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where f0 is the transmitted frequency and c is the speed of 
sound in water.  The measurements of bearing and range-rate 
are non-linear functions of the target state, X, with 
measurement noise, as follows: 
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The non-linear measurement functions for bearing and range-
rate are given as follows:  
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and where the source and receiver states are given by 
[ ]TSSSS yxyx ,,,  and  [ ]TRRRR yxyx ,,, , respectively.  The 
Jacobian provides the linearization to be used in the Extended 
Kalman Filter (EKF) formulation, and the measurement 
matrix is given by 
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B. GMPHD filter 
The Probability Hypothesis Density (PHD) tracking 

approach [15] is a Bayesian filtering formulation which utilizes 
Random Finite Sets (RFS).  The collection of individual targets 
is treated as a set-valued state and the collection of individual 
observations is treated as a set-valued observation.  The PHD 
filter propagates only the first-order statistical moment (i.e. 
intensity) of the RFS states in time, and thereby avoids the 
combinatorial problem of data association.  However, the PHD 
recursion for this filter has no closed form solution, making its 
implementation difficult.   

The multi-target GMPHD filter provides an analytic 
solution to the PHD recursion for linear Gaussian target 
dynamics and Gaussian birth model [16].  It uses the 
convenient form of Gaussian Mixtures (GM) for the prior and 
posterior PHD intensities, and provides closed form recursions 
for GM weights, means, and covariances.  Non-linear 
measurement models may be also incorporated using Extended 
Kalman filter (EKF) and Unscented Kalman filter (UKF) 
formulations.  In this paper we implemented an EKF version of 
GMPHD and applied it to a simulated CAS data set.  Details of 
the approach, including the relevant equations and pseudo-code 
are found in [16].  Our sensor and measurement model was 
described in the previous section.   

A brief summary of our implementation of the GMPHD 
filter follows: 

• New target intensity is injected into the filter each 
processing interval.  In our case, this consists only 
of a target birth process; no target spawning is 
considered.  The birth intensity that is added is 
provided by a set of GM components whose mean 
locations are uniformly distributed over the 
desired surveillance space.  Each component’s 
covariance is appropriately scaled to provide 
continuous coverage. 

• Predictions for all the GM components 
representing existing and new targets are 
performed using a standard nearly-constant-
velocity motion model. 

• The PHD update is performed using all of the 
incoming measurements for a given processing 
scan.  An extended Kalman filter update is made 
between each of the predicted GM components 
and the new measurements.  The posterior 
intensity is represented by a GM which has an 
increased number of components. 
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Fig. 13. Tracker output case 3 (multi-receiver); target true trajectory 
(yellow), GMPHD output (black); target track (blue). 
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Fig. 14. Tracker output case 4 (multistatic); target true trajectory (yellow), 
GMPHD output (black); target track (blue). 

 

VI. SUMMARY 
A potential operating mode for CAS with CW 

transmissions in multistatic configurations has been presented.  
The advantage of this approach is that the multisource 
interference issue within a multistatic operation can easily be 
mitigated.  Though target ranging measurements are not 
available in this configuration, it has been shown that good 
target tracking and localization can nevertheless be obtained 
through an effective fusion of multiple sensors with Doppler-
bearing measurements.   This was done using an Extended 
Kalman Filter implementation of  the GMPHD filter.  The 
results show that using only a single (monostatic) sonar node 
was much less effective in tracking the target than when cross-
sensor fusion was applied.  In general, the results show that 
fusion of multiple receivers (with a single source) will perform 
better than fusion of multiple sources (with a single receiver).  
This is due to the positional localization improvement available 
when multiple target bearings are cross-fixed.  Further 
improved results are obtained when all the available (and 
detecting) nodes are included in the fusion processing.   
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