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Abstract—Unlike conventional Pulsed Active Sonar (PAS)
which listens for echoes in between short-burst transmissions,
Continuous Active Sonar (CAS) attempts to detect echoes amidst
the continual interference from source(s) transmitting with
nearly 100% duty cycle. The potential advantage of CAS is an
increased number of continuous detection opportunities, leading
to improved target detection, localization, tracking, and
classification. The challenge is detecting the target echoes in the
presence of continuous interference. CAS transmission
waveforms may be of several types, i.e., frequency modulated
waveforms (FMs) which provide good range measurements,
continuous waveforms (CWs) which provide good Doppler
measurements, or sophisticated broadband waveforms which
attempt to provide both good range and Doppler measurements
simultaneously. In order to mitigate against the multi-source
mutual interference problem, it may be preferred to only use
continuous CW transmissions, rather than continuously
repeating broadband waveforms. This paper develops a tracking
approach based on the Gaussian Mixture Probability Hypothesis
Density (GMPHD) filter for multistatic sonar configurations
using Doppler-bearing measurements from continuous CW
transmissions. From a single fixed source-receiver node, such
measurements do not enable precise target state estimates.
However, when data fusion and target tracking is performed
amongst multiple source-receiver nodes, it is shown that good
localization estimates and target tracking may be obtained.

Keywords—Continuous Active Sonar; multistatic tracking;
GMPHD; Doppler-bearing tracking

L INTRODUCTION

Distributed multistatic active sonar networks have the
potential to increase ASW performance against small, quiet,
threat submarines in the harsh, clutter-saturated littoral and
deeper ocean environments. This improved performance comes
through the expanded geometric diversity of a distributed field
of sources and receivers and results in increased probability of
detection, area coverage, target tracking, classification, and
localization [1].

Recently, there has been renewed interest in the concept of
Continuous Active Sonar (CAS). Unlike Pulsed Active Sonar
(PAS) which listens for echoes in between short transmission
bursts, CAS attempts to detect echoes amidst the continual
interference from source(s) transmitting with nearly 100% duty
cycle. A schematic of the two contrasting approaches is shown
in Fig. 1. The potential advantage of CAS is an increased
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Fig 1. Depiction of PAS (top, blue) and CAS (bottom, red) methods.

The PAS “listens affer transmit” and the CAS method “listens while
transmit”.

number of continuous detection opportunities, leading to
improved target detection, localization, tracking, and
classification. In addition, lower transmission source levels are
possible. Of course, appropriate CAS-specific processing must
be employed to enable detection in the presence of continuous
transmissions.

Employing the CAS concept for multistatic active
sonobuoy fields presents additional challenges beyond what is
the case for surface ship sonar implementations which are
typically employed in monostatic (single source and receiver)
configurations. The primary challenge for multistatic
sonobuoy systems is that they may have less bandwidth
available for use, and therefore, multiple CAS sources may
transmit and interfere with one another in the same frequency
band, at the same time. In addition, transmission source level
and operational duration are limited by available battery energy
of the sonobuoys. Finally, buoy positions may be less
accurately known. Despite these difficulties, there is potential
to increase performance through the increased number of
detections available through the CAS processing and the fusion
of multiple sensors within the field.

Like PAS systems, CAS systems may employ a variety of
signal types: amongst the most common are: FM, CW, and
more advanced signals which attempt to capture the advantages
of both FM and CW waveforms simultaneously. @FM
waveforms provide good ranging information whereas CW
waveforms provide good Doppler (range-rate) information.
When bandwidth is very limited and multi-source interference
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is possible (e.g. multistatic operations), it may be preferable to
use only continuous CW transmissions, rather than
continuously repeating broadband waveforms such as FM.
With CWs it may be easier to mitigate the mutual interference
of multi-source operations.

This paper explores a multistatic CAS configuration using
CW waveforms, which provide measurements of target
Doppler and target bearing. From a single fixed source-
receiver node, such measurements do not enable precise target
localization. However, when data fusion and target tracking is
performed amongst multiple source-receiver nodes, good
localization estimates and target tracking may be obtained.
The tracking approach presented here is based on the Gaussian
Mixture Probability Hypothesis Density (GMPHD) filter.

Further description and processing methods for CAS are
described in Section II.  Section IIT describes the GMPHD
tracking approach for the Doppler-bearing measurements of a
multistatic CW CAS system. The simulation which provided
contact-level CAS data for our analysis is described in Section
IV. Section V provides the GMPHD tracking results, and
Section VI provides a summary.

II. CONTINUOUS ACTIVE SONAR

A description and comparison of two basic CAS modes,
FM and CW, is given. We assume a system in which receivers
perform beamforming or adaptive beamforming to obtain
bearing estimates of target echoes as well as to suppress the
direct blast interference coming from the source(s).

A. CAS FM mode

The use of a repeating linear FM (LFM) signal in CAS
provides the ability obtain range estimates of detected targets
by measuring echo time delays. Fig. 2 shows an LFM
waveform with total bandwidth, B, and the same duration as its
ping repetition interval, Tpg;. The echo from a target arrives
with time delay, 4r, which may be obtained by temporal
processing; i.e., matched filtering of the data with a sub-replica
of specified bandwidth Bp Continuous processing may be
achieved by splitting the total signal bandwidth into a number
of frequency sub-bands and processing with a bank of matched
filters.

Alternatively, the time delay may be obtained by
performing spectral processing. Using the Short Time Fourier
Transform (STFT), the frequency shift, Af, may be obtained,
and from this, the time delay is determined using the
relationship:

Ar:Af-T"TR’ 1)

Continuous processing is achieved by repeating the STFT and
producing spectrogram output. A target with Doppler (range-
rate) may induce some bias error into the range measurement,
according to the ambiguity function of the sub-section of LFM
signal processed [2]. In practice, the spectral processing
method is most conveniently achieved by heterodyning (de-
chirping) the received signal by the transmitted signal [3-4],
prior to spectrogram processing.

Fig. 3 shows an example of the potential challenge of
mutual interference (as seen by a receiver) when multiple
sources in the field utilize the same waveform or frequency
band. In this example we show three LFM waveforms, all with
the same Tprr and bandwidth; two are upsweeps and one is a
downsweep. It is clear that the potential for interference is
significant, with multiple direct transmissions and echoes
contained in each processing block. Such interference may be
mitigated through the use of more sophisticated wideband
waveforms (such as those with orthogonal properties) and
advanced processing techniques [5].

B. CAS CW mode

The use of a continuous CW signal in CAS provides the ability
to obtain continual range-rate estimates of detected targets by
measuring Doppler shifts. Fig. 4 shows such a CW signal
transmission. The echo from a target arrives with time delay,
At, but this (and hence range) is not measurable and therefore
indiscernible using this method. However the target Doppler
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Fig 2. Depiction of CAS LFM mode. Yellow indicates the temporal
processing method and the green indicates the spectral processing method.
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Fig. 3. Depiction of the mutual interference challenge of multi-source

CAS FM mode (3 sources) at a receiver; two LFM upsweeps and one
LFM downsweep occupying the same frequency band (and with the
same repetition cycle).



shift, Af. is measurable, provided that it is sufficiently
separated from the transmitted signal and louder than the
reverberation/noise background. Continuous measurements
are obtainable through spectral processing
(STFT/spectrogram). This measured Doppler shift
corresponds to the target’s bistatic range-rate [6], which can be
used in multistatic fusion and tracking algorithms.

Whereas the CAS LFM mode shows significant potential
for multi-source mutual interference, CAS CW mode may be
configured in a way to avoid this problem. This is done simply
by allocating a separate sub-band of the overall available
frequency band to each source, as indicated in Fig. 5. Each
sub-band needs only enough bandwidth to unambiguously
accommodate the maximum expected (opening and closing)
Doppler shifts of targets. Done this way, there is no cross-
interference between multiple sources at any receiver.
Although such Doppler measurements don’t localize the target
as quickly or precisely as ranging measurements (obtainable
with FM waveforms) do, with an effective multistatic data
fusion process, good target tracking may be achieved.
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Fig 4. Depiction of the CAS CW mode.
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Fig. 5. Mutual interference mitigation using frequency sub-band

allocation (blue/red/green) for each source and using CW waveforms.

IMI. GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS
DENSITY (GMPHD) TRACKER

Because of the nature of CW CAS signals, target range is
not directly measurable. Obtaining target state (localization)
estimates using only bearing and Doppler measurements can be
problematic. A single bearing-Doppler measurement from a
target received by a single source-receiver pair has limited
observability, i.e., the target’s state vector (position and speed)
is ambiguous. Normally, additional measurements are needed
to resolve this ambiguity, which may be obtained over time.
However, to completely disambiguate and localize the target
state, motion of the source-receiver pair is required, as is the
case with passive bearings-only Target Motion Analysis
(TMA) methods [7]. However, in our case, the sensors are
assumed to be relatively stationary and therefore we are unable
to employ such localization methods. Instead, we must
estimate the target state using other methods. Methods for
target tracking using fixed-sensor passive bearings-only
measurements to cue active multistatic tracking have been
developed [8-9]. These approaches assume fixed receivers and
use Gaussian Mixtures (GM) and a bank of Kalman filters to
deal with localization ambiguity. Other approaches have
addressed the multistatic Doppler-only measurement (no
bearings) case with GMPHD [10] and with a Likelihood ratio
tracker [11]. Unlike those approaches, here we wish to take
advantage of the availability of active Doppler measurements
in addition to bearing measurements to improve target tracking
through multi-sensor fusion.

Because of the lack of observability with individual
measurements, we choose here to investigate the potential of
multi-sensor fusion methods which can provide good target
localization and tracking. For this paper, we have chosen to
utilize the Gaussian Mixture Probability Hypothesis Density
(GMPHD) filter. The GMPHD filter is a relatively recent
development and shows good potential in addressing the
multiple-target, multiple-detection association problem. It
outputs a posterior intensity surface from which the target
localization can eventually be estimated. There may be other
approaches that could equivalently be employed, such as the
Likelihood Ratio Tracker (LRT) surface [12], the Hybrid
Intensity Likelihood Ratio Tracker (iLRT) [13], or others. The
objective of this paper is to demonstrate the potential of
successful target tracking using the Doppler-bearing
measurements of CW CAS, as well as the improvement
expected when multi-sensor fusion is employed. A specific
algorithm recommendation, whether the GMPHD filter or one
of its alternatives, is not the focus of this paper.

A. Sensor and Measurement Model
We consider that a target is described by its state vector

X=[x.y.z79] )

where x,y, X,y represent 2-dimensional positions and
velocities. The target motion is modeled with the well known
nearly constant velocity (NCV) motion model [14]. CAS CW
processing yields measurements of bearing, &, and bistatic
range-rate, 7 , which is obtained from the observed Doppler

shift, Af, as
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where f; is the transmitted frequency and c is the speed of
sound in water. The measurements of bearing and range-rate
are non-linear functions of the target state, X, with
measurement noise, as follows:

SHRARI.
v~N(O,R), with R:{Oﬁ Uﬂ;] (5)
oy O

The non-linear measurement functions for bearing and range-
rate are given as follows:

m(x)=tan-lfy‘y:\ (6)
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and where the source and receiver states are given by
[x,yS, x5, y3|" and |x®, yR %%, yR|", respectively. The
Jacobian provides the linearization to be used in the Extended

Kaman Filter (EKF) formulation, and the measurement
matrix is given by
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B. GMPHD filter

The Probability Hypothess Density (PHD) tracking
approach [15] is a Bayesian filtering formulation which utilizes
Random Finite Sets (RFS). The collection of individual targets
is treated as a set-valued state and the collection of individual
observations is treated as a set-valued observation. The PHD
filter propagates only the first-order statistical moment (i.e.
intensity) of the RFS states in time, and thereby avoids the
combinatorial problem of data association. However, the PHD
recursion for this filter has no closed form solution, making its
implementation difficult.

The multi-target GMPHD filter provides an analytic
solution to the PHD recursion for linear Gaussian target
dynamics and Gaussian birth model [16]. It uses the
convenient form of Gaussian Mixtures (GM) for the prior and
posterior PHD intensities, and provides closed form recursions
for GM weights, means, and covariances.  Non-linear
measurement models may be also incorporated using Extended
Kaman filter (EKF) and Unscented Kaman filter (UKF)
formulations. In this paper we implemented an EKF version of
GMPHD and applied it to asimulated CAS data set. Details of
the approach, including the relevant equations and pseudo-code
are found in [16]. Our sensor and measurement model was
described in the previous section.

A brief summary of our implementation of the GMPHD
filter follows:

e New target intensity is injected into the filter each
processing interval. In our case, this consists only
of a target birth process, no target spawning is
considered. The birth intensity that is added is
provided by a set of GM components whose mean
locations are uniformly distributed over the
desired surveillance space. Each component’s
covariance is appropriately scaled to provide
continuous coverage.

e Predictions for al the GM components
representing existing and new targets are
perfformed using a standard nearly-constant-
velocity motion model.

e The PHD update is performed using al of the
incoming measurements for a given processing
scan. An extended Kaman filter update is made
between each of the predicted GM components
and the new measurements. The posterior
intensity is represented by a GM which has an
increased number of components.



e All posterior GM components with low weight
(below a threshold) are eliminated. All GM
components that are in close proximity to each
other (within a threshold) are merged. GM
components with weights above a threshold are
reported out and provided to a post-processing
data association filter.

e New contact data is accumulated and the

procedure iterates.

C. Post-GMPHD Data Association for Output Tracks

The GMPHD filter estimates multi-target states by
determining the Gaussian components within the intensity
surface which have high weight (above a suitable threshold).
They provide estimates of the target states over time.
However, the GMPHD output does not perform any
association of these extracted state estimates over time to
create and identify specific target tracks.

In [17] a multiple hypothesis tracking (MHT) based data
association filter to extract tracks from the GMPHD output is
described. Here we have applied a linear Kalman-based,
global nearest neighbor (GNN) data association filter to the
extracted GMPHD state estimates (those with weights that
exceed a threshold). The GNN filter determines the most
likely global GMPHD estimate-to-track association from scan-
to-scan and outputs track estimates over time. This step
ensures that GMPHD outputs are associable and provides a
more conventional tracker display which is convenient for
sonar operators.

IV. MULTISTATIC CAS SIMULATION

A simulation was made of a CAS scenario to provide
contact-level data for testing the GMPHD tracking and fusion
algorithm. The scenario is depicted in Fig. 6. There are three
acoustic sources separated by 5 km in a north-south
orientation; three planar receive (hydrophone) arrays are
collocated with the sources. A target approaches the field with
a heading of 90° (clockwise from North) and speed of 5 kts.
Each source is assumed to transmit continuous CW waveforms
in non-overlapping frequency bands to avoid mutual
interference between them and allow the possibility of
simultaneous detections from each source (e.g. see Fig. 5).
The duration of this scenario is assumed to be 365 seconds.

The assumed receiver processing chain is now described.
Each receiver acquires hydrophone signals, which are
composed of the direct-blast energy, potential target and false
alarm echoes, acoustic reverberation, and ambient noise.
These signals are then processed to provide a set of beams,
which provide (azimuthal) bearing measurements of the
received acoustic energy. A Spectrogram of each beam is then
produced by taking the STFT, over successive processing
intervals, 7, which we assumed to be 5 seconds. Each STFT
output is normalized across frequency and when the acoustic
power exceeds a threshold, detection echoes (contacts) are
extracted. The Doppler shift (from the transmitted CW)
corresponds to a bistatic range-rate according to Eq. (3). The
resulting contact-level data are a set of measurements which
include: time, bearing, and bistatic range-rate. The CAS

simulation does not actually implement the aforementioned
signal processing chain, but instead directly simulates the
contact-level data resulting from such processing. Each
receiver can process each source signal, so there are 9 possible
detection opportunities per processing interval (three
monostatic and 6 bistatic). A scan is defined as the output of a
single processing interval for a source-receiver pair (one
frequency). There are nine scans available per processing
interval and a total of 657 scans collected over the duration of
the entire scenario.

The target-originated contacts were generated as follows.
The active sonar equation is modeled using the Passive-Active
Contact Simulator (PACsim) [18]. Outputs are obtained for
each source-target-receiver geometry. for every scan. PACsim
includes acoustic modeling of transmission loss, reverberation,
and noise. It also includes modeling of the sonar system,
including spatial and temporal processing gains and detection
processes. An aspect-dependent, bistatic TS model is used. A
suitable Doppler detection model is implemented.

PACsim calculates mean signal excess SE (in dB) for each
target echo. Because of the uncertainties in the sonar equation
and expected real-world fluctuations, variations from the mean
levels are expected. In our case we assume them to be

normally distributed as: SE = SE + £ . where £~ N.0) :

we assume 0 g =10 dB. Measurements of bearing and Doppler

are computed from the true geometry, but with random errors
added. These are sampled from normal distributions with
standard deviations of 0,=3° and 0,=0.1 nys.

False alarms were also simulated by randomly generating
additional detection contacts within each processing scan. The
false alarms are distributed uniformly across all possible
bearing and Doppler limits of the system. The number and
amplitudes (SNRs) of the false alarms is user-controllable. In
our case the number of false alarms injected was approximately
four per scan.
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Fig. 6. CW CAS simulation scenario. Sources (red dots), receivers (blue

squares), and target trajectory (black).



V. MULTISTATIC TRACKING RESULTS

The GMPHD tracking filter was applied to the simulated
scenario previously described. Four cases of data fusion with
increasing complexity were considered as follows:

e (Case 1. Monostatic— Source 2 with Receiver 2. one scan
per processing interval

e (Case 2. Multi-Source— Sources 1,2,3 with Receiver 2,
three scans per processing interval

e (Case 3. Multi-Receiver— Source 2 with Receivers 1.2.3,
three scans per processing interval

e (Case 4. Multistatic— Sources 1.2.3 with Receivers 1.2.3.
nine scans per processing interval

Case 1 processes one scan per processing interval, cases 2 and
3 process three scans per interval, and case 4 processes nine
scans per interval. In each case, the GMPHD tracker was
applied with parameters set to the values listed in Table I.

Fig. 7 shows the GMPHD output intensity surface for the
positional portion of the target state, obtained after the first
processing interval. We see that the single-node case 1 shows
only a broad area of weak intensity with no prominent peaks.
Case 2 show more intensity has built up. due to the increased
data being fused from the three sources. However. there are
still no prominent peaks near the target value at this early stage.
Case 3 shows a very discemable intensity peak, which is
obtained through the cross-fixing effect of fusing the three
receivers. However, it is not aligned very well with the true
target value. Finally, when all the nine nodes are fused in case
4, the intensity surface shows a strong peak at the correct
location. The advantage of sensor fusion is apparent even
though very few measurements have been processed.

Fig. 8 shows the GMPHD positional intensity after about
220 seconds (2/3 the way through the scenario. Compared to
Fig. 7, here we see nice strong intensity peaks have built up
over time and good localization is achieved. particularly for
cases 2-4. We observe that case 4 has the highest intensity
peak and most accurate localization due to full field fusion.

TABLEL GMPHD PARAMETERS.
Parameter Description Talae
Bearing error, Gg 3
Rate-rate error, G, 0.1 m/s
Error correlation, Gg, 0 deg-m/s
Motion model process noise (x .(y 0.01 m%s’
Probability of target death 0.001
Probability of detection 0.95
Clutter rate (per scan) 5
Extraction threshold 25
# Gaussian birth terms 100
GM component elimination threshold le-12
GM component merge threshold 4
Surveillance area X=-(6to 4) km
Y=-Btol) km

Case 3 also shows a strong peak but it is slightly biased in its
position relative to case 4. It is also stronger than the intensity
seen in case 2.

Fig. 9 shows the GMPHD intensity surface for the velocity
portion of the target state, obtained after the first processing
interval. We see that cases 1-3 all show an ambiguity ridge for
the estimated velocity of the target, though cases 2-3 are better
than case 1. The full-field fusion of case 4 shows an excellent
estimation result for the target velocity. Fig. 10 shows the
velocity intensity after about 220 seconds (2/3 the way through
the scenario), corresponding to Fig. 8. Here we see that while
ambiguity still exists in the single-node of case 1, cases 2-3
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Fig. 7. GMPHD positional intensity over the target surveillance region after
completion of the first processing interval. White marker is the true
target value and each case has the same colorscale (log of intensity).
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Fig. 8. GMPHD positional intensity over target surveillance region after 220
seconds (2/3 the way through scenario). White marker is the true target
value, and each case has the same colorscale (log of intensity).



show good target velocity estimate after this much time. Case
4 shows a very precise estimate of the target velocity.

The output of the GMPHD filter was input into the GNN
data association filter for final tracker output. Fig. 11 is the
cumulative tracker output for case 1 over the entire scenario. It
shows a few extracted detections which give rise to a short-
lived, somewhat inaccurate target track estimate. There are
also a couple of false target tracks which arise due to the false
alarm clutter which is present in the data.

Fig. 12 shows the results of the tracker for case 2, with the
fusion of detections from all three sources. We observe that in
contrast to the processing of a single node, the fusion of data
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Fig. 9. GMPHD velocity intensity surface after the first processing
interval. Colorscale i1s log of intensity and white marker is the true
target value.
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Fig. 10. GMPHD velocity intensity surface after 220 seconds into the

scenario (2/3 the way complete). Colorscale is log of intensity and
white marker is the true target value.

from the multiple sources provides accurate target tracking on
the latter half of the target’s trajectory. There are also two
false tracks which occur at similar bearings (but closer range)
from receiver 2.

Fig. 13 shows the output of the tracker for source 2 with
detections from all three receivers (case 3). The tracker output
is much improved over the previous cases, with longer hold
time on the target and no false tracks. The improved
performance seen here can be attributed to the geographic
diversity provided by spatially distributed receivers. Each
receiver sees the target from a different vantage point and the
intersecting detection bearings provide a better and earlier
target cross-fix within the GMPHD filter (as in Fig. 7). We
observe startup effect at the beginning of the track as the
GMPHD filter is converging on the actual target. There is also
a slight southerly localization bias of the track estimate.

Fig. 14 shows the output of the tracker with the fusion the
all sources and all receivers. The tracker output is further
improved, and has the longest target hold time and localization
accuracy of all the cases considered. There were no false
tracks.  The benefit of multi-sensor fusion is clearly
demonstrated with these results.
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Fig 11.  Tracker output case 1 (monostatic); target true trajectory (yellow),

GMPHD output (black); target track (blue), false tracks (red).
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Fig 12. Tracker output case 2 (multi-source); target true trajectory

(yellow), GMPHD output (black); target track (blue), false tracks (red).
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Fig. 14.  Tracker output case 4 (multistatic); target true trajectory (yellow),

GMPHD output (black); target track (blue).

VI. SUMMARY

A potential operating mode for CAS with CW
transmissions in multistatic configurations has been presented.
The advantage of this approach is that the multisource
interference issue within a multistatic operation can easily be
mitigated. Though target ranging measurements are not
available in this configuration, it has been shown that good
target tracking and localization can nevertheless be obtained
through an effective fusion of multiple sensors with Doppler-
bearing measurements.  This was done using an Extended
Kaman Filter implementation of the GMPHD filter. The
results show that using only a single (monostatic) sonar node
was much less effective in tracking the target than when cross-
sensor fusion was applied. In general, the results show that
fusion of multiple receivers (with a single source) will perform
better than fusion of multiple sources (with a single receiver).
Thisisdue to the positional localization improvement available
when multiple target bearings are cross-fixed.  Further
improved results are obtained when all the available (and
detecting) nodes are included in the fusion processing.

(1

(10

(11]

(12]

(13]

(14

(19]

(16]

(17]

(18]

REFERENCES

D. Grimmett and S. Corauppi, Multistatic active sonar system
interoperability, data fusion, and measures of performance, NURC
Technical Report NURC-FR-2006-004, April 2006 [NATO
UNCLASSIFIED releasable for internet transmission].

X. Song, P. Willet, S. Zhou, Posterior Cramer-Rao Bounds for Doppler
biased Multistatic Range-only Tracking, in proceedings 14"
International Conference on Information Fusion, Chicago, U.S.A., July
2011.

A. A. Winder, “Il. Sonar System Technology”, |IEEE Trans. Sonics and
Ultrasonics, Vol SU-22, No. 5, September 1975.

B. Siciliano, K. Oussama, Eds., “Springer Handbook of Robotics’,
Springer: Verlag Berlin Heidelberg, 2008, pp. 508-511.

G. Hickman, J. Krolik, Non-recurrent wideband continuous active sonar,
in proceedings |IEEE OCEANS 2012, Hampton Roads, VA, October
2012.

D. Grimmett, Multistatic sensor placement with the complementary use
of Doppler sensitive and insensitive waveforms, NURC Technical
Report SR-427, July 2005.

S. Nardone, V. Aidala, Observability Criteria For Bearings-Only Target
Motion Analysis, IEEE Trans. Aerospace and Electronic Sysems,Val.
AES-17, No. 2, March 1981.

R. Ricks, C. Wakayama, D. Grimmett, Passive Acoustic Tracking for
Cueing a Multigtatic Active Acoustic Tracking System, Proceedings of
the MTS/IEEE Oceans 12 Conference, May, 2012, Y eosu, Korea.

C. Wakayama, D. Grimmett, R. Ricks, Active Multistatic Track
Initiation Cued by Passive Acoustic Detection, in proceedings 15"
International Conference on Information Fusion, Singapore, July, 2012.

M. B. Guldogan, D. Lindgren, F. Gustafsson, H. Habberstand, U.
Orguner, Multiple target Tracking with Gaussian Mixture PHD Filter
using Passive Acoustic Doppler-Only Measurements, in proceedings
15" International Conference on Information Fusion, Singapore, July,
2012.

E. Hanusa, D. Krout, M. Gutpa, Estimation of Position from Multistatic
Doppler Measurements, in proceedings 13" International Conference on
Information Fusion, Edinburgh Scotland, July, 2010.

L. D. Stone, C. A, Barlow, T. Corwin, Bayesian Multiple Target
Tracking, Artech House, Inc, Norwood, MA, 1999,

R. Streit, B. Osborn, K. Orlov, Hybrid Intensity and Likelihood Ratio
Tracking (iLRT) Filter for Multitarget Detection, in proceedings 14"
International Conference on Information Fusion, Chicago, IL, U.SA.,
July 2011.

S. Blackman and R. Popoli, Design and Analysis of Modern Tracking
Systems, Artech House, Norwood, MA, U.S.A., 1999, Chap. 4, pp. 203-
205.

R. Mahler, “Multi-target Bayes filtering via first-order mult-target
moments,” |EEE Trans. AES, val. 39, no. 4, pp. 1152-1178, 2003

B. Vo, W. Mg, “The Gaussian Mixture Probability Hypothesis Density
Filter”, IEEE Trans. Sgnal Processing, Vol. 54, No. 11, pp. 4091-4104,
November 2006.

K. Panta, B. Vo, S. Singh, and A. Doucet, Probability Hypothesis
Density filter versus multiple hypothesis tracking, in proceedings Signal
Processing, Sensor Fusion and Target Recognition XlII, SPIE, vol.
5429, pp. 284-295, 2004.

D. Grimmett, C. Wakayama, R. Ricks, Simulation of Passive and
Multistatic Active Sonar Contacts, in Proceedings of the 4th
International Conference on Underwater Acoustic Measurements
Technologies and Results, June, 2011, Kos, Greece.



