂n
ṽix0

l̃n
= 0 (3.39)

˜̂veyB̃0 = ˜̂nT̃e0/l̃n (3.40)

0 = T̃e0
∂ ˜̂n

∂ỹ
− ∂

˜̂
ϕ

∂ỹ
− ˜̂vexB̃0 (3.41)

∂ ˜̂viy

∂t̃
+

∂
˜̂
ϕ

∂ỹ
+ ñn0ξ̃ion0 ˜̂viy = 0 (3.42)

Notice that the ionization terms are compensated by the gradients of the zero-th order solution
in the continuity equations, explaining why there are no source terms in those equations.
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If all equations in (3.38)−(3.42) are combined into one equation for the non-dimensional
plasma density, the result is:

0 =
∂2 ˜̂n

∂t̃2
− l̃nB̃0

∂2 ˜̂n

∂t̃∂ỹ
− l̃n

(
T̃e0

l̃n
− Ẽ0

)
∂2 ˜̂n

∂ỹ2

+ñn0ξ̃ion0

(
∂ ˜̂n

∂t̃
− ˜̂n

ṽix0

l̃n

)
− ∂ ˜̂n

∂ỹ

ṽix0

l̃n

(3.43)

Since T̃e0/l̃n − Ẽ0 > 0, expression (3.43) is a wave-type equation with a term (∂2 ˜̂n/∂ỹ2)

whose coefficient (−c̃2) = −l̃n(T̃e0/l̃n−Ẽ0) < 0 corresponds to a wave velocity, c̃ =
√

T̃e0 − l̃nẼ0 ≈√
T̃e0, of the order of the ion acoustic speed. Moreover, the destabilizing element in equation

(3.43) corresponds to the term ññn0ξ̃ion0ṽix0/l̃n, which is associated to ionization and comes
from the coupling between the continuity and momentum equations of the ion species.

However, the solution of the eigenvalue problem associated to Eqs. (3.38)−(3.42), that
is Eq. (3.36), indicates that, even though there are unstable perturbations (ω̃im > 0), the
phase speed of the oscillations is very close to zero (ω̃re ≈ 0). The reason for this is that in
the previous approximation several terms have been neglected, in particular, the variation of
neutral density.

If neutral density oscillations are reintroduced in the previous system, the resulting set of
linearised non-dimensional equations can be written as:

∂ ˜̂n

∂t̃
+

∂ ˜̂vey
∂ỹ

+ ˜̂vex/l̃n + ṽey0
∂ ˜̂n

∂ỹ
= ˜̂nnξ̃i0 (3.44a)

∂ ˜̂n

∂t̃
+

∂ ˜̂viy
∂ỹ

− ˜̂nṽix0/l̃n = ˜̂nnξ̃i0 (3.44b)

˜̂vey = ˜̂nT̃e0/l̃n (3.44c)

0 = T̃e0
∂ ˜̂n

∂ỹ
− ∂

˜̂
ϕ

∂ỹ
− ˜̂vex (3.44d)

∂ ˜̂viy

∂t̃
+

∂
˜̂
ϕ

∂ỹ
+ ñn0ξ̃i0 ˜̂viy = 0 (3.44e)

∂ ˜̂nn

∂t̃
= −(˜̂nñn0 + ˜̂nn)ξ̃i0 (3.44f)

Equations (3.44), consistent with Eq. (3.35), represent the minimal system of linear
equations capable of reproducing the results from the full solution of the eigenvalue problem
given by Eqs. (3.30) in terms of phase speed and growth rate of the unstable perturbations
for typical HET conditions.
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3.4.2 Model with energy equation and heat conduction

In the previous section, a simplified stability analysis has been carried out accounting for the
ionization process. However, the electron temperature was considered uniform and without
oscillations, and consequently, no energy equation was included in the formulation. In this
section, both assumptions are relaxed in order to check whether the instability detected with
the isothermal model still appears with a more complex model including heat conduction
terms. Nevertheless, electron inertia terms and plasma non-quasi-neutrality are still neglected
since they are not believed to influence the low frequency instability under analysis.

Under the previous hypothesis, the complete set of governing conservation laws in Eqs.
(3.28) is considered, including the electron energy conservation equation and the diffusive
model for the electron heat conduction flux. In order to close the formulation, a hypothesis
about the zero-th order temperature gradient is needed. In this case, an adequate choice
seems to be assuming a fixed zero-th order electron temperature axial gradient as suggested
by Gallardo and Ahedo [16]. Moreover, the ionization and effective electron collision rates
are assumed to be constant, neglecting their dependence on the electron temperature, which
is not critical for the analysis.

After the linearisation of the equations, the use of a Fourier-like form for the perturbations
and the transformation to non-dimensional space, the stability analysis can be formulated as
an eigenvalue problem, (Aω̃ + B)w̃ = 0 where w̃ = (ñ, ñn, ṽix, ṽiy, ϕ̃, ṽex, ṽey, T̃e, q̃ex, q̃ey), to
solve for the complex frequency of the perturbations, ω̃. The non-dimensional azimuthal wave
number, k̃y, is the independent variable of the formulation and the non-dimensional parame-
ters to consider are: p̃0 = (ñn0, ṽix0, ṽnx0, ξ̃i0, ξ̃e0, T̃e0, α̃i0). Once again, since electromagnetic
and non-quasineutral terms and electron inertia are not considered, the electron momentum
vector equation, together with the heat flux vector equation, can be pre-eliminated from the
matrix formulation.

In this case, no analytical solution is investigated and only the results from the numerical
solutions of the corresponding eigenvalue problem are shown. Figures 3.10 and 3.11 show the
numerical solution of the stability problem for the same case as for the isothermal model.
In particular, the growth rate of the most unstable mode and its real part are shown in
Fig. 3.10. It is possible to see that the same long wavelength instability appears as in the
isothermal model. Moreover, as expected, results from the simpler model are recovered if
no temperature gradients are assumed for the zero-th order solution. As the temperature
gradient increases, the range of azimuthal wave numbers where unstable perturbations exist
is reduced. On the other hand, the phase speed of the unstable perturbation is still of the
order of the ion acoustic speed and the frequency of the oscillation of the order of 10 kHz.
Figure 3.11 shows the stability map of the perturbation with respect to the temperature and
the neutral-to-plasma density ratio. The conclusions are similar to those derived from the
isothermal model.
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Figure 3.10: Growth rate (-) and corresponding real part (-·) of the most unstable solution for
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Figure 3.11: Growth rate of the most unstable solution for the following non-dimensional
parameters: k̃y = 0.25, ṽix0 = 5, ṽnx0 = 5, ξ̃i0 = 0.5, ξ̃e0 = 0 and B̃0 = 1. Parametric
variation of ñn0 and T̃e0 = dT̃e0/dx̃
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3.5 Comparison against previous local stability analyses

The simplified expression derived in the previous section, Eq. (3.36), may be compared
against the one derived by Frias et al. [140] in the limit of no ionization. Similar conclusions
could be derived by comparing the expressions obtained in our study against those derived
by Morozov et al. [2] or Esipchuk and Tilinin [1]. A major difference between the results
obtained by Frias et al. and those presented here is related to the presence of the magnetic
field gradient in the resulting expressions. While the length scale of variation of the magnetic
field (l̃B = (Ld lnB0/dx)

−1) does not appear in Eq. (3.36), it plays a major role in the
analysis of Frias et al.. The reason for this, as explained before, is the fact that the equations
for the electron axial and azimuthal velocity are replaced by Frias et al. in the electron
continuity equation before the linearisation and the Fourier-expansion of the equations. In
case this approach is used in our analysis, the following expression is obtained under the same
hypothesis leading to Eq. (3.36):

0 = ω̃2 + ω̃(iñn0ξ̃ion0 − iṽix0/l̃n + k̃y l̃gB̃0)

+ñn0ξ̃ion0ṽix0/l̃n − k̃2y l̃gB̃0(ṽey0 − 2T̃e0/(l̃BB̃0))

−k̃y l̃gB̃0iñn0ξ̃ion0

(3.45)

where 1/l̃g = 1/l̃n − 2/l̃B. In the limit of no ionization and zero ion velocity gradient, Eq.
(3.45) reduces to:

0 = ω̃2 + ω̃k̃y l̃gB̃0 − k̃2y l̃gB̃0(ṽey0 − 2T̃e0/(l̃BB̃0)) (3.46)

which, aside from the use of non-dimensional variables, is equivalent to the expression derived
by Frias et al. under the same hypotheses for purely azimuthal oscillations (k̃x = 0), Eq. (17)
of Ref. [140].

The analysis of Eq. (3.45) shows that in the case of positive gradients (l̃n, l̃B > 0), apart
from the unstable solutions already predicted by Frias et al. when l̃B > 2l̃n, there are also
unstable solutions when l̃B < 2l̃n due to the ionization terms. Similarly to the unstable
solutions given by Eq. (3.37), the latter unstable solutions from Eq. (3.45) have also a higher
growth rate for smaller wave numbers. This is a distinct feature with respect to the unstable
solutions already predicted by Frias et al., for which the higher the wave number is, the higher
the growth-rate is. Experiments show that both gradient-induced and spoke oscillations have
low wave-numbers and this fact seems to point to the oscillations caused by the ionization
terms in Eqs. (3.37) and (3.45).
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Chapter 4

Low frequency global linear
stability analysis

This chapter is devoted to the analysis of the stability of the Hall thruster discharge against
low frequency azimuthal perturbations from a global point of view considering the variation of
the plasma macroscopic variables along the whole thruster, in opposition to the local stability
analysis presented in the previous chapter. This chapter is divided into the following sections:

1. Formulation, where the governing equations used for the global stability analysis is
presented, analysing the influence of heat conduction and electron inertia terms

2. Background solution and parametric variations, where the reference solutions whose
global stability is analysed are presented

3. Low frequency axial oscillations, where the well-known breathing mode is studied

4. Low frequency azimuthal oscillations, where the spoke oscillation is analysed with the
approach presented in previous sections

4.1 Formulation

In order to analyse globally the stability of the Hall discharge it is necessary to consider the
axial variations of the plasma properties along the thruster in the background solution as well
as in the perturbed solution. To this end, the 1D axial model of Ahedo et al. [11] is used
for the zero-th order formulation and extended for the perturbation problem. That model
includes the necessary governing differential equations to simulate the HET discharge together
with physically-meaningful boundary conditions at the anode, at the cathode, and inside the
channel for a consistent sonic transition. The model is used to derive the governing equations
of the perturbation problem, also called first order problem, by means of a linearisation
process. The resulting formulation is not algebraic, but differential, as opposed to the analyses
presented in the previous chapter. This means that for the resolution of the perturbation
equations it is necessary to use numerical integration methods similar to those needed for the
zero-th order problem.

55
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4.1.1 Review of 1D axial model

Main hypotheses

The hypotheses of the 1D model of Ahedo et al. [11, 12, 3] of the Hall discharge are reviewed
in this section. The following hypotheses are considered in the derivation of the governing
equations:

- Each one of the species present in a HET (neutrals, electrons and ions) is accounted for
with a separate set of macroscopic fluid equations based on particle, momentum and
energy conservation laws. Only singly-charged ions are considered in this model leaving
aside the population of multiply-charged ions.

- All plasma macroscopic variables are considered stationary. Even though the Hall
thruster is known to have important temporal oscillations, axial and azimuthal, the
1D model captures the ionization and acceleration processes in a stationary manner.

- Radial variations of the macroscopic variables are neglected as the axial length of the
thruster is larger than the radial width of the channel. In a way, the variables computed
by the 1D model must be understood as an average along the radial direction for a given
axial location. Due to this assumption, interactions with the lateral walls are included
as source terms in the governing equations of the model, as for instance, wall energy
losses and wall recombination.

- Azimuthal symmetry is assumed based on the annular geometry of the channel. Note,
however, there are some elements like the cathode, the injector or the magnetic field that
may break the azimuthal symmetry. But these effects are not considered important.

- The previous three assumptions yield a 1D axial stationary model of the thruster dis-
charge. Figure 4.1 shows a schematic of the modelled geometry in the axial and radial
directions for a fixed azimuth.

- The channel width is considered constant throughout the channel while plume diver-
gence is considered in the model assuming a given velocity of lateral expansion of the
plasma jet in the plume.

- The induced magnetic field is neglected and thus, Maxwell’s equations are not included
in the model. The magnetic field is equal to the externally applied field, which is
stationary (∂B/∂t = 0), solenoidal (∇ · B = 0), irrotational (∇ × B = 0) and mostly
radial. Consequently, the electric field derives from a potential (∇ϕ = −E). Moreover,
the only magnetic field component considered in the model is the radial one, B =
B(x)er, being the axial and azimuthal components much smaller. This last hypothesis
introduces an inconsistency as the magnetic field cannot then be fully irrotational as it
only has one non-zero component.

- Quasi-neutrality is assumed as the Debye length in Hall thrusters is much smaller than
the typical length scales of interest. This implies that Poisson’s equation for the electric
field is replaced with the condition of equal ion and electron particle densities. Non-
quasineutral sheaths are considered attached to the walls and are accounted for properly
in the boundary conditions, but are not solved for with the main governing equations.
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- While electrons are highly magnetized due the large magnetic field, ions are considered
un-magnetized since the ion Larmor radius is larger than the typical thruster dimensions.

- Ions and neutrals are modelled as cold species, this is, no ion or neutral temperature
is included in the equations and therefore no energy equation is needed for those two
species.

- Due to the very low mass of the electrons, inertial effects are neglected in the electron
momentum equation, yielding an electron diffusive model. Note this hypothesis may be
relaxed in the perturbation problem for the analysis of high frequency phenomena.

- Related to the previous assumption, the electron kinetic energy is neglected in the
electron energy equation as it is very small compared to the internal energy as the
electron fluid velocity is much smaller than the electron thermal velocity.

- Both ionization and electron-neutral elastic collisions are introduced in the continuity
and momentum equations. Moreover, a sink of energy is introduced in the electron
energy equation to account for ionization and radiation losses.

- Heat conduction is considered with a diffusive model as it helps to smooth out the
electron temperature profile and widen the ionization region of the 1D solution. This
assumption contrasts, however, with the model of Barral et al. [15, 57, 58, 59] for the
breathing mode oscillation, where it is assumed that heat conduction is not relevant for
the promotion of HET oscillations.

Figure 4.1: Schematic of the idealized 1D thruster. It consists of an injector, introducing
the neutral gas into the channel; a channel, where the ionization takes place; an acceleration
region, where the ions are electrically accelerated; a cathode, introducing the electrons into
the channel; and an anode, where the electrons are collected.
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Governing equations

Under the previous hypotheses, it is possible to simplify the general conservation equations
for the three-species plasma and obtain the following formulation of the 1D model [11, 12, 3]:

1

dc

d

dx
(nvexdc) =

1

dc

d

dx
(nvixdc) = − 1

dc

d

dx
(nnvnxdc) = n(νi − νw) (4.1a)

mi

dc

d

dx
(nnv

2
nxdc) = −min(νivnx − νwvnw) (4.1b)

mi

dc

d

dx
(nv2ixdc) = −en

dϕ

dx
+min(νivnx − νwvix) (4.1c)

0 = − d

dx
(nTe) + en

dϕ

dx
−menνeχ

2vex (4.1d)

1

dc

d

dx

(
5

2
nTevexdc + qexdc

)
= envex

dϕ

dx
− nνiE

′
i − nνweTe (4.1e)

dTe

dx
= −2

5

meνeχ
2

nTe
qex (4.1f)

ddc
dx

=
2cpl
vix

≡ γ (4.1g)

where x is the axial coordinate along the thruster channel; e, me and mi are the electron
charge, electron mass and ion mass respectively; dc is the plasma beam or channel width;
nn and n are the neutral and plasma particle densities; vnx, vex and vix are the fluid axial
velocities of neutrals, electrons and ions respectively; Te, ϕ and qex are the electron temper-
ature, the electric potential, and the electron axial heat flux, respectively; νe is the effective
electron collision frequency, νe = νB + νwm + νen, accounting for Bohm-type diffusion, νB,
near-wall conductivity, νwm, and electron-neutral collisions, νen; νi, νw and νwe represent the
frequencies for ionization, particle recombination, and energy losses at lateral walls, respec-
tively; E′

i models the energy loss per ion-electron due to ionization and radiation; and γ and
cpl are the plume divergence angle and the plume radial expansion velocity, which are equal
to zero within the channel and depend on the electron temperature at the channel exit point
(cpl =

√
TeE/mi) in the plume. The expression used for the Bohm-diffusion is νB = αBωce,

where ωce = eB/me is the electron cyclotron frequency and αB is a constant empirical co-
efficient whose value is typically selected so as to match experimental results (αB ∼ 0.01).
The electron momentum equation in the azimuthal direction, vey = vexχ, where vey is the az-
imuthal electron velocity and χ = ωce/νe ≫ 1 is the Hall parameter, has been used implicitly
in the axial electron momentum equation in (4.1d). Similarly, the diffusive model for the heat
flux in the azimuthal direction, qey = qexχ, where qey is the azimuthal electron heat flux, has
been used implicitly for the axial heat flux equation in (4.1f). An equivalent frequency νH
replacing νe may be defined as νH = (me/mi)χ

2νe so that the ion mass mi can be factored
out in all momentum equations. Ions impacting the lateral walls and the anode undergo wall
recombination and return to the channel as neutrals. The velocity of the newly born neutrals
is not equal to the ion velocity, but is the result of an accommodation process in the wall,
vnw = awvnx + (1 − aw)vix, where aw is the accommodation factor. The no-accommodation
limit corresponds to the case aw = 0.
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Note that the axial electron velocity is negative all along the thruster channel as electrons
drift from the cathode to the anode. On the contrary, the neutral axial velocity is positive
as the gas moves from the injector to the channel exit. In the case of the axial ion velocity,
it is positive in a large part of the thruster channel due to the outward acceleration, but it
becomes negative in a back-streaming region near the anode where the axial electric field is
negative. The azimuthal electron velocity is also negative all along the thruster and consists
of the combination of ExB and diamagnetic drifts, being the former the dominant one in
the acceleration region, while the diamagnetic drift dominates in the upstream part of the
ionization region.

The combination of the previous equations allows obtaining an equation for h ≡ lnn as:

P
dh

dx
= G (4.2)

where P and G are functions of the macroscopic variables but not of their derivatives:

P = Te/mi − v2ix (4.3a)

G = −νHvex + νi(vnx − 2vix) + νwvix +
2

5

νHqex
nTe

+ v2ix
d ln dc
dx

(4.3b)

Note that in this formulation the Mach number is defined as:

Mi =
vix√
Te/mi

(4.4)

An important aspect to take into account is the presence of sonic points in the discharge
which occur when P = 0. It is possible to proof that there are two sonic points in the
simulation domain [11], one singular (G ̸= 0), at the anode sheath transition, and another
one regular (G = 0), inside the channel, where the accelerated ion flow becomes supersonic.
The presence of these sonic points makes the numerical resolution of the previous equations
complicated. A detailed description of the boundary conditions associated to the previous
system of ordinary differential equations is described by Ahedo et al. [11]. Expressions for the
different frequencies mentioned above (νi, νe, νw, νwe) are developed elsewhere [11, 12, 3, 13].
A summary of the boundary conditions and the expressions for the frequencies is presented
below together with the solution method.

Several versions of the model above have been used to characterize the HET discharge
[11], include heat conduction effects [12], evaluate the influence of wall losses [3], carry out
parametric investigations on the operating conditions [13], model two-stage Hall thrusters
[180] and, even, analyse the stability of the discharge against small axial perturbations to
study the properties of the breathing mode [14, 181, 15]. Thus, this 1D model is a very
suitable candidate for extension in order to analyse the azimuthal stability of the thruster.

Figure 4.2 shows the most important points in the thruster for the resolution of the 1D
model. In the figure, the neutral flow (Γn), the ion flow (Γi) and the electron flow (Γe) are
represented with the corresponding directions. Note there is an ion back-streaming region
in the near anode region that is necessary in order to fulfil the boundary conditions at the
anode. The discharge voltage is applied between the anode and the cathode. In this model,
an ideal circuit is assumed and, thus, a constant voltage is considered.
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Figure 4.2: Schematic of the important points of the 1D model. A: anode. B: anode sheath
transition. C: intermediate point. D: zero ion velocity point. S: regular sonic point. E:
channel exit. P: cathode

Analysis of terms

The expressions for the different terms appearing in the formulation above are described
and justified next. These include the magnetic field, the particle source terms, the electron
conductivity and various energy losses.

Magnetic field

As mentioned above, the only magnetic field component included in the model is the radial
one. Typical magnetic field profiles for Hall thrusters show a maximum near the exit of the
channel and decrease towards the anode and the cathode. This profile is represented in the
model by the following Gaussian expression:

B(x) = Bmini + (Bmax −Bmini) exp
[(x− xmax)

2

L2
mi

]
(4.5)

where Bmax > 0 and Bmini > 0 are the maximum and minimum magnetic fields, xmax is the
axial coordinate of the maximum magnetic field and Lmi controls how rapidly the magnetic
field decreases away from its maximum. Note that Bmini and Lmi have two separate values,
one for the plume and another one for the channel. This means that the values of Bmin and
Lm corresponding to the channel must be used when x < xmax and the values corresponding
to the plume when x > xmax. This allows modelling the different slopes of the magnetic field
inside and outside the channel. Moreover, this procedure ensures continuity of the magnetic
field profile while maintaining a reasonable degree of fidelity with respect to the real magnetic
profiles.

Figure 4.3: Schematic of the axial magnetic field variation in a typical Hall thruster

Particle source terms

Two different particle source terms are accounted for in the formulation: bulk ionization and
wall recombination. Bulk recombination is considered negligible and is not included in the
model.
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Gas ionization rate
For usual conditions, ionization is one of the fundamental processes of the Hall discharge. It
generates ions that are then accelerated. This process is modelled with the ionization source
term, Si. Only singly charged ions are considered and thus this term must appear as a source
in the electron and ion continuity equations and as a sink in the neutral equations. The
ionization term may be expressed as:

Si = nνi (4.6)

where the ionization frequency may be expressed as, νi = nnRi(Te), and Ri(Te) is the ion-
ization rate, which depends on the electron temperature and may be evaluated by fitting a
function to experimental results.

The electron species is modelled as diffusive and can be considered locally Maxwellian.
Hence Ri(Te) may be written as:

Ri(Te) =
8π

me

∫ ∞

0
σi(E)Efe(E)dE (4.7)

where E is the energy of an electron, fe(E) is the Maxwellian distribution function of electrons
and σ(E) is the ionization cross-section.
These functions may be approximated as [11]:

σi(E) = σi0

(
1− exp(E/Ei − 1)

)
(4.8a)

fe(E) = (me/2πTe)
3/2 exp(−E/Te) (4.8b)

where σi0 is a constant and, then, the final expression for the ionization function may be
written as:

Ri(Te) = c̄eσ̄i(Te) (4.9a)

c̄e =
√

8Te/πme (4.9b)

σ̄i(Te) = σi0

(
1 +

TeEi

(Te + Ei)2
exp(−Te

Ei
)
)

(4.9c)

Figure 4.4: Comparison between experimental results and the fitted expression for the ion-
ization cross-section σi(E) for σi0 = 5x10−20m2.

Aside from the particle sink and source terms for the continuity equations, there is an
exchange of momentum associated to the ionization process. This can be modelled as:

Mi = nvnxνi (4.10)
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Wall recombination
Wall recombination takes place when an ion hits the wall and is returned to the plasma as
a neutral. In this 1D model, this process is taken into account as a particle recombination
term, Sw. This term must be included in the continuity equations of electrons and ions as
a sink of particles, and in the continuity equations of neutrals as a source of particles. The
analysis of the wall-plasma interaction in the lateral walls allows deriving the expression for
the wall recombination. The complete analysis is presented in Ref. [182] and used in Ref. [3].
The expression used for the recombination term is:

Sw = nνw (4.11a)

νw =
νw0

dc

√
Te

mi
(4.11b)

where νw0 is a parameter of the model whose value is estimated to be around νw0 ∼ 0.1−0.2.

As for ionization, wall recombination also implies a net exchange of momentum between
ions and neutrals. This is captured by the following terms in the momentum equations of the
ion and neutral species:

Mwi = −nvixνw (4.12a)

Mwn = nvnwνw (4.12b)

where vnw is the velocity of the neutrals generated in the walls from ion recombination. As
mentioned previously, ions are recombined in the walls, but the velocity of the newly born
neutrals differs from that of the ions as an accommodation process occurs. This implies that
there is a net loss of momentum to the walls as a consequence of the accommodation process.
The velocity vnw may be expressed as:

vnw = awvnx + (1− aw)vix (4.13)

where aw is the accommodation factor, a parameter of the simulation. Reasonable values for
the accommodation factor are estimated to be in the range aw ∼ 0.8− 0.9.

Electron conductivity

Electron mobility across the magnetic field and along the thruster can be caused by sev-
eral phenomena: electron-neutral collisions, near wall conductivity or azimuthal oscillations
among others. In order to account for all these effects, the electron conductivity across the
magnetic field is represented by an effective electron collisional frequency. Strictly speaking,
this frequency should only take into account the electron-neutral collisional frequency, νen.
However, in order to account for the anomalous diffusion, it is necessary to add additional
collisionality. This translates into an additional Bohm diffusion frequency, νB, and near wall
conductivity, νwm. Each one of those terms is described in the following paragraphs. Note
that the goal of this work is analysing the possible role of the azimuthal oscillations in the
anomalous diffusion. However, in this 1D model the effect of oscillations cannot be taken into
account yet. Hence the need to include a Bohm diffusion frequency. Ultimately, the analysis
of the perturbed problem should allow replacing the expression of νB with a model based
solely on azimuthal perturbations.
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Electron-neutral collisions
The collisions between the neutral and electron species are modelled with the following ex-
pression:

νen = nnσenc̄e (4.14)

where σen is the electron-neutral cross-section, which is assumed to be a constant value,
σen = 27x10−20m2. As mentioned previously, electron-neutral collisions do not explain the
high cross-field mobility of the electrons inside the channel. In fact, if this were the only
mechanism, the electron diffusion would be two orders of magnitude smaller. Hence, the need
to account for Bohm diffusion and near wall conductivity.

Bohm diffusion
Bohm diffusion is modelled with the following expression:

νB = αBωce (4.15)

where ωce = eB/me is the electron cyclotron frequency and αB is the Bohm coefficient. The
classical value for this coefficient is αB = 1/16. However, typical values to obtain a reasonable
agreement between the simulation results and the experiments are in the range of αB ∼ 1/100.
This coefficient must be considered as a phenomenological parameter to match experiments
and simulations. Moreover, some authors propose to use different values for the coefficient
inside and outside the thruster as experiments show that the electron mobility is higher in
the plume than inside the thruster.

Near-wall conductivity
The plasma-wall interaction is a complex problem that needs to be modelled consistently.
In particular, the secondary electron emission (SEE) from the ceramic walls determines the
losses of momentum and energy to the wall. The hypotheses and derivation of the model are
not included here. These can be found in related literature [182, 12, 183]. However, for the
sake of completeness and clarity the expressions are presented next. The SEE is controlled
by the SEE yield, δw(Te), that relates the flux of incoming primary electrons and outgoing
secondary electrons. This function can be represented as:

δw(Te) =

√
Te

TSEE
, Te ≤ T ∗

e (4.16a)

δw(Te) =

√
T ∗
e

TSEE
, Te > T ∗

e (4.16b)

where TSEE is the electron temperature for a Maxwellian population producing a 100% of
SEE and T ∗

e is the electron temperature where the saturation limit of the SEE yield is reached.
It can be proved that T ∗

e = 0.967TSEE and that the temperature TSEE can be computed as
TSEE ≈ 0.66ESEE where ESEE is the energy of a mono-energetic beam yielding a 100%
of SEE. The energy ESEE is the value typically derived from experiments for a given wall
material.

Once the SEE yield is known, the electron momentum loss frequency can be written as:

νwm = βm(δw)νw (4.17a)

βm(δw) =
δw

1− δw
(4.17b)
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Energy losses

As a consequence of the ionization and the plasma-wall interaction, some energy losses take
place and must be accounted for in the electron energy equation. The next paragraphs provide
the expressions for these terms included in the electron energy equation.

Ionization and radiation losses
The ionization process has a cost in terms of energy. In fact, the lower the temperature the
higher the ionization cost is. These losses also account for multi-step ionization and radiation.
A typical expression for this energy loss is proposed by Dugan [184]:

Qi = −nνiE
′
i(Te) (4.18a)

E′
i(Te) = Ei

(
2 +

1

4
exp

2Ei

3Te

)
(4.18b)

where Ei is the first ionization energy for the neutrals (Ei = 12.1eV for Xenon).

Lateral wall losses
Following the derivation of the electron momentum losses to the lateral walls, it is possible
to express the energy losses caused by the plasma-wall interaction as:

Qwe = −nνweTe (4.19)

where the wall energy loss frequency may be expressed as:

νwe = βe(δw)νw (4.20a)

βe(δw) = 5.62 +
1.65

1− δw
(4.20b)

Note that this expression implies that the wall energy loss frequency is only a function of the
electron temperature as both the SEE yield, δw, and the wall recombination frequency, νw,
depend only on the electron temperature.

P and G functions

As presented before, the equation (4.2) for h ≡ lnn contains two functions, P and G. These
can be expressed functionally as:

P = P (y,q) ≡ P (u) G = G(y,q) ≡ G(u) (4.21)

where vector y = (x, h, vix, Te, ϕ, nn, vex, vnx, qex, dc) is the vector of dependent variables,
vector q(y) = (νw, νwe, νH , νi, E

′
i, γ) contains the different dependent functions of the model

and u = (y,q) is the composition of the previous two vectors. Based on this formulation, it
is possible to write:

dP

dx
=
∑
i

∂P

∂ui

dui
dx

d2P

dx2
=
∑
i,j

∂2P

∂ui∂uj

dui
dx

duj
dx

+
∑
i

∂P

∂ui

d2ui
dx2

(4.22a)

dG

dx
=
∑
i

∂G

∂ui

dui
dx

d2G

dx2
=
∑
i,j

∂2G

∂ui∂uj

dui
dx

duj
dx

+
∑
i

∂G

∂ui

d2ui
dx2

(4.22b)

dqi
dx

=
∑
j

∂qi
∂yj

dyj
dx

d2qi
dx2

=
∑
j,k

∂2qi
∂yj∂yk

dyj
dx

dyk
dx

+
∑
j

∂qi
∂yj

d2yj
dx2

(4.22c)
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Generic form of equations

In the previous paragraphs the different equations and terms of the 1D model have been
presented. However, it is interesting to obtain a more generic representation of the equations
to simplify further mathematical derivations. Due to the presence of sonic points (P = 0)
in the quasi-neutral domain under analysis, the following change of variable is introduced in
order to simplify the integration of the differential equations:

dx

dξ
= P (4.23)

Using this change of variable, x(ξ), the governing equations may be expressed in vector form
as:

dy

dξ
= F(y,q(y)) (4.24)

This generic form of the equations simplifies some of the derivations that are presented next,
specially in the perturbation problem, where the formulation becomes rather verbose.

After the change of variable and some rearrangements in (4.1) the governing equations
may be rewritten as:

dx

dξ
= P (4.25a)

dh

dξ
= G (4.25b)

dnn

dξ
= −P

n

vn
(νi − νw)−

nn

vn

dvn
dξ

− nn
d ln dc
dξ

(4.25c)

dvex
dξ

= P (νi − νw)− vex
dh

dξ
− vex

d ln dc
dξ

(4.25d)

dvix
dξ

= P (νi − νw)− vix
dh

dξ
− vix

d ln dc
dξ

(4.25e)

dvnx
dξ

= P
n

nn
νw(1− aw)

(
vix
vnx

− 1

)
(4.25f)

d

dξ

(
eϕ

mi

)
=

d

dξ

(
Te

mi

)
+

Te

mi

dh

dξ
+ νHvexP ; (4.25g)

d

dξ

(
Te

mi

)
= −P

2

5

νHqex/mi

nTe/mi
(4.25h)

d

dξ

(
qex
mi

)
= −3

2
nvex

Te

mi

dh

dξ
− 3

2
nvex

d

dξ

(
Te

mi

)
− 5

2
n
Te

mi

dvex
dξ

+

+

(
νHnv2ex − νin

E′
i

mi
− νwen

Te

mi

)
P −

(
5

2

Te

mi
nvex +

qex
mi

)
1

dc

ddc
dξ

(4.25i)

ddc
dξ

= Pγ (4.25j)

Distribution A:  Approved for public release; distribution is unlimited.



66 CHAPTER 4. LOW FREQUENCY GLOBAL LINEAR STABILITY ANALYSIS

Boundary conditions

The governing equations of the 1D model together with the different expressions described
above need a set of boundary conditions. These correspond to the anode and cathode, but
also to the point inside the thruster where the ion flow becomes supersonic smoothly (i.e.,
regular sonic point). The anode, together with the injector, are a source of neutrals and a
sink of electrons, while the cathode can be modelled as a source of electrons at approximately
constant temperature.

The following boundary conditions are identified for the 1D model:

- The ion and electron velocities at the anode, vixB and vexB, are related by the expression
characterizing the anode sheath presented in the next section.

- The heat conduction is known relative to the electron energy flow at the anode sheath
transition, this is, qexB/(nvexBTeB) is known.

- The difference in electric potential between the anode and the cathode must be equal
to the applied discharge potential (ϕA − ϕP = Vd)

- The ion flow is sonic at the anode sheath transition (MiB = −1)

- The mass flow through the injector is also known (ṁ). Because of mass continuity this
flow is constant along the thruster.

- The neutral velocity at the anode is known (vnxA)

- The sonic point inside the channel is regular, this is, MiS = 1 and GS = 0.

- The electron temperature at the cathode is given (TeP )

Similarly to the governing equations, the boundary conditions may be expressed in vector
form as:

H(y) = 0 (4.26)

In the case of the anode, the quasi-neutral governing equations must be accompanied by
a model describing the behaviour of the anode sheath so that the boundary conditions at
the anode can be transferred to the anode sheath transition, which is the edge of the quasi-
neutral domain for integration. A singular sonic point is found at this anode sheath transition
where the derivatives of the plasma variables become infinite in the quasi-neutral scale. Such
singular points are only admissible in the edges of the quasi-neutral domain.

Furthermore, as mentioned previously, regular and singular sonic points appear inside the
channel and at the anode sheath transition. Since P = 0 at these points, the governing
equations presented above must be Taylor-expanded so that the equations can be integrated
normally. This expansion process is presented in the next paragraphs as well.
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Anode sheath

In order to fulfil the constraints imposed by the anode, there must be a thin layer attached to
the anode separating it from the quasi-neutral plasma. This sheath is very small compared to
the thruster dimensions, and is not modelled by the quasi-neutral equations presented above.
However, the sheath must be included in the model to ensure that the electron and ion flows
to the anode are consistent with the diffusive ones from the channel.

The anode sheath can be considered stationary, non-collisional and un-magnetized. Under
these conditions, the usual conservations laws (particle, momentum and energy) are applicable
for each of the species, including ions, electrons and neutrals. Based on them, it is possible
to derive the following expressions relating the plasma variables at the anode and the anode
sheath transition [11]:

eϕAB

TeB
= ln

√
TeB

2πmev2exB
(4.27a)

qexB
nBvexBTeB

=
eϕAB

TeB
− 1

2
(4.27b)

(nvix)A = (nvix)B (nvex)A = (nvex)B (4.27c)

nnA = nnB vnxA = vnxB (4.27d)

Figure 4.5 shows a schematic of the anode and the anode sheath transition.

Figure 4.5: Schematic of anode sheath transition
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Expansion at the regular sonic point

As some plasma conditions are provided at the regular sonic transition, as part of the reso-
lution method presented below, it is necessary to integrate the governing equations starting
from point S. However, this point verifies that PS = 0 and GS = 0 and therefore the equations
must be Taylor expanded in the vicinity of point S in the following way.

It is possible to write the evolution equations for x and h in the vicinity of S in matrix
form as: 

dx

dξ

dh

dξ

 ≈


∂P

∂x

∂P

∂h
∂G

∂x

∂G

∂h


 ∆x

∆h

 ≈ K

 ∆x

∆h

 (4.28)

where ∆x = x− xS , ∆h = h− hS .
The eigenvectors of the matrix K provide the directions for the Taylor expansion from

point S. In order to compute matrix K it is necessary to account for the rest of equations
(4.25) so that the partial derivatives with respect to x and h are computed properly. In this
formulation, P and G must be understood as functions of x and h solely, being the rest of
the variables related to those through the differential equations of the model. For instance,
the axial ion velocity is related to x and h by the following expression:

dvix = (νi − νw)dx− vixdh

Similar expressions may be obtained for the rest of the variables (vix, vex, vnx, Te, ϕ, nn, qex, dc)
making use of equations (4.25) and for the dependent variables (νw, νwe, νH , νi, E

′
i, γ).

Out of the two pairs of eigenvectors, based on our experience with model, the one causing
the highest change in the Mach number is selected for the expansion. Once the direction
of the expansion is known, a infinitesimal delta (∆ξ) is applied to compute the value of the
Taylor-expanded variables.

Expansion at the singular sonic point

As the anode sheath transition is a singular sonic point, some of the derivatives are infinite
in the quasi-neutral scale. However, the equations expressed in the variable ξ do not show
such behaviour and it is possible to Taylor expand them in order to leave the anode sheath
transition. At this point, PB = 0 but GB ̸= 0 and therefore many of the equations in (4.25)
have a dominant term associated to dh/dξ, which is non-zero. The neutral equations and
the evolution of the x coordinate, however, do not have such terms and are expanded. The
following expansion is used:

dx

dξ
= −2vix

dvix
dξ

∆ξ (4.29a)

dnn

dξ
= − n

vn
(νi − νw)

dx

dξ
− nn

vn

dvn
dξ

(4.29b)

dvnx
dξ

=
n

nn
νw(1− aw)

(
vix
vnx

− 1

)
dx

dξ
(4.29c)

d

dξ

(
Te

mi

)
= −2

5

νHqex
nTe

dx

dξ
(4.29d)

where ∆ξ is an infinitesimal value needed to depart from the anode sheath transition.
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Solution method

Non-dimensional formulation

In order to simplify the implementation and the resolution of the 1D model, it is made non-
dimensional using the following reference variables for temperature, flow and cross section:

Tref = Ei = 12.1eV Γref = 1022m−2s−1 σref = σi0
√

mi/me ≈ 2.45 x 10−17m2

Based on those basic reference variables, other references variables for the velocity, density,
frequency, length, magnetic field, area, mass flow and charge current are defined as:

vref =
√

Tref/mi nref = Γref/vref νref = σrefΓref lref = vref/νref

Bref = νref
√
mime/q Aref = 2πdcR ṁref = miArefΓref Iref = qArefΓref

where R and dc are the mean radius and the width of the channel. For example, for a SPT-100
thruster, these parameters are R = 42.5mm and dc = 15mm.

Integration procedure

The system of first order differential equations given by equations (4.24) is integrated with a
standard ODE solver. However, due to the various locations of boundary conditions (A, B,
S, and P) the resolution method is rather complex. The approach followed is described next.

First, a solution is integrated from the anode (A). To this end, some values of the plasma
variables need to be guessed a-priori as the complete plasma state at the anode is not known.
The plasma state at the anode is then translated to the anode sheath transition (B) using the
anode model. The expansion presented above is applied to solve the issue of the singularity
at point B so that the integration of the equations can be initiated normally.

Secondly, another solution is integrated from the regular sonic point inside the channel (S)
towards the anode (A) and cathode (P) separately. Again, some values of the plasma variables
need to be guessed a-priori and the expansion presented above for the regular sonic point S
is applied in both directions: inwards for the integration towards the anode and outwards for
the integration towards the cathode.

The solutions integrated from the anode and the regular sonic point meet each other at an
intermediate point (C). The plasma state at this intermediate point is in principle different
in each solution. Hence, additional conditions are imposed to ensure continuity of the overall
solution at this intermediate point. These conditions are used to iterate on the values guessed
a-priori for the plasma variables at the anode and sonic transition. Additionally, the boundary
conditions in the cathode, as well as the discharge voltage condition, are also included in this
iterative procedure until convergence is reached and a solution satisfying all conditions is
obtained. The need for the two matching solutions from points B and S comes from the fact
that the solution integrated towards the anode is very sensitive to changes in the conditions
at point S and this makes it very complicated to obtain solutions with a negative sonic point
at the anode sheath transition (MB = −1). If no special measures are taken, the solution
normally reaches a positive sonic point, which is not physically valid under normal conditions.

The whole procedure can be seen as the resolution of a non-linear system of equations
where the equations are defined by the continuity conditions at an intermediate point, the
temperature at the cathode and the discharge voltage. The variables of this non-linear system
of equations are the plasma variables at the anode and sonic transition point that are not
known a-priori from operating conditions or boundary conditions.
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4.1.2 Linear time-dependent 2D model

This section presents the formulation of the linear time-dependent 2D model developed with
the goal of analysing azimuthal oscillations in HET from a global point of view. In first place,
the general 2D formulation is presented as an extension of the 1D model described in the
previous section. Then, the linearisation in time and azimuthal direction is carried out to
derive the linearised model that will be used for the global stability analyses.

General 2D formulation

The equations (4.1) presented in the previous section can be extended to two dimensions,
azimuthal and axial, with time-dependent terms. Under the same hypotheses of the 1D
model, the governing 2D unsteady equations of the plasma discharge may be written as:

∂n

∂t
+

1

dc
∇ · (nvedc) =

∂n

∂t
+

1

dc
∇ · (nvidc) = −∂nn

∂t
− 1

dc
∇ · (nnvndc) = n(νi − νw) (4.30a)

mi

(
∂

∂t
(nnvn) +

1

dc
∇ · (nnvnvndc)

)
= −min(νivn − νwvnw) (4.30b)

mi

(
∂

∂t
(nvi) +

1

dc
∇ · (nvividc)

)
= −en∇ϕ+min(νivn − νwvi) (4.30c)

0 = −∇(nTe)− en(−∇ϕ+ ve ×B)−menνeve (4.30d)

∂

∂t

(
3

2
nTe

)
+

1

dc
∇ ·
(
5

2
nTevedc + qedc

)
= enve · ∇ϕ− nνiE

′
i − nνweTe (4.30e)

0 =
5

2
nTe∇Te + eqe ×B+meνeqe (4.30f)

∂dc
∂x

=
2cpl
vix

≡ γ (4.30g)

It is important to remark that the radial variation of the variables is neglected reducing
the problem to two-dimensions: axial (x) and azimuthal (y). Moreover, curvature effects
in the azimuthal direction are also neglected as the mean radius of the channel is typically
larger than the width of the channel. Obviously, in the limit of a stationary and axi-symmetric
solution the system of equations (4.30) reduces to (4.1).

Equations (4.30) can be rewritten in a form more amenable to the current study. To this
end, the partial derivatives with respect to the time and the azimuthal coordinate are moved
to the right hand side of the equations. In this manner, the left hand side resembles the
equations (4.1). The resulting equations can be combined in order to obtain an equation for
the variable h ≡ lnn as:

P
∂h

∂x
= G+Gt +Gy ≡ Gty (4.31)

where P and G are functions identical to ones derived for the 1D model, and Gt and Gy

contain the temporal and azimuthal derivatives respectively and may be expressed as:

Gt = vix
∂h

∂t
− ∂vix

∂t
(4.32a)

Gy = vix

(
∂viy
∂y

+ viy
∂h

∂y

)
− viy

∂vix
∂y

− χ

(
e

mi

∂ϕ

∂y
− Te

mi

∂h

∂y

)
(4.32b)
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The set of governing equations of the time-dependent 2D model may be written as:

vnx
∂nn

∂x
= −n(νi − νw)− nn

∂vnx
∂x

− ∂nn

∂t
− nn

∂vny
∂y

− vny
∂nn

∂y
− nnvnx

∂ ln dc
∂x

(4.33a)

∂vex
∂x

= (νi − νw)− vex
∂h

∂x
− ∂h

∂t
− ∂vey

∂y
− vey

∂h

∂y
− vex

∂ ln dc
∂x

(4.33b)

∂vix
∂x

= (νi − νw)− vix
∂h

∂x
− ∂h

∂t
− ∂viy

∂y
− viy

∂h

∂y
− vix

∂ ln dc
∂x

(4.33c)

nnvnx
∂vnx
∂x

= nνw(1− aw)(vix − vnx)− nn
∂vnx
∂t

− nnvny
∂vnx
∂y

(4.33d)

nnvnx
∂vny
∂x

= nνw(1− aw)(viy − vny)− nn
∂vny
∂t

− nnvny
∂vny
∂y

(4.33e)

P
∂h

∂x
= G+Gt +Gy ≡ Gty (4.33f)

vix
∂viy
∂x

= νi(vny − viy)−
∂viy
∂t

− e

mi

∂ϕ

∂y
− viy

∂viy
∂y

(4.33g)

0 = − Te

mi

∂h

∂x
− ∂

∂x

(
Te

mi

)
+

e

mi

∂ϕ

∂x
− me

mi
νe (vex + χvey) (4.33h)

0 = − Te

mi

∂h

∂y
− ∂

∂y

(
Te

mi

)
+

e

mi

∂ϕ

∂y
− me

mi
νe(−χvex + vey) (4.33i)

∂dc
∂x

=
2cpl
vix

≡ γ (4.33j)

n

(
∂

∂t

(
3

2

Te

mi

)
+ vex

∂

∂x

(
3

2

Te

mi

)
+ vey

∂

∂y

(
3

2

Te

mi

))
+

∂

∂x

(
qex
mi

)
+

∂

∂y

(
qey
mi

)
=

=
me

mi
νen(v

2
ex + v2ey)−

3

2

Te

mi
n(νi − νw)− νin

E′
i

mi
− νwen

Te

mi

−n
Te

mi

(
∂vex
∂x

+
∂vey
∂y

)
−
(
nvex

Te

mi
+

qex
mi

)
1

dc

∂dc
∂x

(4.33k)

∂

∂x

(
Te

mi

)
= −2

5

meνe
nTe

(
qex
mi

+ χ
qey
mi

)
(4.33l)

∂

∂y

(
Te

mi

)
= −2

5

meνe
nTe

(
−χ

qex
mi

+
qey
mi

)
(4.33m)

where vny and viy are the azimuthal neutral and ion velocities respectively, and the rest of
symbols are as above.

Apart from the sonic points mentioned above, it is important to note that the azimuthal
component of the ion momentum conservation law, equation (4.33g), defines another special
point along the channel. This equation requires a regular transition at the point separating
the ionization region and the ion back-streaming region (vix = 0). Thus the right hand side of
the equation, which is represented with the symbol S hereafter, must be zero at that point as
well. This fact has important consequences on the way the equations are solved numerically.

The electron momentum equations, (4.33h) and (4.33i), may be combined to remove vey
from the formulation. Similarly for the equations (4.33l) and (4.33m) and the azimuthal heat
flux.
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Linearised governing equations

Equations (4.30) can be linearised around the steady-state and axi-symmetric solution (i.e.,
the zero-th order background solution). To this end, it is possible to assume that any control
parameter (say, w) of the Hall discharge (discharge voltage, mass flow, neutral velocity at
the anode and electron temperature at the cathode) may be written as the sum of a constant
zero-th order value, w0, and a temporal-azimuthal perturbation, w̃1(y, t). If the perturbation
is expressed as a Fourier expansion in y and t, then:

w(y, t) = w0 + ℜ{w1 exp(−iωt+ iky)} (4.34)

where ω = ωr + iωi is the angular frequency of the perturbation, being ωr and ωi its real and
imaginary parts, and k is the azimuthal wave number of the perturbation. Note that k only
admits a discrete number of values due to continuity conditions in the azimuthal direction,
k = −m/R, where m is the integer mode number (m > 0 when the perturbation travels in
the ExB direction) and R is the mean radius of the thruster.

Similarly, a macroscopic variable, say u(x, y, t), may be written as the sum of the axially-
dependent zero-th order solution, u0(x) and a perturbation, ũ1(x, y, t). The latter can also
be Fourier-expanded in t and y and, then, the complete solution may be expressed as:

u(x, y, t) = u0(x) + ℜ{u1(x;ω, k) exp(−iωt+ iky)} (4.35)

The small perturbations hypothesis (w1 ≪ w0, u1 ≪ u0) allows linearising (4.33a)-(4.33m)
and decouple the evolution of the zero-th order solution, which is given in (4.1a)-(4.1e), from
the evolution of the perturbations. Note that in order to consider consistently the axial
gradients of the variables in this linearisation, the zero-th order solution and the coefficients of
the Fourier expansion of the perturbations must retain the dependence on the axial coordinate.
This is the main difference with respect to local stability analyses such as the one previously
carried out by the authors [17].

Applying (4.35) to (4.33a)-(4.33m) it is possible to obtain a linear system of equations with
variable coefficients describing the evolution of the different perturbations along the channel.
The resulting equations contain source terms proportional to the angular frequency, ω, and
to the azimuthal wave number number, k, of the perturbations. These equations must be
solved several times, once for each fundamental mode associated to the boundary conditions.
Moreover, the zero-th order problem must also be solved together with the perturbation
problem in order to compute the coefficients of the perturbation equations.

The background solution consists of the following variables:

y0 = (x, h0, vix0, Te0, ϕ0, nn0, vex0, vnx0, qex0, dc0)

and the dependent variables:

q0(y0) = (νw0, νwe0, νH0, νi0, E
′
i0, γ0, χ0, vey0, qey0)

Note that the zero-th order solution verifies vny0 ≡ 0 and viy0 ≡ 0 as it is assumed that no
azimuthal flow exists for neutrals and ions in the background solution.

On the other hand, the following perturbed variables are considered:

y1 = (h1, vix1, Te1, ϕ1, nn1, vex1, vnx1, qex1, dc1, viy1, vny1)

together with the corresponding perturbed dependent variables:

q1(y0,y1) = (νw1, νwe1, νH1, νi1, E
′
i1, γ1, χ1, vey1, qey1)

The complete set of governing equations of the linear model may be written as:
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vnx0
dnn1

dx
= −vnx1

dnn0

dx
− n0(νi1 − νw1)− n1(νi0 − νw0)− nn0

dvnx1
dx

− nn1
dvnx0
dx

+

−nn0vnx0
d

dx

(
dc1
dc0

)
− (nn1vnx0 + nn0vnx1)

d ln dc0
dx

+ iωnn1 − ik(nn0vny1 + vny0nn1)

(4.36a)
dvex1
dx

= (νi1−νw1)−vex0
dh1
dx

−vex1
dh0
dx

−vex0
d

dx

(
dc1
dc0

)
−vex1

d ln dc0
dx

+iωh1−ik(vey1+vey0h1)

(4.36b)
dvix1
dx

= (νi1−νw1)−vix0
dh1
dx

−vix1
dh0
dx

−vix0
d

dx

(
dc1
dc0

)
−vix1

d ln dc0
dx

+iωh1−ik(viy1+viy0h1)

(4.36c)

nn0vnx0
dvnx1
dx

= −nn0vnx1
dvnx0
dx

− nn1vnx0
dvnx0
dx

+ iωnn0vnx1 − iknn0vny0vnx1+

+(1− aw) (n0νw0(vix1 − vnx1) + n0νw1(vix0 − vnx0) + n1νw0(vix0 − vnx0))
(4.36d)

nn0vnx0
dvny1
dx

= −nn0vnx1
dvny0
dx

− nn1vnx0
dvny0
dx

+ iωnn0vny1 − iknn0vny0vny1+

+(1− aw) (n0νw0(viy1 − vny1) + n0νw1(viy0 − vny0) + n1νw0(viy0 − vny0))
(4.36e)

P0
dh1
dx

= −P1
dh0
dx

+Gty1 (4.36f)

vix0
dviy1
dx

= −vix1
dviy0
dx

+ νi0(vny1 − viy1) + νi1(vny0 − viy0)+

+iωviy1 − ik (eϕ1/mi + viy0viy1) = −vix1
dviy0
dx

+ S1

(4.36g)

e

mi

dϕ1

dx
=

Te0

mi

dh1
dx

+
Te1

mi

dh0
dx

+
d

dx

(
Te1

mi

)
+ νH1vex0 + νH0vex1+

+ikχ0 (eϕ1/mi − h1Te0/mi − Te1/mi)

(4.36h)

ik
eϕ1

mi
= ikh1

Te0

mi
+ ik

Te1

mi
+ νH0/χ

2
0(−χ0vex1 + vey1 − χ1vex0) (4.36i)

1

n0

d

dx

(
qex1
mi

)
= −3

2
vex0

d

dx

(
Te1

mi

)
− 3

2
vex1

d

dx

(
Te0

mi

)
+

n1

n2
0

(
1

mi

dqex0
dx

+
qex0
mi

d ln dc0
dx

)
+

− qex1
min0

d ln dc0
dx

− qex0
min0

d

dx

(
dc1
dc0

)
− vex0

Te0

mi

d

dx

(
dc1
dc0

)
−
(
vex0

Te1

mi
+ vex1

Te0

mi

)
d ln dc0
dx

+

−Te1

mi

dvex0
dx

− Te0

mi

dvex1
dx

+ 2
νH0

χ2
0

(vex0vex1 + vey0vey1) +
νH0

χ2
0

(
νH1

νH0
− 2

χ1

χ0

)
(v2ex0 + v2ey0)+

−3

2

Te0

mi
(νi1 − νw1)−

3

2

Te1

mi
(νi0 − νw0)− νi0

E′
i1

mi
− νi1

E′
i0

mi
− νwe0

Te1

mi
− νwe1

Te0

mi
+

+
3

2
iω

(
Te1

mi

)
− ik

(
3

2
vey0

Te1

mi
+

qey0
n0mi

+ vey1
Te0

mi

)
(4.36j)

d

dx

(
Te1

mi

)
= −2

5

qex0νH0

n0Te0

(
qex1
qex0

+
νH1

νH0
− n1

n0
− Te1

Te0

)
+ ikχ0

Te1

mi
(4.36k)

ik
Te1

mi
= −2

5

νH0/χ
2
0

n0Te0
(−χ0qxe1 + qey1 − χ1qxe0) (4.36l)

ddc1
dx

= γ1 (4.36m)

where P1 and Gty1 are the perturbations of the corresponding functions P and Gty.
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Analysis of linearised terms

The linear formulation just presented makes use of several perturbed dependent variables.
Thanks to the linearity, all these variables can be computed in the following generic form:

qi1 =
∑
j

∂qi0
∂yj0

yj1 (4.37)

where qi1 and is any of the dependent variables in q1 and yj1 is any of the variables in y1.
Similarly, let us define functions P and G as P = P (u) and G = G(u) where u ≡ (y,q).
Then, it is possible to express the perturbations of those functions as:

P1(u0,u1, ω, k) =
∑
j

∂P0

∂uj0
uj1 =

Te1

mi
− 2vix0vix1 (4.38a)

G1(u0,u1, ω, k) =
∑
j

∂G0

∂uj0
uj1 +

∑
i

∂2G1

∂uj1∂ω
uj1ω +

∑
i

∂2G1

∂uj1∂k
uj1k (4.38b)

Based on the previous expressions, the following ones can be derived:

dqi1
dx

=
∑
j,k

∂2qi0
∂yj0∂yk0

dyk0
dx

yj1 +
∑
j

∂qi0
∂yj0

dyj1
dx

(4.39a)

dP1

dx
=
∑
j,k

∂2P0

∂uj0∂uk0

duk0
dx

uj1 +
∑
j

∂P0

∂uj0

duj1
dx

(4.39b)

dG1

dx
=
∑
j,k

∂2G0

∂uj0∂uk0

duk0
dx

uj1 +
∑
j

∂G0

∂uj0

duj1
dx

+

+
∑
j,k

∂3G1

∂uj1∂uk0∂ω

duk0
dx

uj1ω +
∑
j

∂2G1

∂uj1∂ω

duj1
dx

ω+

+
∑
j,k

∂3G1

∂uj1∂uk0∂k

duk0
dx

uj1k +
∑
j

∂2G1

∂uj1∂k

duj1
dx

k

(4.39c)

The expressions above are useful to simplify the mathematical formulation of the expan-
sion of the governing equations around points B, S and I.

Generic form of linearised equations

Equations (4.36) can be written making use of the same change of variable used for the zero-th
order solution in the following generic form:

dy0

dξ
= F0(y0,q0(y0)) (4.40a)

dy1

dξ
= F1(y0,q0(y0),y1,q1(y0,y1)) (4.40b)
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Linearised boundary conditions

The boundary conditions associated to the evolution equations of the perturbed problem are
also derived from the linearisation of the boundary conditions of the zero-th order problem.
The result of this linearisation is presented next.

The following boundary conditions are identified for the perturbation problem:

- The perturbed ion and electron velocities at the anode (vix1B, vex1B) are related by the
linearised expression characterizing the anode sheath, given by:

eϕ1AB = eϕ0AB
Te1B

Te0B
+ Te0B

(
vix1B
vix0B

− vex1B
vex0B

)
(4.41)

- The perturbation of the discharge voltage is known and must be equal to the difference
in perturbed electric potential between the anode and the cathode, ϕ1A − ϕ1P = Vd1,

- In order to fulfil the condition h1B ≪ h0B, the singularity at point B for the perturbed
solution cannot be greater than for the background solution. This requires that P1B = 0.

- The perturbation of the mass flow through the injector, ṁ1A, is also known.

- The perturbation of the neutral velocities at the anode, vnxA1 and vnyA1, are known.

- The perturbation of the electron temperature at the cathode, Te1P , is known.

- The sonic point inside the channel is regular at the perturbed location for the complete
solution, this is, PS′ = 0 and GS′ = 0. Provided that P0S = 0 and G0S = 0, those two
conditions are linearised as:

P1S +

(
dP0

dx

)
S

x1S = 0 (4.42a)

Gty1S +

(
dG0

dx

)
S

x1S = 0 (4.42b)

where x1S is the perturbation of the location of the sonic point inside the channel.

- The transition through the zero-ion velocity point is regular and thus the complete
solution at the perturbed intermediate point verifies vixI′ = 0 and SI′ = 0. Provided
that vix0I = 0 and S0I ≡ 0, then, the linearised conditions become:

vix1I +

(
dvix0
dx

)
I

x1I = 0 (4.43a)

S1I +

(
dS0

dx

)
I

x1I = 0 (4.43b)

where x1I is the perturbation of the location of the zero ion-velocity point inside the
channel.
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Perturbed state at the regular sonic transition

Given the zero-th order solution and the known perturbation variables at the regular sonic
transition point, S, conditions (4.42) are used to compute the perturbations of ion and electron
axial velocities, vix1S and qex1S .

The first order derivatives of the perturbation variables at point S cannot be computed using
equations (4.36) since some of the equations become singular at the regular sonic transition
point. In particular, equation (4.36f) becomes singular because P0S = 0 and the right hand
side of the equation is also zero as a consequence of conditions (4.42).

In order to overcome this problem, equation (4.36f) is expanded around point S in the
following way: (

dP0

dx

)
S

(
dh1
dx

)
S

= −
(

d

dx

(
P1

dh0
dx

))
S

+

(
dGty1

dx

)
S

(4.44)

Equation (4.44), together with the rest of the first order equations at point S, define a linear
system of equations for the computation of (dy1/dx)S . As part of equation (4.44), the deriva-
tives of P1 and Gty1 with respect to x are needed and can be computed with the equations
(4.39). There, the first order derivatives of the perturbed dependent variables at S, (dq1/dx)S ,
are needed. In order to compute them, the linear system of equations is extended with equa-
tions for (dq1/dx)S , which are given by equation (4.39a). Altogether, the equations form a
linear system for the computation of the first order derivatives of the perturbed variables at
S, (dy1/dx)S and (dq1/dx)S .

Note that the second order derivative of h0 at point S, (d2h0/dx
2)S , is needed in (4.44). A

similar procedure to the one just described is used to compute the second order derivatives
at S of the zero-th order solution. In that case, the equation for the second order derivative
of h0 can be written as:

dP0

dx

dh0
dx

+ P0
d2h0
dx2

=
dG0

dx
(4.45)

The rest of the equations for the second order derivatives of the zero-th order variables can
be easily obtained from (4.1).

However, equation (4.45) is singular at point S (P0S=0) and must be Taylor-expanded in the
following way:

2

(
dP0

dx

)
S

(
d2h0
dx2

)
S

=

(
d2G0

dx2

)
S

−
(
d2P0

dx2

)
S

(
dh0
dx

)
S

(4.46)

The spatial derivatives at S of P0 and G0, needed in (4.46), are given by the expressions
(4.22). Similarly, the equations for the second order derivatives of the dependent variables
q0, needed for the evaluation of the spatial second order derivatives of P0 and G0 at S, are
also given by (4.22c). Altogether, the equations form a linear system for the computation of
the second order derivatives at S, (d2y0/dx

2)S and (d2q0/dx
2)S .
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Perturbed state at the anode sheath transition

Given the zero-th order solution and the known perturbation variables at the anode sheath
transition point, B, the condition P1B = 0 is used to compute the perturbation of the ion
axial velocity, vix1B.

As in the previous paragraph, the first order derivatives of the perturbation variables at point
B cannot be computed since equation (4.36f) for h1 becomes singular at point B as P0B = 0
and P1B = 0.

In order to overcome this problem, equation (4.36f) is Taylor-expanded around point B in the
following way: (

dh1
dξ

)
B

= −(dP1/dξ)B
(dP0/dξ)B

(
dh0
dξ

)
B

+Gty1B (4.47)

The previous equation, in combination with the rest of the equations for the first order
derivatives of (dy1/dξ)B and (dq1/dξ)B at point B, form a linear system of equations to solve
for those variables. Once again, the equations for (dq1/dξ)B are given by equation (4.39a).

Perturbed state at the zero ion velocity point

Given the zero-th order solution and the known perturbation variables at the zero ion velocity
point, I, conditions (4.43) are used to compute the perturbations of the ion axial and azimuthal
velocities, vix1S and viy1S .

As in the previous paragraphs, the first order derivatives of the perturbation variables at
point I cannot be computed since the azimuthal ion momentum equation, equation (4.36g),
becomes singular at point I as a consequence of the boundary conditions given by equations
(4.43).

In order to overcome this problem, equation (4.36g) is expanded around point I in the following
way:

(
dvix0
dx

)
I

(
dviy1
dx

)
I

= −
(
dvix1
dx

)
I

(
dviy0
dx

)
I

− vix1I

(
d2viy0
dx2

)
I

+

(
dS1

dx

)
I

(4.48)

The previous equation, in combination with the rest of the equations for the first order
derivatives of (dy1/dx)I and (dq1/dx)I at point I, form a linear system of equations to solve
for those variables. Once again, the equations for (dq1/dx)I are given by equation (4.39a).
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Solution method for the perturbation model

The presence inside the channel of a regular sonic point, S, and a zero ion-velocity point, I,
makes the integration process more complicated. Moreover, as the coefficients of the first-
order equations depend on the zero-th order solution, the latter must be solved for together
with the first-order solution in order to compute those coefficients. On the other hand, the
linearity of the first-order problem simplifies the overall approach.

Fundamental modes

Since the perturbation problem is linear, the complete solution can be constructed as a linear
combination of independent solutions called fundamental modes. These fundamental modes
are solutions of the perturbation problem for specific values of the perturbation variables
at B, S and I, which are chosen such that all variables but one are zero at one of the those
points. The value of the non-zero variable is chosen to be the unity and the solution computed
in this way becomes the fundamental mode associated that unitary variable. Each of these
fundamental modes is computed integrating the governing equations from the point where
the non-zero variable is defined. The solution can then be expressed as:

y1(ξ) =
∑
i

xiYi(ξ) (4.49)

where Yi(ξ) are the fundamental modes and xi are the weights of the fundamental modes in
the final solution. These weights are not known a-priori and must be computed to fulfil the
conditions imposed by the boundary conditions, and the continuity of the overall solution at
the points where the different fundamental modes meet along the channel. The value of the
control parameters comes from the externally applied perturbations on the discharge voltage,
on the anode neutral axial and azimuthal velocity, on the cathode electron temperature and
on the anode mass flow.

In the case of the complete azimuthal problem, there are up to 25 fundamental modes, each
one of them associated to one of the following variables:

- point B: h1B, Te1B, vex1B, nn1B, vnx1B, viy1B, vny1B, ϕ1B

- point S: Te1S , x1S , h1S , nn1S , vnx1S , vex1S , viy1S , vny1S

- point I: h1I , Te1I , vex1I , nn1I , vnx1I , qex1I , x1I , vny1I , ϕ1I

The fundamental modes associated to the variables ϕ1B and ϕ1I can be computed analytically
as they only affect the absolute value of the electric potential. This leaves 23 fundamental
modes that require numerical integration, 7 or 8 for each of the special points in the domain,
B, I and S. Each of those fundamental modes are computed by, first, expanding the perturbed
plasma state around the starting point (B, I or S) as presented in the previous section and,
then, integrating the governing equations up to an intermediate matching point. Two inter-
mediate matching points are defined where the condition Mi0 = ±0.5 is verified, being one of
them located between points B and I and the other one between points I and S.
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Complete solution

The value of the weights of the fundamental modes in the final solution are obtained from
the following algebraic system of equations:

Ax = b (4.50)

where x is an unknown vector containing the linear weights of the fundamental modes in the
complete solution, b is a vector with the coefficients of the linearised control parameters and
A is a matrix with complex coefficients.

Vector b contains the control parameters from the boundary conditions and the continuity
conditions. As there are 25 fundamental modes, b must have 25 components, 20 of them
being zero as they correspond to the continuity condition of the integrated variables at the
two intermediate matching points of the solutions integrated from B, I and S. The remaining
5 components of b correspond to the externally applied perturbations, Te1P , ṁ1A, vnx1A, Vd1

and vny1A.

Matrix A contains the partial derivatives of the control parameters with respect to the uni-
tary variables of each of the fundamental modes. These partial derivatives are computed
from the plasma variables at the corresponding point for the given fundamental mode of the
perturbation problem. Hence, this matrix A depends on the control parameters defining the
zero-th order solution, w0, as well as the angular frequency, ω, and the angular wave number,
k, that is, A ≡ A(w0, ω, k).

Self-excited oscillations

In order to have self-excited oscillations, this is, growing oscillations with no externally applied
perturbations (i.e., with B = 0), the previous algebraic system of equations must have non-
trivial solutions for the homogeneous problem (Ax = 0). This is equivalent to imposing the
following condition:

detA(w0, ω, k) = 0. (4.51)

For each zero-th order solution given by the control parameters, w0, and for each azimuthal
angular wave number, k, equation (4.51) provides a condition to compute the complex angular
frequency, ω, of the perturbation. If the resulting frequency verifies the condition ωi > 0, then
the perturbation is self-excited. The case k = 0 corresponds to purely axial oscillations for the
analysis of the breathing mode studied in the past [181, 14, 15] with this very same model.
In that case, the azimuthal momentum equations do not need to be solved, and thus, the
additional complexity of the regular transition at the point with zero ion velocity is avoided.

For the analysis of azimuthal oscillations, the size of matrix A is rather large. In order to
avoid numerical instabilities in the computation of the determinant of the matrix A, the
system of equations (4.50) can be reduced in size by pre-eliminating the unknowns whose
right-hand side is zero. This allows reducing the size of the matrix and the computation of
the determinant becomes numerically stable. Note that this fact is very important in order
to find the exact frequency for which a self-excited mode exists and be able to compute the
corresponding solution of the null space of matrix A.
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4.1.3 Model without heat conduction and plume divergence

This section is intended to provide a brief summary of the equations corresponding to the
model presented in previous sections without heat conduction and plume divergence. The
main effects of heat conduction terms are a smaller temperature peak, smoother temperature
gradients and a widening of the ionization region. Additionally, plume divergence is also
neglected in this simplified model for clarity. Removing heat conduction and plume divergence
terms from the model simplifies the equations, specially the electron energy equation, but the
overall procedure and solution method remain basically the same. Note this section is more
intended as a reference summary of the equations of the model without heat conduction and
plume divergence rather than a descriptive derivation and analysis of the model itself. The
reader that is not interested in the equations of this simplified model may directly go to the
next section.

The governing equations of the 1D model given in (4.1) are simplified into the equations
(4.52) when heat conduction and plume divergence are not considered:

d

dx
(nnvnx) = −n(νi − νw) (4.52a)

d

dx
(nvix) = n(νi − νw) (4.52b)

d

dx
(nvex) = n(νi − νw) (4.52c)

mi
d

dx
(nnv

2
nx) = −min(νivnx − νwvnw) (4.52d)

mi
d

dx
(nv2ix) = −en

dϕ

dx
+min(νivnx − νwvix) (4.52e)

0 = − d

dx
(nTe) + en

dϕ

dx
−menνeχ

2vex (4.52f)

d

dx

(
5

2
nTevex

)
= envex

dϕ

dx
− nνiE

′
i − nνweTe (4.52g)

Similarly, the definitions of the functions P and G, given in (4.3), are modified as follows:

P = Te/mi − (3/5)v2ix (4.53a)

G = −νHvex + (νi − νw)
Te/mi

vex
+

2

5
νi
E′

i/mi

vex
+

+
2

5
νwe

Te/mi

vex
+

3

5

(
νi(vnx − 2vix) + νwvix

) (4.53b)

and the definition of the Mach number, given in equation (4.4), is modified with a 5/3 factor
as follows:

Mi =
vix√

5Te/3mi

(4.54)
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The final set of equations of the no-heat-conduction 1D model is given by equations (4.55)
shown below:

dx

dξ
= P (4.55a)

dh

dξ
= G (4.55b)

dnn

dξ
= −P

n

vn
(νi − νw)−

nn

vn

dvn
dξ

(4.55c)

dvex
dξ

= P (νi − νw)− vex
dh

dξ
(4.55d)

dvix
dξ

= P (νi − νw)− vix
dh

dξ
(4.55e)

dvnx
dξ

= P
n

nn
νw(1− aw)

(
vix
vnx

− 1

)
(4.55f)

d

dξ

(
eϕ

mi

)
= −vix

dvix
dξ

− Pνi(vix − vnx) (4.55g)

d

dξ

(
Te

mi

)
= − Te

mi

dh

dξ
+

e

mi

dϕ

dξ
− PνHvex (4.55h)

Equations (4.55) can be represented in the generic form given in equation (4.24) us-
ing as dependant variables y = (x, h, vix, Te, ϕ, nn, vex, vnx) and dependent functions q(y) =
(νw, νwe, νH , νi, E

′
i).

The equations equivalent to (4.29) for the expansion of the model at point B can be
expressed as:

dx

dξ
= −2vix

dvix
dξ

∆ξ (4.56a)

dnn

dξ
= − n

vn
(νi − νw)

dx

dξ
− nn

vn

dvn
dξ

(4.56b)

dvnx
dξ

=
n

nn
νw(1− aw)

(
vix
vnx

− 1

)
dx

dξ
(4.56c)

Up to this point the focus has been on the simplification of the equations of the 1D model.
Similarly, the general governing equations of the 2D model given in equations (4.30), when
no heat conduction and plume divergence are considered, simplify into:

∂n

∂t
+∇ · (nve) =

∂n

∂t
+∇ · (nvi) = −∂nn

∂t
−∇ · (nnvn) = n(νi − νw) (4.57a)

mi

(
∂

∂t
(nnvn) +∇ · (nnvnvn)

)
= −min(νivn − νwvnw) (4.57b)

mi

(
∂

∂t
(nvi) +∇ · (nvivi)

)
= −en∇ϕ+min(νivn − νwvi) (4.57c)

0 = −∇(nTe)− en(−∇ϕ+ ve ×B)−menνeve (4.57d)

∂

∂t

(
3

2
nTe

)
+∇ ·

(
5

2
nTeve

)
= enve · ∇ϕ− nνiE

′
i − nνweTe (4.57e)
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The combination of equations equations (4.57) yields also equation (4.31) where the func-
tions Gt and Gy are now given by:

Gt = −2

5

(Te/mi

vex
− 3

2
vix

)∂h
∂t

− 3

5

∂vix
∂t

+
3

5

1

vex

∂

∂t

( Te

mi

)
(4.58a)

Gy = −χ

(
e

mi

∂ϕ

∂y
− ∂

∂y

( Te

mi

)
− Te

mi

∂h

∂y

)
+

+
3

5

(
vix

∂viy
∂y

+ vixviy
∂h

∂y
− viy

∂vix
∂y

)
− 2

5

e

mi

vey
vex

∂ϕ

∂y
+

vey
vex

∂

∂y

( Te

mi

) (4.58b)

The previous 2D equations may also be expressed as equations (4.59) given below:

vnx
∂nn

∂x
= −n(νi − νw)− nn

∂vnx
∂x

− ∂nn

∂t
− nn

∂vny
∂y

− vny
∂nn

∂y
(4.59a)

∂vex
∂x

= (νi − νw)− vex
∂h

∂x
− ∂h

∂t
− ∂vey

∂y
− vey

∂h

∂y
(4.59b)

∂vix
∂x

= (νi − νw)− vix
∂h

∂x
− ∂h

∂t
− ∂viy

∂y
− viy

∂h

∂y
(4.59c)

nnvnx
∂vnx
∂x

= nνw(1− aw)(vix − vnx)− nn
∂vnx
∂t

− nnvny
∂vnx
∂y

(4.59d)

nnvnx
∂vny
∂x

= nνw(1− aw)(viy − vny)− nn
∂vny
∂t

− nnvny
∂vny
∂y

(4.59e)

vix
∂vix
∂x

= νi(vnx − vix)−
e

mi

∂ϕ

∂x
− ∂vix

∂t
− viy

∂vix
∂y

(4.59f)

vix
∂viy
∂x

= νi(vny − viy)−
∂viy
∂t

− e

mi

∂ϕ

∂y
− viy

∂viy
∂y

(4.59g)

0 = − Te

mi

∂h

∂x
− ∂

∂x

(
Te

mi

)
+

e

mi

∂ϕ

∂x
− me

mi
νe (vex + χvey) (4.59h)

0 =
me

mi
νe(χvex − vey) +

e

mi

∂ϕ

∂y
− Te

mi

∂h

∂y
− ∂

∂y

(
Te

mi

)
(4.59i)

P
∂h

∂x
= G+Gt +Gy ≡ Gty (4.59j)

The linearisation of the equations (4.59) yields the final set of equations of the perturbed
problem:

vnx0
dnn1

dx
= −vnx1

dnn0

dx
− n0(νi1 − νw1)− n1(νi0 − νw0)− nn0

dvnx1
dx

− nn1
dvnx0
dx

+

+iωnn1 − ik(nn0vny1 + vny0nn1)

(4.60a)

dvex1
dx

= (νi1 − νw1)− vex0
dh1
dx

− vex1
dh0
dx

+ iωh1 − ik(vey1 + vey0h1) (4.60b)

dvix1
dx

= (νi1 − νw1)− vix0
dh1
dx

− vix1
dh0
dx

+ iωh1 − ik(viy1 + viy0h1) (4.60c)

Distribution A:  Approved for public release; distribution is unlimited.



4.1. FORMULATION 83

nn0vnx0
dvnx1
dx

= −nn0vnx1
dvnx0
dx

− nn1vnx0
dvnx0
dx

+

+(1− aw) (n0νw0(vix1 − vnx1) + n0νw1(vix0 − vnx0) + n1νw0(vix0 − vnx0))+

+iωnn0vnx1 − iknn0vny0vnx1

(4.60d)

nn0vnx0
dvny1
dx

= −nn0vnx1
dvny0
dx

− nn1vnx0
dvny0
dx

+

+(1− aw) (n0νw0(viy1 − vny1) + n0νw1(viy0 − vny0) + n1νw0(viy0 − vny0))+

+iωnn0vny1 − iknn0vny0vny1

(4.60e)

e

mi

dϕ1

dx
= −vix0

dvix1
dx

− vix1
dvix0
dx

+ νi0(vnx1 − vix1) + νi1(vnx0 − vix0)+

+iωvix1 − ikviy0vix1

(4.60f)

vix0
dviy1
dx

= −vix1
dviy0
dx

+ νi0(vny1 − viy1) + νi1(vny0 − viy0)+

+iωviy1 − ik (eϕ1/mi + viy0viy1) = −vix1
dviy0
dx

+ S1

(4.60g)

d

dx

(
Te1

mi

)
= −Te0

mi

dh1
dx

− Te1

mi

dh0
dx

+
e

mi

dϕ1

dx
− νH0vex1 − νH1vex0+

+ikχ0 (h1Te0/mi + Te1/mi − eϕ1/mi)

(4.60h)

P0
dh1
dx

= −P1
dh0
dx

+Gty1 (4.60i)

where the linearised form of the function P may be expressed as follows:

P1(u0,u1, ω, k) =
∑
j

∂P0

∂uj0
uj1 =

Te1

mi
− 6

5
vix0vix1 (4.61)

with
y0 = (x, h0, vix0, Te0, ϕ0, nn0, vex0, vnx0) u0 = (y0,q0)

y1 = (h1, vix1, Te1, ϕ1, nn1, vex1, vnx1, viy1, vny1) u1 = (y1,q1)

In this no-heat-conduction model the complete linearised azimuthal problem consists of
23 fundamental modes, each one of them associated to one of the following variables at B, I
and S:

- point B: h1B, Te1B, vex1B, nn1B, vnx1B, viy1B, vny1B, ϕ1B

- point S: Te1S , x1S , h1S , nn1S , vnx1S , viy1S , vny1S

- point I: h1I , Te1I , vex1I , nn1I , vnx1I , x1I , vny1I , ϕ1I

Once again, the fundamental modes associated to the variables ϕ1B and ϕ1I can be com-
puted analytically as they only affect the absolute value of the electric potential. This leaves
21 fundamental modes that require numerical integration (as opposed to the 23 modes of the
model with heat conduction), 7 for each of the special points in the domain of numerical in-
tegration, B, I and S. The method to compute each of those fundamental modes is analogous
to the method used for the model with heat conduction.
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4.1.4 Simplified models

In the previous sections the complete linear 2D time-dependent model has been presented.
However, provided that the zero-th and first order problems are separated, it is possible to
include different terms in the background and perturbation solutions. This allows evaluating
which terms play a relevant role in an unstable oscillation. Nevertheless, all terms must
be kept in the zero-th order problem in order to maintain the background solution similar
to experiment results. However, in the perturbation problem some terms may be safely
neglected based on the relative size of the perturbations for a given oscillation. This allows
simplifying the formulation of the first-order problem while keeping only the terms that are
strictly necessary to give rise to a given oscillation, and, in turn, understanding the physical
mechanism at play.

Some of the terms that may be neglected from the perturbation problem are listed next,
although in principle any variable or term of the linear formulation may be subject to exclusion
from the linear 2D model:

- neutral dynamics (neutral density and velocity perturbations)

- ion axial and azimuthal dynamics (ion azimuthal velocity perturbations)

- heat conduction terms

- ionization particle source and sink terms

4.1.5 Anomalous diffusion and oscillations

The formulation presented above has mostly focused on the analysis of the linear stability
of the Hall discharge against azimuthal perturbations. In case a self-excited oscillation is
detected, then unstable oscillations grow and eventually saturate. The linear growth phase
is the only one modelled with the 2D model presented here, whereas the saturation is a
non-linear process. Anomalous diffusion related to saturated azimuthal oscillations cannot
be determined self-consistently here. Nonetheless, some insight can be obtained if we accept
the following postulate. The shape and relative strength of the saturated oscillations are
those corresponding to the linear perturbations solution. Of course the postulate is likely less
plausible the higher is the strength of the saturated oscillation, a parameter totally outside
of the scope of the linear model developed here.

Equation (4.30d) is indeed the Ohm’s law for electrons and can be expressed as:

enve = −µ
(
enE+∇(nTe)

)
(4.62)

where µ is the electron mobility tensor and the rest of symbols as above. In the directions x
and y we have:

envex = −µ⊥

(
enEx +

∂(nTe)

∂x

)
+ µH

(
enEy +

∂(nTe)

∂y

)
(4.63a)

envey = −µ⊥

(
enEy +

∂(nTe)

∂y

)
− µH

(
enEx +

∂(nTe)

∂x

)
(4.63b)
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where the components of the mobility tensor are defined as:

µ⊥ =
e

me

νe
ω2
ce + ν2e

≃ 1

Bχ
(4.64a)

µH = χµ⊥ ≃ 1

B
(4.64b)

For an axi-symmetric solution, the last term of (4.63a) and (4.63b) is zero. However, if small
azimuthal oscillations are present, and because of µH ≫ µ⊥, the last term in (4.63a) may be
important, thus providing an extra contribution to axial (i.e., perpendicular) transport. The
azimuthal oscillations are not expected to modify significantly the rest of equations.

Next, the effect of that oscillation-based transport on the 1D steady-state solution will
come out from averaging its effect over t and y. This yields:

en0vex0 = −µ⊥0

(
enEx +

∂(nTe)

∂x

)
0

+
⟨ene1Ey1⟩

B
(4.65a)

en0vey0 ≃ −µH

(
enEx +

∂(nTe)

∂x

)
0

(4.65b)

where ⟨z⟩(x) is the temporal-azimuthal average of a function z(t, x, y).
The strength of the oscillation-based transport, measured as the azimuthal force relative

to the axial one, is expressed as:

αA(x) =
⟨n1Ey1⟩
n0vey0B

(4.66)

so that we can rearrange (4.65a) and (4.65b) as:

vey0 =
ωce

ν ′e
vex0 (4.67a)

with ν ′e = νe + αA(x)ωce (4.67b)

The last expression for ν ′e resembles the definition of the Bohm diffusion frequency (νB =
αBωce) highlighting the relation between the anomalous transport and the oscillation-based
transport. If this additional transport were all the anomalous contribution, then αB = αA(x),
however there may be other contributors to the anomalous diffusion. From a practical point
of view, given the perturbations of plasma density and azimuthal electric field, (4.66) allows
obtaining the equivalent anomalous diffusion coefficient associated to the perturbations.

Note in any case that term is a non-linear effect and thus it is not accounted for in the
formulation used in the previous sections, where the zero-th and first order problems are
solved. In order to close the loop and have a self-consistent linear model of the oscillation-
based transport it would be necessary to impose αB = αA(x) and iterate until the same
profile used in the zero-th order solution results from the corresponding linear perturbation
problem.

One of the consequences of the azimuthal oscillation may thus be an enhanced electron
conductivity inside the channel. In order to evaluate the net effect on the electron current, it
is convenient to compute the equivalent anomalous diffusion coefficient, αA(x), associated to
the perturbations computed with the linear model.
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4.2 Background solution and parametric variations

The zero-th order solutions whose stability is to be analysed in the following sections are
described in this one. This section is devoted to the presentation of the results of the 1D
model. For this purpose, a SPT-100 thruster model has been considered as reference case. In
first place, results for the model without heat conduction and plume divergence are presented,
and secondly, results with those effects are shown, including parametric variations on several
operation parameters.

4.2.1 Reference solution without heat conduction and plume divergence

The main simulation parameters are presented in Table 4.1, where the following symbols are
used: ṁ is the mass flow rate through the anode, Vd is the discharge voltage, Bmax is the
maximum magnetic field, xmax is the location of the maximum magnetic field with respect to
the anode, LAE is the distance from anode to external cathode, Lch, dc and R are respectively
the length, the width and the mean radius of the channel, TeE is the cathode temperature,
vnB is the neutral velocity at injection, αB is the anomalous diffusion coefficient, ν̃w is a
dimensionless parameter for the wall losses model [3] and TSEE is a also parameter of the
wall losses model that corresponds to the electron temperature yielding 100% of secondary
electron emission for the specific wall material used. The electron temperature at the anode,
TeB, and the discharge current, Id, are outputs of the simulation. For this reference case these
result in TeB = 1.2 eV and Id = 5.0A.

Table 4.1: Main simulation parameters of the SPT-100 Hall Thruster used as reference case
for the simulations without heat conduction and plume divergence.

ṁ 4.85 mg/s Vd 300 V

Bmax 237 G xmax 20 mm

Lch 25 mm LAE 33 mm

dc 15 mm R 42.5 mm

TeE 4.8 eV vnB 300 m/s

αB 0.01 ν̃w 0.16

TSEE 100 eV aw 1.0

Lm1 15 mm Lm2 7.5 mm

Fig. 4.6 shows the axial profiles of the main macroscopic variables corresponding to the
background solution of Eqs. (4.52) for the reference case described in Table 4.1. In Fig. 4.6,
there are three clearly separated regions in the discharge, from left to right in the figure: the
ion-back-streaming region, the ionization region and the acceleration region. These regions
are separated by the zero-ion velocity point and the regular ion sonic transition, represented in
the figures as the left and right asterisks respectively. The ion back-streaming region is needed
in order to fulfil the boundary condition of net current to the anode. Additionally, there are
large temperature gradients in the ionization region due to the lack of heat conduction effects.
More details about how the 1D model reproduces the structure of the Hall discharge may be
found in [11, 12].
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Figure 4.6: Axial profiles of the main macroscopic variables of the background solution for the
reference case without heat conduction and plume divergence: x is the axial location, ne0(x)
is the plasma density, nn0(x) is the neutral density, Te0(x) is the electron temperature, ϕ0(x)
is the electric potential, B(x) is the magnetic field, Ii0(x) is the ion axial current, vix0(x) is
the ion axial velocity, vex0(x) is the electron axial velocity, νi0(x) is ionization frequency, and
χ0 is the Hall parameter. The left asterisk corresponds to the zero-ion-velocity point whereas
the right asterisk corresponds to the regular ion sonic transition point inside the channel.
The space between both points corresponds roughly to the ionization region of the thruster.
The left vertical dashed line represents the channel exit, whereas the right one indicates the
location of the cathode, which is the end of the simulation domain.

Distribution A:  Approved for public release; distribution is unlimited.



88 CHAPTER 4. LOW FREQUENCY GLOBAL LINEAR STABILITY ANALYSIS

4.2.2 Reference solution with heat conduction and plume divergence

The main simulation parameters used in the simulation with heat conduction and plume
divergence are presented in Table 4.2, where the symbols are as above. The simulation
parameters are mostly similar, except for the wall model parameters, which in this case are
more realistic, aw = 0.85 and TSEE = 30eV . In this case, the electron temperature at the
anode and the discharge current are TeB = 2.9 eV and Id = 5.4A.

Table 4.2: Main simulation parameters of the SPT-100 Hall Thruster used as reference case
for the simulations with heat conduction and plume divergence.

ṁ 4.75 mg/s Vd 300 V Bmax 230 G xmax 25 mm

Lch 25 mm LAE 33.5 mm dc 15 mm R 42.5 mm

TeE 5 eV vnB 300 m/s αB 0.094 ν̃w 0.17

TSEE 30 eV aw 0.85 Lm1 15 mm Lm2 5 mm

Fig. 4.7 shows the axial profiles of the main macroscopic variables corresponding to the
background solution of Eqs. (4.1) for the reference case described in Table 4.2.
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Figure 4.7: Axial profiles of the main macroscopic variables of the background solution for
the reference case with heat conduction and plume divergence. Symbols are as in Fig. 4.6.

The main differences with respect to the case without heat conduction are the following.
First, no steep gradients of the temperature exist and the maximum temperature is smaller
thanks to the heat conduction. Second, there is a plateau in the temperature profile around
the 30eV level as the saturation temperature of the wall losses model is reached. Third, the
temperature peak is closer to the channel exit due to the maximum magnetic field profile.
And last, the ionization region is closer to the anode as higher temperatures are reached near
the anode. A complete description of the influence of heat conduction terms in the results of
the 1D model and its ability to reproduce the structure of the Hall discharge discharge may
be found in [3].
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4.2.3 Parametric variations

This section is devoted to the description of the influence of the main operation parameters
on the behaviour of the Hall discharge, namely: the discharge potential, Vd; the mass flow
rate, ṁ; the length of the channel, Lch; and the magnetic field gradient inside the channel,
Lm1. This four parametric variations were carried out by the author in the 2000’s in order
to characterize the stationary behaviour of the thruster in different operating conditions and
are explained in detail in [13]. Moreover, two additional parametric variations have been
carried out specifically as part of this study on other parameters of the simulation, namely,
the velocity of neutrals at injection, vnB, and the channel width, dc. The final goal is to
evaluate the influence of all those parameters on the behaviour of the breathing mode and,
more importantly, of the spoke oscillation.

Figs. 4.8-4.9, 4.10-4.11, 4.12-4.13, 4.14-4.15 show the variation of the main performance
parameters and profiles of two extremes cases for the parametric variations on Vd, ṁ, Lch and
Lm1. In those figures the following new symbols are used: id is the dimensionless discharge
current (id = miId/eṁ); η, ηprop, ηcur, ηvol, and ηu are the overall, propulsive, current,
voltage and propellant utilization efficiencies respectively, which measure the overall and
partial efficiency of different processes; η′u is an alternative propellant utilization measure
defined as η′u = η/ηprop; xD and xS are the axial coordinates of the zero-ion-velocity point
and the regular ion sonic transition; Te,max is the maximum electron temperature through
the simulation domain; Pwall, Pion, and Panode are respectively the losses due to plasma-wall
interaction, ionization and plasma-anode interaction; ηi(x) is the local ion flux fraction at a
given axial location (ηi(x) = minvixA/ṁ). A complete definition of each of those variables
may be found in [13].

The following comments are worth about the trends shown by those parametric variations:

- as the discharge voltage is increased, the magnetic field typically needs to be varied
roughly as Bmax ∝ V p

d , where p ≈ 0.5, for optimum operation, the efficiency increases,
the wall losses and maximum temperature scale linearly, and the ionization region moves
upstream and is slightly shortened.

- as the mass flow rate is increased, the neutral density and ionization frequency are
increased, reducing the length of the ionization region, moving it downstream and in-
creasing the overall, propellant and voltage utilization efficiencies, and the length of the
acceleration region is decreased while the temperature gradients are increased.

- as the length of the channel is increased, the propellant utilization efficiency is increased
thanks to a longer ionization region, the voltage utilization efficiency is decreased due
to higher wall losses and as a consequence an optimum channel length exists for which
the overall efficiency is maximized.

- as the magnetic field gradient is decreased (i.e., Lm1 ≡ LB1 is increased), the maximum
magnetic field decreases as Bmax ∝ L−1

m1 in order to maintain constant the overall
magnetic effect (i.e.

∫
B(x)dx), the ionization region moves upstream thanks to the

higher temperatures closer to the anode, the ion back-streaming region is reduced and
the acceleration region also moves upstream causing an increase of wall losses and a
decrease of efficiency.

A more thorough explanation of the parametric variations and the physical interpretation of
each of the trends is given in [13].
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Figure 4.8: Evolution of thruster performances with the discharge voltage. All parameters
are as shown in Table 4.2, except for Vd and Bmax, the latter being optimized for each value
of the discharge voltage.
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Vd = 100V (solid lines) and Vd = 600V (dashed lines). In each curve, the chamber exit is at
the vertical line, x/Lc = 1, and the cathode is placed at the right boundary of the plots.
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Figure 4.10: Evolution of thruster performances with the mass flow rate. All parameters are
as shown in Table 4.2, except for ṁ and Bmax, the latter being optimized for each value of
the mass flow rate.
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Figure 4.11: Axial profiles of the discharge for two particular parametric cases of Fig. 4.10:
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Figure 4.12: Evolution of thruster performances with the channel length. All parameters are
as shown in Table 4.2, except for Lch and Bmax, the latter being optimized for each value of
the channel length.
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Figure 4.13: Axial profiles of the discharge for two particular parametric cases of Fig. 4.12:
Lch = 17mm (solid lines) and Lch = 42.5mm (dashed lines). In each curve, the chamber exit
is at the vertical line, x/Lc = 1, and the cathode is placed at the right boundary of the plots.
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Figure 4.14: Evolution of thruster performances with the magnetic field gradient inside the
channel. All parameters are as shown in Table 4.2, except for Lm1 ≡ LB1 and Bmax, the
latter being optimized for each value of the magnetic field gradient.
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The next table shows the parameters used for the various background solutions whose
stability is analysed in the following sections. The value of the parameters not shown in
Table 4.3 are identical to those shown in Table 4.2. Each background solution is given an
identifier for easier reference.

Table 4.3: Parameters of the background solutions under analysis. I, II, III, IV, V and VI
refer to the parametric variations on Vd, ṁ, Lch, Lm1, vnB and dc respectively.

Case Vd, V Bmax, G

Ia 20 23

Ib 200 179

REF 300 230

Ic 500 313

Id 700 383

Case ṁ,mg/s Bmax, G

IIa 3.3 225

IIb 4 226

REF 4.8 230

IIc 7 241

IId 8.5 249

IIe 10 256

Case Lch,mm Bmax, G

IIIa 14 401

REF 25 230

IIIb 26 217

IIIc 42 141

IIId 55 110

Case Lm1,mm Bmax, G

IVa 30 142

IVb 19 185

REF 15 230

IVc 9 377

Case vnB,m/s Bmax, G

Va 174 240

Vb 240 235

REF 300 230

Vc 382 225

Vd 427 223

Case dc,mm Bmax, G

REF 15 230

VIa 18 244

VIb 21 251

VIc 31 278
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4.3 Low frequency axial oscillations - breathing mode

In previous sections the complete formulation of the linear time-dependent 2D model has been
presented as well as a background reference solution from the 1D model in combination with
several parametric variations with respect to that reference solution. This section is devoted
to the analysis of low frequency axial oscillations (k = 0), which are usually known as the
breathing mode in HET. The analysis focuses on the stability of the reference background
solution. Similar analyses have been carried out in the past by other authors [14, 181, 15].
However, the intention here is to validate the linear time-dependent 2D model presented above
by analysing the results obtained for the breathing mode.

Note that as the size of the perturbations does not result from the linear perturbations
problem, it must be chosen arbitrarily. Hereinafter, and just for illustration purposes, this size
has been enlarged in each case to show the main properties of the visible oscillations. This
is justified as nonetheless typical saturated breathing mode and spoke oscillations have a size
of similar magnitude as the background state. Moreover, the exponential time dependence of
the perturbations, exp (−iωit), has been omitted from the figures for clarity as well.

4.3.1 Results for the solution without heat conduction and plume diver-
gence

Results from the linear time-dependent 2D model without heat conduction presented above
for the case of axial oscillations are presented in Ref. [185]. This section summarizes the
results and findings from that reference. Fig. 4.16 shows the contour maps in the x− t space
of the main variables of a purely axial (i.e., m = 0) unstable oscillation for the reference case
presented in Table 4.1. The frequency of unstable oscillation is f = 9.1 kHz whereas the
growth rate is ωi/2π ≈ 3 kHz. That figure shows the axial oscillation of a very thin ionization
layer. This fact is non-physical and might be solved including heat conduction effects.
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conditions and variables shown are similar to those shown in Fig. 4.6
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4.3.2 Results for the solution with heat conduction and plume divergence

As seen in the previous paragraph, in order to properly model the breathing mode it seems
necessary to use the 1D model with heat conduction. Figs. 4.17, 4.18, and 4.19 show,
respectively, the axial variation of the main perturbations, the evolution over time of the
discharge and anode ion current, and the contour maps in the x − t space of the main
variables of a purely axial (i.e., m = 0) unstable oscillation, for the very same reference
case presented in Fig. 4.7. The growth rate of the unstable oscillation is ωi/2π ≈ 0.5 kHz
whereas the frequency is f = 15.6 kHz, of the same order of magnitude as the values observed
experimentally [5]. The time evolution of the variables shown in Fig. 4.19 is qualitatively
similar to those obtained with non-linear models of the breathing mode [81, 15, 57]. Those
figures reproduce the usual properties of the breathing mode [20]: a) the ionization region
moves back and forth as a consequence of the depletion and replenishment of neutrals; b)
a standing wave of plasma density exists in the rear part of the thruster in phase with the
discharge current oscillation and with similar relative size; c) a travelling wave, in combination
with a standing wave, of neutral density is visible with a quarter-cycle phase difference; d)
the relative size of neutral oscillations is much smaller than those of the plasma density and
discharge current oscillations; e) the relative size of the electric potential oscillation is smaller
than that of the electron temperature.
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Figure 4.17: Perturbations as a function of x for the breathing mode (m = 0) obtained with
the model including heat conduction. The conditions are similar to those shown in Fig. 4.7.
The variables shown are from left to right and from top to down: plasma density, ne; neutral
density, nn; electron temperature, Te; electric potential, ϕ; ion current, Ii; electron current,
Ie; neutral flow, AΓn; and ionization frequency, νi. Dashed lines are used for the real part of
the perturbation coefficients, dash-dotted lines are used for the imaginary part and continuous
lines are used for the modulus of the perturbation coefficients.
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An interesting property of the axial oscillations is the non-uniformity in time of the neutral
density at the anode plane. This seems in contradiction with the imposed anode boundary
conditions that enforce constant neutral velocity and mass flow rate for the case under analysis
(i.e. no external perturbations acting on the system). The reason for the neutral density to be
non-uniform at the anode resides in the neutral recombination at the back wall of the thruster.
Indeed this may be one of the reasons why the breathing mode is unstable as it is explained
next. Part of the ions generated in the ionization region are attracted to the anode through
the ion back-streaming region and are recombined into neutrals. These recombined neutrals
travel downstream again, together with the injected neutrals, and are available for subsequent
ionization cycles and, thus, more ions than in previous ionization cycles are generated and
sent back to the anode giving rise to more recombined neutrals than before. The complete
process is repeated again and again explaining the growing character of this mechanism.

In order to justify the previous mechanism, the following numerical test has been carried
out. The boundary condition for neutral recombination at the anode has been temporarily
relaxed in such a way that ions reaching the anode are not recombined into neutrals, but
lost, and additionally, wall recombination has been disabled in the complete channel. Under
these unrealistic conditions, the growth rate of the breathing mode oscillation is reduced by
a factor close to 3. This gives some evidence of the role played by the neutral recombination
at the walls in destabilizing the Hall discharge in the axial direction.

4.3.3 Parametric variations

This section shows how the m = 0 unstable oscillation presented previously varies in terms
of frequency and growth with different operation parameters. To this end, Table 4.4 shows
the properties of the m = 0 oscillation for the background solutions listed in Table 4.3. The
following trends are observed from the results shown in Table 4.4:

- as the discharge voltage is increased, the frequency and growth rate of the oscillation
increase. This increase of the frequency is in qualitative agreement with experimental
results [186], and other numerical results [57]. In fact, the trend shown in Table 4.4 is
non-linear and saturates at large voltages, as in the numerical results of [57].

- as the mass flow rate is increased, the frequency of the discharge decreases linearly
whereas the growth rate increases. This decrease of the frequency is expected because
as the mass flow rate is increased, the ionization region moves downstream causing the
transit time of neutrals from injection to ionization region, which drives the breathing
frequency, to increase. However, the opposite trend is reported in [186]. This may be
due to the fact that the magnetic field is not modified in [186] when varying the mass
flow rate, whereas in our case the magnetic field is optimized for each operation point.

- as the length of the channel is increased, the frequency decreases since, once again, the
length to be transited by the neutrals from injection to ionization layer is longer.

- as the velocity of the neutrals at injection is increased, the frequency of the oscillation
increases proportionally. This is in line with the idea that the transit time of neutrals
from injection to ionization layer, inversely proportional to the neutral velocity, drives
the frequency of the breathing mode.
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Table 4.4: Frequency, f , and growth, ωi/2π, of the m = 0 oscillation for different operation
parameters. REF refers to the reference background solution defined by Fig. 4.7, and I, II, III,
IV, V and VI refer to the parametric variations on Vd, ṁ, Lch, Lm1, vnB and dc respectively.
”−” indicates that no solution is found to the condition det(A) = 0, while ”< 0” indicates
that a stable solution is found.

Case Vd, V Bmax, G f, kHz ωi/2π, kHz

Ia 20 23 11.1 < 0

Ib 200 179 14.3 < 0

REF 300 230 15.6 0.5

Ic 500 313 16.9 0.9

Id 700 383 17.9 1.5

Case ṁ,mg/s Bmax, G f, kHz ωi/2π, kHz

IIa 3.3 225 17.0 0.04

IIb 4 226 16.3 0.4

REF 4.8 230 15.6 0.5

IIc 7 241 13.5 0.5

IId 8.5 249 12.7 0.6

IIe 10 256 12.1 0.6

Case Lch,mm Bmax, G f, kHz ωi/2π, kHz

IIIa 14 401 − −
REF 25 230 15.6 0.5

IIIb 26 217 14.4 0.4

IIIc 42 141 14.7 < 0

IIId 55 110 11.2 0.5

Case Lm1,mm Bmax, G f, kHz ωi/2π, kHz

IVa 30 142 16.1 2.7

IVb 19 185 14.7 2.0

REF 15 230 15.6 0.5

IVc 9 377 − −
Case vnB,m/s Bmax, G f, kHz ωi/2π, kHz

Va 174 240 15.6 0.3

Vb 240 235 12.3 < 0

REF 300 230 15.6 0.5

Vc 382 225 19.4 0.7

Vd 427 223 21.4 0.4

Case dc,mm Bmax, G f, kHz ωi/2π, kHz

REF 15 230 15.6 0.5

VIa 18 244 15.3 0.6

VIb 21 251 15.2 0.7

VIc 31 278 14.7 1.2
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4.4 Low frequency azimuthal oscillations - spoke oscillations

This section is devoted to the analysis of low frequency azimuthal oscillations, usually known
as spokes, with the help of the linear time-dependent 2D model previously described.

4.4.1 Results for solution without heat conduction and plume divergence

Results from the linear time-dependent 2D model without heat conduction described above
for the case of azimuthal oscillations are presented in Ref. [185]. This section summarizes the
results and findings from that reference.

As a result of the global stability analysis of the reference case described in Table 4.1,
a self-excited oscillation is detected with an azimuthal mode number m = 1, a frequency
f = 11.1 kHz, an azimuthal phase velocity vy = 2.6 km/s, a growth rate ωi/2π ≈ 3 kHz,
and an azimuthal wave-length ky = −0.023 mm−1. According to these values, the simulated
azimuthal oscillation has properties similar to those experimentally observed for the spoke.
Anyway, its growth rate is similar to the corresponding one for the breathing mode (m =
0) without heat conduction. Thus, it is not clear from this analysis which oscillation, the
azimuthal one or the axial one, dominates in the reference case without heat conduction.
On the other hand, the frequency of the simulated breathing mode is smaller than for the
azimuthal oscillation presented here, as normally observed in experiments [5, 7].

It must be noted that other mode numbers (m = −2, −1 and 2) have been analysed
looking for possible self-excited solutions. However, for the reference case under consideration
the only mode numbers resulting in self-excited solutions are m = 0 (breathing mode) and
m = 1 (spoke). This is in line with experimental results for normal-size thrusters, where the
spoke is normally detected as a single oscillation in the ExB direction. In the case of larger
thrusters, experiments show that higher modes (m = 2, 3, 4) might become dominant [123].

Fig. 4.20 shows the contour maps in the x− t space (at the meridian section y = 0) of the
main macroscopic variables as combinations of the background solution and the perturbations
for the self-excited oscillation mentioned above. In the azimuthal oscillation (see plot of
neutral density in Fig. 4.20), the ionization front moves back and forth, as in the breathing
mode (see Fig. 4.16). Moreover, the m = 1 oscillation also shows a travelling wave of neutral
density, as in the breathing mode. The similarity with the breathing mode, thus, seems
clear. The fact that both modes are recovered with the very same model reinforces this idea.
Moreover, as in the case of the m = 0 oscillation, the region where the ionization front moves
back and forth is rather thin compared to what is normally seen experiments for the breathing
mode.

Figs. 4.21 and 4.22 show contour maps in the x − y space for different instants of time,
t, during one cycle of the azimuthal oscillation under the same conditions as in Fig. 4.20. In
this figure, it is possible to observe how the oscillation travels in the −y direction, this is,
in the +ExB direction. As expected, the same patterns shown in Fig. 4.20 are observed in
Figs. 4.21 and 4.22 moving in the azimuthal direction.

According to Figs. 4.21 and 4.22, the azimuthal oscillation seems due to an azimuthal
variation of the ionization process. The connection between the spoke oscillation and the
ionization process had already been suggested theoretically by the authors [18, 17], and,
based on experiments, by other researchers [129].

From Figs. 4.20-4.22 it is possible to compute the approximate wavelength of the oscilla-
tion in the axial direction, kx. This is estimated to be kx ≈ 1.7 mm−1, which is consistent
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Figure 4.20: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and t at y = 0 for a self-excited
oscillation of the perturbation problem for the reference case presented in Table 4.1. The
azimuthal mode number is m = 1, the frequency is f = 11.1 kHz and the growth rate is
ωi/2π ≈ 3 kHz. Variables shown (from left to right and upper to lower): plasma density, ne;
neutral density, nn; electron temperature, Te; electric potential, ϕ; ion axial flux, Γi; electron
axial flux, Γe.

with the wave travelling forward in the axial direction (ωr > 0, kx > 0) at a fixed azimuth
and in the +ExB direction (ωr > 0, ky < 0) at a fixed axial location as time increases.

However, the tilt angle with respect to the axis of the thruster (tanβ = kx/ky) is close to
90 degrees, whereas in experiments, the azimuthal oscillation is normally observed to have a
tilt angle around 15-20 degrees [6, 7]. The reason for this discrepancy is believed to be related
to the narrow ionization region seen in the simulation, likely caused by the fact that heat
conduction effects are not considered in the model. The version of the 1D model of Ahedo
that takes into consideration heat conduction terms [12] gives smoother temperature profiles,
wider ionization regions and lower peak temperatures inside the thruster. Thus, adding heat
conduction effects to the model is expected to reduce the tilt angle of the azimuthal oscillation
considerably.

For completeness, Fig. 4.23 shows the axial profiles of the complex coefficients of the
Fourier-expansion of the perturbation equations defined in (4.35). These are the variables
resulting from the integration of the linearised equations.

Based on Fig. 4.23, it is also interesting to point out that the perturbed electric field has
a roughly constant azimuthal component upstream of the ionization region (see left column of
Fig. 4.22 and plot of ϕ1 in Fig. 4.23). This fact, together with the plasma density variation,
causes an oscillatory axial electron current to the anode coming from the ExB drift associated
to the azimuthal electric field, as can be observed in the right column of Fig. 4.22.

Fig. 4.24 shows the axial variation of αA(x) based on Eq. (4.66). It is possible to observe
that the net effect of the oscillation on the electron conductivity is concentrated in the rear
part of the thruster, more precisely, in the ion-backstreaming region. The values reached by
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Figure 4.21: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and y at different values of t (@ t ms)
for the same conditions used previously in Fig. 4.20. Variables shown (from left to right):
plasma density, ne; neutral density, nn.
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Figure 4.22: Same as Fig. 4.21 for other macroscopic variables. Variables shown (from left
to right): electric potential, ϕ; electron axial flux, Γe.
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Figure 4.23: Axial profiles of the coefficients of the Fourier-expanded perturbations of the
main macroscopic variables corresponding to the self-excited oscillation of the perturbation
problem for the reference case presented in Table 4.1 and the same conditions as in Fig. 4.20.
Dashed lines are used for the real part of the perturbation coefficients, dash-dotted lines are
used for the imaginary part and continuous lines are used for the modulus of the coefficients.

αA(x) in this region are of the same order of magnitude to that used for αB in the simulation
of the background solution of the reference case (see Table 4.1). In fact, for the case under
analysis the average value of αA(x) in the rear part of the thruster is αA,ave ≈ 0.01, a value
very similar to the one used in the zero-th order solution. However, this is only true for
the selected size of linear oscillations that, in this particular case, is such that the maximum
temperature perturbation is 30% of the background temperature.

Another relevant aspect is the fact that αA(x) reaches negative values in some regions of
the channel. This negative value of αA(x) is linked to the tilt angle close to 90 degrees of the
plasma density perturbation, which causes a change of phase between the perturbations of
the plasma density and the azimuthal electric field. Moreover, the large variations of αA(x)
anticipate important changes in the background solution, where so far αB has been considered
constant, in case the profile of αA(x) is used in the resolution of the zero-th order problem.
Anyway, no contribution to electron conductivity is seen downstream the ionization region,
where experiments also show a higher-than-expected electron mobility. Non-linear effects
affecting the low-frequency azimuthal oscillation might resolve this discrepancy. Another
possible explanation is that high-frequency oscillations (1-10 MHz) [64]−[67] might play a
role in the plume.
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)

Figure 4.24: Axial profiles of the equivalent anomalous diffusion coefficient, αA(x), as com-
puted from the linear perturbation with a size of 30% of the zero-th order solution
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4.4.2 Results for solution with heat conduction and plume divergence

This section presents the results of the low frequency global stability analysis in the azimuthal
direction for the reference background solution with heat conduction and plume divergence.
As in the case of the breathing mode oscillation, the width of the oscillation is expected to
be higher than in the case without heat conduction. Figs. 4.25-4.31 present the results of
an unstable m = 1 azimuthal oscillation for the reference case described in Fig. 4.7. This
oscillation has the following properties: frequency, f = 24.9 kHz; growth rate, ωi/2π = 92.7
kHz; and azimuthal phase speed vy = 6.6 km/s in the +ExB. This numerical result is in
qualitative agreement with experimental evidence, where it is normally observed that the
spoke has higher frequency than the breathing mode for the same thruster [5]. Compared
to the frequency of the breathing mode observed in the case with heat conduction, f = 15.6
kHz, this is indeed the case. It is also worth pointing out that, as in the case of the breathing
mode, compared to the case without heat conduction terms[185], the frequency of the spoke
is roughly doubled.

Figs. 4.25 and 4.26 show the spatial variation of the perturbations corresponding to the
unstable oscillation just described, firstly, in the axial direction, Fig. 4.25, and, secondly, in
the x−y space, Fig. 4.26. In Figs. 4.27 and 4.28 it is possible to observe contour maps in the
x−y space and the evolution in the x− t space for the main macroscopic variables. Figs. 4.29
and 4.30 show contour maps in the x − y space for different instants of time, t, during one
cycle of the azimuthal oscillation under the same conditions as before for the plasma density,
neutral density, electric potential and electron flux. Finally, Figs. 4.31 and 4.32 depict the
size of the perturbations relative to the background solution for the macroscopic variables
solved as part of the integration process.

Some comments are worth relative to the m = 1 unstable solution presented above and
shown in Figs. 4.25-4.31:

- the oscillation is mostly concentrated in rear part of the thruster, upstream of the
acceleration region, although there are some perturbations in temperature and electric
field that reach the acceleration region.

- contrary to the case without heat conduction, at least in the case under analysis, the
contribution to the oscillation from the neutral density perturbation is negligible. This
is best observed in Fig. 4.31 where the relative size of the neutral oscillation is much
smaller than that of the plasma density.

- as expected, as a consequence of the inclusion of heat conduction terms, the tilt angle of
the oscillation has decreased with respect to the value observed without heat conduction
in the previous section. However, this decrease is not enough and the tilt angle is still
far from the experimentally observed value of 15-20 degrees.

- even if the relative size of the perturbation of the neutral density is negligible, the
ionization may play a role in the oscillation, as seen in Fig. 4.26, where it is possible to
observe how the ionization front moves back and forth as in the case of the breathing
mode. This motion of the ionization front seems linked to the plasma density oscillation
as the temperature oscillation has lower relative size than that of the density.

Distribution A:  Approved for public release; distribution is unlimited.



4.4. LOW FREQUENCY AZIMUTHAL OSCILLATIONS - SPOKE OSCILLATIONS 105

0 0.01 0.02 0.03
−1

0

1
x 10

18

x, m
n e1

, m
−

3
0 0.01 0.02 0.03

−1

0

1
x 10

18

x, m

n n1
, m

−
3

0 0.01 0.02 0.03
−2

0
2
4

x, m

T
e1

, e
V

0 0.01 0.02 0.03
−4
−2

0
2
4

x, m

φ 1, V

0 0.01 0.02 0.03
−0.01

0

0.01

x, m

Γ i1
, A

/c
m

2

0 0.01 0.02 0.03
−0.04
−0.02

0
0.02
0.04

x, m

Γ e1
, A

/c
m

2

0 0.01 0.02 0.03
−1

0

1
x 10

−8

x, m

Γ n1
, k

g/
s/

cm
2

0 0.01 0.02 0.03
−2

0

2
x 10

5

x, m

ν i1
, H

z

Figure 4.25: Axial profiles of the coefficients of the Fourier-expanded perturbations of the main
macroscopic variables corresponding to a m = 1 self-excited oscillation of the perturbation
problem for the reference case presented in Fig. 4.7. Dashed lines are used for the real
part of the perturbation coefficients, dash-dotted lines are used for the imaginary part and
continuous lines are used for the modulus of the coefficients. Variables shown (from left to
right and upper to lower): plasma density, ne1; neutral density, nn1; electron temperature,
Te1; electric potential, ϕ1; ion axial flux, Γi1; electron axial flux, Γe1; neutral axial flux, Γn1;
ionization frequency, νi1.
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Figure 4.26: Perturbations of the main macroscopic variables shown as functions of x and y
at t = 0 for a m = 1 self-excited oscillation of the perturbation problem for the reference case
presented in Fig. 4.7. The variables shown are the same as those shown in Fig. 4.25.
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Figure 4.27: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and y at t = 0 for a m = 1 self-excited
oscillation of the perturbation problem for the reference case presented in Fig. 4.7. Variables
shown (from left to right and upper to lower): plasma density, ne; neutral density, nn; electron
temperature, Te; electric potential, ϕ; ion axial flux, Γi; electron axial flux, Γe; neutral axial
flux, Γn; ionization frequency, νi.
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Figure 4.28: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and t at y = 0 for a m = 1 self-excited
oscillation of the perturbation problem for the reference case presented in Fig. 4.7. The
variables shown are the same as in Fig. 4.27.
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Figure 4.29: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and y at different values of t (@ t ms)
for the same conditions used previously in Fig. 4.28. Variables shown (from left to right):
plasma density, ne; neutral density, nn.

φ, V

@
0.

00
 m

s
y,

 m

    
0

0.1

0.2

100

200

300

Γ
e
, A/cm2

    
 

 

 

−0.15

−0.1

−0.05

@
0.

01
 m

s
y,

 m

    
0

0.1

0.2

100

200

300

    
 

 

 

−0.15

−0.1

−0.05

x, m

@
0.

03
 m

s
y,

 m

0 0.01 0.02 0.03
0

0.1

0.2

100

200

300

x, m
0 0.01 0.02 0.03
 

 

 

−0.15

−0.1

−0.05

Figure 4.30: Same as Fig. 4.29 for other macroscopic variables. Variables shown (from left
to right): electric potential, ϕ; electron axial flux, Γe.
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Figure 4.31: Axial profiles of the coefficients of the Fourier-expanded perturbations relative
to the background solution of the main macroscopic variables corresponding to a m = 1 self-
excited oscillation of the perturbation problem for the reference case presented in Fig. 4.7.
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Figure 4.32: Same as Fig. 4.31. Variables shown (from left to right and upper to lower): neu-
tral axial velocity, electron axial velocity, ion azimuthal velocity, neutral azimuthal velocity.
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4.4.3 Parametric variations

This section presents the results of the azimuthal global stability analysis for the cases pre-
sented in Table 4.3. This analysis consists in the search in the frequency space of self-excited
modes for the different background solutions under evaluation and for different wave mode
numbers. Here, it is interesting to check whether the main trends observed experimentally
are also reproduced with the linear 2D time-dependent model, in particular, related to the
variation of the oscillation frequency and to the possible existence of different types of os-
cillations. Moreover, oscillation mode numbers m > 1 need to be analysed as well since, as
mentioned previously, in the case of larger thrusters (e.g. higher power than the STP-100),
experiments show that modes m = 2, 3, 4, ... might become dominant [123].

In the case of modes m > 1 the frequency of the oscillation grows linearly with the mode
number. This does not mean that the oscillation travels faster. This is, for the same phase
speed, a m = 2 oscillation has a frequency twice as large as a m = 1 oscillation. In fact,
the following relationship holds among frequency, f , mode number, m, and azimuthal phase
speed, vy, of the oscillation:

vy =
2πRf

m
(4.68)

where R is the mean radius of the thruster.
It is important to mention that the value of the frequency observed for the reference

background solution (f = 24.9 kHz) and presented in the previous section is higher than
seen in experiments [5, 123] (f ≈ 5 − 25 kHz), but still within the modelling error margins
of the linear 2D time-dependent model. Note that in this study with the linear 2D model
we are seeking qualitative rather than quantitative agreement. The discrepancy between the
experiments and the frequency of the m = 1 oscillation causes that for higher wave mode
numbers the discrepancy becomes even larger in terms of the value of the frequency.

Fig. 4.33 and Table 4.5 show the variation of the frequency and growth rate of the unstable
oscillation found for the different background solutions from Table 4.3 and for different wave
mode numbers. The breathing mode is also shown in Fig. 4.33 for reference and comparison.
The following clear trends are observed:

- as the discharge voltage is increased, or the mass flow rate decreased, or the neutral
velocity at injection increased, the frequency of the oscillation increases linearly. These
features indicate a relation between the frequency of the azimuthal oscillation and the
position of the ionization region in the background solution. These trends are similar to
those of the breathing mode, even if the mechanism at play in the observed azimuthal
oscillation does not seem to be the same as in the simulated breathing mode.

- as mentioned above, the frequency of the oscillation increases linearly with the mode
number. Additionally, depending on the background case, the mode number with the
highest growth rate may be m = 1, m = 2 or m = 3, although as a general trend, the
higher the mode number, the less unstable solutions are found. Modes m > 1 seem
to become dominant (i.e., larger growth rate) for higher mass flow rates and larger
channels, although, this trend is not as evident as the previous ones.

- out of all the background cases under analysis, only one unstable solution is found trav-
elling in −ExB direction, indicating that the simulated oscillation has a clear preference
to travel in the +ExB direction, as normally found for the spoke in experiments.
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Table 4.5: Frequency, f (kHz), and growth rate, ωi/2π (kHz), of different oscillation modes
for several operation parameters. REF refers to the reference background solution defined by
Fig. 4.7, and I, II, III, IV, V and VI refer to the parametric variations on Vd, ṁ, Lch, Lm1,
vnB and dc respectively. ”−” indicates that no solution is found to the condition det(A) = 0,
”< 0” indicates that a stable solution is found, and ”(∗)” indicates that the solution found is
similar to the breathing mode.

kHz Variable Variable f, ωi/2π f, ωi/2π f, ωi/2π f, ωi/2π f, ωi/2π

Case Vd, V Bmax, G m = 1 m = 2 m = 3 m = 4 m = −1

Ia 20 23 − − 22.2, 39 − −
Ib 200 179 18.1, 88.1 45, 85 87.2, 108 − −

REF 300 230 24.9, 92.8 55.7, 114 102, 118 − −
Ic 500 313 39.8, 110 119, 96.1 24.8, 182 − −
Id 700 383 53.5, 137 − − − −

Case ṁ,mg/s Bmax, G m = 1 m = 2 m = 3 m = 4 m = −1

IIa 3.3 225 50.3, 126 137, 115 − − −
IIb 4 226 30.3, 111 84, 113 − − −
REF 4.8 230 24.9, 92.8 55.7, 114 102, 118 − −
IIc 7 241 13.8, 54.9 14.3, 72.2 54.7, 69.9 − −
IId 8.5 249 58.6, 6.0(∗) 15.1, 60.6 − − −
IIe 10 256 27.2, 10.4(∗) 11.1, 52.1 8.9, 47.4 − −
Case Lch,mm Bmax, G m = 1 m = 2 m = 3 m = 4 m = −1

IIIa 14 401 − − 43.8, 167 − −
REF 25 230 24.9, 92.8 55.7, 114 102, 118 − −
IIIb 26 217 18.1, 89 42, 113 89.9, 106 − −
IIIc 44 141 19.7, 35.1 49.4, 54.3 44.9, 52.7 − 5.5, 52.1

IIId 52 110 31.6, 12.3 − − − −
Case Lm1,mm Bmax, G m = 1 m = 2 m = 3 m = 4 m = −1

IVa 30 142 − − − − −
IVb 19 185 38.3, 126 136, 117 − − −
REF 15 230 24.9, 92.8 55.7, 114 102, 118 − −
IVc 9 377 − − − − −
Case vnB,m/s Bmax, G m = 1 m = 2 m = 3 m = 4 m = −1

Va 174 240 30.8, 56.6 8.0, 73 3.6, 75.4 − −
Vb 240 235 17.3, 72.2 22.5, 102 62.8, 130 91.7, 118 −
REF 300 230 24.9, 92.8 55.7, 114 102, 118 − −
Vc 382 225 39.3, 114 32.1, < 0(∗) − − −
Vd 427 223 52.2, 123 34.4, 3.78(∗) − − −
Case dc,mm Bmax, G m = 1 m = 2 m = 3 m = 4 m = −1

REF 15 230 24.9, 92.8 55.7, 114 102, 118 − −
VIa 18 244 24.1, 96.2 65.2, 117 109, 117 12.7, 174 −
VIb 21 251 23.1, 98.1 69.3, 121 110, 112 11.7, 176 −
VIc 31 278 22.9, 103 70.9, 128 118, 106 8.3, 175 −
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Figure 4.33: Variation of the frequency of unstable oscillations with different parameters and
oscillation modes. The parameters under analysis are: discharge potential, Vd; mass flow rate,
ṁ ≡ mA; channel length, Lch; magnetic field gradient, Lm1; neutral velocity at injection, vnB;
channel width, dc. The oscillation modes under analysis are: m = 0, m = 1, m = 2, m = 3,
m = 4 and m = −1, being m > 0 when the oscillation travels in the +ExB.

Apart from the trends mentioned above, another finding not visible in Table 4.5 and Fig.
4.33 is the existence of another type of oscillation, corresponding to those cases marked with
an asterisk (∗) in Table 4.5, namely: cases IId and IIe with m = 1 and cases Vc and Vd
with m = 2. Figs. 4.34-4.39 show the m = 1 oscillation for the case IId. In those figures
it is possible to observe a different type of oscillation where the neutral perturbation plays a
similar role as in the breathing mode. However, the frequency (f = 58.6 kHz) in this case IId
is much higher than observed experimentally for the spoke, even if for cases IIe, Vc and Vd
the frequency is smaller (27.2 kHz, 32.1 kHz, 34.4 kHz respectively).

The differences with respect to the oscillation shown in Figs. 4.27-4.30 are clear. While
in in this other type of oscillation the neutral density follows a similar pattern to that of
the breathing mode, in the previous one the role of the neutral density perturbation is in-
significant. According to Figs. 4.34-4.39, this other type of oscillation is characterized by
the presence in the azimuthal direction of different ionization fronts which move back and
forth with different phases. Additionally, the whole structure rotates in the ExB direction.
Indeed, the possibility of a localized breathing mode rotating in the azimuthal direction with
has already proposed by the authors[185] and by Sekerak et al.[187].
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Figure 4.34: Axial profiles of the coefficients of the Fourier-expanded perturbations of the main
macroscopic variables corresponding to a m = 1 self-excited oscillation of the perturbation
problem for the reference case IId. Dashed lines are used for the real part of the perturbation
coefficients, dash-dotted lines are used for the imaginary part and continuous lines are used
for the modulus of the coefficients. Variables shown (from left to right and upper to lower):
plasma density, ne1; neutral density, nn1; electron temperature, Te1; electric potential, ϕ1; ion
axial flux, Γi1; electron axial flux, Γe1; neutral axial flux, Γn1; ionization frequency, νi1.
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Figure 4.35: Perturbations of the main macroscopic variables shown as functions of x and y
at t = 0 for a m = 1 self-excited oscillation of the perturbation problem for the reference case
IId. The variables shown are the same as in Fig. 4.34.

Distribution A:  Approved for public release; distribution is unlimited.



4.4. LOW FREQUENCY AZIMUTHAL OSCILLATIONS - SPOKE OSCILLATIONS 113

n
e
, m−3

y,
 m

    
0

0.1

0.2

0
2
4
6
8
x 10

18 n
n
, m−3

    
 

 

 

1
2
3
x 10

19

T
e
, eV

y,
 m

    
0

0.1
0.2

10
20
30

φ, V

    
 
 
 

50100150200250

Γ
i
, A/cm2

y,
 m

    
0

0.1
0.2

−0.05
0
0.05
0.1

Γ
e
, A/cm2

    
 
 
 

−0.6
−0.4
−0.2
0
0.2

Γ
n
,kg/s/cm2

x, m

y,
 m

0 0.01 0.02 0.03
0

0.1
0.2

0.5
1
1.5
2
x 10

−7
ν

i
, Hz

x, m
0 0.01 0.02 0.03
 
 
 

0
1
2
3
x 10

5

Figure 4.36: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and y at t = 0 for a m = 1 self-excited
oscillation of the perturbation problem for the reference case IId. Variables shown (from left
to right and upper to lower): plasma density, ne; neutral density, nn; electron temperature,
Te; electric potential, ϕ; ion axial flux, Γi; electron axial flux, Γe; neutral axial flux, Γn;
ionization frequency, νi.
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Figure 4.37: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and t at y = 0 for a m = 1 self-excited
oscillation of the perturbation problem for the reference case IId. The variables shown are
the same as in Fig. 4.36.
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Figure 4.38: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and y at different values of t (@ t ms)
for the same conditions used previously in Fig. 4.37. Variables shown (from left to right):
plasma density, ne; neutral density, nn.
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Figure 4.39: Same as Fig. 4.38 for other macroscopic variables. Variables shown (from left
to right): electric potential, ϕ; electron axial flux, Γe.

Distribution A:  Approved for public release; distribution is unlimited.



4.4. LOW FREQUENCY AZIMUTHAL OSCILLATIONS - SPOKE OSCILLATIONS 115

4.4.4 Anomalous diffusion

Figs. 4.40 and 4.41 show the axial variation of αA(x) based on Eq. (4.66) for the m = 1
unstable oscillations of the reference case given in Fig. 4.7 and of case IId, respectively. It
is possible to observe that the net effect of the oscillation on the electron conductivity is
concentrated in the rear part of the thruster, more precisely, in the ion-backstreaming region.
The values reached by αA(x) in this region are of the same order of magnitude as the value
used for αB in the simulation of the background solutions (αB ≈ 0.01) for the selected size
of the perturbations, which is chosen to ensure that perturbations are between 10% to 30%
of the background solution.

Another relevant aspect is the fact that αA(x) reaches negative values in some regions of
the channel. This negative value of αA(x) may be linked to the large tilt angle of the plasma
density perturbation, which causes a change of phase between the perturbations of the plasma
density and the azimuthal electric field. Moreover, the large variations of αA(x) anticipate
important changes in the background solution, where so far αB has been considered constant,
in case the profile of αA(x) is used in the resolution of the zero-th order problem.

On the other hand, no contribution to electron conductivity is seen downstream the ioniza-
tion region, where experiments also show a higher-than-expected electron mobility. Non-linear
effects affecting the low-frequency azimuthal oscillation might resolve this contradiction. An-
other possible explanation is that high-frequency oscillations (1-10 MHz) [64, 65, 66, 71] might
play a role in that region.

Given these results and their preliminary nature, it may be concluded that the influence
on the electron transport caused by the spoke oscillations found in this study is not negligible
although it is concentrated upstream the ionization region and thus cannot be the only source
of anomalous diffusion in HETs. This is consistent with findings shown recently in Ref. [188].
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Figure 4.40: Axial profiles of the equivalent anomalous diffusion coefficient, αA(x), as com-
puted from the linear perturbation solution for the reference case described in Fig. 4.7.
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Figure 4.41: Axial profiles of the equivalent anomalous diffusion coefficient, αA(x), as com-
puted from the linear perturbation solution for the background solution IId.
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4.4.5 Analysis of simplified models

This paragraph is intended to the application of the simplified models described above to
the azimuthal oscillations detected in the previous chapters with the aim of analysing the
mechanism at play of each type of oscillation.

Let us consider the first type of azimuthal oscillations analysed above and shown in Figs.
4.27-4.29. In that type of oscillation, the relative size of the neutral density perturbation is
orders of magnitude smaller than that of the plasma density. This gives the hint to remove
from the perturbation model the equations for the neutral species. Furthermore, the azimuthal
ion velocity perturbation is also negligible in relative terms compared to other perturbations.
If those terms are removed from the perturbation problem and the global stability analysis
is repeated, an m = 1 unstable oscillation is found with a frequency of f = 45 kHz. Fig.
4.42 shows the contour maps in the x − y space for the main macroscopic variables for that
oscillation. The similarity between Fig. 4.42 and Fig. 4.27 is an indication that the terms
removed from the perturbation model are indeed not relevant for this oscillation. However,
if this simplification of the perturbation model is taken one step further and heat conduction
terms are removed, no unstable solution is found. This is also true for all of the cases shown in
Table 4.5 corresponding to this first type of oscillation. This indicates this type of oscillation
seems mostly due to heat conduction.
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Figure 4.42: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and y at t = 0 for a m = 1 self-
excited oscillation of the perturbation problem for the reference case from Fig. 4.7 and the
perturbation model excluding the neutral equations and the azimuthal ion momentum equation.
The variables shown are the same as in Fig. 4.36.
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If we now consider the second type of azimuthal oscillations analysed above and shown
in Figs. 4.36-4.37, the same simplification procedure may be carried out. In this type of
oscillation the perturbation of the neutral density is believed to be relevant. And indeed,
if neutral equations are removed from the perturbation model, no self-excited oscillation is
found for cases IId and IIe with m = 1 and for cases Vc and Vd with m = 2. On the other
hand, if heat conduction terms and ion and neutral azimuthal momentum equations are not
considered, self-excited solutions are still found for those cases. Fig. 4.43 shows the contour
maps in the x−y space for the main macroscopic variables corresponding to a m = 1 unstable
oscillation obtained with the simplified model and characterized by a frequency of f = 12.5
kHz. Fig. 4.43 shows the same pattern of localized breathing mode oscillations also observed
in Fig. 4.36, validating the simplification carried out.
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Figure 4.43: Oscillations of the main macroscopic variables as combinations of the background
solution and the perturbations shown as functions of x and y at t = 0 for a m = 1 self-excited
oscillation of the perturbation problem for the case IId and the perturbation model excluding
heat conduction terms and azimuthal ion and neutral momentum equations. The variables
shown are the same as in Fig. 4.36.
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4.4.6 Global vs. local stability analyses

Another interesting analysis that can be performed with the aid of the simplified perturbation
models is the comparison between local and global stability analyses. Many local linear
stability analyses [2, 1, 138, 139, 141, 140, 142, 109, 144, 16, 145, 17] have been carried
out so far by the HET community in an attempt to understand the azimuthal oscillations
inherent to the HET discharge. However, these local analyses neglect the axial variation of
the macroscopic plasma variables and need to freeze them and their derivatives at a fixed
axial location. Some authors[19] even claim that in this application local stability analyses
are inconsistent as they yield different stability criteria depending on how the equations are
linearised.

In this study a comparison between the results from local and global stability analyses
has been performed. To this end, the stability criterion proposed by Esipchuk and Tilinin[1]
has been evaluated throughout the axial profile of the reference case given in Fig. 4.7 for
oscillations with a wave mode number m = 1. This approach is similar to the one used by
Frias et al.[142] for the local stability analysis of axial profiles of different thrusters. The
result obtained in our case is shown in Fig. 4.44. As in the case of Frias et al.[142] , two
unstable regions are identified, one in the ionization region, and another one in the plume,
where the axial gradient of the magnetic field is negative.

0 0.01 0.02 0.03 0.04
0

200

400

x, m

f (
−

−
),

 ω
i/2

π
 (

−
),

 k
H

z

Figure 4.44: Growth rate (continuous line) and frequency (dashed line) in kHz for the m = 1
oscillations predicted with the local stability criterion proposed by Esipchuk and Tilinin[1]
evaluated at each axial location of background solution corresponding to Fig. 4.7.

In order to perform the comparison, the perturbation equations of the linearised 2D time-
dependent model presented above are simplified to match the model of Esipchuk and Tilinin,
by leaving only ion and electron continuity and momentum equations. The global stability
analysis can then be repeated with this simplified model looking for the self-excited solutions
that would correspond to those found with the local stability criterion. The result indicates
that no unstable solutions are found in the frequency range where the local analysis predicts
oscillations. This seems to indicate that, as already anticipated by some authors, results from
local stability analyses of the HET discharge must be taken with care.
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Chapter 5

Concluding remarks

5.1 Publications

As part of the work carried out during the project, the results obtained from the analyses
have been presented and published in several conferences and peer-reviewed journals.

The literature review and the local linear stability analysis have been published as a
peer-reviewed article in Physics of Plasmas:

D. Escobar and E. Ahedo. Low frequency azimuthal stability of the ionization region

of the Hall thruster discharge. I. Local analysis. Physics of Plasmas, 21:043505, 2014

A preliminary global linear stability analysis without heat conduction terms has been
presented in the IEPC’13 as a conference paper:

D. Escobar and E. Ahedo. Global stability analysis of azimuthal oscillations in Hall

Thrusters. Proceedings of the 33rd IEPC, 2013.

This last paper was selected as best session paper and invited for publication in a special
issue of IEEE Transactions of Plasma Science devoted to Plasma Propulsion to be published
in December 2014.

The complete global linear stability analysis including heat conduction terms has been
presented in the 50th AIAA Joint Propulsion Conference as a conference paper:

D. Escobar and E. Ahedo. Analysing the azimuthal spoke oscillation of Hall thrusters

via numerical simulation. Proceedings of the 50th JPC, 2014.

Based on this last conference paper, another article is currently being prepared for sub-
mission to Physics of Plasmas:

D. Escobar and E. Ahedo. Low frequency azimuthal stability of the ionization region

of the Hall thruster discharge. II. Global analysis. To be submitted.

Finally, as a natural continuation of the work presented in this report, yet another pub-
lication in Physics of Plasmas is foreseen dealing with high frequency oscillations in Hall
Thrusters:

D. Escobar and E. Ahedo. High frequency azimuthal global stability analysis of the

Hall thruster discharge. To be submitted.
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5.2 Conclusions

A thorough review of the available literature on azimuthal oscillations in Hall Effect Thrusters
has been carried out. As part of the review, two azimuthal oscillations, the spoke in the low
frequency range (5-25 kHz) and the electron drift oscillation in the high frequency range (1-10
MHz), have been identified as possible sources of oscillation-based electron transport. The
review has justified the need for a complete stability analysis of the Hall discharge, starting
with a local linear analysis and continuing with a global linear one.

As part of a local stability analysis of the acceleration region expressions for stability crite-
ria similar to those found in the existing literature have been obtained. To this respect, both
simplified analytical expressions and numerical results from more complex models have been
derived and compared. At the same time, the effect of electron inertia and non-quasineutrality
have been evaluated and found to be important at high frequency.

In the ionization region the local linear stability analysis has allowed us to identify an
azimuthal oscillation induced by ionization and not previously described theoretically in the
Hall thruster literature, to the best of our knowledge. The detected linear oscillation is
similar to the spokes measured experimentally in terms of frequency range, phase speed and
wavelength. Parametric analyses have been carried out with respect to the main parameters
of the model in order to identify the trends of the instability. As the temperature increases
and the neutral-to-plasma density ratio decreases, the growth rate of the instability decreases
down to a limit where azimuthal perturbations are no longer unstable.

However, this local analysis has limitations. The main drawback of the local analysis is
that axial variations of the background solution are neglected. This is only valid in the limiting
case where the length scale of these variations is much larger than the axial wavelength of
the perturbations.

In order to overcome the limitations of local analyses, a global stability analysis has been
carried out. To this end, a linearised 2D time-dependent model has been formulated and
used for the analysis of the stability of the Hall discharge in the azimuthal direction and for
the detection of azimuthal oscillations in the low frequency range. The 2D model builds on
the stationary 1D model of Ahedo et al. and has been validated reproducing breathing mode
oscillations in the axial direction. Results indicate that two types of azimuthal oscillations
are present in the low frequency range, one due to heat conduction effects, and another one
characterised by localized breathing mode oscillations rotating in the ExB direction. The
former appears more often in the simulations, while the latter only shows up with high mass
flow rates, but it is more similar to the spoke observed experimentally.

Simplified global models have been used to perform a consistent comparison between
global and local stability analyses. The result from this comparison indicates that some of
the oscillations detected with local models do not show up in the global analysis. This fact
highlights the need to look for the local analysis that best reproduces the results from the
global one.

Finally, an evaluation of the influence of the detected linear azimuthal oscillations on the
electron transport has been performed. Results show a non-negligible impact upstream of the
ionization region, where the oscillation-based transport may be positive or negative depending
on the case, and could be of the same order of magnitude as the anomalous diffusion assumed
a-priori in the background solution. However, the oscillation-based electron transport caused
by the detected oscillations does not seem to be the main contributor to the anomalous
diffusion typically found throughout the complete Hall thruster channel.
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