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Abstract 

Quantum Key Distribution (QKD) is an emerging technology which uses the principles of quantum 

mechanics to provide unconditionally secure key distribution. QKD systems are unique in their ability to 

detect the presence of an eavesdropper and are being marketed for use in applications where high levels 

of secrecy are required such as in banking, government, and military environments. However, QKD 

technology has not gained widespread acceptance, primarily due to the newness of the technology. 

Research has shown that practical QKD system implementations differ significantly from their theoretical 

designs raising questions about their suitability for use in sensitive cryptographic applications. There is a 

critical need to model, simulate, and analyze QKD systems in order to understand the impact non-ideal 

components and practical implementations have on performance and security. QKD systems are complex 

systems composed of electrical, optical, and electro-optical components. Their design and analysis 

requires expertise across multiple disciplines including computer science, computer engineering, 

electrical engineering, information theory, optical physics, and quantum physics. The inherently multi-

disciplinary nature of QKD systems makes it an ideal candidate for study using Model Based Systems 

Engineering (MBSE) Processes, Methods, and Tools (PMTs). 

This thesis presents a study of the QKD decoy state protocol using MBSE PMTs. Specifically, the 

modeling, simulation, analyses, verification and validation of a decoy state enabled, BB84, prepare and 

measure, polarization based QKD system is evaluated in the presence of an eavesdropper implementing a 

theoretical photon number splitting attack. The primary goal of the research is to gain improved 

understanding of the operation and performance of the QKD decoy state protocol. This objective was 

achieved by examining the relationships between design, implementation, and operational choices with 

respect to the decoy state protocol. The main contributions of this research include the development of a 

decoy state protocol model, validation of the decoy state protocol in a QKD system model 

implementation, and confirmation that application of MBSE PMTs are critical to the understanding and 

analysis of complex systems. This thesis presents the first known application of MBSE PMTs to define 

and analyze a decoy state enabled QKD system and provides utility to system developers, designers and 

analysts who seek to quantify QKD system performance and security.  
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MODELING, SIMULATION, AND ANALYSIS OF A DECOY STATE ENABLED QUANTUM KEY 

DISTRIBUTION SYSTEM 

 

I. Introduction 

Motivation and Background 

QKD is an innovative cryptographic technology designed to provide unconditionally secure1 key 

distribution between two parties. QKD technology exploits the fundamental properties of quantum 

mechanics to generate and distribute shared secret keys and can be used in applications where high levels 

of secrecy are required such as those found in banking, government, and military environments. QKD is 

unique in its ability to detect the presence of an eavesdropper attempting to subvert the secure distribution 

of key material. However, practical implementations of QKD systems differ significantly from their 

theoretical designs due to the non-ideal components used to construct real-world systems. Due to the 

complex nature of the system, the non-idealities, and multitude of implementation variants, there is a 

critical need to model, simulate, analyze, and understand the impact non-ideal components and system 

implementations have on performance and security of realized QKD systems [10, 15, 16]. To help address 

this critical need, researchers at the Air Force Institute of Technology have developed a QKD 

eXperimentation (qkdX) modeling framework [17]. The research presented in this thesis seeks to enhance 

the qkdX framework by building and validating new capabilities within the framework. 

 Perhaps the most notable non-ideality in practical QKD systems is the use of classical laser 

sources to generate optical pulses for key generation [18]. Because on-demand single photon sources are 

not available using current technology, classical laser pulses are generated and attenuated down to “weak 

                                                      

1 In this context, “unconditionally secure” means that an adversary, with unlimited computing power, can only 
obtain a negligible amount of information about the distributed secret key without introducing detectable errors [2, 
10, 15]. 
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coherent pulses” with sub-photon Mean Photon Numbers (MPN) with photon distributions that follow a 

Poissonian distribution. This means, for example, in an attenuated laser pulse with an MPN of 0.1, 

approximately 90% of the pulses will have zero photons, 9% will have one photon, and 1% will have 

more than one photon. Each multi-photon optical pulse, introduces critical vulnerabilities into the 

unconditionally secure QKD process. Specifically, these multi-photon pulses enable an eavesdropper to 

gain information on the secret key without detection through the Photon Number Splitting (PNS) attack 

[19, 20, 21, 22, 23]. In 2003, the decoy state protocol was proposed to mitigate the PNS vulnerability; 

however, its implementation has not been studied in detail nor characterized for realized systems [24, 15]. 

This example demonstrates that ability to rapidly and accurately model real-world, non-ideal laser pulses 

and analyze the effectiveness of the decoy state protocol is of paramount importance to fully understand 

QKD system performance and security.  

Real-world QKD systems contain electrical, optical, and hybrid components, and their design and 

analysis requires expertise across multiple disciplines including computer science, computer engineering, 

cryptography, electrical engineering, information theory, optical physics, quantum physics and statistics. 

The inherent, complex, multi-disciplinary nature of QKD technology makes it an ideal candidate for study 

using Model-Based Systems Engineering (MBSE) methodologies [25, 26].  

Problem Statement 

While the decoy state protocol was developed to mitigate the photon number splitting attack, 

there has been no published research on the modeling and simulation of the vulnerability to evaluate the 

effectiveness of the protocol. There is a critical need to understand the impact that decoy state protocol 

has on the performance and security of QKD systems. 

Research Goals and Objectives 

The purpose of this research is to study the decoy state protocol commonly used in QKD systems 

through the use of an MBSE methodology consisting of Processes, Methods, and Tools (PMTs). 
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Specifically, this research focuses on the modeling, simulation, and analysis of a decoy state enabled, 

BB84, polarization encoding, prepare and measure QKD system in the presence of a theoretical 

eavesdropper implementing a photon number splitting attack. The overall goal of research is to develop 

an improved understanding of the operation and performance of the QKD decoy state protocol and 

provide a working simulation model. The primary objective of this research will be achieved through the 

design, implementation, verification, validation, and performance analysis of a decoy state enabled QKD 

system model using an MBSE approach. The results of the study will enable an analyst to gain a deeper 

understanding of the relationships between performance and design choices within the decoy state 

enabled QKD system. 

Research Questions 

The research objectives will be accomplished by answering the following high level research 

questions and their sub-ordinate research questions: 

RQ1. What is Model-Based Systems Engineering and why is it important? 

RQ1.1 What MBSE Processes, Methods, and Tools (PMTs) are useful to a modeler in defining, 

implementing, verifying and validating a QKD system model? 

RQ2. What is Quantum Key Distribution (QKD)?  

RQ2.1 What is the BB84 protocol?  

RQ2.2 What is a Photon Number Splitting (PNS) attack? 

RQ2.3 What is the Decoy State protocol? 

RQ3. How effective is the Decoy State Protocol at detecting the Photon Number Splitting (PNS) 

attack? 
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RQ3.1 What measurements are necessary to detect an eavesdropper performing a PNS attack? 

RQ3.2 What behaviors should be captured in a decoy state enabled QKD system model? 

RQ3.3 How flexible is the qkdX framework for building and studying fit-for-purpose models? 

RQ3.4 What changes need to be made to the existing qkdX simulation framework for studying a 

decoy state enabled QKD system model?  

 

Methodology 

Overall, this research is guided by a MBSE approach to model building and experimental design. 

Pertinent processes, metrics, and operational parameters related to the QKD system operation and the 

decoy state protocol is extracted during a literature review. Background material is condensed to define 

fully dressed use cases, activity diagrams, and timing sequences. These products are captured using the 

Department of Defense (DoD) Architecture Framework (DoDAF) viewpoints to further define, 

understand, and capture the required capabilities [27]. Use cases are used to document and define a set of 

model behaviors supported by architecture views and traceable requirements. These formalized 

requirements are used for model Verification and Validation (V&V) through the comparison of published 

experimental results and empirical data. A decoy state protocol model is implemented using the qkdX 

modeling framework and its behavior will be verified. Lastly, the model is used to conduct performance 

characterization to more fully understand the decoy state enabled system’s performance and security. 

Assumptions and Limitations 

As in any research endeavor, the research findings presented in this thesis are subject to several 

assumptions and limitations including the following:  

1. BB84 is the name given to the first QKD protocol outlined by Charles Bennett and Gilles 

Brassard in 1984 [2]; however, there is no specific implementation standard. While this protocol was 

defined for over 30 years at the time of this study, there have been no formal system engineering 

decompositions of the BB84 protocol explicitly documenting its behaviors. Thus, system implementations 
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widely vary as many design decisions are left to QKD system developers. As a result, the author was 

required to make and document critical design decisions in order to build the use cases used in this 

research.  

2. The decoy state protocol presented in this research does not have a fixed reference 

implementation. This research makes use of the decoy state protocol as first proposed and demonstrated 

by Lo et al. [28] which uses a signal state, a decoy state, and a vacuum state [14]. While other researchers 

have proposed additional states, implementing two decoy states requires the least complexity and 

provides the same capability to detect an eavesdropper as an infinite number of decoy states. 

Additionally, the decoy state security condition enables PNS detection by comparing either yields or 

errors; this study focused on the yield comparisons as a first step in modeling research [28, 29]. Other 

variations of the decoy state protocol were not studied in this research effort. 

 3. Two important assumptions have been made related to the communications medium that 

connects the two authorized parties, often called Alice and Bob in the literature. First, they must know the 

properties of their communications medium very well [28]. For example, Alice and Bob must jointly 

know their normal channel efficiency because it is a critical factor in the secure operation of a QKD 

system. The second assumption is that this knowledge of the communication medium excludes the 

presence of an active eavesdropper. These assumptions enable Alice and Bob to establish a set of 

tolerances (i.e., bounds for the signal and decoy yield estimates) which are required to operate a practical 

system in a secure manner [28]. Both of these ideas will be examined further during the discussion of the 

decoy state implementation.  

Implications 

This research demonstrates the ability to design and implement a decoy state enabled QKD 

system model within the qkdX modeling framework. The results and lessons learned will enable system 
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developers, system designers, analysts and future model builders to more efficiently use the qkdX 

framework and suggest opportunities for improvements or extensions.  

More generally, the promise of unconditionally secure communications is of strategic interest to 

the United States and other nations around the world. When QKD is combined with the One-Time-Pad 

algorithm to encrypt messages, it results in unbreakable communications [30, 31]. Therefore, it is of vital 

interest to study the performance and security impact of non-idealities in realized QKD systems. The first 

nation to develop reliable unbreakable communications will have a substantial advantage over its 

adversaries as history has demonstrated [32]. Research that supports improvements or shapes practical 

implementations should be of utmost interest these parties. The United States Air Force and Department 

of Defense investment in advanced academic degrees and research related to secure communications has 

the potential to result in significant advances to national security. 

Thesis Outline 

The remainder of this document is organized into seven chapters followed by appendices. Chapter 

II outlines background information necessary for the reader to understand the MBSE approach used to 

model and study decoy state enabled QKD systems. Chapter III explains the research methodology and 

discusses how the research questions presented in Chapter I are answered. Chapter IV presents a journal 

article, submitted to the Journal of Defense Modeling & Simulation, which presents our initial decoy state 

enabled QKD model. Chapter V presents a journal article, submitted to IEEE Transactions on Systems, 

Man, and Cybernetics: Systems, which outlines the approach and results of applying the MBSE 

methodology to define, design, implement, verify, and validate the full decoy state enabled QKD model. 

In Chapter VI, the results of the modeling process and experimentation are analyzed. In Chapter VII, 

conclusions are drawn, research questions are answered, lessons are captured, and future research is 

proposed. Additionally, details of the research and experimentation are provided as a series of appendices 

A-F.   
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II. Literature Review 

Overview 

This chapter is divided into three sections which cover principles of Systems Engineering (SE), 

Model-Based Systems Engineering (MBSE), and Quantum Key Distribution (QKD). Specifically, the SE 

section covers the relevant theory upon which MBSE is built. Likewise, the MBSE section explains the 

relationship between SE and MBSE and outlines the elements of an MBSE methodology. Finally the last 

section provides an overview of QKD theory, limitations, and the qkdX modeling and simulation 

framework. The information presented in this chapter provides a foundation for understanding and 

conducting the research presented in this thesis. 

Systems Engineering 

Key Definitions  

The International Council on Systems Engineering agrees that establishing shared terminology 

facilitates effective communication and is a primary task for systems engineers [33]. In spite of this 

assertion, neither “system” nor “system engineering” has a universally agreed upon definition [25]. This 

creates some ambiguity in understanding but facilitates flexibility or tailorability of application. The 

author’s chosen definitions are based on what he believes to provide the best clarity from his course of 

study and discussion of his research. 

A system can be defined as follows: 

1. “[A] group of objects that are joined together in some regular interaction or interdependence 

toward the accomplishment of some purpose” [16, p. 12], 

2. “[A]n assemblage or combination of functionally related elements or parts forming a unitary 

whole” [25, p. 3], 
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3. “The organization of hardware, software, material, facilities, personnel, data, and services 

needed to perform a designated function with specified results, such as the gathering of specified 

data, its processing, and delivery to users” or  

4. “A combination of two or more interrelated pieces of equipment (or sets) arranged in a 

functional package to perform an operational function or to satisfy a requirement” [34], and 

5. “[A]n integrated set of elements, subsystems, or assemblies that accomplish a defined objective” 

[33, p. 5].  

As the reader can ascertain, these definitions are largely similar and they share the idea that systems are 

made of inter-related parts that when combined serve a purpose or function. This generalized definition of 

system will be used consistently throughout this study.  

 Similarly, Systems Engineering has a number of related definitions: 

1. “[A]n interdisciplinary approach and means to enable the realization of successful systems. It 

focuses on defining customer needs and required functionality early in the development cycle, 

documenting requirements, then proceeding with design synthesis and system validation while 

considering the complete problem” [33, p. 6, 35] and 

2. “[A] methodical and disciplined approach for the specification, design, development, realization, 

technical management, operations, and retirement of a system” [36]. 

Just as the multiple definitions of “system” were not mutually exclusive, neither are those for 

“systems engineering.” Blanchard and Fabrycky, themselves, acknowledge there is no universally agreed 

upon definition for the subject. However, they suggest that some commonalities exist which include: 1) 

an approach that views the system as a whole, 2) consideration of the system’s entire life cycle, 3) 

characterization of system requirements and 4) the notion that an interdisciplinary approach is necessary 

[25]. While each organization may focus on a unique nuance within the SE discipline, their definitions 

tend to holistically agree with each other. 

An important definition related to both systems and SE is that of system of systems. A system of 

systems is a system composed of elements which independent meet the definition of a system [37, 33, 
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38]. While this definition may not appear profound, it does establish a clear delineation between a 

complex system and a system of systems. 

Concepts 

This section attempts to define a number of ideas that appear disjoint at first glance; however 

understanding is necessary to synthesize ideas described by SE development processes and MBSE 

principles. The system life cycle is described first and identifies phases through which a system will pass 

its existence. Next, the SE concept of requirements is defined and the importance is discussed. 

Verification and Validation (V&V) and their relationship to requirements are discussed afterward. Lastly, 

system decomposition and integration are defined and compared.  

Life cycle  

A system’s life cycle begins from the identification of a need or definition of a problem and lasts 

through the system’s retirement or disposal [25, 36, 39, 33]. While each organization surveyed agrees 

with the definition of life cycle, the identification of phases (or stages) within a system’s life cycle varies 

for each organization. For example, Blanchard and Fabrycky identify the following five phases: 1) 

conceptual design, 2) preliminary design, 3) detailed design and development, 4) production/construction, 

and 5) operational use and system support [25]. Alternatively, INCOSE identifies the following seven 

stages: 1) exploratory research, 2) concept, 3) development, 4) production, 5) utilization, 6) support and 

7) retirement [33]. Still the Department of Defense identifies five different phases: 1) materiel solution 

analysis, 2) technology development, 3) engineering and manufacturing development, 4) production and 

deployment, 5) operations and support [40]. Each methodology defines a set of activities which shape the 

growth of the system of interest from immature concept to ultimately the non-existence of the system. 

Figure 1 provides a generic model of the life cycle phases from concept to retirement [33]. This 

model illustrates how the stages of a life cycle model may progress over time. The phases exist to 

delineate work efforts or to serve as a means of delineation for tailored process management [25]. 
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Understanding in which phase a system project exists will shape the purpose of any study, e.g., model 

development, as well as influence which process model is followed [39]. Process models are explored in 

the next section. 

 

Figure 1. Generic Life Cycle Model [33]. 

Requirements 

Requirements are an important component of SE; they provide a vehicle to define the significant 

desired behaviors of a system model while facilitating traceability during integration and Verification and 

Validation (V&V) to meet user needs [25]. Requirements also shape the purpose of the model and affect 

the level of abstraction and complexity of the implemented design. Banks et al. argue for beginning with 

a simple model and adding complexity as well as stating that “only the essence of the real system is 

needed” instead of developing a model that maps perfectly to a real world system [16]. 

 Three of the 16 processes in the DoD SE Process Model, i.e., Stakeholder Requirements 

Definition, Requirements Analysis, and Requirements Management, focus directly with requirements. 

Five others, Configuration Management, Technical Data Management, Interface Management, 

Verification, and Validation also involve system requirements [41, 36, 37]. Additionally, Blanchard and 

Fabrycky discuss the importance of requirements throughout all phases of the SE process [25]. 

Furthermore, Gomaa discusses quality attributes of requirements such as correctness, completeness, 

consistency, verifiability, and traceability, which are applicable to all 16 SE processes [12].  

Verification and Validation 

Verification and Validation (V&V) are two phases in the systems engineering process that ensure 

the system is built correctly and meets the identified user needs. V&V is often associated with system test 
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and evaluation, and is considered part of the DoD realization phase of systems engineering [25, 41]. In 

fact, the DoD identifies each as phase as having its own separate technical process. The DoD also 

delineates verification as a Developmental Test & Evaluation (DT&E) activity and validation as an 

Operational Test & Evaluation activity (OT&E) [36, 41]. 

 In system development, verification is a process that confirms that realized system conforms to 

system requirements [36]. Verification answers the question “was the item built right?” In software-based 

applications, verification also includes debugging. In simulation modeling, verification confirms that 

model was built correctly [16, 42, 43, 44].  

At a systems level, there are four distinct types of verification: inspection (or examination), 

demonstration, testing (or evaluation), and analysis. Inspection generally consists of tactile measurement 

and is usually nondestructive. A visual observation or physical measurement that the item conforms to a 

specification are examples of inspection or examination. Demonstration involves the operation, 

adjustment, or configuration of the system or subsystems. Testing is an activity that assesses the system’s 

conformance through controlled conditions and normally involves the utilization of scientific principles 

and procedures. Analysis may be conducted through the use of modeling and simulation or other 

mathematical or analytical methods to measure the system’s compliance with requirements [45, 46].  

 Validation, on the other hand, is a process, which in systems development, confirms the correct 

system was built to meet user needs [36]. Validation answers the question “was the correct item built?”  

In simulation modeling, the goal of validation is to assess whether the real system is correctly, to the 

necessary resolution, represented by the model [16, 42, 43, 44].  

Decomposition and Integration 

Decomposition is a process by which functions or system behaviors are broken down into smaller 

units of mutually exclusive activities from the top down. Decomposition may be described in terms of 

functions, activities, logic, structures, or etc. As such, decomposition is not unique to SE, but it is a 
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concept that must be understood prior to a discussion of SE development process models [47, 33]. In 

contrast to decomposition, integration is a process by which functions or system behaviors are unified 

into larger system elements from the bottom up [33]. Obviously, decomposition and integration are two 

sides of the same coin. Both will be discussed further in the next section. 

Development Process Models 

A number of development process models exist to frame the work effort in each life cycle phase 

required to realize, operate, and support systems. The waterfall, spiral development, incremental 

development, the Rational Unified Process, and the “Vee” process models are commonly employed in SE 

[25, 12, 33]. Each model will be briefly examined in the following sections. 

Waterfall Model 

The waterfall model, introduced in 1970 by Dr. Winston W. Royce, contained seven steps or 

phases to facilitate management of software development. The waterfall method involved non-

overlapping activities that were to be completed prior to advancing from one phase to the next. This 

model is suitable for projects with requirements that are stable, i.e., non-changing, during the 

development process. Contrary to popular belief, Royce discussed returning to previous phases as 

necessary. One limitation of the waterfall approach is that no system or capability is available to users 

until the end of development at which point the system enters operations. Figure 2 is from his original 

paper and supports this claim [48, 12, 25].  
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Figure 2. Royce’s Waterfall Interaction Diagram [48]. 

Spiral Development Model 

The spiral model is adapted from the waterfall process model, but may include the use of 

prototypes. It is defined by an iterative risk-driven approach to developing systems. Each iteration 

through the model will deliver additional capability to the user. An iteration will progress and repeat 

through stages which define objectives, analyze risks, develop specified capabilities, and develop plans 

for subsequent cycles. Figure 3 is an example of a visual depiction of progress through the model [25]. 

 

Figure 3. Spiral Development Model. 
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Incremental Development Model 

In contrast to the waterfall model, incremental development enables some system capability to be 

delivered before the full system is completed. However, the phases of an incremental approach are 

typically similar to those found in the water fall model. The incremental model may include the use of 

prototyping. Additionally, use cases and scenario-based parameterization can be used to manage and 

schedule development of system increments. Gomaa warns that software architecture, e.g. interfaces and 

quality attributes, must be carefully designed into the system from the onset because each iteration “forms 

the basis” of the final deliverable. Thus, early mistakes or poor design decisions can be propagated into 

finished products. Figure 4 is a graphical depiction of an incremental development model [12].  

Rational Unified Process (RUP) Model 

The RUP is also iterative model and introduces the concepts of artifacts, workflows, phases and 

milestones. Artifacts are produced by workflows which are synonymous with processes. Examples of 

workflows (or disciplines) include requirements definition, analysis, design, and testing. The period of 

time between the completions of two milestones define phases. Phases are typically named Inception, 

Elaboration, Construction, and Transition and correspond on a smaller scale to similarly named phases in 

a system life cycle. Finally, milestones are defined by the achievement of specific objectives and the 

decision process to move to the next phase [12]. Figure 5 depicts an example of these concepts as well as 

the work load relationship between workflows and phases. 
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Figure 4. Incremental Development Model. 

 

Figure 5. Rational Unified Process Model [49]. 

“Vee” Model 

The Systems Engineering “Vee,” as shown in Figure 6, is another development process model 

that is currently used to develop large systems. The model manages user needs identified during program 
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initiation, i.e., the top left of the diagram. Requirements are developed and decomposed into a detailed 

design. As the design is implemented and subsystem integrated, the program’s requirements are 

incrementally verified. As the solution is realized, i.e., further integrated into the final system, it will be 

validated against the original capability need or top-level requirements [25, 41, 33]. 

 

Figure 6. Systems Engineering Vee Model [33]. 

The Defense Acquisition University defines a SE process model that is composed of both 

technical and technical management processes as depicted in Figure 77. The DoD SE process model 

identifies eight technical processes and eight technical management processes supporting the total 

lifecycle management of DoD systems from the initial identification of an operational need to the 

delivered capability, and disposal [41].  
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Figure 7. DoD SE Process Model (2014) [41]. 

Model-Based Systems Engineering  

Now that fundamental definitions, concepts and processes of SE have been discussed, the 

discussion will expand to MBSE. MBSE will build upon the SE ideas and modeling concepts to them as 

an approach to developing systems. Many of these principles will directly influence answers to research 

questions or shape the methodology described in Chapter III. This section will discuss key definitions, 

processes and methods, and tools related to MBSE. 

Key Definitions 

MBSE, like SE, includes terminology that must be defined to facilitate understanding. These 

terms include MBSE itself, methodology, process, method, tools, modeling and simulation. Additionally 

three software engineering terms, i.e., framework, toolkit/toolbox, and architecture have been included in 

this section to prepare the reader for later discussion. 

MBSE 

 Model-Based Systems Engineering is an emerging methodology which integrates the use of models 

and modeling principles into various processes encompassed by the field of SE [50]. MBSE provides an 
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organized, repeatable, iterative, and convergent approach to understand, communicate and meet, user 

needs throughout the development of complex, interdisciplinary systems [51, 52]. More specifically, 

MBSE is a model-centric approach that supports requirements definition, system design, analysis, and 

V&V activities whose main deliverables are a model and supporting artifacts which facilitate shared 

understanding and clear communication amongst stakeholders [53].  

  More specifically, INCOSE offers the following definition of MBSE: “the formalized application 

of modeling to support system requirements, design, analysis, verification and validation activities 

beginning in the conceptual design phase and continuing throughout development and later life cycle 

phases” [51]. Additionally, Friedenthal et al. uses the INCOSE definition and argues that MBSE can 

enhance communication, reduce risk, improve quality, and increase productivity [54]. These qualities, 

reduced risk, improved quality and increased productivity, have the potential effect to reduce total life 

cycle cost [36]. As an emerging methodology, MBSE is being investigated as an effective tool for 

understanding increasingly complex systems [55, 56, 57, 58]. Furthermore, MBSE, like SE, is a 

requirements-driven approach. Thus, the first step of an MBSE or SE approach begins with capturing 

stakeholder needs. Often these stakeholder needs are captured in a concept of operations (CONOPS) [59, 

60, 61, 33]. CONOPS typically become the starting point for generating the initial set of system 

requirements and the foundation for establishing traceability. For these reasons, MBSE is well suited to 

study QKD systems.  

Methodology, Methods, Processes, Tools 

A survey of MBSE Methodologies in 2008 defined the distinction between methodologies, 

processes, methods, and tools. A Methodology was defined as an assemblage of related processes, 

methods, and tools that can be applied to a common class of problems. A process, it stated, was a 

sequence of tasks that are accomplished to meet an objective and defined what is to be done but not how. 

In contrast, a method defines the how and describes the techniques, practices, or procedures for 

accomplishing a task. Lastly, the study defined tools as a mechanism that can be applied to a method to 
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improve the task’s efficiency [53]. These distinctions provide the foundation for understanding these 

terms throughout this thesis. 

Modeling vs. Simulation 

It is important to discuss the difference between models and simulations to establish a common 

vocabulary and the understanding of the nuances of each term. Often the two terms are used together and 

when used synonymously, are used incorrectly. The IEEE Standard 1233-1996 defines a model as a 

“representation of a real world process, device, or concept” [62]. Similarly, Banks et al. defined a model 

as a “representation of a system for the purpose of studying that system” [16, p. 15]. Summarily, a model 

is a “representation or abstraction of something” [44]. All three definitions describe a model as a 

“representation” of an item of interest, but not, in fact, the item itself.  

A key principle or concern is that of a model or an experiment’s objective and purpose. 

Furthermore, both Banks et al. and Law and Kelton identify project objectives among the first 

considerations when defining a model [16, 42]. Similarly, the DoD’s GUIDEx identifies “Fitness for 

purpose” as the number one issue of concern to defense decision makers who seek to use experimentation 

to solve force capability problems [7]. Arguably, the notion of a “fit-for-purpose” objective (or design) is 

inherent to the definition of the model itself. That is, a model should be built with a specific purpose in 

mind at the time of its design. 

 Banks et al. define a simulation as “the imitation of the operation of a real-world process or 

system over time” [16]. Having already defined a model as a ‘representation of an item of interest,’ one 

may be lead to wrongly believe the two are in fact the same. The distinction is as follows: a simulation is 

always a model, but a model is not always a simulation. Law and Kelton define a simulation as 

“numerically exercising the model for the inputs in question to see how they affect the output measure of 

performance” [42, p. 5]. A simulation is a model because it represents a real world item of interest and its 

behavior, i.e., output, in terms of defined measures of performance.  



AFIT-ENV-MS-15-M-181 

20 
 

 Simulations may also be described as static, dynamic, deterministic, stochastic, continuous or 

discrete. A static simulation is a model of a system at a specific time or a model in which the system is 

not affect by time. Dynamic simulations include the model behaviors as they change over time. A 

deterministic simulation is a simulation that does not contain any random component and whose output 

behavior is unique, but known, for a given set of input parameters. Stochastic simulations contain one or 

more elements that are probabilistic. Furthermore, continuous simulations model behavior or state 

changes that occur without interruption, i.e. continuously. In contrast, simulations in which the state of 

the system only changes at particular events are known as discrete [16, 42].  

 

Framework, Toolkit/Toolbox, and Architecture 

Lastly, there are four terms that author encountered during research that were often used 

synonymously in the context of software and simulation: framework, toolkit (or toolbox), and 

architecture. These definitions will provide the some context in which to understand the relationship of 

these terms to developing a software simulation. In an effort to provide some clarity to the reader, the 

following working definitions are provided: 

1. Framework: “a set of source code or libraries which provide functionality common to a whole 

class of applications. While one library will usually provide one specific piece of 

functionality, frameworks will offer a broader range” of functionality [5]. 

2. Toolkit (or toolbox): a set of related software components in which components may be 

modified, used together, or connected to each other to produce other components, functions, 

or behaviors. 

3. Architecture: “high-level design and execution structure of a software system. A software's 

architecture is analogous to a building's architectural choices for a foundation, frames, 

window locations, etc” [1]. 

Processes and Methods 
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This section will discuss MBSE processes and methods studied and expected to support design 

and implementation of a QKD system model. First, a discussion of the modeling process is provided and 

is followed by a review of experimental design. Next, a cursory summary of key software engineering 

concepts is reviewed. Variance reduction in computer simulations is discussed next. Afterward, the 

Department of Defense Architecture Framework (DoDAF) is briefly examined. This section concludes 

with a review of use case modeling. 

Modeling Process 

Law and Kelton offer six ways to study a system of interest. Figure 8 illustrates the methodology 

they defined. The first method discussed is to experiment with the actual system. However, cost and 

practical limitations, such as the lack of existence of the system, may severely restrict the study. Hence 

the discussion moved to creating a representation of the system for study, i.e., modeling. Physical or 

iconic models include tangible elements, such as life-sized or scaled components, that can be used to 

conduct the study and collect data. Mathematical models compose the majority of models built for study. 

Such models represent the system of interest in terms of “logical and quantitative relationships” [42, p. 5] 

that can be configured to study the effects of the changes. Some systems, they argue, are too complex to 

be studied with a closed-form equation or relationship. For these systems, simulation becomes necessary 

to observe and study the effects of the inputs on the system measure of performance. These performance 

measurements enable researchers to make comparisons among potential or realized alternatives systems 

under consideration [42]. 

Banks et al. define a 12-step paradigm for conducting simulation studies that includes problem 

formulation, planning, verification & validation, experimental design, implementation and documentation 

as shown in Figure 9. Problem formulation is a critical and preliminary step in the Modeling and 

Simulation (M&S) development process. Once the problem of interest has been identified and clearly 

defined, it is appropriate to set objectives and develop a project plan. The objectives identify the research 

questions to be answered by the M&S project. The project plan is analogous to a research methodology 
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and should include the identification of resources where appropriate. Model conceptualization involves 

the process of identifying, abstracting, and decomposing the behaviors of the system to be studied. Data 

collection facilitates the parameterization of the inputs, outputs, and behaviors to be translated into the 

model. Model translation is the process of implementing the concept model and parameters into the model 

or simulation itself; it often involves the use of a computer program. Verification is the process of 

confirming that model is built correctly whereas validation is the process of ensuring the correct model 

was constructed. Experimental design shapes which parameters or configuration will be studied and the 

how the statistical rigor is applied (experimental design will be discussed in a later section). Production 

runs and analysis are the processes of executing the model, collecting, and assessing the output against 

performance measures. Documentation enables confidence in the operation of the model by providing a 

means of understanding its design and implementation. Additionally documentation provides a means of 

evaluating progress towards model objectives. Finally, implementation involves use of the model to 

answer or solve the problem [16]. 

 

Figure 8. Ways to study a system [42]. 
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This process is strikingly similar to the 10-step process Law and Kelton defined on the same 

subject. In their step 1, the problem is formulated and the project is planned (a combination of Banks et 

al.’s steps 1 & 2). In step 2, data is collected and a model is defined (a combination of Banks et al.’s steps 

1 & 2). Next the conceptual model is validated which is followed by implementation in a computer 

program and verification (a combination of Bank et al.’s steps 5-7). Law and Kelton’s fifth step is to 

perform pilot runs. Step 6 is another validation steps that compares the results of the pilot runs with the 

actual system or expectations. The next two steps in the process are to design one or more experiments 

and then conduct production runs. The ninth step to analyze the data. The process culminates in 

documentation and results presentation [42]. Figure 10 shows the process depicted in a flow chart.  
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Figure 9. 12 Simulation Steps [16]. 
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Figure 10. 10 Simulation Steps [42]. 

 From amongst these two paradigms, the Bank et al. version was selected by the researcher 

because of the additional delineation of the processes. The researcher believed that additional steps added 

clarity to the process. For example, the validation loop in step 7 provided a clear opportunity to return to 

either data collection or model conceptualization. Additionally he believed the Banks et al. paradigm 

captured the process more accurately captured the process he intended to follow. Ultimately one could 

argue that selection was subjective. 
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Experimental Design 

According to the GUIDEx, an experiment is “the manipulation of objects under controlled 

conditions while taking precise measurements” [11, p. 7]. The GUIDEx defines an experimental process 

that is consistent and complementary to the guidance offered in the aforementioned modeling discussion 

and tailored toward defense experiment planners. The relationship between models and experiments can 

be further observed in the GUIDEx’s discussion of experiment development in which model development 

is a key element. Figure 11 is the GUIDEx flowchart which summarizes the steps deemed necessary in 

defense-based experiments [16, 7].  
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Figure 11. GUIDEx Flowchart [7]. 

Montgomery defines an experiment as “A test or series of runs in which purposeful changes are 

made to the input variables of a process or system so that we may observe and identify the reasons for 

changes that may be observed in the output response” [13, p. 1]. Experiments often are composed of five 
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elements: 1. a treatment, 2. a (main) effect, 3. the experimental or sampling unit, 4. a trial, and 5. the 

analysis [7, 11, 3]. Treatments are the “purposeful changes made to the input variable” [3] administered 

by the experimenter or researcher on the experimental unit [13, 3]. The main effect is observed as the 

results of a trial or in other terms, it is the average change in the response [11, 42]. The experimental unit 

is the item being studied [3, 4]. A trial or run is “one observation of the experimental unit under 

treatment” [11, p. 8]. The analysis is the phase in which results are evaluated and compared. In many 

cases results are compared between runs, where analysis is done on the response or output of the 

experiment [11]. The response is also referred to as the dependent variable [13, 3].  

Three basic principles that shape experimental design are randomization, replication, and 

blocking. Randomization in this context has two meanings. The first meaning indicates that experimental 

material will be allocated by treatment in a randomized manner, and the second denotes that order of the 

test runs will be scheduled randomly. Replication refers to independent repeated runs of the factor 

combinations. In computer simulations, this principle is employed by the use of different seeds input to 

the random number generator(s). Blocking is a method in which the experimental units are organized in 

homogeneous clusters. Organizing them in this manner and randomly allocating treatments within each 

block is an attempt to mitigate the effects of nuisance factors. Nuisance factors are factors in which the 

experimenter is not interested but which may affect the response variables [13, 3]. 

Rigorous experiments based on statistical principles often involve the use of a hypothesis test, 

with a null and an alternative hypothesis. The objective of the experiment will often attempt to disprove 

the null hypothesis and therefore conclude that alternative hypothesis should be accepted [4, 13]. For 

example, if the null hypothesis is that yield of the two-photon signal state is equal to the yield of the two-

photon decoy state, then the alternative hypothesis might be that two yields are not equal. Thus if the 

statistical analysis of the experimental results infer that null hypothesis should be rejected, then the 

experimenter would recommend acceptance of the alternative hypothesis. 
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Software Engineering and Design 

Software engineering has been defined by Mills as “the systematic design and development of 

software products and the management of the software process” [63, p. 414] He further explains that 

software engineering can be an integral step in systems engineering. Similarly, Gomaa defined software 

design method as “a systematic approach that describes the sequence of steps to follow in order to create a 

design, given the software requirements of the application” [12, p. 5]. These concepts and associated 

terminology are relevant to facilitate the understanding of the MBSE discussion. 

Two dominant paradigms shape the design approach to developing and implementing software 

solutions: a functional paradigm and an object-oriented paradigm. In the functional approach, algorithms 

and system behaviors are decomposed into functions which are then implemented to control the flow of 

the system [64]. Functional decomposition is a term that is used in both paradigms of software design as 

well as in SE. Alternatively, this process may be described as functional analysis, functional breakdown, 

analysis modeling, or process decomposition [25, 12, 65]. The object-oriented approach builds on the 

concept of functional decomposition of behaviors and adds a data-centric view of the design trade space.  

In the object-oriented paradigm, the concepts of classes, inheritance, and information hiding 

make this design approach unique from the functional paradigm. A class is defined as the implemented 

form of a “data type that is defined by operations that manipulate it” [12, pp. 523-524]. In the functional 

paradigm data and operations are not packaged together in this way. In fact, only data can be packaged 

together in structures. Information hiding is characterized by the intention to prevent unnecessary access 

data. This concept is designed to overcome some of the risk associated with the function design approach. 

Finally, the concept of inheritance enables the replication or extension of class behaviors to other classes. 

In functional paradigm, there are no classes to extend [12, 64].  

Another noteworthy pair of concepts involves the communication patterns between software 

objects in tasks that involve timing or sequencing constraints. Synchronous and asynchronous 
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communication patterns shape the characteristics of such systems that rely on timing. In a synchronous 

communication pattern, an object will send a message to another object and await a response before 

proceeding to the next task. In contrast, a design that employs an asynchronous communication pattern 

would not require that first object wait for the response before proceeding to its next task [12]. 

Variance Reduction in Computer Simulation 

In order to make statistically relevant inferences among alternative designs, it is desirable to 

reduce the total variance. The total variance of the difference of the means of the response variables 

(outputs) can be reduced by inducing increased covariance. If the same random numbers are used between 

each set of simulation runs, the means of the response variables will become correlated and the total 

variance can be reduced. This method of using common random numbers in simulations is known as 

correlated sampling and is a variance reduction technique that is relatively easy to perform via computer 

simulation [16, 42]. 

Architecture Framework 

The DoD has developed its own architecture framework, known as DoDAF, to assist its managers 

with their decision making processes. The DoDAF provides customizable viewpoints that can be used to 

facilitate the total lifecycle management of complex systems. Additionally, the DoD specifically 

acknowledges the “Fit-for-Purpose” nature of architectural content that is used to populate DoDAF 

viewpoint products [27]. This “Fit-for-Purpose” concept is consistent with a key principle of model 

design and integrates well with MBSE as the DoDAF products are models themselves, i.e., 

representations of items of interest. 

Use case modeling 

Use cases are employed to describe functional requirements in terms of interactions between 

users and the system of interest; they are intended to describe what actions the system performs rather 

than how the system does it. Actions are initiated by inputs from an actor to the system. Actors are 
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typically defined as entities external to the system and represented in UML by a stick figure because of 

the high frequency in which actors are human. However, it is possible for non-human entities, such as a 

monitoring sensor or a hardware input/output device, to be modeled as an actor in a use case [12].  

A use case’s main sequence should describe the expected sequence of events between the system 

and its actors. Therefore, MBSE can effectively employ use cases to “define a sequence of interactions 

between one or more actors and the system” [12, p. 535]. A use case template outlined by Gomaa, 

consistent with the RUP Use Case template, provided the basis for the use cases defined in this document 

[12, 66, 67]. 

Tools 

Many tools exist to improve the efficiency of MBSE method application. In fact, a pencil and 

paper meet the definition of tool identified by the INCOSE-sponsored survey [53]. However only the 

tools that were somewhat unique to MBSE or directly applied to this study will be discussed in this 

section; thus the discussion is not comprehensive. The tools are grouped in this discussion by whether 

they primarily support design or implementation, i.e. belong on the left or right side of the Vee Model. 

Within both categories of tools, one can find a series of open source and commercial products. 

Design Tools 

A common set of SE modeling tools are methods which define the characteristics and style of the 

artifacts created to capture design. The Unified Modeling Language (UML), Systems Modeling Language 

(SysML), Integrated DEFinition (IDEF0), and the Structured Analysis Design Technique (SADT) are 

common approaches. SysML is an SE adaptation of UML whose origins began with software 

development. UML and SysML tend to focus on application and data structure, processes, behaviors, and 

architecture [68, 69]. Likewise, IDEF0, commissioned by the US Air Force to analyze and communicate 

system functional characteristics, has origins with SADT which is a process-oriented approach [53, 70]. 
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Additionally, Microsoft Office provides a flexible set of products in the form of Word, 

PowerPoint, Excel, Access, Visio, and Project which can be used to support MBSE. However these tools 

are not strictly designed for modeling or SE and therefore do not provide specific solutions to task 

efficiency. For example, both Word and Access can be used to track requirements, but neither is 

inherently designed to do so and must be configured by the user. Likewise, PowerPoint and Visio offer a 

means to create modeling diagrams, but require some configuration by the user to do so. Project is 

perhaps the modeling-friendly as it supports schedule and resource management out of the box. 

In contrast to the Microsoft Office Suite of tools, Vitech’s CORE and Sparx System’s Enterprise 

Architect are designed to support SE. These tools provide integrated database support by project, i.e. file 

to facilitate requirements and overall system design decision traceability. Both tools are designed to 

support requirements definition, use case modeling, architecture design, and software and database design 

among other capabilities. 

An open source design tool, called UMLet, is a free option with the capability to create class, 

object, sequence, and use case diagrams. UMLet does not support an integrated database which causes 

each diagram to be independent from all others. However, it does create output in an XML-based format 

which makes it fairly versatile. Additionally UMLet works as a stand-alone product or can be integrated 

with some implementation tools. 

Implementation Tools 

The Eclipse Integrated Development Environment (IDE) is an open source IDE that supports 

software project development in Java, C, C++, PHP, and other languages. The Eclipse IDE supports 

version control by providing integration with code repository hosts such as GitHub. Additionally Eclipse 

has been adapted to work with an open source simulation framework known as OMNeT++ [71]. 

OMNeT++ is a free discrete event simulator that is based on C++ and designed for building 

network simulations. As a framework, OMNeT++ is extensible, modular, flexible, and provides a series 
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of library functions to model network and network functions. OMNeT++ supports development of both 

wired and wireless communication networks, sensor networks, ad-hoc wireless networks, Internet 

Protocols, performance modeling, and simulation capabilities [72].  

Quantum Key Distribution 

Quantum Key Distribution (QKD) is the most mature application of the quantum information 

field and is touted as a revolutionary technology which offers the capability for two authenticated parties, 

Alice and Bob, to generate a symmetric secret key for use in a cryptosystem. The nature of quantum 

mechanics enables the unique ability of a QKD system to detect the presence of an eavesdropper 

attempting to subvert the secure distribution of key material. This section provides an overview of 

fundamental cryptographic concepts, the first QKD protocol, QKD vulnerabilities, the decoy state 

protocol, and concludes with a description of the qkdX framework. 

Cryptography 

Cryptography involves the study and application of methods used to provide secure 

communications in the “presence of adversaries” [73]. Cryptography is implemented through a 

cryptosystem consisting of an encryption algorithm and at least one key. Symmetric encryption 

algorithms such as the one-time-pad (OTP), Data Encryption Standard (DES), Triple DES (3DES), 

Advanced Encryption Standard (AES), Blowfish, Rivest Cipher 4 (RC4), and RC5 require only one key 

and can be employed using a shared key generated by QKD systems [74, 32, 10, 30].  

In a symmetric key system, plaintext, m, is transformed by the encryption algorithm, E, using the 

encryption key, K, into ciphertext, EK(m), which is computationally difficult to decode back to plaintext 

by someone, i.e., an adversary, who does not possess the key [31, 74]. For a person with the symmetric 

key, a decryption algorithm, D, and key, K, are used to transform the ciphertext, i.e., DK(EK(m)), back to 

the plaintext, m. Figure 12 illustrates this process in a block diagram [10]. 
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Figure 12. Symmetric Key Cryptosystem Block Diagram. 

The First QKD Protocol: BB84 

The origins of QKD technology can be traced back to Stephen Wiesner, who first developed the 

idea of fraud-proof quantum money [75]. Later, Charles Bennett and Gilles Brassard operationalized this 

concept when they proposed the first QKD protocol (i.e., BB84) where single photons, representing 

quantum bits (qubits), are used to securely generate shared cryptographic key [2]. BB84 is a polarization- 

or phase-based prepare and measure QKD protocol defined by of eight phases of interactions between 

Alice and Bob as illustrated by Figure 12. First, Alice and Bob must authenticate their identities to each 

other. Transactional authentication may also be employed upon completion of the protocol for additional 

security [18]. Next, they perform the quantum exchange until Bob detects enough qubits to begin 

processing a secret key. The third phase, sifting, occurs when Alice and Bob compare their measurement 

bases to enable Bob to correctly interpret qubit values. The fourth phase is complete after Alice and Bob 

estimate the number of errors in this sifted key. In the next phase, they correct the errors in the sifted key. 

In the sixth phase, Alice and Bob estimate entropy, i.e. the amount of information leaked during the 

previous phases. Phase seven is known as privacy amplification and attempts to mitigate the losses due to 

the leaked information. The last phase occurs when Alice and Bob confirm they have matching keys by 

comparing a hash that each calculates [76]. 
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Figure 13. 8 Phases of BB84 [76]. 

During quantum exchange, one of four polarization states ↔  (horizontal), ↕ (vertical), ⤢ 

(diagonal), and ⤡  (anti-diagonal) is used to encode and decode qubits transmitted over an optical 

channel. That is, Alice will a randomly select a bit value (i.e., “0” or “1”) and randomly select a basis 

(i.e., rectilinear “⊕ ” for the orthogonal polarization pair ↔, ↕ or diagonal “⊗ ” for the orthogonal 

polarization pair ⤡ , ⤢ ). For example, when the bit value “0” and the basis “⊕ ” are selected, the qubit is 

prepared in the horizontal polarization state ↔ . Similarly, when the bit value “1” and the basis “⊗ ” are 

selected, the qubit is prepared in the diagonal polarization state ⤢ . In this manner, Alice randomly 

prepares qubits through polarization modulation and sends them to Bob where he randomly selects a basis 

(⊕  or ⊗ ) to measure each qubit. When Alice’s prepared and Bob’s measured bases agree, the qubit is 

correctly read with a high probability. Otherwise a random result occurs as depicted by the shaded cells in 

the last column of Table 1 [76]. The preparation, transmission, and measurement of qubits between Alice 

and Bob are inherently quantum in nature, while the remainder of the BB84 protocol (sifting, error 

estimation, error reconciliation, and privacy amplification) is entirely classical. During the classical 
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phases, Alice and Bob use traditional information theory practices and communicate over a classical 

communications channel [26, 18].  

Table 1. Polarization-Based Prepare and Measure Example. 

The Sender “Alice” Prepares The Receiver “Bob” Measures 
Random Bit Value Random Basis Prepared Polarization State Random Basis Measured Bit Value 

0 ⊕  ↔  ⊕  0 
0 ⊕  ↔  ⊗  0 or 1 
1 ⊕  ↕ ⊕  1 
1 ⊕  ↕ ⊗  0 or 1 
0 ⊗  ⤡ ⊕  0 or 1 
0 ⊗  ⤡ ⊗  0 
1 ⊗  ⤢ ⊕  0 or 1 
1 ⊗  ⤢ ⊗  1 

 

The distinctive character of QKD technology makes it well-suited for high-security applications 

such as military, banking, and government environments, where information protection is of primary 

interest. The security of QKD is based on the principle of quantum uncertainty inherent in the BB84 

protocol where interference on the quantum channel necessarily increases the Quantum Bit Error Rate 

(QBER) [26, 18]. If an eavesdropper, often known as “Eve,” attempts to listen on the quantum channel, 

she introduces additional errors and increases the QBER [77, 78]. Since the source of quantum bit errors 

cannot be determined, all errors are assumed to be attributed to Eve; thus the QBER must be closely 

monitored. If the QBER threshold is exceeded, the key generation process is generally aborted, as it is 

assumed an adversary is interfering with the quantum key exchange [18]. However, practical design and 

implementation limitations can quickly undermine pristine theoretical security proofs [79, 80]. 

QKD Multi-Photon Vulnerability and the Photon Number Splitting Attack 

Proofs and discussion of BB84 and other protocols assume a set of idealities, such as the 

employment of a perfect single photon source and detector, which are not possible with current 

technology [79, 80, 81]. As practical on-demand single photon sources are not available, most prepare 

and measure implementations attenuate a classical laser pulse down from millions of photons to a Mean 

Photon Number (MPN) on the order of 0.1. These sub-quantum pulses are often referred to as “weak 
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coherent pulses” and are represented probabilistically by the Poisson distribution using MPN as the input 

parameter. The selection of the MPN is influenced by the losses in the optical channel and assumptions 

regarding the eavesdropper’s technology [26] . 

 A low MPN results in poor qubit throughput and thus low key generation rates. However, a low 

MPN is often desirable to reduce the likelihood of multi-photon pulses, each of which exposes 

information about the distributed cryptographic key to an eavesdropper. This multi-photon security 

vulnerability has been subject of a number of attacks against the quantum channel. More specifically, the 

Photon Number Splitting (PNS) attack was conceived to gain maximum information from this 

vulnerability without detection. The theoretical PNS attack suggests that an all-powerful eavesdropper 

(Eve) can develop the same secret key without making her presence known to the authorized participants. 

She does so by blocking all single photons and stealing photons from the multi-photon pulses as they are 

in transit from the sender (Alice) to the receiver (Bob) [79, 19, 20, 21]. The decoy state protocol was 

introduced to mitigate the ability Eve to hide her presence during this attack [24]. 

The Decoy State Protocol 

The decoy state protocol represents a significant advancement in QKD technology, as the 

protocol is relatively cheap and easy to implement against the PNS vulnerability and can be configured to 

increase throughput on the quantum channel. The protocol was introduced in 2003 [24] and quickly 

improved in an initial series of works [28, 29, 82] and later [6, 83, 84, 85, 86, 87] by a group of 

researchers (supplemental works of note include [88, 89, 90, 91, 92]). In this three state configuration, the 

signal state, �, facilitates higher key distribution rates and greater operational distances through an 

increased MPN, while the decoy state,�, is used to increase the likelihood of detecting an attack using 

differential statistical analysis. Utilizing different MPNs for the signal and decoy states, allows the QKD 

system to detect photon number specific interference using the decoy state protocol security condition 
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(described in the next section). The vacuum state is used to determine the detector error rate at Bob, 

where erroneous detections, known as “dark counts” are measured [93, 14]. 

Decoy state enabled QKD systems utilize the conventional signal state plus dedicated security 

states (decoy and vacuum). The signal states are used to transmit the qubits used for generating the shared 

secret key. The decoy states are used to increase the likelihood of detecting photon number specific 

interference, i.e., the PNS attack, on the quantum channel through statistical differentiation with the signal 

state. The vacuum states are used to determine the detector dark count rate when no photons are present. 

Alice randomly selects the type of state according to pre-determined occurrence percentages [14, 94]. 

An outline of the decoy state protocol, decomposed into multiple steps for clarity, is described in 

 [24, 28, 14]. The first step in the protocol is known as quantum exchange, where signal, decoy, and 

vacuum states are randomly transmitted across the quantum channel according to their unique MPN and 

occurrence percentage. Each pulse must have identical characteristics (e.g., wavelength, duration, etc.) 

other than the MPN, such that Eve cannot distinguish a decoy state from a signal or vacuum state. 

Table 2. Decoy State Protocol. 

Step Name Detailed Description 

1 
Quantum 
Exchange 

Alice randomly encodes and transmits signal, decoy, and vacuum states (i.e., qubits) while Bob measures each 
qubit. This step is typically described as “quantum exchange.” 

2 Sifting 
Bob announces the basis he used to measure each qubit. Alice responds by announcing which bases are correct, 
along with the state: signal, decoy, or vacuum for each pulse sent. Alice and Bob perform sifting on both the 
signal and decoy state qubits for matched bases. 

3 
Count Decoy 
State Errors 

For the sifted decoy state qubits, Alice announces the encoded bit values to Bob over the classical channel. 
Bob performs a comparison of Alice’s prepared bits and his measured values, and records the number of errors 
for use in step 5. 

4 
Signal State 

Error 
Reconciliation 

For the sifted signal state qubits, Alice and Bob perform error reconciliation where quantum communication 
errors are counted and corrected for using bi-directional error correction algorithms over the classical channel. 
The number of corrected errors is recorded for use in step 5. 

5 

Calculate 
Gains, QBERs, 

and Dark 
Counts 

The signal and decoy gains ��  and ��, respectively are calculated from the measured number of sifted qubits 

and number of pulses sent. The signal QBER �� is calculated from the measured number of errors in the 

reconciled key and the number of sifted signal states, while the decoy state QBER ��  is calculated from the 
measured number of errors in the sifted decoy state qubits. The number of detections measured by Bob when 
Alice sends vacuum states is used to determine the system’s dark count probability,��. 

6 
Perform Decoy 
State Security 

Check 

A comparison of signal and decoy estimated photon number specific yields ��  and QBERs �� is performed. If 
they are not the same (i.e., within a predetermined tolerance), an eavesdropper is assumed to be listening on the 
quantum channel and the key is considered compromised. 

NOTE: The decoy state protocol may be described differently based on implementation decisions. For example, in a typical communications 
network, i.e., TCP/IP, configuration, it may be more efficient for Alice to combine steps two and three by announcing the decoy bit values 
when she announces the prepared bases. 

 

 



AFIT-ENV-MS-15-M-181 

39 
 

After quantum exchange, Alice and Bob perform sifting where they announce the bases used to 

prepare and measure qubits along with each qubit’s state (signal, decoy, or vacuum). For the signal and 

decoy states non-matching bases are removed from the Bob’s key buffer. In contrast, the correctly 

matched signal states contribute to a sifted secret key and the decoy states are used for security analysis. 

Sifting is not necessary on vacuum states, since all vacuum detections are dark counts regardless of the 

basis [28, 14].  

Steps 3 and 4 are responsible for identifying, counting, and correcting errors in the signal and 

decoy state transmission. Counting of decoy state errors is accomplished by publically announcing and 

comparing the prepared and measured bit values, while error reconciliation techniques such as winnow, 

cascade, or Low Density Parity Check (LDPC) are used to perform bi-directional error correction of 

Alice’s and Bob’s sifted signal qubits without revealing specific bit values [26].  

In step 5, a number of decoy state protocol unique calculations are made from performance 

measurements: the signal gain �� is the ratio of Bob’s sifted signal detections to Alice’s number of 

signals pulses sent; the decoy gain �� is the ratio of Bob’s decoy sifted detections to Alice’s number of 

decoy pulses sent; the signal QBER �� is the ratio of Bob’s post-sifted signal errors to the number of 

sifted signal pulses; the decoy QBER �� is the ratio of Bob’s post-sifted decoy errors to the number of 

sifted decoy pulses; and the dark count yield �� is the ratio of Bob’s erroneous detections to Alice’s total 

number of vacuum pulses sent [24, 6].  

It is important to note that not all research groups agreed on the definition of gain. For example, 

Lo et al. and Ma et al. described gain as the probability of detection events at Bob given that a pulse was 

sent by Alice [28, 14]. In contrast, Zhao et al. define gain in terms of the ratio of the number of sifted 

detections to the total number of qubits or pulses sent [6]. Specifically, the difference is whether or not 

gain is defined in terms of sifted detections or total detections. The selection of sifted or total detections 

appears to depend on each group’s interpretation of Gottesman et al.’s secret key rate equation with 
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respect to the overall protocol efficiency, i.e. whether or not the equation accounts for sifting [77, 14]. 

QKD implementations must be careful to identify which definition of gain is used. 

Step 6 is responsible for executing the decoy state security condition which ensures there is no 

unauthorized interference on the quantum channel. The security check is conducted through differential 

statistical analysis of the decoy state protocol security condition.  

The Decoy State Protocol Security Condition 

The decoy state protocol security condition is described as: 

�� = �
�
������= ��

�����
 Decoy State Security Condition for Yields (1) 

�� = �
�
������= ��

�����
 Decoy State Security Condition for Errors (2) 

 

where the photon number dependent yield �� is defined as the conditional probability that Bob detects an 

optical pulse given that Alice sent an �-photon pulse and the photon number dependent QBER �� is 

defined as the conditional probability an error occurred given that Bob detects the �-photon pulse from 

Alice [28, 14]. 

The security condition asserts the yields �� and QBERs �� for the signal and decoy states should 

always be the same (i.e., within prescribed tolerances) for each �-photon pulse. This is because the 

quantum transmission efficiency and error rate are fixed for the quantum channel. For example, when no 

interference is present ��
������

= ��
�����

 should always be true because the end-to-end transmission 

efficiency does not change; thus the likelihood of any pulse with one photon propagating from Alice to 

Bob is identical, regardless of state. Likewise, the QBERs �� are based on device and alignment 

imperfections over the quantum channel and should always be the same for each photon number. Thus �� 

and �� vary only with respect to the photon number per pulse [28, 14].  

In practical QKD implementations, the photon number dependent yields and QBERs are strictly 

estimates of expected values. They are estimates because QKD realizations often use Avalanche 
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Photodiode Detectors (APDs), which are threshold detectors that cannot determine the specific number of 

photons received in each optical pulse. Therefore, Bob cannot precisely measure the �-photon yields �� 

or QBERs ��; they are estimated from the measured state gains ��,��, and QBERs ��,�� [28].  

Estimating Photon Number Dependent Yields 

The photon number depended yield �� is defined as [28]: 

�� = �� + �� − ���� ≅ �� + �� Photon number dependent yield (3) 

and �� is the dark count (rate): 

�� =
Number of dark count detections

Number of vacuum pulses sent
 Dark count rate (4) 

 

where �� is the photon number dependent efficiency, and the joint probability ���� is typically 

disregarded because it is very small compared to ��  and ��. Treating each photon independently, the 

photon dependent efficiency �� is based on the number of photons � in each pulse and the end-to-end 

efficiency � (commonly expressed as the likelihood of successful propagation or in the negative sense as 

loss measured in dB): 

�� = 1 − (1 − �)� Photon number dependent efficiency (5) 

where  

� = ��������� ���������� ���������. End-to-end efficiency (6) 

The overall efficiency � is the product of the quantum channel efficiency ��������� ������, the receiver’s 

efficiency ���� , and the efficiency of the Bob’s detector ���������. The quantum channel efficiency is 

often approximated as ��������� ������ = 1 − 10��∗ℓ/�� or a measured loss in dB. Bob’s efficiency 

����  describes a weak coherent pulse’s ability to propagate through Bob’s components to his detectors 

and is typically measured and represented as loss in dB. The detector efficiency ��������� is device 

dependent and typically represented as a percentage (e.g., 10%) which defines the detector’s probability 
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of detecting a weak coherent pulse which arrives during a gating period [28, 14, 81]. The addition of the 

protocol efficiency ��������� accounts for the signal state occurrence percentage (i.e., < 100%). When 

studying the decoy state protocol, the protocol efficiency ��������� must also be considered: 

� = ��������� ���������� ������������������. End-to-end efficiency with protocol efficiency (7) 

In some cases the total efficiency is known and can be used to calculate the 

yields ��
������

,��
�����

; however, assuming the channel is untrusted, the efficiency can be calculated from 

the measured gains. The relationship between the signal gain �� and the efficiency � is described in 

Eqs. Signal gain (linear combination of the infinite series) (8) - End-to-end efficiency (in terms of dark 

count and signal gain) (11)  

�� = ���
�� + ���

��� +
���

����

2
+ ⋯ +

���
����

�!
 

Signal gain (linear combination of the 
infinite series) (8) 

�� = � ��
�����

�!

�

���

 Signal gain (Summation of the infinite 
series) (9) 

Calculating for all � 

 �� = �� + 1 − ���� Signal gain (closed form) (10) 

and solving for � (note the signal efficiency � is derived from the measured gain ��, dark count ��, and 

MPN �; it is not dependent on the number of photons per pulse) 

� =
− ln�1 + Y� − ���

�
. 

End-to-end efficiency (in terms of 
dark count and signal gain) (11) 

Finally, we can estimate the photon dependent signal yields ��
������

 by substituting � from Eq.End-to-end 

efficiency (in terms of dark count and signal gain) (11) into Eqs. Photon number dependent yield (3) and 

Photon number dependent efficiency (5):  
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�� ≅ �� + 1 − �1 − �
− ln�1 + �� − ���

�
��

�

. Photon number dependent signal yield (12) 

Likewise, the end-to-end efficiency � can be calculated from the decoy state gain �� and used to estimate 

the decoy state yields ��
�����

. The decoy and signal state photon statistics can then be compared to assess 

whether unauthorized photon specific interference exists on the quantum channel [28, 14]. 

Estimating Photon Number Dependent QBERs 

The photon number dependent QBER �� is defined as: 

�� =
���� + ������������

 ��
 Photon number dependent QBER (13) 

where �� is the dark count described in Eq. Dark count rate (4), �� is the likelihood of an error during a 

vacuum state (i.e., ½ since the erroneous detection results in either a 0 or 1), �� is the photon number 

dependent efficiency, and ���������� is the probability a photon was erroneously detected (i.e., due to 

device imperfections or misalignment) [21]. The �-photon QBER is estimated from the signal and decoy 

state QBERs: 

�� =
Number of signal bit errors

Numbe r of bits in error in reconciled key
 

Estimated �-photon QBER (using signal 
errors) (14) 
 

�� =
Number of decoy bit errors

Number of bits in error in reconciled decoy buffer
 

Estimated �-photon QBER (using decoy 
errors) (15) 
 

where the relationship between the signal state QBER �� and the �-photon QBER �� is described as:  

���� = � ���� �
�����

�!
�.

�

���

 Overall QBER (Summation) (16) 

Calculating for all � 

���� = ���� + ����������(1 − ����) Overall QBER (Closed form) (17) 
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and solving for � 

� =
− ln�

1 − ���� − ��Y�
����������

�

�
. 

End-to-end efficiency (in terms of overall 

QBER and vacuum state errors) (18) 

 

 

Substituting � from Eq. End-to-end efficiency (in terms of overall QBER and vacuum state errors) (18) 

into Eqs. Overall QBER (Closed form) (17) and Photon number dependent efficiency (5)  

�� =
���� +

�
1 −

�
1 −

�
− ln�

1 − ���� − ����
����������

�

�
��

�

�
����������

 ��
. 

Photon number dependent QBER 

(in terms of overall QBER, 

errors, dark count rate and yield) 

(19) 

Likewise, the end-to-end efficiency � can be calculated from the decoy state gain �� and used to estimate 

the decoy state QBERs ��
�����

. The photon number dependent QBERs can then be compared to assess 

whether unauthorized photon specific interference exists on the quantum channel [28, 14]. 

qkdX Modeling Framework 

An interdisciplinary team of researchers at the Air Force Institute of Technology (AFIT), the 

Laboratory for Telecommunication Sciences (LTS), and the US Naval Research Laboratory (NRL) 

developed a customizable QKD eXperimentation (qkdX) modeling and simulation framework based upon 

optical components modeled from real world commercial-off-the-shelf (COTS) implementations to 

enable a detailed performance analysis of QKD systems [17]. In particular, the team successfully 

constructed a notional polarization-based prepare and measure QKD architecture using the OMNeT++ 

simulation environment and used it to explore the effects of implementation non-idealities on QKD 

system performance [95]. However, the team still desired to perform verification and validation of the 

model, examine the model’s customizability, and extend the ability to conduct detailed performance 

analyses of QKD systems [81]. These tasks motivated the research conducted in this thesis focused on 



AFIT-ENV-MS-15-M-181 

45 
 

understanding evaluating QKD systems suitability for use in communications related to national security 

[17].   
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III. Methodology 

Overview 

This chapter outlines the methodology used to conduct the research presented in this thesis. It 

provides insight into how the research questions identified in Chapter I will be answered. The research 

objectives will be accomplished by conducting a literature review, an independent study, model 

development, model validation and verification, and experimentation as explained in the sections that 

follow. 

Literature Review 

The literature review presented in Chapter II provided salient background information related to 

systems engineering, model based systems engineering, quantum key distribution, photon number 

splitting attacks, and the decoy state protocol. The material presented in the literature review answers 

several of the stated research questions and is required to understand and guide the research presented in 

this thesis. 

Independent Study 

An initial study will be conducted to explore both the theory and application of QKD systems 

using the decoy states protocol. The purpose of the study is to develop a detailed understanding of the 

operational aspects of the decoy state protocol so that a preliminary experiment using the qkdX notional 

architecture can be designed and executed using selected MBSE PMTs. The results of this study will be 

captured in a journal article submission to the Journal of Defense Modeling and Simulation, which is 

included as Chapter IV of this thesis. Elements of experimental design not included in this article will be 

included in Appendix A. Beam Splitter Experiment (BSE). Several MBSE artifacts will be created and 

define the “As-Is” state of the QKD system notional architecture discussed in Chapter II. The “As-Is” 
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DoDAF artifacts will be described in Chapter VI and use cases will be identified in Appendix C. Decoy 

State Enabled QKD System Use Cases. 

Model Development 

While the existing qkdX notional architecture was developed with the intent of being capable of 

implementing the Decoy State protocol, this capability was not fully developed [95]. During this research 

effort, MBSE will be used to define the requirements for the decoy state enabled QKD model 

development. This portion of the research shall begin by revising the “As-Is” MBSE artifacts into 

products that define the “To-Be” architecture. Lessons learned from the preliminary experiment will 

shape this effort and to produce updated use cases from which requirements can be derived. 

 Once the relevant behaviors are identified and captured using MBSE PMTs, implementation will 

begin. A combination of the incremental development process, the SE Vee model, and Banks et al.’s 

simulation process will be employed. Figure 14 is a depiction of this combined process as a flow chart. 

Requirements and use cases will be captured, elaborated, and refined through steps 1-4. Once the use 

cases are reviewed by Subject Matter Experts (SMEs), the model translation, i.e., implementation, will 

begin. Once the model is completed and verified, an experiment will be conducted to perform validation. 

The experimental design is fully described in Appendix B. Decoy State Enabled QKD Experiment. The 

results of the experiment will be captured in Chapter VI. 

A summary, outlining the development process of transitioning the “As-Is” architecture into the 

“To-Be” model, will be submitted as an article to INCOSE’s Systems Engineering journal and included as 

Chapter V. Details of the process and results which are not included in the article will be described in 

Chapter VI. 
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Figure 14. Tailored Simulation Model Development Process. 

Model Requirements, Verification and Validation 

As discussed, the SE verification process intends to confirm that system conforms to specified 

requirements and validation confirms that system meets the needs of the stakeholders [36]. For this 

research study, the primary method of verification and validation of requirements and stakeholder needs 

will involve observation or analysis of the simulation’s output and output data. Thus, it will be necessary 

to capture (and refine) measureable requirements during the course of the study.  

The majority of existing notional qkdX architecture components will undergo verification in 

parallel with the research that will be conducted in this paper. The results of the component verification 
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will be used to gain confidence in the results of the simulation’s output. However since this effort may not 

conclude in time, analytical analysis will be performed as necessary to verify the output of the “To-Be” 

decoy state enabled QKD simulation. For example, signal and decoy gain can be calculated using the 

equations described in Chapter II. Expected results can be estimated prior to performing simulation runs 

and therefore shape measureable requirements that can be evaluated against simulation results. Initial and 

refined requirements will be captured respectively in Appendix E. Initial Requirements and Appendix F: 

Requirements. This analytical method will be combined with the results of the component verification to 

perform simulation model verification. 

 As discussed in Chapter II, validation confirms whether the model correctly represents the real 

system. Thus, if the decoy state enabled QKD system model is configured similarly to a realized system, 

the outputs of the model and system should be similar. This idea will shape the experimental design and 

link the experimental results to the MBSE process of validation. Elements of the requirements, 

verification, and validation processes will be discussed in the article included as Chapter V. 

Experiment Design 

The results of this experiment will be used for three purposes: 1) to establish baseline 

performance of the system in the absence of a photon number splitting (PNS) attack, 2) validate the 

model’s security performance against empirical data and, 3) verify the model’s ability to detect an 

eavesdropper performing a PNS attack. The baseline performance, i.e. yield tolerances, will be 

established by finding the mean and variance of single- and multi-photon signal and decoy yields over the 

course of a statistically significant number of simulation runs. The model’s security performance, i.e., 

signal gain, will be compared the results reported by Chen et al. [94]. Once the baseline performance is 

established, the PNS attack will be performed and the model will attempt to detect the attack using the 

established tolerances. The details of the experimental design and the results will be respectively captured 

in Appendix B. Decoy State Enabled QKD Experiment and Chapter VI.  
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IV. Journal Article I: Modeling Decoy State Quantum Key Distribution Systems 

 

This article summarizes the history and theory of employing decoy state enabled Quantum Key 

Distribution (QKD) systems in support of unconditionally secure communication. It discusses how non-

idealities in practical systems create a vulnerability which can be exploited by an all-powerful adversary 

via the theoretical Photon Number Splitting attack and how the decoy state protocol attempts to mitigate 

this vulnerability. The main contribution of the article is it describes how a notional decoy state QKD 

system architecture was configured in a hybrid continuous time-discrete event simulation framework. It 

describes how verification and validation (V&V) were performed by comparing simulation results from 

the preliminary experiment to previous research which involved practical systems.  

 The paper was submitted to the Journal of Defense Modeling and Simulation (JDMS) on 

December 12, 2014 and is currently under review. 
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 

Abstract—Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum physics to 

generate and distribute shared secret key for use in cryptographic devices. QKD offers the advantage of “unconditionally 

secure” key generation with the unique ability to detect eavesdropping on the key distribution channel and shows promise for 

high-security applications such as those found in banking, government, and military environments. However, QKD is a nascent 

technology where realized systems suffer from implementation non-idealities, which may significantly impact system 

performance and security. In this article, we facilitate the study of the impact of these practical limitations through the 

modeling of a decoy state enabled QKD system. Specifically, we present a thorough background on the decoy state protocol, 

detailed discussion of the modeled decoy state enabled QKD system, and evidence for component and sub-system verification, as 

well as, multiple examples of system-level validation. Additionally, we bring attention to practical considerations associated with 

implementing the decoy state protocol security condition gained from these research activities. 

 
Index Terms—Quantum Key Distribution; Decoy State Protocol; Model and Simulation; System Security; System 

Performance 

 

Authors—L .O. Mailloux, R. D. Engle, M.R. Grimaila, D.D. Hodson, J. M. Colombi, and C.V. McLaughlin 

I. INTRODUCTION 

Quantum Key Distribution (QKD) is the most mature application of the quantum information field and is heralded as 

a revolutionary technology offering the means for two physically separated parties to generate “unconditionally 

secure”
1
 cryptographic key. Employing the laws of quantum physics, QKD systems can detect eavesdropping during 

the key generation process where unauthorized observation of quantum communication necessarily induces 

measurable errors. This work builds upon previous work [1, 2]. For detailed treatments and comprehensive reviews of 

QKD please see [3, 4, 5, 6]. 

QKD technology is emerging as an important development in the military and national defense cybersecurity 

solution space with research occurring in the United States Navy [7], Army [8], and Air Force [9]. Increasingly 

practical systems have been realized in numerous experiments and have recently become available from commercial 

vendors such as ID Quantique (Switzerland) [10], SeQureNet (France) [11], Quintessence Labs (Australia) [12], 

MagiQ Technologies (USA) [13], and Quantum Communication Technology Co., Ltd. (China) [14]. However, QKD 

is a nascent technology where real-world systems are constructed from non-ideal components, which may 

significantly impact system performance and security. As with any new technological development, and especially 

security technologies, one must carefully evaluate its use holistically. In the case of QKD systems, its overall security 

posture relies not only upon its theoretical security proofs but upon how well they are realized (i.e., designed, 

implemented, and operated) which few have addressed. 

In this article, we provide a review of the decoy state protocol and describe our decoy state enabled QKD system 

model built to study practical system implementation issues. Furthermore, we provide results supporting component 

and sub-system verification, as well as, system-level validation against eight like experimental systems. Through these 

exercises we gain confidence in the subject model, as well as, additional insight into design, implementation, and 

operational considerations for the decoy state protocol security condition. 

A comprehensive discussion of the decoy state protocol is provided in Section II, which includes a discussion of 

multi-photon vulnerabilities associated with practical QKD realizations. The modeled decoy state enabled QKD 

system is described in Section III, with emphasis on the end-to-end quantum communications. A discussion of 

component and sub-system verification, along with system-level validation activities and their results are provided in 

Section IV. Practical implementation considerations for the decoy state security condition are introduced in Section V. 

Conclusions and future works are offered in Section VI. 

 

Paper submitted December 12, 2014. This work was supported by the Laboratory for Telecommunication Sciences [grant number 5743400-304-
6448]. 

1 Unconditionally secure in this context implies an all-power adversary can only gain a negligible amount of information on the distributed secret 
key without necessarily introducing detectable errors. 

Modeling Decoy State 

Quantum Key Distribution Systems 
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II. QKD SYSTEMS AND THE DECOY STATE PROTOCOL 

A. QKD Background 

The genesis of QKD technology can be traced back to Stephen Wiesner, who first developed the idea of fraud-proof 

quantum money in the late 1960s [15]. In 1984, Charles Bennett and Gilles Brassard operationalized this concept 

when they proposed the first QKD protocol (i.e., BB84) where single photons, representing quantum bits (qubits), are 

used to securely generate shared cryptographic key [16]. Figure 1 illustrates a QKD system configured to generate 

shared secret key K for use in external encryptors to protect sensitive data, voice, or video communications. The 

architecture consists of a sender “Alice”, a receiver “Bob”, a quantum channel (i.e., an otherwise unused “dark” 

optical fiber), and a classical channel (i.e., a conventional networked connection). Alice and Bob each consist of a 

central processing unit (CPU) configured to control QKD processes, a network interface configured to control 

communications on the classical channel, and a quantum module configured to control communications on the 

quantum channel. QKD systems can be paired with traditional symmetric encryption algorithms (e.g., DES, 3DES, or 

AES) where the QKD-generated key is used to increase the security posture of encrypted communications through 

frequent re-keying. Alternatively, the QKD-generated key can be used in conjunction with the One-Time-Pad (OTP) 

encryption algorithm to provide unbreakable communications [17, 18]. 

 
Figure 1. QKD System Context Diagram.  

B. The First QKD Protocol: BB84 

BB84 is a polarization-based prepare and measure QKD protocol, where four polarization states ↔, ↕, ⤡, and ⤢ are 
used to encode qubits as depicted in Table 1 [16, 1]. Alice prepares qubits according to a randomly selected bit 

value (i.e., “0” or “1”) and a randomly selected basis (i.e., rectilinear “⊕” for the orthogonal polarization pair ↔, ↕ or 

diagonal “⊗” for the orthogonal polarization pair ⤡, ⤢). For example, when the bit value “0” and the basis “⊕” is 

selected, the qubit is prepared in the horizontal orientation state ↔. Likewise, when the bit value “1” and the basis 

“⊗” is selected, the qubit is prepared in the diagonal state ⤡. In this manner, Alice randomly prepares qubits through 

polarization modulation and sends them to Bob where he randomly selects a basis (⊕ or ⊗) to measure each qubit. 

When Alice’s prepared and Bob’s measured bases agree, the qubit is correctly read with a high probability. Otherwise 

a random result occurs as depicted in the last column of Table 1. The preparation, transmission, and measurement of 

qubits between Alice and Bob results is known as “quantum exchange” and inherently quantum in nature, while the 

remainder of the BB84 protocol (sifting, error reconciliation, and privacy amplification) is entirely classical. 

Table 1. Polarization-Based Prepare and Measure Example. 

The Sender “Alice” Prepares The Receiver “Bob” Measures 

Random 

Bit Value 

Random 

Basis 

Prepared 

Polarization State 

Random 

Basis 

Measured Bit 

Value 

0 ⊕ ↔ ⊕ 0 

0 ⊕ ↔ ⊗ 0 or 1 

1 ⊕ ↕ ⊕ 1 

1 ⊕ ↕ ⊗ 0 or 1 

0 ⊗ ⤡ ⊕ 0 or 1 

0 ⊗ ⤡ ⊗ 0 

1 ⊗ ⤢ ⊕ 0 or 1 

1 ⊗ ⤢ ⊗ 1 
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During sifting, error reconciliation, and privacy amplification Alice and Bob use traditional information theory 

practices and communicate over the classical channel. For sifting, Bob announces the measurement bases he used to 

Alice, and she responds indicating where the prepared and measured bases agreed (note only the bases are revealed 

and not the encoded bit values). Due to the random nature of Bob’s measurement basis selection, approximately 50% 

of the detected qubits are mismatched (i.e., erroneous) and sifted out (i.e., removed) of the secret key. Error 

reconciliation algorithms perform bi-directional error correction of the shared sifted keys to correct for quantum 

communication errors, while privacy amplification compensates for information leaked on the classical channel 

during error correction by producing a smaller, more secure key. Details of these processes can be found in [3, 4]. 

C. Multi-Photon Vulnerabilities in Realized QKD Systems 

The unique nature of QKD technology makes it well-suited for high-security applications such as military, banking, 

and government environments, where information protection is of primary concern. The security of QKD is based on 

“quantum uncertainty” inherent in the BB84 protocol, where interference on the quantum channel necessarily 

increases the Quantum Bit Error Rate (QBER) [3, 4]. If an eavesdropper, commonly referred to as “Eve,” attempts to 

listen on the quantum channel, she introduces additional errors and increases the QBER as captured in formal security 

proofs [19, 20]. Since the source of quantum bit errors cannot be known, all errors are attributed to Eve; thus the 

QBER must be closely monitored. Due to device imperfections and transmission errors, operational QBERs are 

typically 3-5% with practical security thresholds as low as 8% [4]. If the QBER threshold is exceeded, the key 

generation process is generally aborted, as it is assumed an adversary is interfering with the quantum key exchange 

[4]. 

However, practical design and implementation limitations can quickly undermine pristine theoretical security 

proofs [21]. For example, BB84 security proofs assume (and attempt to compensate for) perfect on-demand single 

photon sources in Alice, yet practical on-demand single photon sources are not currently available nor are they 

expected in the near-term [21]. Therefore, most prepare and measure architectures attenuate a classical laser pulse 

down from millions of photons to a Mean Photon Number (MPN) of 0.1 according to QKD security practices [3]. 

These sub-quantum pulses are often referred to as “weak coherent pulses” and represented probabilistically using a 

Poisson distribution, 𝑃(𝑛|𝜆) = 𝜆𝑛𝑒−𝜆 𝑛!⁄ , where 𝜆 = MPN and 𝑛 represents the number of photons in an optical pulse 

[3]. For example, when 𝜆 = MPN = 0.1, 90.48% of the pulses will have no photons, 9.05% of the pulses will have 

one photon, and 0.47% of the pulses will have two or more photons. This means only 1 in 10 pulses leaving Alice will 

actually contain a prepared qubit; the majority of pulses generated by Alice are attenuated to an energy level 

equivalent to zero photons. 

A low MPN results in poor quantum throughput and thus low key generation rates. However, a low MPN is 

desirable to reduce the likelihood of multi-photon pulses, each of which exposes information about the distributed 

cryptographic key to a listening adversary. This multi-photon security vulnerability has been subject of a number of 

attacks against the quantum channel. More specifically, the Photon Number Splitting (PNS) attack was conceived to 

gain maximum information from this vulnerability without detection [22, 23, 24, 25]. The decoy state protocol was 

introduced to mitigate this attack and has since become widely implemented [26]. 

D. The Decoy State Protocol 

The decoy state protocol represents a significant advancement in QKD technology, as the protocol is relatively cheap 

and easy to implement, while simultaneously increasing quantum throughput and security on the quantum channel. 

The decoy state protocol was introduced in 2003 [26] and quickly improved in an initial series of works [27, 28, 29, 

30] and later [31, 32, 33, 34, 35, 36] by a single group of researchers (supplemental works of note include [37, 38, 39, 

40]). Decoy state enabled QKD systems utilize the conventional signal state plus dedicated security states (decoy and 

vacuum) as described in Table 2. In this three state configuration, the signal state “𝜇” facilitates higher key 

distribution rates and greater operational distances through an increased MPN (i.e., an MPN of 0.6 is greater than the 

traditionally used 0.1), while the decoy state “𝜈” is used to increase the likelihood of detecting an attack using 

differential statistical analysis. Utilizing different MPNs for the signal and decoy states, allows the QKD system to 

detect photon number specific interference (described in Section V). The vacuum state is used to determine the 

detector error rate at Bob, where erroneous detections, known as “dark counts” are measured.  

Table 2. Example Decoy State Protocol Configuration. 

State Purpose MPN 
Occurrence 
Percentage 

Signal, 𝜇 
The signal state is used to transmit quantum pulses used for generating 
secret key. 

0.6 70% 

Decoy, 𝜈 
The decoy state is used to increase the likelihood of detecting photon 
number specific interference (i.e., the PNS attack) on the quantum 
channel through statistical differentiation with the signal state. 

0.2 20% 
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Vacuum 
The vacuum state is used to determine the detector error rate when 
no photons are present. 

0 10% 

An outline of the decoy state protocol is described in Table 3 [26, 27, 29] (note we’ve decomposed the decoy state 

protocol into multiple steps for clarity; it may be described differently, especially with respect to its implementation). 

The first step in the protocol is known as quantum exchange, where signal, decoy, and vacuum states are randomly 

transmitted across the quantum channel according to their unique MPN and occurrence percentage. Each pulse must 

have identical characteristics (e.g., wavelength, duration, etc.) other than the MPN, such that Eve cannot distinguish a 

decoy state from a signal or vacuum state. 

After quantum exchange, Alice and Bob perform sifting where they announce the bases used to prepare and 

measure qubits along with each qubit’s state (signal, decoy, or vacuum). For the signal and decoy states, non-matching 

bases are sifted from the raw secret key, where the correctly matched signal states contribute to a sifted secret key and 

the decoy states are used for security analysis. Sifting is not necessary on vacuum states, since every detection is 

considered a spurious dark count for the detector regardless of the basis.  

Steps 3 and 4 are responsible for identifying, counting, and correcting errors in the signal and decoy state 

transmission. Counting of decoy state errors is accomplished by publically announcing and comparing the prepared 

and measured bit values, while error reconciliation techniques such as winnow, cascade, or Low Density Parity Check 

(LDPC) are used to perform bi-directional error correction of Alice’s and Bob’s sifted signal qubits without revealing 

specific bit values [3, 4]. 

 In step 5, a number of decoy state protocol unique calculations are made from performance measurements: the 

signal gain 𝑄𝜇 is the ratio of Bob’s sifted signal detections to Alice’s number of signals pulses sent; the decoy gain 𝑄𝜈 

is the ratio of Bob’s decoy sifted detections to Alice’s number of decoy pulses sent; the signal QBER 𝐸𝜇 is the ratio of 

Bob’s post-sifted signal errors to the number of sifted signal pulses; the decoy QBER 𝐸𝜈 is the ratio of Bob’s post-

sifted decoy errors to the number of sifted decoy pulses; and the dark count yield 𝑌0 is the ratio of Bob’s erroneous 

detections to Alice’s total number of vacuum pulses sent (detailed treatment of these measurements is provided in 

Section II.E). Step 6 is responsible for executing the decoy state security condition which ensures there is no 

unauthorized interference on the quantum channel. The security check is conducted through differential statistical 

analysis, described in Section V. 

Table 3. Decoy State Protocol. 

Step Name Detailed Description 

1 
Quantum 
Exchange 

Alice randomly encodes and transmits signal, decoy, and vacuum states 
(i.e., qubits) based on the prescribed occurrence percentages and MPNs, 
while Bob measures each qubit. This step is typically described as 
“quantum exchange.” 

2 Sifting 

Bob announces the basis he used to measure each qubit. Alice responds 
by announcing which bases are correct, along with the state: signal, 
decoy, or vacuum for each pulse sent. Alice and Bob perform sifting on 
both the signal and decoy state qubits for matched bases. 

3 
Count Decoy 
State Errors 

For the sifted decoy state qubits, Alice announces the encoded bit values 
to Bob over the classical channel. Bob performs a comparison of Alice’s 
prepared bits and his measured values, and records the number of errors 
for use in step 5. 

4 
Signal State Error 

Reconciliation 

For the sifted signal state qubits, Alice and Bob perform error 
reconciliation where quantum communication errors are counted and 
corrected for using bi-directional error correction algorithms over the 
classical channel. The number of corrected errors is recorded for use in 
step 5. 

5 
Calculate Gains, 
QBERs, and Dark 

Counts 

The signal and decoy gains 𝑄𝜇  and 𝑄𝜈, respectively are calculated from 

the measured number of sifted qubits and number of pulses sent. The 
signal QBER 𝐸𝜇 is calculated from the measured number of errors in the 

reconciled key and the number of sifted signal states, while the decoy 
state QBER 𝐸𝜈   is calculated from the measured number of errors in the 
sifted decoy state qubits. The number of detections measured by Bob 
when Alice sent a vacuum states is used to determine the system’s dark 
count probability 𝑌0. 

6 
Perform Decoy 
State Security 

Check 

A comparison of signal and decoy estimated photon number specific 
yields 𝑌𝑛  and QBERs 𝑒𝑛 is performed. If they are not the same (i.e., within 
a predetermined tolerance), an eavesdropper is assumed to be listening 
on the quantum channel and the key is considered compromised. 

E. Secret Key Rate 

QKD systems are designed to securely distribute cryptographic key; however, due to higher MPNs (and therefore 
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more multi-photon pulses) associated with the decoy state protocol, it is important to limit the secret key rate to pulses 

originating from Alice with a single photon. The secret key rate is described as [20, 27, 29] 

𝑅𝑠𝑒𝑐𝑢𝑟𝑒 ≥  𝑞(−𝑄
𝜇
𝑓

𝐸𝐶
 (𝐸𝜇)𝐻2(𝐸𝜇) + 𝑄

1
[1 − 𝐻2(𝑒1)]) ∗ 𝑓

𝑃𝑅
 (1) 

where the parameters are described in Table 4 [27, 29]. Of note, much of the initial decoy state research focused on 

increasing the secure key rate by providing improved bounds for the single photon gain 𝑄1 and the single photon 

QBER 𝑒1 [27, 29, 31, 32, 33, 37, 38, 39, 40]. Specifically, the single photon gain 𝑄1 should be maximized while the 

single photon QBER 𝑒1 is minimized. Furthermore, in practical QKD system implementations, the number of single 

photon pulses originating from Alice is directly correlated to the number of unsecure multi-photon pulses, which 

should be minimized. Thus there is a tradeoff between performance (i.e., signal gain) and security (i.e., the number of 

multi-photon pulses), where only single photon pulses contribute to unconditionally secure shared key. 

Table 4. Secret Key Rate Parameters [27, 29]. 

Parameter Definition Parameter Description or Calculation   

𝑓𝑃𝑅 - laser pulse rate measured in Hz. 
Typical laser pulse rates are 1-5 MHz. However, the pulse rate may vary greatly 

depending upon the QKD system design and implementation. 
(2) 

𝑞 – protocol efficiency fraction is calculated from 
system measurements. 

𝑞 =
Number of bits in error reconcilled key

Total number of detected signal pulses
 (3) 

𝑄𝜇  – gain of the signal state is calculated from 

system measurements. The decoy state gain 𝑄𝜈 is 
similarly calculated. 

𝑄𝜇 =
Number of sifted signal detections

Total number of sent signal pulses
 (4) 

𝐸𝜇 – QBER of the signal state is calculated from 

system measurements. The decoy state QBER 𝐸𝜈  
is similarly calculated. 

𝐸𝜇 =
Number of signal bits errors

Number of bits in error reconcilled key
 (5) 

𝑓𝐸𝐶(𝐸𝜇) – error reconciliation efficiency is 

determine from [41]  based on the signal state 
QBER 𝐸𝜇. 

The error reconciliation efficiency varies dependent upon the signal state QBER. 
Typical values are ≤ 1.15. 

(6) 

𝐻2(𝐸𝜇) – uncertainty in the signal state QBER is 

calculated using Shannon’s binary entropy limit 
[18]. 

𝐻2(𝐸𝜇) = −𝐸𝜇𝑙𝑜𝑔2(𝐸𝜇) − (1 − 𝐸𝜇)𝑙𝑜𝑔2(1 − 𝐸𝜇) (7) 

𝑄1 – estimated gain of pulses originating from 
Alice with one photon is calculated from system 

measurements and operational parameters. 
𝑄1 ≥ 𝑄1

𝐿𝑜𝑤𝑒𝑟 =
𝜇2𝑒−𝜇

𝜇𝜈 − 𝜈2 
(𝑄𝜈

𝐿𝑜𝑤𝑒𝑟𝑒𝜈 − 𝑄𝜇𝑒
𝜇
𝜈2

𝜇2
− 𝑌0

𝑈𝑝𝑝𝑒𝑟 𝜇2 − 𝜈2

𝜇2
) (8) 

𝐻2(𝑒1) – uncertainty in the signal QBER for pulses 
originating from Alice with one photon is 

calculated using Shannon’s binary entropy limit 
[18]. 

𝐻2(𝑒1) = −𝑒1𝑙𝑜𝑔2(𝑒1) − (1 − 𝑒1)𝑙𝑜𝑔2(1 − 𝑒1) (9) 

𝑒1 – estimated QBER of pulses originating from 
Alice with one photon is calculated from system 

measurements and operational parameters, 

where 𝑒0 = 1
2⁄  is the dark count error rate. 

𝑒1 ≤ 𝑒1
𝑈𝑝𝑝𝑒𝑟

=
𝐸𝜇𝑄𝜇 − 𝑒0𝑌0

𝐿𝑜𝑤𝑒𝑟𝑒−𝜇

𝑄1
𝐿𝑜𝑤𝑒𝑟 

 (10) 

𝑌0– dark count is calculated from systems 
measurements. 𝑌0 =

Number of dark count detections

Number of vacuum pulses sent
 (11) 

𝑌0
𝐿𝑜𝑤𝑒𝑟– estimated lower bound of dark count 

probability is calculated from system 
measurements for 10 standard deviations, where 
𝑁0 is the number of vacuum pulses sent by Alice 
and 𝑄0 is the measured vacuum state gain (see 

Eq. (4)). 

𝑌0
𝐿𝑜𝑤𝑒𝑟 = 𝑌0 (1 −

10

√𝑁0𝑄0

) (12) 
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𝑌0
𝑈𝑝𝑝𝑒𝑟

– estimated upper  bound of dark count 
probability is calculated from system 

measurements for 10 standard deviations, where 
𝑁0 is the number of vacuum pulses sent by Alice 

and 𝑄0 is the measured vacuum state gain (see Eq. 
(4)) 

𝑌0
𝑈𝑝𝑝𝑒𝑟

= 𝑌0 (1 +
10

√𝑁0𝑄0

) (13) 

𝑄𝜈
𝐿𝑜𝑤𝑒𝑟– estimated lower bound of decoy state 

gain is calculated from system measurements for 
10 standard deviations, where 𝑁𝜈  is the number 

of decoy pulses sent by Alice. 

𝑄𝜈
𝐿𝑜𝑤𝑒𝑟 = 𝑄𝜈 (1 −

10

√𝑁𝜈𝑄𝜈

) (14) 

III. THE DECOY STATE ENABLED QKD SYSTEM MODEL 

In this section we describe the decoy state enabled QKD model built to study system performance and security. The 

model was constructed using the OMNeT++ Discrete Event Simulation (DES) environment with an extended library 

of optical components (i.e., a framework) [1]. This framework enables models to be built in a modular fashion, 

supporting multiple levels of abstraction to more efficiently answer simulation study research questions. The library 

consists of 17 optical components modeled in an event-driven paradigm with supporting control logic modeled in a 

process-based paradigm. Each component is configured with 12-15 (and up to 27) configurable parameters. 

The focus of this research effort pertains to accurately modeling interactions between system-level behaviors and 

quantum phenomenon in an end-to-end decoy state quantum communication path. Thus the model is described in 

three distinct parts: (1) the sender, Alice’s quantum module; (2) the quantum channel; and (3) the receiver, Bob’s 

quantum module. Model assumptions are described below, where appropriate. 

A. Alice’s Quantum Module 

Figure 2 provides a depiction of Alice’s quantum module (introduced in Figure 1) designed to generate sub-quantum 

pulses as described in Section II.B. Alice’s quantum module is designed to generate weak coherent optical pulses at a 

specified pulse rate, which have the desired MPN and polarization, in a reproducible manner. For example, when 

variations are not enabled, she first generates classical laser pulses with a MPN of 6,827,260 photons, randomly 

selects an encoding basis and bit value, prepares the desired polarization state (↔, ↕, ⤡, or ⤢), and attenuates the 

pulse’s energy down to the specified MPN. 

The module is shown with a classical laser source, a Polarization Modulator (PM), a Decoy State Generator (DSG), 

a Random Number Generator (RNG), and respective controllers (CTRL). This representation is a simplification of 

Alice’s quantum module where additional control and timing synchronization components are not of interest and 

assumed to operate properly and not shown. The laser controller is configured to generate classical pulses by 

triggering the laser to fire in response to an electrical trigger pulse (e.g., 2 Mhz). The laser’s pulse rate is configurable 

to match any system of interest or experiment with alternative configurations. The laser is designed to generate optical 

pulses representative of the ID300 commercial laser, including pulse shape, amplitude, duration, and wavelength [42, 

10] (detailed discussion of the laser pulse are provided in Section IV.A and [43]). Additionally, variations in the laser 

pulse can be turned on or off when so desired. The laser generates unpolarized light pulses, where the PM prepares (or 

encode) each optical pulse according to the random bit and basis provided by the RNG. The RNG can be configured 

to provide pseudo random numbers through conventional RNG algorithms or quantum random numbers through a 

dedicated hardware interface [10]. 

The DSG reduces the classical pulse energy down to the specified signal, decoy, and vacuum MPNs according to 

the desired occurrence percentage as described with respect to Table 2. This behavior is representative of an electronic 

variable optical attenuator configured with a fixed optical attenuator to apply 60-100 dB depending on the desired 

MPN. For example, if the desired state is a signal pulse with an MPN of 0.6, the DSG will apply ~70 dB. For a decoy 

state of 0.08 MPN, the DSG will apply ~79 dB, and ~100 dB for the vacuum state. 
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Figure 2. Modeled Alice Quantum Module. 

B. Quantum Channel 

The quantum channel is representative of Single Mode Fiber (SMF) where both the length and loss can be easily 

adjusted. Channel loss is specified per km where the cumulative loss is typically expressed as an efficiency (i.e., 

10−𝛼 10⁄ , where 𝛼 = 𝑑𝐵 𝑝𝑒𝑟 𝑘𝑚 ∗ 𝑙𝑒𝑛𝑔𝑡ℎ). For example, at 0.20 dB per km, the expected channel efficiency for a 50 

km of SMF-28 fiber is 10−10 10⁄ = 10% (or conversely a 90% loss). The modeled quantum channel is also designed 

to account for propagation specific phenomenon such as thermal expansion, index of refraction, and chromatic 

dispersion. Additionally, the modeled channel is capable of simulating the effects of random physical disturbances 

such as bends in the fiber, vibration, or other instabilities [1]. Regarding propagation through the fiber, we assume 

Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon 

detection at Bob (i.e., polarization rotation in the quantum channel is ideally corrected and synchronized). 

C. Bob’s Quantum Module 

Figure 3 is a depiction of Bob’s quantum module (introduced in Figure 1) shown with a beamsplitter (BS), a half wave 

plate, two polarizing beamsplitters (PBS1 and PBS2), four Single Photon Detectors (SPDs), and one controller. Pulses 

entering Bob are randomly split by the BS (i.e., a 50/50 BS) and transmitted to PBS2 and the horizontal/vertical SPDs 

or reflect to the have wave plate and through PBS1 to the diagonal/antidiagonal SPDs. This configuration is 

commonly referred to as a “passive basis selection,” where Bob’s random basis selection intrinsically occurs at the 

50/50 BS.  

The PBSs are modeled similarly to the BS; however, they are designed to split pulses into orthogonal polarization 

states (i.e., the horizontal or vertical state). For example, when a pulse is prepared in the rectilinear basis and sent to 

the PBS, it is split according to its encoded polarization state, where horizontally encoded qubits are transmitted and 

vertically encoded qubits are reflected. Alternatively, when a pulse is prepared in the diagonal basis and sent to the 

PBS, it will be randomly split towards either output as determined by the adjacent detector and illustrated by Bob’s 

measured bit value in Table 1. 

With respect to pulses transmitted by the BS to PBS2, they are split into the horizontal state ↔ or vertical state ↕ 

and sent to their respective SPDs. The reflected pulses are directed towards a half wave plate that induces a 𝜋/4 

polarization rotation to correctly align diagonally prepared pulses into the rectilinear basis and then to PBS1 which 

further distinguishes the antidiagonal ⤡ and diagonal ⤢ polarization states for detection at their respective SPDs. In 

this manner, rectilinearly prepared qubits which randomly proceed through PBS2 will be correctly detected at the 

vertical and horizontal SPDs with a high degree of accuracy, diagonally prepared qubits which randomly proceed 

through PBS1 will be correctly detected at the antidiagonal and diagonal SPDs with a high degree of accuracy, and 

pulses which are sent to the mismatch measurement basis will result in a random bit value that will be sifted out.  

In the modeled architecture, the SPDs are responsible for probabilistically determining the detection of weak 

coherent pulses; thus simulating the uncertainty inherent in quantum phenomenon [44, 45]. Specifically, for each 

pulse arriving at an SPD a probabilistic determination is made for how many photons arrived according to its MPN 

and Poisson distribution [3]. Note: after propagating through the quantum channel and Bob’s architecture the pulse’s 

MPN is significantly lower than when it left Alice (e.g., a signal state MPN of 0.65 propagating though 50 km of fiber 

with 0.20 dB loss per km, and a passive basis selection architecture with 3 dB loss will have an MPN of ~0.0325). The 

probabilistic design of the SPDs enables quantum phenomenon such as interference between photons and the splitting 

of a single photon to be accurately simulated in the modeled architecture. 

The detection CTRL is configured to precisely “gate” the SPDs to reduce noise (i.e., dark counts and after pulsing) 

while detecting single photon transmissions. This means the SPDs change from a classical detection state to a 

heightened “Geiger” state configured to detect the arrival of single photons. Typical gating periods are on the order of 

nanoseconds (i.e., 10
-9

), which are controlled by the detection controller and assumed to be ideal in this model. Bob’s 

SPDs take into account detector efficiency (e.g., 10%), dark count probability (e.g., 1.0E-6), after pulsing probability 
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(e.g., 1.0E-6), photon arrival times, and detector recovery times. Modeling these parameters provides a baseline for 

modeling realized decoy state QKD systems. 

 
Figure 3. Modeled Bob Quantum Module. 

D. Decoy State Protocol Logic 

The decoy state protocol as outlined in Table 3 is implemented through the described physical model and control logic 

within Alice and Bob. In our model, Alice is generally implemented as the protocol master and Bob as the slave; 

however, these roles can change depending on how the desired functionality is modeled. In some cases it may be more 

advantageous to have Bob, as the receiver, control processes or sub-processes to reduce the number of classical 

communications. 

To perform quantum exchange (step 1), Alice and Bob use a flexible data frame structure defined as a timing 

reference pulse followed by a configurable number of weak coherent pulses (e.g., 100 or 1000) with adjustable 

spacing between both frames and pulses. Alice randomly distributes signal, decoy, and vacuum pulses within each 

frame according to their occurrence percentages and records the frame number, bit position, prepared basis, encoded 

bit value, and state (signal, decoy, or vacuum) for each pulse generated. Likewise, upon detection Bob stores the 

frame number, bit position, measurement basis, and detected value. Quantum exchange ends when Bob achieves the 

specified number of detections (signal, decoy, and vacuum). The remainder of protocol control occurs over the 

classical channel using abstract message traffic passed between Alice and Bob including large memory arrays to 

quickly and easily facilitate information exchange for the remaining classical steps. 

During sifting (step 2), Bob publically announces the bases he used to detect each qubit to Alice, and she responds 

by announcing which bases are correct and identifies the signal, decoy and vacuum states. Alice and Bob perform 

sifting on both the signal and decoy state detections to identify matched prepare and measure bases. Additionally, for 

each decoy state qubit, Alice announces the encoded bit value to Bob. The announced decoy state bases and bit values 

are used to calculate the number of errors in the decoy state transmission (Step 3). Furthermore, Alice calculates the 

dark count 𝑌0 using the total number of detections during vacuum states as defined in Eq. (11). 

Next, Alice and Bob perform error reconciliation (step 4) of the sifted key to correct for quantum communication 

errors. They first sacrifice an adjustable percentage of the signal state bits (e.g., 25%) to estimate the error rate. 

Specifically, Alice randomly chooses a specified percentage (e.g., 25%) of the post-sifted signal bits and sends them 

(frame number, bit number, and value) to Bob. He calculates the estimated error rate and sends it back to Alice. If the 

estimated error rate is higher than a user defined threshold (e.g., 25%), the protocol is aborted. If the estimated error 

rate is below the threshold, the QKD system formally begins error reconciliation. 

The simulation framework provides the ability to use conventional error reconciliation algorithms such as winnow, 

cascade, and LDPC where the algorithm’s efficiency is based on the estimated error rate. For example, the error rate 

can be used to determine block correction sizes and influences the number of communications necessary for error 

reconciliation. These algorithms are generally considered resource intensive, so we implemented a “perfect” error 

reconciliation algorithm, which quickly counts and corrects errors without unwanted complexity. Since we are not 

studying error reconciliation, we anticipate using the perfect error reconciliation most often because of its speed 

advantage while running large simulation trails. During perfect error reconciliation, Alice sends her key to Bob who 

determines the number of errors in his key and returns the results back to Alice. 

In step 5, the decoy state protocol specific measurements (i.e., the gains 𝑄𝜇 and 𝑄𝜈 and QBERs 𝐸𝜇 and 𝐸𝜈 as 
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defined in Eqs. (4) and (5)) are calculated by Alice. These values are exported from the simulation framework for use 

in analytical tools. Using third party tools allows us to quickly analyze numerous simulation trials and facilitates 

system-level testing. Furthermore, analytical tools are required for statistical analysis of the decoy state security 

condition. 

In step 6, the signal and decoy photon number dependent yields 𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

 and 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

 along with the photon number 

dependent QBERs 𝑒𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

and 𝑒𝑛
𝑑𝑒𝑐𝑜𝑦

 are calculated. These values are estimated from the measured gains 𝑄𝜇 and 𝑄𝜈, 

QBERs 𝐸𝜇 and 𝐸𝜈, and dark count 𝑌0, and compared to determine if an eavesdropper is listening on the quantum 

channel. Details of this step are provided in Section V. 

IV. VERIFICATION AND VALIDATION OF THE DECOY STATE ENABLED QKD SYSTEM MODEL 

In this section we describe our Verification & Validation (V&V) approach and provide results of our component, sub-

system, and system-level test activities. Our V&V work is primarily based on the approaches and specific activities 

discussed in [46, 47, 48]. In general, we confirm the model was built correctly against expected analytical results, and 

validate performance against multiple experimental systems. More specifically, component verification is conducted 

against commercial specifications, where modeled behaviors and operational parameters are evaluated for each 

component by assessing its transformation of optical pulses. Sub-system verification is conducted using analytical 

means to test the integration of multiple components by assessing their combined transformations against expected 

pulse MPNs and polarization orientation. Since, the modeled QKD system and its verification is primarily concerned 

with the transformation of optical pulses, we provide an abbreviated description of the optical pulse model for the 

reader before we proceed with our detailed discussion of verification activities. Details of the optical pulse model can 

be found in [43]. 

A. Optical Pulse Model 

Figure 4 displays a textural representation of the modeled pulse output generated by Alice. She creates pulses 

according to the state (i.e., signal, decoy, or vacuum), prescribed MPN, occurrence percentage, and polarization 

encoding.  The pulse model is abstracted using a classical electromagnetic wave representation, 𝐸⃗ , with a time-

dependent power envelope, √𝐺(𝑡), to model each pulse 𝐸⃗ (𝑡) = √𝐺(𝑡)𝐸𝑜𝑒
𝑖𝜔0𝑡𝑒𝑖𝜃 [

𝑐𝑜𝑠𝛼
(𝑠𝑖𝑛𝛼)𝑒𝑖𝜙] [43]. For economy of 

simulation, the power envelope √𝐺(𝑡) is represented as a composite shape using the sum of three Gaussian functions 

each with a scalar, mean, and standard deviation. The pulse model captures the electric field amplitude 𝐸0, a specified 

duration used to identify the pulse interval time Δ𝑡, the central frequency 𝜔𝑜, and the global phase 𝜃. Method calls 

calculate pulse wavelength, peak power, MPN, and pulse energy from the pulse’s shape, amplitude, duration, and 

central frequency. The pulse’s encoded polarization state is captured by the orientation angle α with respect to the x 

axis, while ellipticity is used to represent the relative phase delay 𝜙 for phase-based QKD encoding. This wave 

representation allows for efficient calculation of optical effects such as propagation, dispersion, attenuation, or 

interference by individual optical components [43]. Each pulse also has a unique identifier to track its simulation and 

verify its expected behaviors.  

 
Figure 4. Modeled Optical Pulse. 
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B. Component Verification 

Component verification was conducted for each of the modeled optical components (laser, polarization modulator, 

electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter, polarizing beamsplitter, 

half-wave plate, and various other components not shown such as a bandpass filter, circulator, in-line polarizer, 

isolator, optical switch 1x2, polarization controller, and wave division multiplexer). We used analytical means to 

verify the modeled results according to industry specifications and subject matter experts. Specifically, the modeled 

components were implemented in C++ and verified using Python according to the testing methodology detailed in 

Figure 5. The testing approach is intended to provide a flexible capability for verification of optical components, 

where new or modified components can be easily added and tested. 

 The testing framework is focused on verifying the primary behaviors of each component by ensuring the expected 

transformations occur correctly. This is accomplished by creating a linked list of optical pulses (i.e., the test input) 

according to the pulse parameters of interest (i.e., shape, amplitude, duration, central frequency, global phase, 

orientation, and ellipticity). The input list of optical pulses is sent to both the modeled component and the truth data 

calculation. Each component transforms the optical pulses according to specified behaviors and configuration 

parameters, resulting in an output list of optical pulses. Likewise, the truth data calculation transforms the list of 

optical pulses according to commercial specifications. A comparison of the model and expected truth data is 

performed for each transformed pulse in the list, where each device will either pass the suite of tests if the pulses 

match or fail if the pulses do not match. The testing framework accounts for each modeled optical component in a 

systematic way, which allows users to quickly and repeatedly test component behaviors over their operational ranges. 

 
Figure 5. Component Testing Methodology. 

An example of this testing methodology is provided in Table 5, where five input pulses with varying orientations 

(0, 𝜋 8⁄ , 𝜋 4⁄ , 3𝜋 8⁄ , and 𝜋 2⁄ ) and a fixed MPN of 0.6500 are shown propagating through a polarizing beamsplitter 

(note this example is greatly simplified for the reader, actual tests included 10,000s of points). The polarizing 

beamsplitter is modeled with one input and two outputs configured to split the input pulse according to the transmitted 

polarization (i.e., an orientation of 0) and the reflected polarization (i.e., an orientation of  𝜋 2⁄ ). The device is 

designed to project the input pulse’s energy (i.e., MPN) onto the transmitted and reflected polarization states. For 

example, since the first pulse’s orientation is 0, the entirety of the pulse’s energy will be transmitted and none will be 

reflected as demonstrated by both the modeled and truth data output results. Likewise, when considering the fourth 

pulse, we expect a small portion (~15%) of the energy to be observed on the transmitted port and a large amount 

(~85%) on the reflected port. This type of testing regime was automated in the framework and repeated thousands of 
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times across pertinent operational and configuration parameters for each optical device in the component library. 

These components are modeled with ideal behaviors that result in perfect agreement to the expected values. Non-ideal 

behaviors caused by device imperfections or misuse can also be simulated. For example, each component is modeled 

with three operational states: normal, degraded, and damaged, where the device can enter the degraded or damaged 

state due to overheating or overpowering with optical light. These non-ideal states negatively impact the devices’ 

behavior(s). 

Table 5. Polarizing Beamsplitter Verification. 

Input Pulses Modeled Output Pulses Truth Data Output Pulses 

Number MPN Orientation 
Transmitted MPN 
(Orientation = 0) 

Reflected MPN 
(Orientation =𝜋 2⁄ ) 

Transmitted MPN  
(Orientation = 0) 

Reflected MPN 
(Orientation =𝜋 2⁄ ) 

1 0.6500 0 0.6500 0.0000 0.6500 0.0000 

2 0.6500 𝜋 8⁄  0.5548 0.0952 0.5548 0.0952 

3 0.6500 𝜋 4⁄  0.3250 0.3250 0.3250 0.3250 

4 0.6500 3𝜋 8⁄  0.0952 0.5548 0.0952 0.5548 

5 0.6500 𝜋 2⁄  0.0000 0.6500 0.0000 0.6500 

C. Sub-System Verification 

Sub-system verification was conducted using the experimental configuration as reported in Chen et al., where the 

USTC-Xinglin QKD architecture employed a signal MPN of 0.65,  a decoy MPN of 0.08, a measured channel loss of 

4.5 dB, and a reported 3.5 dB loss in Bob [49]. From the sub-system perspective there are three points of interest in 

the communication system: (1) Alice’s output; (2) Bob’s input; and (3) Bob’s SPDs. For each point, we used 

analytical means to verify the state of the optical pulse for the expected and modeled MPNs and polarization 

orientation. Table 6 depicts the sub-system verification results where two pulses, a signal and a decoy, are tracked 

throughout the simulation using a unique identifier. We also verified the occurrence percentages (75%, 12.5%, and 

12.5% for the signal, decoy, and vacuum states respectively). 

Table 6. Sub-System Verification of Pulse MPN and Orientation. 

Alice’s Output  Bob’s Input  Bob’s SPDs 

Pulse 

ID 
Type MPN Orientation 

Channel 

Loss 
MPN Orientation 

Bob’s 

Loss 
MPN Orientation 

4396 Signal 0.650000 π 2⁄  

4.5 db 

0.179025 π 2⁄  

3.5 
dB 

0.079967 π 2⁄  

Expected result 0.650000 𝜋 2⁄  0.179025 π 2⁄  0.079967 π 2⁄  
   

34811 Decoy 0.080000 π 4⁄  0.022034 π 4⁄  0.009842 π 4⁄  

Expected result 0.080000 𝜋 4⁄  0.022034 𝜋 4⁄  0.009842 𝜋 4⁄  

Each pulses’ MPN was verified against analytical calculations proving the modeled components were integrated 

properly. Verifying these three points ensures our optical pulse is propagating correctly through the end-to-end 

quantum path in preparation for system-level validation. Finally, we verified the expected signal, decoy, and vacuum 

occurrence percentages at Alice’s output with an average of 74.99978%, 12.50350%, and 12.49672% for 120 trials of 

28,000 detections. 

D. System Validation 

We conducted validation against similar systems, providing valid ranges of operation for our decoy state QKD model. 

Specifically, we chose five systems representative of a short operational distance (i.e., 20 km) [31, 50, 49, 51, 52] and 

three of a longer practical distance (i.e., 50-60 km) [53, 32, 54]. The details reported in these articles, including 

architectural design, configuration parameters, and performance results lend themselves to a thorough validation 

effort. Operational parameters and results from each of the eight systems are presented in Table 7, along with results 

from representative models. Each of the simulated models include system implementations details such as signal and 

decoy MPNs, occurrence percentages, channel losses, receiver losses, detector efficiency, and detector dark count. 

The simulation results are reported for 60 trials of 50,000 detections each for a total of nearly 500,000,000 pulses sent 

per experimental treatment to provide statistically significant secret key rates 𝑅𝑠𝑒𝑐𝑢𝑟𝑒 . 

Table 7. Validation Results. 

QKD 
System 

Distance 
(km) 

MPN 

𝜇 / 𝑣   

Percent 

𝜇 / 𝜈  

Channel 

Loss 

(db) 

Receiver 

Loss  

(dB) 

Detector 

Efficiency 

(%) 
𝜇 Gain** 𝑣 Gain** 𝜇 QBER 𝑣 QBER 𝑅𝑠𝑒𝑐𝑢𝑟𝑒 

Chen et al. 
[49] 

20 
0.60 / 
0.08 

75.0 / 
12.5 

5.6 3.5 10 6.36E-3 8.61E-4 1.44E-2 7.80E-2 4.10E-4 

Model Results 6.14E-3 9.61E-4 1.21E-2 6.57E-2 6.68E-4 
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Dixon et 

al. [50] 
20 

0.55 / 

0.10 

80 /   

16 
4.012 4.2* 10 8.680E-3 1.970E-3 2.530E-2 

Not 

reported 
9.909E-4* 

Model Results 6.775E-3 1.681E-3 1.44E-2 1.68E-2 11.755E-4 

Yuan et al. 

[52] 
25 

0.425 / 

0.204 

75 /   

25 
4.7 2.5 10* 8.500E-3 4.000E-3 1.720E-2 2.74E-2 8.806E-4* 

Model Results 6.392E-3 3.275E-3 1.44E-2 2.44E-2 12.013E-4 

Dynes et 
al. [51] 

20 
0.55 

0.098 
93.0 / 

6.2 
4.0* 2.5 10 1.270E-2 2.340E-3 1.80E-2 6.200E-2 1.464E-3* 

Model Results 9.296E-3 1.968E-3 1.24E-2 3.96E-2 2.093E-3 

Zhoa et al. 

[31] 
15 

0.8 / 

0.12 

90 /   

10 
3.15 6.4* 10* 8.757E-3 1.360E-3 9.536E-3 2.689E-2 3.588E-4 

Model Results 6.039E-3 1.045E-3 9.219E-3 3.890E-2 5.586E-4 
            

Dixon et 
al. [53] 

50 
0.5 /    
0.1 

98.83 
/ 0.78 

10 3.5 16.5 4.00E-3 1.00E-3 3.85E-2 1.30E-2 2.590E-04 

Model Results 2.39E-3 9.76E-4 9.61E-2 2.33E-1 4.536E-4 

Zhoa et al. 

[32] 
60 

0.55 / 

0.152 

63.5 / 

20.3 
12* 3.0* 10 1.81E-3 5.47E-4 3.05E-2 7.78E-2 1.018E-4 

Model Results 1.50E-3 4.93E-4 2.51E-2 7.86E-2 1.6996E-4 

Peng et al. 

[54] 
75 

0.6 /   

0.2 

50 /   

40 
15.15 7.775 6.5 2.08E-4 7.53E-5 3.23E-2 9.04E-2 1.1430E-5 

Model Results 2.70E-4 1.04E-4 2.91E-2 7.30E-2 1.8560E-5 

* Estimated values from published results. 
** Simulations were conducted at 100% detector efficiency to reduce simulation time, thus we scaled our reported gains according to the 
experimental detector efficiencies (e.g., 10%). 

 

Each QKD system is entirely unique, where the reported results are dependent upon dozens of operational and 

implementation details including calibration of the optical channel, programming of device controllers, various device 

imperfections, and the changing operational environment. Therefore, in these validation activities, we do not attempt 

to precisely match the reported performance but rather we attempt to replicate their results with a reasonable level of 

accuracy to justify the use of our model. That is, we prove sufficient accuracy for the intended purpose of studying the 

decoy state protocol. Specifically, by modeling the operational configuration parameters of Table 8, as well as the 

reported dark count and after pulse probabilities, we achieve simulation results within the same order of magnitude as 

the reported experimental system gains 𝑄𝜇, 𝑄𝜈, QBERs 𝐸𝜇, 𝐸𝜈, and the secret key rate 𝑅𝑠𝑒𝑐𝑢𝑟𝑒 . 

By modeling and simulating architectural details such as reported propagation distances, losses, MPNs, occurrence 

percentages, and detector efficiencies we have validated our modeled decoy state enabled QKD system for operational 

distances of ~20 km and ~60 km. Our verification activities ensured the model was built correctly, while our 

validation activities provide objective evidence that we built the correct model. These V&V activities provide 

analytical and experimental evidences for the accurate modeling of decoy state QKD systems to support further 

research and performance analysis.  

V. CONSIDERATIONS FOR THE DECOY STATE PROTOCOL SECURITY CONDITION 

While the described V&V activities described herein were primarily focused on ensuring the correctness of modeled 

behaviors, they also provide insight into practical considerations for implementing the decoy state protocol security 

condition which have not been explicitly addressed in other literature. In this section, we first introduce the security 

condition and then discuss practical implementation issues and initial findings from modeling, verifying, and 

validating these behaviors. Specifically, we focus on operational parameters and design decisions affecting the decoy 

state protocol security condition. 

A. The Decoy State Protocol Security Condition 

Recall, the decoy state protocol security condition was introduced to detect photon specific interference caused by the 

PNS attack, where the general premise is simply that channel losses and induced errors should remain constant over a 

given quantum channel. Formally, the decoy state protocol security condition is described as [27, 29] 

𝑌𝑛 = 𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

= 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

 (15) 

𝑒𝑛 = 𝑒𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

= 𝑒𝑛
𝑑𝑒𝑐𝑜𝑦

 
(16) 

where the photon number dependent yield 𝑌𝑛 is defined as the conditional probability that Bob detects an optical pulse 

given Alice sent an 𝑛-photon pulse and the photon number dependent QBER 𝑒𝑛 is defined as the conditional 

probability an error occurred given Bob detects the 𝑛-photon pulse from Alice [27, 29].  
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The security condition asserts the yields 𝑌𝑛 and QBERs 𝑒𝑛 for the signal and decoy states should always be the 

same (i.e., within prescribed tolerances) for each 𝑛-photon pulse. This is because the quantum transmission efficiency 

and error rate are fixed for the quantum channel. For example, when no interference is present 𝑌1
𝑠𝑖𝑔𝑛𝑎𝑙

= 𝑌1
𝑑𝑒𝑐𝑜𝑦

 

should always be true because the end-to-end transmission efficiency does not change; thus the likelihood of any pulse 

with one photon propagating from Alice to Bob is identical, regardless of state. Likewise, the QBERs 𝑒𝑛 are based on 

device and alignment imperfections over the quantum channel and should always be the same for each photon 

number. Thus 𝑌𝑛 and 𝑒𝑛 vary only with respect to the photon number per pulse (see details below). 

B. Implementing the Decoy State Security Condition 

There are quite a few nuances to implementing the security condition. First, in practical QKD implementations, the 

photon number dependent yields 𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

, 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

 and QBERs 𝑒𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

, 𝑒𝑛
𝑑𝑒𝑐𝑜𝑦

 are merely estimates of expected values. 

They are estimates because QKD realizations often Avalanche Photodiode Detectors (APDs), which are threshold 

detectors that cannot determine the specific number of photons received in each optical pulse. Therefore, Bob cannot 

precisely measure the 𝑛-photon yields 𝑌𝑛 or QBERs 𝑒𝑛; they are estimated from the measured state gains 𝑄𝜇 , 𝑄𝑣, and 

QBERs 𝐸𝜇 , 𝐸𝑣. First, we’ll address the photon dependent yields 𝑌𝑛 and then the QBERs 𝑒𝑛. 

C. Estimating Photon Number Dependent Yields 

The photon number depended yield 𝑌𝑛 is defined as [27, 29] 

𝑌𝑛 = 𝑌0 + 𝜂𝑛 − 𝑌0𝜂𝑛 ≅ 𝑌0 + 𝜂𝑛 (17) 

where 𝑌0 is the dark count described in Eq. (11), 𝜂𝑛 is the photon number dependent efficiency, and the joint 

probability 𝑌0𝜂𝑛 is typically disregarded because it is very small (i.e., 10
-9

). Treating each photon independently, the 

photon dependent efficiency 𝜂𝑛 is based on the number of photons 𝑛 in each pulse and the end-to-end efficiency 

𝜂 (commonly expressed as both the likelihood of successful propagation or in the negative sense as loss measured in 

dB) 

𝜂𝑛 = 1 − (1 − 𝜂)𝑛 
(18) 

where  

𝜂 = 𝜂𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝜂𝐵𝑜𝑏𝜂𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 . (19) 

The overall efficiency 𝜂 is the product of the quantum channel efficiency 𝜂𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙 , the receiver’s efficiency 

𝜂𝐵𝑜𝑏 , and the efficiency of the Bob’s detector 𝜂𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 . The quantum channel efficiency is often approximated as 

𝜂𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙 = 1 − 10−𝛼/10, where 𝛼 = 0.20 𝑑𝐵/𝑘𝑚 ∗ ℓ𝑒𝑛𝑔𝑡ℎ [3] or a measured loss in dB. Bob’s efficiency 

𝜂𝐵𝑜𝑏  is typically measured and represented as loss in dB, while his detector efficiency 𝜂𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟  is device dependent 

and typically represented as a percentage (e.g., 10%). When studying the decoy state protocol, the protocol efficiency 

𝜂𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙  must also be considered 

𝜂 = 𝜂𝑄𝑢𝑎𝑛𝑡𝑢𝑚𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝜂𝐵𝑜𝑏𝜂𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝜂𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 . (20) 

The addition of the protocol efficiency 𝜂𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙  accounts for the signal state occurrence percentage (i.e., < 100%). For 

example, in the Chen et al. QKD system, only 75% of the transmitted pulses contribute to overall signal gain, while 

the decoy state account for 12.5%, and vacuums account for the remaining 12.5%. These operational parameters are 

part of an overall system trade space which directly impact system performance. 

In some cases the total efficiency is known and can be used to calculate the yields 𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

, 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

; however, 

assuming the channel is untrusted, the efficiency can be calculated from the measured gains. The relationship between 

the signal gain 𝑄𝜇 and the efficiency 𝜂 is described in Eqs. (21) - (24) 

𝑄𝜇 = 𝑌0𝑒
−𝜇 + 𝑌1𝑒

−𝜇𝜇 +
𝑌2𝑒

−𝜇𝜇2

2
+ ⋯+

𝑌𝑛𝑒
−𝜇𝜇𝑛

𝑛!
 (21) 
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𝑄𝜇 = ∑ 𝑌𝑛

𝑒−𝜇𝜇𝑛

𝑛!

∞

𝑛=0

. (22) 

Calculating for all 𝑛 

 𝑄𝜇 = 𝑌0 + 1 − 𝑒−𝜇𝜂 (23) 

and solving for 𝜂 (note the signal efficiency 𝜂 is derived from the measured gain 𝑄𝜇, dark count 𝑌0, and MPN 𝜇; it is 

not dependent on the number of photons per pulse) 

𝜂 =
− ln|1 + Y0 − 𝑄𝜇|

𝜇
. (24) 

Finally, we can estimate the photon dependent signal yields 𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

 by substituting 𝜂 from Eq. (24) into Eqs. (17) 

and (18)  

𝑌𝑛 ≅ 𝑌0 + 1 − (1 − [
− ln|1 + 𝑌0 − 𝑄𝜇|

𝜇
])

𝑛

. (25) 

Likewise, the end-to-end efficiency 𝜂 can be calculated from the decoy state gain 𝑄𝜈 and used to estimate the decoy 

state yields 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

. The photon number dependent yields can then be compared to assess whether unauthorized 

photon specific interference exists on the quantum channel. 

D. Estimating Photon Number Dependent QBERs 

The photon number dependent QBER 𝑒𝑛 is defined as [27, 29] 

𝑒𝑛 =
𝑌0𝑒0 + 𝜂𝑛𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

 𝑌𝑛

 (26) 

where 𝑌0 is the dark count described in Eq. (11), 𝑒0 is the likelihood of an error during a vacuum state (i.e., ½ since 

the erroneous detection results in either a 0 or 1), 𝜂𝑛 is the photon number dependent efficiency, and 𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 is the 

probability a photon was erroneously detected (i.e., due to device imperfections or misalignment, typically ~1% [25]). 

The 𝑛-photon QBER is estimated from the state QBERs from Eq. (5), where the relationship between the signal state 

QBER 𝐸𝜇 and the 𝑛-photon QBER 𝑒𝑛 is described as [27, 29] 

𝐸𝜇𝑄𝜇 = ∑ 𝑒𝑛𝑌𝑛 (
𝑒𝜇𝜇𝑛

𝑛!
) .

∞

𝑛=0

 (27) 

Calculating for all 𝑛 

𝐸𝜇𝑄𝜇 = 𝑒0𝑌0 + 𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(1 − 𝑒−𝜇𝜂) (28) 

and solving for 𝜂 

𝜂 =
− ln |

1 − 𝐸𝜇𝑄𝜇 − 𝑒0Y0

𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
|

𝜇
. 

(29) 

 

 

Substituting 𝜂 from Eq. (29) into Eqs. (28) and (18)  
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𝑒𝑛 =
𝑌0𝑒0 +

(
1 −

(
1 −

[
− ln |

1 − 𝐸𝜇𝑄𝜇 − 𝑒0𝑌0

𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛
|

𝜇
])

𝑛

)
𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

 𝑌𝑛

. 
(30) 

Likewise, the end-to-end efficiency 𝜂 can be calculated from the decoy state gain 𝑄𝜈 and used to estimate the decoy 

state QBERs 𝑒𝑛
𝑑𝑒𝑐𝑜𝑦

. The photon number dependent QBERs can then be compared to assess whether unauthorized 

photon specific interference exists on the quantum channel. 

E. Security Condition Example 

Assuming an eavesdropper is not going to knowingly introduce errors, Eve’s detectability is primarily dependent upon 

the system’s ability to detect changes in the yields 𝑌𝑛; therefore, we’ll examine the estimated photon number 

dependent yields 𝑌𝑛, 𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

, and 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

 as shown in Table 8. For each row, the 𝑛-photon yield is calculated using the 

derived signal or decoy state efficiencies based on the Chen et al. USTC-Xinglin QKD system. In the first column, the 

yields Yn are calculated from the reported channel efficiency at 5.6 dB, Bob’s efficiency at 3.5 dB, detector efficiency 

at 10%, and protocol efficiency at 75%, where the total efficiency η = 0.009541 per Eq. (20). Next, the signal yields 

𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

are calculated from the measured signal gain 𝑄𝜇 using Eq. (24), where 

η = − ln|1 + 1.0E−4 − 6.36E−3| 0.65⁄ = 0.009661. Lastly, the decoy yields 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

 are calculated from the 

measured decoy gain where η = − ln|1 + 1.0E−4 − 8.61E−4| 0.08⁄ = 0.009516. 

Table 8. Example Photon Dependent Yields. 

Photon Number 
Yield 𝒀𝒏 

(𝜼 = 𝟎. 𝟎𝟎𝟗𝟓𝟒𝟏) 

Signal Yield 𝒀𝒏
𝒔𝒊𝒈𝒏𝒂𝒍

 

(𝜼 = 𝟎. 𝟎𝟎𝟗𝟔𝟔𝟏) 

Decoy Yield 𝒀𝒏
𝒅𝒆𝒄𝒐𝒚

 

(𝜼 = 𝟎. 𝟎𝟎𝟗𝟓𝟏𝟔) 

n = 1 0.009641 0.009761 0.009616 

n = 2 0.019090 0.019329 0.019042 

n = 3 0.028450 0.028804 0.028378 

n = 4 0.037720 0.038188 0.037625 

n = 5 0.046902 0.047481 0.046784 

As the reader can ascertain, the photon specific yields are similar but not the same in all cases. We now turn our 

attention to understanding these differences in the form of implementation considerations and allowable tolerances. 

F. Security Condition Considerations 

In order to effectively implement the decoy state protocol, there are a number of design, implementation, and 

operational considerations to consider, including signal and decoy MPNs, occurrence percentages, propagation 

distances, total losses, desired detection sensitivity, the number of signal, decoy, and vacuum detections, and their 

resultant confidence intervals, amongst others. Therefore, when attempting to execute the decoy state protocol security 

condition, there needs to be additional consideration for implementation non-idealities and operational tolerances such 

that the security condition becomes 

𝑌𝑛 = 𝑌𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

± ∆ = 𝑌𝑛
𝑑𝑒𝑐𝑜𝑦

± Δ (31) 

𝑒𝑛 = 𝑒𝑛
𝑠𝑖𝑔𝑛𝑎𝑙

± Δ = 𝑒𝑛
𝑑𝑒𝑐𝑜𝑦

± Δ (32) 

where ∆ describes the tolerances associated with the detection of Eve. For example, in 120 trials designed to collect 

qubits for error reconciliation blocks of 10,000 bits (i.e., 28,000 detections when accounting for 75% signal state and 

50% sifting), we observed variations in both the signal and decoy photon dependent yields as depicted in Figure 6 and 

reported in Table 9. This is primarily because the photon number dependent yields for each state are based on the 

number of sifted bits (i.e., 50% of the number of detections) and total number of pulses sent in each trial. For both 

cases, the signal state has tighter bounds than the decoy state. These variations, as well as variations in dark count and 

MPNs, directly impact the estimated yields. While the impact of fluctuations in laser sources (i.e., the MPNs) has been 

addressed for the secret key rate [33, 34, 35], these fluctuations have not been addressed for the decoy state security 

condition. Accuracy of the signal and decoy MPNs is critical for performing the security check as identified in Eqs. 

(24) and (25). 
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Figure 6. Example Photon Dependent Yields for n = 1 (left) and n = 2 (right). Note scales are different. 

Table 9. Example Photon Number Dependent Yield Statistics. 

State Parameter Estimate Lower 90% CI Upper 90% CI 

𝑌1
𝑠𝑖𝑔𝑛𝑎𝑙

 
Mean 0.100606 0.100487 0.100725 

Std Dev 0.000786 0.000711 0.000881 

𝑌1
𝑑𝑒𝑐𝑜𝑦

 
Mean 0.103142 0.102314 0.103969 

Std Dev 0.005470 0.004947 0.006128 

𝑌2
𝑠𝑖𝑔𝑛𝑎𝑙

 
Mean 0.191010 0.190796 0.191224 

Std Dev 0.001414 0.001279 0.001584 

𝑌2
𝑑𝑒𝑐𝑜𝑦

 
Mean 0.195536 0.194051 0.197021 

Std Dev 0.009813 0.008875 0.010993 

1) Implementation Example 

Prepare and measure QKD implementations often send qubits in frames, where a classical reference pulse is followed 

by a number of quantum-level pulses (e.g., a reference pulse followed by 1,000 weak coherent pulses). When studying 

our simulation results, we realized calculating the sent pulses according to frame sent was causing undo distortions in 

our measured gains 𝑄𝜇 and 𝑄𝜇. For example, while the number of sifted signal detections was accurate, the number of 

sent signals was generally reported with an overage because of the transmission frame structure. While the reported 

difference may be small when compared to the number of pulse sent (e.g., 100s compared to 100,000s), when 

differentiating photon specific interference with significant losses, precision matters greatly. 

Accuracy in the number of signal, decoy, vacuum pulses sent, received, and sifted is critical for calculating the 

necessary signal and decoy state gains used to estimate the photon number dependent yields 𝑌𝑛. Poor precision of 

these measured values leads to poor bounds on security condition tolerances, potentially preventing decoy state QKD 

systems for detecting minute changes in photon specific interference. Furthermore, the number of corrected errors 

during error reconciliation is critical for calculating the necessary signal and decoy state QBERs, and resulting photon 

number dependent QBERs 𝑒𝑛. Likewise, accuracy of a system’s dark count 𝑌0 is necessary for calculating the 

efficiency and photon number yields as identified in Eqs. (24), (25), (29), and (30). Achieving confidence in this low 

probability error (i.e., 1.0E-6) is gained through large sample size (e.g., >> 1 million vacuum states) as described in 

Eq. (11). Precision of these values is necessary for successfully implementing the decoy state security condition. 

Lastly, this example provides insights into the number of vacuum and decoy detections necessary to provide 

accurate measurements for implementing the decoy state protocol. The inherent limitation with only collecting enough 

signal detections for 10k error reconciliation block sizes severely limits the accuracy of the measured decoy state gain 

and QBER, as well as, the number of system dark counts. For example, taking into considering the low probability of 

dark counts (e.g., 1.0E-6) and high transmission losses (e.g., >99%), large numbers of sent pulses (e.g., >500 million 

or more) may be necessary to achieve the desired statistical confidence for dark counts. 

2) Implementation Considerations 

When considering implementation of the decoy state protocol, one should first consider decoy states have been 

primarily used to increase secret key rates and not necessarily for the security condition. There has been little formal 

consideration of the effectiveness of the decoy state security condition in detecting an adversary in published 

literature. Therefore, we provide an enumerated list of practical implementation considerations and operational 

configuration issues which merit further examination for the detection of an adversary using the decoy state protocol: 

1. Accuracy in signal and decoy state MPNs 
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2. Difference between signal and decoy state MPNs 

3. Ratio of signal, decoy, and vacuum occurrence percentages 

4. The impact of losses through the end-to-end quantum path 

5. Induced errors between Alice and Bob, including reference alignment, timing synchronization, and bias in 

photon detection 

6. Statistical confidence of decoy state security related parameters 

7. Monitoring of alternate decoy state security measurable parameters such as the ratio between 𝑄𝜇 and 𝑄𝜈 as 

suggested in [52] or 𝜂 for the signal and decoy state  

8. Trade space definition between system performance (i.e., secret key rate) and security posture (i.e., 

detectability of an eavesdropper) 

Lastly, we suggest conventional security practices such as operating from a known secure state and continuous 

monitoring be integrated into QKD system design and operation. For example, an independent characterization of 

channel losses, Bob’s internal losses, detector efficiency, and protocol efficiency can be used as an additional security 

check for validating and ensuring expected yields during calibration or re-calibration of QKD systems during 

initialization, operation, and periodic security checks. 

VI. CONCLUSIONS 

This paper provides a detailed discussion of a modeled decoy state enabled QKD system. We also demonstrate 

verification activities at the component level and sub-system, as well as, system-level validation proving the model’s 

correctness and applicability for further performance and security analysis. Lastly, based on our work modeling of a 

decoy state enabled QKD system, we bring attention to practical considerations for executing the decoy state protocol 

security condition, including design considerations and allowable tolerances. 

Future work includes studying the decoy state enabled QKD system’s ability to detect photon number specific 

attacks, accomplishing sensitivity analysis of operational parameters, conducting system-level performance 

characterization with respect to decoy state protocol security condition, and defining the security-performance trade 

space. 
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V. Journal Article II: Case Study: Applying Model-Based Systems Engineering to Quantum Key 

Distribution 

 

This article describes the Model-Based Systems Engineering (MBSE) Processes, Methods, and 

Tools (PMTs) used to design, implement, verify and validate a Decoy State Enabled Quantum Key 

Distribution (QKD) model. We present a review of MBSE PMTs and a high-level discussion of QKD 

theory and practical implementation vulnerabilities. This article presents the first application of MBSE to 

design and analyze decoy state enabled QKD systems. Department of Defense (DoD) Architecture 

Framework (DoDAF) viewpoints are used to capture and communicate key model design considerations. 

Use cases are employed to define behaviors which are refined into measureable requirements that are 

assessed during Verification and Validation. 

 This paper was submitted to IEEE Transactions on Systems, Man, and Cybernetics: Systems on 

February 24, 2015 and is currently awaiting review. 

 



 Initial Submission: 24 February 2015 

Version: 1.1 

71 

 

Developing a Decoy State Enabled Quantum Key Distribution System Model 

Abstract: Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of 

quantum mechanics to generate and distribute unconditionally secure cryptographic keys. This technology 

is suitable for use in applications where high levels of secrecy are required such as banking, government, 

and military environments. However, QKD technology is not well understood and practical 

implementations differ significantly from their theoretical design, which raises concerns about their use. 

In this paper, we use a Model-Based Systems Engineering (MBSE) approach to develop a QKD system 

model to study the impact of practical engineering limitations on system performance and security. 

Specifically, we detail the use of architectural products and use cases to identify, define, and analyze 

requirements for a decoy state enabled QKD system model. Using these requirements, we perform 

functional decomposition and implement a system-level model in a hardware-focused simulation. 

Additionally, we perform verification and validation activities to demonstrate the correctness and 

suitability of our model. Finally, the decoy state enabled QKD system model is demonstrated to 

successfully detect the photon number splitting attack. 

 

Key Words: Quantum Key Distribution, Modeling & Simulation, Model-Based System Engineering 
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I. INTRODUCTION 

Quantum Key Distribution (QKD) is an innovative technology which exploits the laws of quantum 

mechanics to generate and distribute unconditionally secure cryptographic keys. QKD is unique in its 

ability to detect the presence of an eavesdropper attempting to subvert the distribution of secret key 

material and is suitable for use in applications where high levels of secrecy are required such as banking, 

government, and military environments. However, QKD technology is not well understood and practical 

implementations differ significantly from their theoretical design due to the non-ideal components used to 

build real-world systems [1]. There is a critical need to understand the impact of practical engineering 

limitations and implementation non-idealities on system performance and security. 

 In this paper, we use a Model-Based Systems Engineering (MBSE) approach to develop a system-

level model to understand and study decoy state enabled QKD system implementations. An MBSE 

methodology is well suited to study the inherent complexities of QKD systems, as we seek to understand 

and study the impact of implementation non-idealities on system performance and security, and explore 

design and implementation variations across an assortment of hardware, software, and protocol 

configurations [2]. Furthermore, analysis of QKD systems requires expertise across multiple disciplines 

of expertise including electrical and computer engineering, computer science, information theory, optical 

communications, and quantum physics, which lends itself to the emerging MBSE methodology [3]. This 

research is focused on the use of MBSE to facilitate requirements definition, systems analysis, functional 

decomposition, protocol design, and testing activities in support of model development. 

 This article is organized as follows: Section II provides an overview of QKD theory and the decoy 

state protocol. Section III discusses the application of MBSE methodology to develop a decoy state QKD 

model using architectural framework products and use cases. In Section IV verification and validation 

(V&V) activities are presented to the correctness and suitability of our model. Finally, Section V presents 

conclusions and findings associate with our MBSE approach. This research is the first known application 

of MBSE to define and analyze a decoy state enabled QKD system. Appendix A contains the complete set 

of architectural artifacts created in this study. Appendix B provides a selection of use cases of primary 

interest for studying decoy state enabled QKD system. Lastly, Appendix C details the full set of 

requirements and associated V&V methods. 

II. BACKGROUND 

In this section, we provide a brief introduction to QKD including fundamental theory, unconditional 

security, practical implementation limitations, and the decoy state protocol. 

A. Quantum Key Distribution Theory 

The genesis of QKD can be traced back to Stephen Wiesner, who first developed the idea of encoding 

messages on photons in the late 1960s [4]. He proposed the idea of polarizing photons in conjugate bases 

to securely communicate information as quantum bits, called “qubits” [5]. In 1984, Charles Bennett and 

Gilles Brassard expanded this idea and proposed the first QKD protocol, known as “BB84”, to securely 

distribute cryptographic key between two parties [6]. 

Table 1 illustrates an example of the BB84 polarization-based prepare and measure QKD protocol, 

where the sender “Alice” prepares qubits in one of four polarization states, |↔⟩, |↕⟩, |⤢⟩, or |⤡⟩, 

according to a randomly selected basis (i.e., rectilinear “⊕” or diagonal “⊗”) and bit value (i.e., 0 or 1). 

These qubits are sent over a fiber optic “quantum channel” to the receiver “Bob” where they are measured 

using a randomly selected basis (i.e., ⊕ or ⊗) selected by Bob. In this manner, if Bob measures the 
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qubits in the same basis in which Alice prepared them, the encoded message is obtained with a high 

degree of accuracy. Alternatively, if he measures the qubits in opposite (i.e., conjugate) basis, a random 

result occurs as depicted by the grey cells in Table 1. This unique phenomenon is due to the fundamental 

properties of quantum mechanics where measuring single photons disturbs the quantum system [7]. This 

process of preparing, sending, and measuring qubits is known as “quantum exchange” and results in raw 

keys at both Alice and Bob.  

 

Table 1. Polarization-Based Prepare and Measure Example. 

The Sender “Alice” Prepares The Receiver “Bob” Measures 

Random 

Bit Value 

Random 

Basis 

Prepared 

Polarization State 

Random 

Basis 

Measured Bit 

Value 

0 ⊕ |↔⟩ ⊕ 0 

0 ⊕ |↔⟩ ⊗  Random 0 or 1 

1 ⊕ |↕⟩ ⊕ 1 

1 ⊕ |↕⟩ ⊗ Random 0 or 1 

0 ⊗ |⤡⟩ ⊕ Random 0 or 1 

0 ⊗ |⤡⟩ ⊗ 0 

1 ⊗ |⤢⟩ ⊕ Random 0 or 1 

1 ⊗ |⤢⟩ ⊗ 1 

 

Following successful quantum exchange, the raw keys are sifted to eliminate mismatched basis 

measurements. Sifting is accomplished by announcing basis information for each qubit over a 

conventional networked communication medium, i.e., a “classical channel” where only the bases are 

broadcast and not the encoded bit values. This results in a shared sifted key between Alice and Bob 

approximately half the length of the original raw key due to Bob’s random basis selection (i.e., ideally, 

50% rectilinear ⊕ and 50% diagonal ⊗). Next, error reconciliation is performed to correct errors in the 

sifted keys using specialized bi-directional error correction algorithms (e.g., Winnow, Cascade, or Low-

Density Parity-Check) [8].  

The error reconciled key is then subject to privacy amplification – an advanced information theory 

technique used to ensure an eavesdropper “Eve” has negligible information regarding the key [8]. This 

results in a smaller and more secure key. Finally, Alice and Bob confirm they have matching keys by 

comparing hashes of their respective keys. If the hashes match, the final secret key is delivered. The 

QKD-generated shared secret key can be used to increase the security of conventional symmetric 

encryption algorithms such as DES, 3DES, or AES through frequent re-keying. Alternatively, QKD-

generated key is often described as an enabler for the unbreakable One-Time Pad (OTP) encryption 

algorithm [9], [10].  More detailed descriptions of these processes are available in [1], [7], [8]. 

B. QKD’s Unconditional Security  

The security of QKD is based on quantum uncertainty, where directly measuring a qubit changes its 

quantum state [7]. A classical communication bit exists in a deterministic state of either 0 or 1 where it 

can be measured and re-measured as necessary without disturbing the state. In contrast, a qubit exists in a 

probabilistic superposition of states and cannot be successfully copied, cloned, or amplified without 

disturbing the originally encoded state [11]. Specifically, any measurement of the qubit will cause it to 

collapse into one of the measurement basis states. By preparing qubits in conjugate bases (i.e., ⊕ and ⊗) 

as prescribed in BB84, eavesdropping on the quantum channel necessarily increases the system’s 

Quantum Bit Error Rate (QBER) since the listener does not know Alice’s randomly selected basis. [12]. 

In QKD security proofs, all quantum bit errors are attributed to an eavesdropper, since the source of 

errors cannot be known [8]. If a defined QBER threshold is exceeded, the key generation process is 

aborted, as it is assumed an adversary is interfering with the quantum key exchange. Thus, by closely 
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monitoring the QBER, Alice and Bob are able to determine if an eavesdropper is listening to the key 

generation process.  QKD’s unconditional security claim is founded upon the system’s QBER as captured 

in formal proofs [12], [13]. 

C. Practical Implementation Limitations 

Despite unconditional security claims, real-world QKD systems are constructed from non-ideal 

components with practical engineering limitations which violate critical assumptions used in formal 

security proofs [14]. For example, perfect on-demand single photon sources are assumed to generate 

qubits. However, perfect on-demand single photon sources cannot be realized using current technology. 

Instead, classical laser sources are used to produce “strong” optical pulses (i.e., pulses with millions of 

photons), which are attenuated down to “weak coherent pulses” (i.e., pulses with a Mean Photon Number 

(MPN) of < 1 photon per pulse). These sub-quantum energy levels are probabilistically represented using 

the Poisson distribution 𝑃(𝑛|𝜇) =
𝜆𝑛𝑒−𝜇

𝑛!
, where 𝑛 is the number of photons in the pulse and 𝜇 = MPN. 

This means, for example, when the MPN = 0.1, 90.48% of the pulses have no photons, 9.05% have one 

photon, and 0.47% have two or more photons. 

While low MPNs attempt to retain the theoretical security requirements of QKD at the expense of the 

key generation rate, attenuated laser sources unavoidably result in multiphoton pulses, each of which 

exposes information about the secret key to a listening adversary. This multiphoton vulnerability has been 

subject of a number of attacks against QKD systems and specifically the Photon Number Splitting (PNS) 

attack [15], [16], [17], [18]. This attack allows an all-powerful eavesdropper, Eve to generate the same 

secret key as Alice and Bob without making her presence known to the authorized participants. In this 

attack, Eve blocks all single photons pulses and steals a photon from multi-photon pulses as they 

propagate through the quantum channel. In this attack, Eve can measure the stolen photon without 

affecting the pulse that propagates to Bob. 

D. The Decoy State Protocol 

In order to mitigate the PNS attack, the decoy state protocol was introduced in 2003 by Hwang [19] and 

further refined by Lo et. al [20]. Table 2 describes each of the three decoy state pulse types as suggested 

by Ma et. al [21], where each has a unique MPN and an accompanying occurrence percentage. In the 

decoy state protocol, signal, decoy, and vacuum pulses are randomly selected by Alice for transmission 

over the quantum channel, and their type is indistinguishable to eavesdroppers. Only during sifting is Bob 

made aware of the pulse type for his detections. While the signal states (i.e., pulses) are used for 

generating secret key, decoy states are used for detecting a PNS attack. Specifically, Alice and Bob 

compare photon yield and error rate statistics between the signal and decoy states to detect the presence of 

an adversary perpetrating a PNS attack. 

Table 2. Decoy State Protocol Configuration as Reported in [22]. 

State State Description MPN 

Occurrence 

Percentage 

Signal 
The signal state is used to transmit quantum pulses for generating shared 

secret key and facilitates higher key distribution rates through an 

increased MPN (e.g., an MPN of 0.6 is higher than 0.1) 

0.65 75% 

Decoy 
The decoy state increases the likelihood of detecting the PNS attack, 
specifically photon number dependent interference, on the quantum 

channel through statistical differentiation with the signal state. 

0.08 12.5% 

Vacuum 
The vacuum state is used to determine the detector dark count rate (i.e., 

noise) when no photons are present. 
~0 12.5% 
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 While the decoy state protocol has been proposed as a means to mitigate the PNS attack, it has not 

been well studied in realized QKD systems nor has the protocol been defined in a way which enables 

consistent and efficient implementation. As a consequence many design decisions are left to system 

developers without proper understanding of their impact on system performance and security. Given the 

complex, multi-disciplinary nature of QKD systems, we have chosen to employ an MBSE approach to 

design, build, and test a decoy state simulation-based QKD system model to further understand this 

increasingly popular attack mitigation technology. 

III. APPLICATION OF MODEL-BASED SYSTEMS ENGINEERING TO DEVELOP THE 

DECOY STATE ENABLED QKD SYSTEM MODEL 

MBSE is the application of modeling to systems engineering processes, methods, and tools [2]. MBSE 

provides an organized, repeatable, iterative, and convergent approach to understand, communicate and 

meet, user needs throughout the development of complex, interdisciplinary systems [23], [24]. More 

specifically, MBSE is a model-centric approach that supports requirements definition, system design, 

analysis, and V&V activities whose main deliverables are a model and supporting artifacts which 

facilitate shared understanding and clear communication amongst stakeholders [25]. As an emerging 

methodology, MBSE is being investigated as an effective tool for understanding increasingly complex 

systems [3], [26], [27], [28]. For these reasons, MBSE is well suited to study QKD systems.  

 In this work, we interpret a “model” as an abstraction for the purpose of studying a QKD system of 

interest [29]; this understanding is consistent with the wider interpretation of MBSE [2], [3]. Thus, we use 

Department of Defense Architectural Framework (DoDAF) products [30], use cases [31, 32, 33], [32], 

[33], and other tools as “models” to successfully understand, communicate, and meet user needs. Such 

architecture viewpoints may be used to capture characteristics of an existing, i.e., “As-Is”, system and 

those of a desired, i.e., “To-Be,” system. These systems engineering models provide requirements 

traceability and aid in the definition, decomposition, implementation, integration, and V&V to deliver the 

desired decoy state enabled QKD system model. Additionally, the desired model can itself be used as an 

MBSE tool to aid system developers and stakeholders in defining, communicating, and measuring system 

performance and security.  

A. Requirements Definition 

MBSE is a requirements-driven approach; as such our first step begins with capturing stakeholder needs. 

In general, our stakeholders are interested in studying realized QKD systems, where the impact of 

practical engineering limitations and non-idealities on system performance and security is not well 

understood [34]. More specifically, they are interested in characterizing the performance of the decoy 

state protocol in realized QKD systems. To further understand and clearly communicate this need, we 

developed a tailored concept of operations (CONOPS) captured in a user’s manual [35], [36], [37], [38]. 

In our CONOPS we focused on capturing scope and context, focusing on the system of interest’s 

activities, relevant actors, boundary, and operational environment(s).  

Fig. 1 illustrates the desired operational context, captured in a DoDAF Operational Viewpoint (OV-1) 

[39]. This figure provides a view of the QKD system which consists of Alice, Bob, Eve, a quantum 

channel, and a classical channel. Operating under normal conditions, Alice and Bob perform quantum 

exchange over the quantum channel, while the classical channel is used to facilitate the QKD protocol. 

The QKD system generates shared secret key, K, which is used by bulk encryptors to encrypt and decrypt 

message traffic (e.g., voice, data, video, etc.). During a PNS attack, Eve obtains the same shared secret 

key K as Alice and Bob and is then able to decrypt the encrypted communications. It is important to note 
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that Eve’s actions are not considered part of the QKD system of interest; however, she is necessary to 

validate stakeholder needs and verify decoy state protocol performance. 

  

Fig. 1. A decoy state enabled QKD system is shown with an eavesdropper “Eve” listening to the secret key generation between Alice and Bob. 

Eve is able to obtain the secret key K and read the encrypted message traffic. 

 Table 3 provides an initial set of system requirements defined from the specified user needs and 

desired system capability. The initial requirements focused on defining the fundamental behaviors 

necessary to model a decoy state enabled QKD system. Although discussed sequentially, we realize 

requirements definition is an ongoing process where increased understanding gained through design and 

decomposition processes will lead to further refined requirements. Thus, using the MBSE methodology, 

we attempted to refine this initial set into refined requirements which were correct, unambiguous, 

verifiable, and traceable [31].Additionally, we identified V&V methods for each requirement according to 

best practices [40]. The V&V methods will be discussed further in Section IV.  

Table 3. Initial Requirements. 

Requirement V&V Method 

1. The model shall employ the Bennett and Brassard 

(BB84) protocol [6] [7]. 
Demonstration 

2. The model shall extend the BB84 protocol with the 

decoy state protocol [19] [20] [21]. 

Inspection, 

Demonstration 

3. The model shall detect an eavesdropper performing 

a PNS attack on the quantum channel. 
Test 

4. The model shall represent commercially available 

components when available [34]. 

Inspection, 

Demonstration 

B. Protocol Design and Decomposition 

Once the initial requirements and the operational context were defined, we decomposed the BB84 and 

decoy state protocols into functional activities. Further, we integrated the BB84 protocol and decoy state 
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theory into a single protocol. We selected the DoDAF Operational Activity Decomposition Tree (OV-5a) 

[41] to facilitate this process and communicate our conceptual design amongst our stakeholders. 

Additionally, we selected the Systems Modeling Language (SysML) as an intuitive means to construct an 

accurate representation of our conceptual design [42].  

 Fig. 2 illustrates the resulting decoy state enabled BB84 protocol, where the first level of 

decomposition comprises seven operational activities. This decomposition is based on the logical 

integration of BB84’s established phases of operation [6], [7], published decoy state theory [20], [21], 

practical implementation considerations [34], [43] and Subject Matter Expert (SME) inputs.
1
 In the 

activity decomposition, BB84 activities are represented with tan blocks, while the decoy state activities 

are shown in green. The activities of interest in our model are: Exchange Quantum Bit, Generate Sifted 

Key, and Detect Eavesdropper. These activities are decomposed to the level of detail necessary to identify 

pertinent behaviors of interest for our study. 

 

Fig. 2.  Decoy State Enabled BB84 Activity Decomposition. Note the activities are named with a descriptive verb phrase in conformance with the 

System Model Language, and not the commonly accepted physics nomenclature. 

 In this protocol, Alice and Bob first authenticate their identities to each other. Additionally, 

transactional authentication may be accomplished after each main activity for extra assurance of the 

shared secret key [8]. Next, Exchange Quantum Bit (i.e., encoded pulses – see Table 1) occurs until Bob 

has enough raw key bits to begin sifting. Specific to the decoy state protocol, each pulse has a randomly 

selected state type (i.e., signal, decoy, vacuum) defined by its MPN. Generate Sifted Key removes 

mismatched detections from Alice and Bob’s raw key. Additionally, the decoy state protocol requires that 

                                                      
1
 Note: while the decoy state protocol addresses comparing signal and decoy state yields and error rates, we are only 

addressing yields in this protocol as an all-powerful Eve would not introduce errors. 
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the state type be announced and the Generate Sifted Key activity to be modified to account for the decoy 

and vacuum state types. The Detect Eavesdropper activity includes conventional BB84 activities to 

estimate and reconcile errors in the shared sifted keys and then checks for the PNS attack by comparing 

the calculated signal and decoy state yields.  

C. Model Development through Use Cases 

After identifying the activities and behaviors of interest, our model development effort transitioned to 

organizing, defining, and formalizing the relationships between associated protocol actors, behaviors, and 

resources to communicate the desired system capability into detailed use cases. This method also includes 

the identification of actors i.e., external entities that initiate actions, and the protocol boundary.  First, 

we identified the actors – external entities (i.e., Alice and Bob Protocol) that initiate actions in the decoy 

state enabled BB84 system model as depicted in Fig. 3. The SysML-compliant diagram, depicts nine use 

cases based on our identified activities and clearly illustrates the relationships between the actors, 

protocol boundary, and the identified use cases [42], [31]. 

 

Fig. 3. Decoy State Enabled BB84 Protocol Use Case Diagram.

 To develop our decoy state enabled QKD system model, we are primarily interested in defining the 

behaviors associated with the Exchange Quantum Bits…, Generate Sifted Key…, and Detect 

Eavesdropper use cases. We created tailored use cases based on [31], [32], [33] to focus on the desired 

functional behavior defined in a main sequence, applicable algorithms, design decisions, definitions, and 

outstanding questions/issues. Initially, we created the three uses cases of interest from published literature 

references, and then subjected them to review by SMEs to verify relevant behaviors. These uses cases are 

provided in their entirety in Appendix B and were used to develop derived requirements for the desired 

system model. 

 Since the Detect Eavesdropper use case is of primary interest to our model it is included in its 

entirety. This use case was selected because the primary purpose of the decoy state protocol is to detect an 

eavesdropper conducting the PNS attack. This example represents one possible implementation of the 

decoy state protocol. Note: for readability the terms “Alice” and “Bob” were typically used instead of 

“Alice Protocol” and “Bob Protocol.”   
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Detect Eavesdropper Use Case 

Summary: Alice and Bob calculate signal and decoy error rates, reconcile signal errors and attempt to detect an eavesdropper as well as detect 
a PNS attack. This step is unique to the decoy state enabled BB84 protocol and includes the Error Estimation and Error Reconciliation phases of 
BB84. 
 
Dependency: Includes Estimate QBER (BB84 – Error Estimation) and Reconciliation Signal Errors (BB84 – Error Reconciliation). 
 
Actor(s):  Alice Protocol (Alice) and Bob Protocol (Bob). 
 
Resources: System of interest. 
 
Pre-condition: Partner’s identities have been authenticated. Classical communication channel is established and authenticated. Calibration has 
occurred. Pre-established tolerances for the signal and decoy photon number dependent yield differences and a pre-established threshold for 
the estimated and actual signal and decoy QBERs are known. 
 
Post-condition: No eavesdropper has been detected performing a PNS attack and the protocol is ready to continue.  
 
Main sequence: 
1. <<Estimate Signal QBER>>. 
2. <<Reconcile Signal Errors>>. 
3. Alice checks whether the actual decoy QBER exceeds the actual decoy QBER threshold. 
4. Alice calculates and stores the measured gain by dividing the number of signal and decoy detections by the total number of signal and 

decoy pulses she sent to Bob. 

𝑆𝑖𝑔𝑛𝑎𝑙 𝐺𝑎𝑖𝑛, 𝑄𝜇 =
# 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑝𝑢𝑙𝑠𝑒𝑠 𝑠𝑒𝑛𝑡∗
   (1) 𝐷𝑒𝑐𝑜𝑦 𝐺𝑎𝑖𝑛, 𝑄𝜈 =

# 𝑜𝑓 𝑑𝑒𝑐𝑜𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑑𝑒𝑐𝑜𝑦 𝑝𝑢𝑙𝑠𝑒𝑠 𝑠𝑒𝑛𝑡∗
   (2) 

5. Alice uses the measured signal and decoy gains to calculate and store the end to end efficiencies, 𝜂𝑠𝑖𝑔𝑛𝑎𝑙, and 𝜂𝑑𝑒𝑐𝑜𝑦.  

 

𝜂𝑠𝑖𝑔𝑛𝑎𝑙 =
− ln|1 + 𝑌0 − 𝑄𝜇|

𝜇
   (3) 𝜂𝑑𝑒𝑐𝑜𝑦 =

− ln|1 + 𝑌0 − 𝑄𝜈|

𝜈
   (4) 

6. Alice uses the efficiencies to calculate and store the estimated 1-, 2-, 3-, 4-, and 5-photon yields for the signal and decoy states. The 
calculations for single (1-) photon yields, Y1,  are shown below: 

𝑠𝑖𝑔𝑛𝑎𝑙 𝑌1 ≅ 𝑌0 + [1 − (1 − 𝜂𝑠𝑖𝑔𝑛𝑎𝑙)
1
]   (5) 

 

𝑑𝑒𝑐𝑜𝑦 𝑌1 ≅ 𝑌0 + [1 − (1 − 𝜂𝑑𝑒𝑐𝑜𝑦)
1

]   (6) 

 
7. Alice compares the photon yield of the signal to the 1-, 2-, 3-, 4-, and 5-photon yield decoy states and stores the results. The difference is 

within a pre-established tolerance. The calculation for single (1-) photon yield estimate difference is:  
|𝑠𝑖𝑔𝑛𝑎𝑙 𝑌1 − 𝑑𝑒𝑐𝑜𝑦 𝑌1| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒1   (7) 

8. Alice does not detect a photon number splitting attack. 
 
Alternative sequence: 
7. Alice compares the single photon yield of the signal to the single photon yield decoy states. The difference is not within a pre-established 

tolerance. 
8. Alice detects a photon number splitting attack, records the deviation and displays a warning. 
 
Design Decisions: 

- Definitions [21]: 
o Yield =  the conditional probability of a detection event at Bob’s side given that Alice sends out a pulse 
o Gain = product of the probability of Alice sending out a pulse (following a Poisson distribution) and the conditional 

probability that Alice’s pulse (and background) will cause a detection at Bob 
- Integrated Decoy State Error Test into this use case because it became a trivial (one line) use case. 
- *That is, the number of pulses sent in the time frame during which Bob is ready to detect photons. 
- The idea of tolerance is consistent with the notion that Alice and Bob must know their channel well [20]. 
- For simulation and certain analytical studies it is better to warn a user of a difference exceeding a tolerance rather than terminating 

the simulation. Strict termination would prevent data capture. 
 
Outstanding questions/issues: 

- NOTE: End to end efficiency is related to, protocol (e.g., 80% of signal states), channel (0.2 db/km), Bob’s internal loss (2-5dB), and 
detector efficiency (10%) and dark counts. 

- How could calibrated end-to-end efficiencies be employed in Step 5? 
- When 2-photon, 3-photon, 4-photon, or n-photon yields are desired for comparison, the tolerance and difference for the n-photon 

yield must be calculated. For example: 
  

𝑠𝑖𝑔𝑛𝑎𝑙 𝑌𝑛 ≅ 𝑌0 + [1 − (1 − 𝜂𝑠𝑖𝑔𝑛𝑎𝑙)
𝑛

]   (8) |𝑠𝑖𝑔𝑛𝑎𝑙 𝑌𝑛 − 𝑑𝑒𝑐𝑜𝑦 𝑌𝑛| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒𝑛   (9) 
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Defining the decoy state specific use cases resulted in a total of 108 functional and derived 
requirements available in Appendix C. At the time of definition one or more V&V methods were assigned 
to each requirement and were traceable through use cases during implementation. Identifying the 
verification method for these requirements at the time of their creation enabled the smooth application of 
V&V during incremental design-build-test cycles. 

 Table 4 illustrates traceability between requirements, the Detect Eavesdropper use case, and 
corresponding V&V method for a subset of derived requirements. Each requirement was written to 
conform to the quality attributes defined by [31]. These enumerated requirements are vital to the decoy 
state enabled QKD system model. 

 
Table 4. Traceability Matrix for Decoy State Specific Requirements. 

REQ # Description Use Case Reference(s) V&V Method 

2.1.5 
Alice shall calculate and store the gain of 

the signal state qubits. 
Detect Eavesdropper, Step 4 Demonstrate 

2.1.6 
Alice shall calculate and store the gain of 
the decoy state qubits. 

Detect Eavesdropper, Step 4 Demonstrate 

2.1.7 
Alice shall calculate and store the end-to-

end signal efficiency. 
Detect Eavesdropper, Step 5 Demonstrate 

2.1.8 
Alice shall calculate and store the end-to-
end decoy efficiency. 

Detect Eavesdropper, Step 5 Demonstrate 

2.1.9 
Alice shall calculate and store the yield of 
the 1-photon signal pulses, i.e., the 1-photon 

signal yield. 

Detect Eavesdropper, Step 6 Demonstrate 

2.1.10 

Alice shall calculate and store the yield of 

the 2-photon signal pulses, i.e., the 2-photon 

signal yield. 

Detect Eavesdropper, Step 6 Demonstrate 

2.1.14 

Alice shall calculate and store the yield of 

the 1-photon decoy pulses, i.e., the 1-photon 

decoy yield. 

Detect Eavesdropper, Step 6 Demonstrate 

2.1.15 

Alice shall calculate and store the yield of 

the 2-photon decoy pulses, i.e., the 2-photon 

decoy yield. 

Detect Eavesdropper, Step 6 Demonstrate 

2.1.19 
Alice shall calculate and store the difference 
of the 1-photon signal yield and the 1-

photon decoy yield. 

Detect Eavesdropper, Step 7 Demonstrate 

2.1.20 
Alice shall calculate and store the difference 
of the 2-photon signal yield and the 2-

photon decoy yield. 

Detect Eavesdropper, Step 7 Demonstrate 

3.1.1 

The model shall detect an eavesdropper 

performing a photon number splitting 
(PNS) attack on the quantum channel by 

verifying that the difference of the 1-photon 

signal and decoy yield estimates is less than 
0.00202 photons/pulse sent 

Detect Eavesdropper, Step 7 Test 

3.1.2 

The model shall detect an eavesdropper 

performing a photon number splitting 
(PNS) attack on the quantum channel by 

verifying that the difference of the 2-photon 

signal and decoy yield estimates is less than 
0.00399 photons/pulse sent 

Detect Eavesdropper, Step 7 Test 

 

The culmination of this design effort resulted in the conceptual QKD system model shown in Fig. 4. In 
the model, Alice and Bob contain a processor, which controls the protocol activities, and a Quantum 
Module (QM) which controls and executes the activities related to the exchange of quantum bits. Alice’s 
quantum module contains a controller, which coordinates activities in the QM, a Classical Pulse Generator 
which generates the strong laser pulses, a Polarization Modulator, which adjusts the pulse polarization to 
encode basis and bit selections prepared by Alice, and a Decoy State Modulator which attenuates the 
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pulses to the specified signal, decoy, or vacuum MPN. Bob’s QM consists of complementary components 
to measure a random basis, via the Passive Basis Selector, and the bit values, via Single Photon Detectors. 

 In this conceptual model, the operational activities identified in Fig. 2, are allocated to each 
component and identified by number in Fig. 4; the decoy state protocol specific activities are underlined. In 
general, the electrical connections between components are shown as black bi-directional arrows and 
optical connections are shown in red. The classical channel is the only exception as it may be implemented 
across either electrical signal-based Ethernet or optical signal-based fiber cable. 

 

 
Fig. 4. Conceptual QKD Model and Components Mapped to Operational Activities 

 

IV. VERIFICATION AND VALIDATION METHODOLOGY 

Section III details the processes, methods, and tool used to define the detailed system design, leading to 

model implementation. Specifically, we used the functional decomposition to guide the design of the 

model and the use cases to capture the necessary system behaviors (i.e., akin to derived requirements). 

Furthermore, the use cases were treated as specifications for both implementation and V&V. In this 

section, V&V activities used to the correctness and suitability of our model are described. 

A. Verification and Validation Traceability 

Verification is a systems engineering process which confirms the system was built correctly, i.e., the 

system satisfies requirements [44], [45], [38]. In contrast, validation confirms the correct system was built 

or will be built [40]; modeling enables the “will be built” aspect of this concept [46], [47], [48], [29]. 

Traditionally, four methods are used to accomplish V&V: inspection, demonstration, testing, and analysis 

[40]. Inspection of the model was accomplished by comparing design artifacts to the model 

implementation, performing code review, and examining configuration files. Additionally we employed 

peer programming during the final stage of model development as an inspection tool. Demonstration 

typically involved the operation of the system model e.g., running an instance of the simulation. Testing 

assessed system conformance through controlled conditions and involved the utilization of scientific 

principles and procedures. Analysis applied analytical methods and tools, such as experimental design, to 
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formally evaluate the system’s compliance to stated requirements. V&V processes were performed 

incrementally throughout model development with increasing levels of detail. 

B. Verification and Validation Results 

First, we validated the system model against the experimental system reported in Field Test of a Practical 

Secure Communication Network with Decoy-State Quantum Cryptography by [22]. As practical QKD 

systems are dependent upon dozens of operational and implementation details (i.e., calibration of the 

quantum channel, programming of controllers, device imperfections, and the changing operational 

environment), we merely attempt to demonstrate sufficient accuracy for the intended purpose of studying 

the ability to detect Eve performing a PNS attack. This set of treatments resulted in a mean signal gain of 

7.63E-3 which is reasonably close to the reported signal gain of 6.36E-3 (i.e., within the same order of 

magnitude).  

 Second, we defined photon number dependent yield tolerances to identify the PNS attack. Based on 

variance in the simulation, we determined 1000 simulations would be required to capture the upper bound 

of the tolerance [49]. Since the 2-, 3-, 4-, 5- photon yield difference share the same calculation 

dependencies, i.e. Eq. (3) and (4), as the 1-photon yield, we only performed this method for the once. 

After the simulations were performed, we found the tolerances for the photon number dependent yields as 

shown in Table 5. 

Table 5. Photon Number Dependent Yield Tolerances 

Photon Number Yield Implemented 

Tolerance 

Y1 0.00202 

Y2 0.00399 

Y3 0.00592 

Y4 0.00780 

Y5 0.00965 

 

 Next, the primary objective of the decoy state model is to detect a PNS attack; thus we designed an 

experiment to assess the model’s ability to detect the PNS attack. Fig. 5a presents results from the 

experiment where unequal signal and decoy state yield estimates are shown indicating the PNS attack is 

detectable. Each pair of boxplots (Baseline and PNS) according to the photon number dependent yields 

(Y1, Y2, Y3, Y4, Y5) is shown with a clear difference between the Baseline and PNS results from 100 

runs of the simulation. The differences increase as the photon number increases due to the power 

relationship as defined in the photon number dependent yield calculation identified in Detect 

Eavesdropper use case step 6. Specifically, as the photon number, n, increases, the quantity inside the 

parentheses is raised to the power of n as:  𝑠𝑖𝑔𝑛𝑎𝑙 𝑌𝑛 ≅ 𝑌0 + [1 − (1 − 𝜂𝑠𝑖𝑔𝑛𝑎𝑙)
𝑛

] 

During the baseline treatments, this causes both the signal and decoy yields to grow proportionally as 

the photon number increases resulting in a boxplot which appears to grow outward from a mean. In 

contrast, this difference becomes unbalanced during the PNS attack due to the difference in MPNs of the 

signal and decoy states, i.e. Eve will block more of the decoy state pulses which affects the decoy state 

yields more adversely due to its lower MPN.  This means the signal state yields increase while the decoy 

state yields remain low resulting in a growing difference as shown in Fig. 5a. 

 Fig. 5b presents detailed simulation results for the Baseline and PNS configurations for the single 

photon yields, Y1. Black and green points depict similar performance during normal operations (i.e., 

without Eve), whereas red and blue illustrate the difference of yields during Eve’s PNS attack. Again the 

difference between the Baseline and PNS results is apparent: the green and black Baseline points are 

approximately equal to each other, whereas the red and blue PNS points are clearly different.  
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Fig. 5a. Signal and Decoy Photon Number Dependent Yield Differences. 

 

 
Fig. 5b. Single Photon Yield Observations (Signal and Decoy states) 

for a clean and dirty version. 

 

In this figure, the green and red decoy Y1 yields appear to vary more than the black and blue signal 

Y1 yields. As illustrated by the Detect Eavesdropper use case, the decoy yield calculations originate from 

the measured number of decoy detections. This was found to be the source of the apparent variance due to 

the lower occurrence percentage and lower MPN (refer to Table 2) resulting in significantly fewer decoy 

detections than signal detections.  Specifically, the mean number of decoy detections was approximately 

1071 with a variance of 978 and the mean number of signal detections was 48,808 with a variance of 

1081. While the actual variance in the number of detections is similar, the smaller mean number decoy 

detections makes the variance proportionally larger. Overall, these results provide convincing evidence to 

verify the decoy state enabled QKD system model was implemented correctly. 

V. CONCLUSION 

In this paper we examined the use of a MBSE methodology to perform requirements definition, 

activity decomposition, system design and analysis, model verification, and validation activities to 

develop a decoy state enabled QKD simulation study. We explored the use of DoDAF Viewpoints, use 

cases, and other tools to support development of our system-level model. We demonstrated that our decoy 

state enabled QKD system model was able to match experimental results, when compared to an empirical 

signal gain value identified in the literature. The analysis was used to develop evidence of the 

effectiveness of the decoy state enabled BB84 protocol to detect a PNS attack and enables further 

parameter studies of decoy state enabled QKD systems. This research is the first known application of 

MBSE to define and analyze a decoy state enabled QKD system 

The results of the research highlight the value of using MBSE products, tailored for our specific 

stakeholder needs, to conduct analysis of complex systems and facilitate communication amongst 

stakeholders. Specifically we observed the following benefits: 

- MBSE artifacts clarified understanding and communication of this capabilities and physical 

phenomena of this complex system. For example, the employment of use cases increased the 

team’s understanding of the decoy state protocol and helped identify dependencies between 

phases. These artifacts improved communication of design decisions compared the processes and 

methods used in our early work. 
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- We found that functionally decomposing and analyzing the protocol effectively guided model 

design and facilitated shared understanding of the new decoy state enabled BB84 protocol 

amongst distributed team members across multiple domains of expertise. Additionally, we 

observed how the functional and activity decomposition supported a seamless transition into 

behavior modeling and algorithm implementation. 

- Furthermore, the requirements-driven approach provided traceability between early and late 

phases of the study which permitted incremental verification and shaped the experimental design 

supporting both system verification and validation. Using SE tools to capture requirements, 

design decisions, and identify verification methods greatly streamlined this process.  

 

While there were significant benefits to using this approach, we also encountered a few minor issues: 

- The first issue arose while decomposing the BB84 and decoy state protocols. As discussed, the 

OV-5a is an activity oriented model in which the activities are defined by verb phrases. This 

caused some concern amongst team members who were accustomed to referring to the activities 

as gerunds, e.g., Sifting (gerund) vs. Generate Sifted Key (verb phrase) and Quantum Exchange 

(gerund) vs. Exchange Quantum Bit (verb phrase).  

- Additionally, we stumbled somewhat while defining subsystem actors due to the propensity of 

actors to be human. As noted, we settled on identifying the protocol as the actor. However, this 

affinity for actors to remain human is noted in the use cases where the Alice Protocol and Bob 

Protocols actor names are shortened to Alice and Bob.  

- Furthermore, we discovered that balancing diagram complexity and clear communication of ideas 

was an art. For example, system level use case diagrams contain much information but are 

difficult to read. We found that breaking this diagram into smaller pieces which focused on a 

particular area was beneficial. The additional use case diagrams can be found in Appendix B. 

Despite these minor issues, the benefits of the MBSE approach paid great dividends in our research. 

Future research may include accomplishing sensitivity analysis by manipulating control variables as 

well as adding variability to the decoy state enabled QKD system model to further define the security-

performance trade space. 
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VI. Additional Results and Analyses 

Overview 

The purpose of this chapter is to capture all research products and analyses not fully elaborated 

in the journal papers presented in Chapters IV and V. Specifically, this chapter provides insight into the 

modeling development process, introduces DoDAF viewpoints and use cases created during the 

research. Lastly, this chapter presents additional significant implementation findings and experimental 

results related to experimentation. 

Model Development Process 

Figure 15 shows a portion of the model development process presented in Figure 14. In this 

research, steps 1 (Problem formulation) and 2 (Setting of objectives and overall project plan), were 

accomplished by the identification of the research goal, objective, and questions in Chapter I and the 

methodology described in Chapter III. The initial conceptual model, model translation and data 

collection steps 3-5, were detailed in the modeling decoy state protocol journal article in Chapter IV. 

Model translation is described in the following sections which briefly discuss two approaches to model 

translation.  
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Figure 15. Partial Reproduction of Model Development Process (Chapter III, Figure 14). 

Approach #1 – “From Scratch” 

Initially, building a system model “from scratch” was considered as a method of fully 

exercising the Model Development Process. Conceptually, the plan was to use existing optical 

component modules as well as create new controllers to direct the protocol. In this design, Alice would 

employ existing components including a laser, an attenuation mechanism, and controllers (to include 

timing regulation), while Bob would be constructed from existing detectors and require implementation 

of new controlling and timing components. Alice and Bob could be connected using existing quantum 

and public channels. 

Through discussion with the sponsor and team members, the author discovered this approach 

would not take advantage of the existing reference model architecture. In a sense, the author would 

need to “reinvent the wheel” in order to recreate the control logic already implemented in the existing 

model. Additionally, this approach was arguably inconsistent with the sponsor’s desire to have a 

flexible and reusable system model. In a sense, the sponsor’s system requirement, i.e. reuse, would not 

have been met. Furthermore, this approach would effectively ignore the lessons learned which resulted 

from the initial design. Neither of these effects is consistent with a sound MBSE approach.  

The resulting conclusion was to develop a system model that reuses existing optical and control 

components and only make modifications where required i.e., the capabilities of the decoy state enabled 

QKD system (or sponsor) required it. Approach #2 outlines the design decisions made to shape the final 

model. 

Approach #2 – “Maximum Reuse” 

After determining that building the model from scratch would be less efficient, the author 

adopted a modeling approach promoting the maximum reuse of existing optical, timing, and controlling 
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components. The existing work included a toolkit of hardware component modules and a notional 

architecture that was designed to explore the behavior of non-ideal QKD systems. In this notional 

architecture, the BB84 protocol was implemented and work had begun to implement decoy states. 

Additionally, the framework components had been verified and the notional architecture itself had been 

validated in support of other research efforts. More specifically, the notional architecture was able to 

randomly select, prepare and measure signal, decoy and vacuum state pulses [96, 81, 95]. Thus, the 

research could focus on defining, designing and implementing the decoy state protocol without starting 

from scratch. 

DoDAF Viewpoint Artifacts 

In addition to the OV-1, OV-5a, and SV-1 artifacts discussed in Chapter V, the DoDAF 

Operational Activity Model (OV-5b) facilitated understanding of the “As-Is” state of the notional 

architecture. The OV-5a and OV-5b Viewpoints are designed to decompose activities that are necessary 

to perform mission level activities [97]; in this study, the author tailored the use of these products and 

defined the mission as the execution of the BB84 protocol. In order to define the “As-Is” state, OV-5b 

level 0 and OV-5b level 1 diagrams were created to describe the BB84 protocol and were based on 

previous work by the research team [98]. 

The two levels of OV-5b were created to capture both high and low levels of detail in the 

activity model. The rationale behind creating the OV-5b Level 0 and OV-5b Level 1 was to experiment 

with the amount of information that could be effectively communicated in each level as described 

below. Additionally, levels of detail are consistent with the tailorable philosophy of employing MBSE 

and SysML [33, 54].  

The OV-5b level 0 is provided as Figure 16. The eight phases identified in the OV-5a are now 

linked together to show the progression of activities or the activity flow. Activity flows are indicated by 

the dashed lines which terminate with an arrow on one side. The arrow indicates which activity will be 
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completed next. The labels on these activity flows indicate what information is passed between 

activities. Finally, the diamonds indicate that a decision point has been reached.  

The activities in Figure 16 contain both the BB84 verb phrase, which conforms to UML 

guidance, and the gerund-based phrases typically associated with QKD systems. This was an effort 

made by the researcher to provide clarity to the research team stakeholders rather than strictly adhere to 

UML standards, which is consistent with the tailorable nature of MBSE [33]. 

 

Figure 16. BB84 Operational Activity Model - OV-5b Level 0. 

The OV-5b level 1 contains substantially more detail than the OV-5b Level 0 and provides 

designated areas of responsibility through the use of “swim lanes.”  Swim lanes are shown in this series 
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of OV-5b diagrams to indicate which activities are the responsibilities of Alice or Bob. Alice’s swim 

lane is colored in blue and Bob’s swim lane is orange.  

Activities that require action from both Alice and Bob are placed on the line which separates 

Alice and Bob’s swim lanes. The jagged or zig-zag nature of the activity flows crossing between 

Alice’s and Bob’s swim lanes are intended to highlight that flow involves communication between both 

Alice and Bob. Figure 17 and Figure 18 depict the OV-5b broken into two parts. 
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After the creation of the OV-5a pair of diagrams, the use case development work began. Still, 

the “As-Is” OV-5b were painstakingly created to support a presentation at the INCOSE Great Lakes 

Regional Conference in October 2014 [99]. However these products were difficult to visualize outside 

of the tool in which they were created. Additionally, the use cases were found to capture and 

communicate more information, e.g., captured algorithms and equations, than the OV-5b’s and 

provided a more readable format. For these reasons, “To-Be” versions of the OV-5b Operational 

Activity Model were not created. 

Use Cases Development 

The research employed the use case approach to capture additional details of the “As-Is” 

activities in the notional architecture as well as clarify capability gaps, and refine essential details of the 

desired decoy state enabled QKD system. Detailing the “As-Is” architecture enabled a smooth transition 

to design and implement the “To-Be” model. The use case modeling effort solidified and combined the 

knowledge gained from the identification of operational activities as well as knowledge gained from 

reviewing the existing code from the notional architecture.  
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Table 3 shows the use case template used to define the studied use cases. As noted in Chapter 

II, this template was a combination of Gomaa’s and RUP-based templates [12, 66, 67]. Additionally, 

the research sponsor requested that information known by Alice and Bob should be capture in the pre-

conditions and post-conditions.  
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Table 3. Use Case Template [12, 66, 67]. 

Use case name: Clearly identify the purpose of the use case and typically begins with a verb. 

Summary: Terse description of the use case. 

Dependency: Identify <<Includes>> or <<Extends>> relationships of the use case. 

Actor(s): Identify the actors associated with the use case. 

Resources: Identify applicable resources required by the use case. 

Pre-condition: Explain or identify the conditions that must be met before the use can begin. 

Post-condition: Explain or identify the conditions that will normally exist at the end of the use case. 

Main sequence: Typical sequence of events that define the use case. 

Alternative sequence: Alternative or exception events that deviate from the main sequence. 

Design Decisions: Capture relevant decisions that affected the use case design. 

Outstanding questions/issues: Identify or explain issues that remain after the design/definition of the 

use case. 

 

Figure 19 is the complete use case diagram depicting the all the relevant actors, system and 

subsystem boundaries, and all use cases. The red rectangle denotes the QKD system boundary whereas 

the purple rectangle outlines the system of interest’s boundary. Actors on the left side of the diagram 

are human actors and actors on the right are defined by the protocol. Use cases are identified by the 

bubbles. Blue designates use cases that are exclusive to the standard BB84 protocol and orange is used 

for use cases that are exclusive to the Decoy State Enabled BB84 protocol. Green identifies use cases 

which are shared by both protocols. Due to the complexity of this figure, pertinent elements are 

examined separately in Figures 20-22. From Figure 19, the reader should merely identify the system 

boundaries and actors. 
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Figure 19. Complete QKD Use Case Diagram. 

Figure 20 displays the human actor relationship between the use cases and the actors. From this 

diagram, observe that both the human actor versions of Alice and Bob belong to both Secret Key Users 

and Human actor types. Additionally, one should observe that their only interaction with the QKD 

System is through the Request Secret Key use case which supports both the standard and decoy state 

enabled BB84 protocol. This is possible because the Request Secret Key use case is extended by the 

Perform Decoy State Enabled BB84 (shown) and Perform BB84 (not shown) use cases. The Perform 

BB84 use case and the remaining standard BB84 use cases are displayed in Figure 21.  



AFIT-ENV-MS-15-M-181 

97 
 

 

Figure 20. Left Side of QKD Use Case Diagram. 

 

Figure 21. Use Case Diagram BB84 Exclusive Use Cases. 
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The use case diagram shown in Figure 22 captured and focused the remaining details required 

to organize the use cases for the decoy state protocol. While the color scheme remains the same as in 

the previous diagrams, the protocol actors have switched sides and the use case bubbles have been 

organized to illustrate those which are necessary to execute the decoy state protocol. In this diagram, 

one can clearly identify the relationships between the actors and uses cases. Combined with the inset 

SV-1 at the top left, this diagram communicates the intended boundaries for the system of interest. 

 

Figure 22. Use Case Diagram with SV-1 - Decoy State Enabled BB84. 

From the complete set of DoDAF Viewpoints and use case artifacts created, a set of behaviors, 

calculations, formulas, and measures of performance, and requirements were defined, analyzed, and 

thoroughly documented. The fully dressed use cases, which include the calculations and formulas, are 
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included in Appendix C. Decoy State Enabled QKD System Use Cases and Appendix D. Other BB84 

Use Cases. The refined requirements are included in Appendix F: Requirements. This set of products 

was sufficient for the researcher to begin implementing the decoy state protocol which began a new 

iteration of Model translation step in the Model Development Process. 

Implementation Findings 

This section discusses noteworthy findings and lessons learned during model implementation. 

The first is related to design decisions regarding the protocol and the second pertains to complexities 

involving timing synchronization in the QKD system model.  

Protocol Design Decisions 

Configuring the model to meet the protocol specifications involved implementing the steps 

outlined in the use cases found in Appendix C. Decoy State Enabled QKD System Use Cases. The gap 

between the conceptual protocol definition and the desired model provided many opportunities for 

design and implementation decisions. Examples include tradeoff between software design patterns, 

network traffic efficiency, and others simply involved strengthening previous decisions to make Alice 

fulfill a leader role and Bob fulfill the role of the follower. Typically these design tradeoffs were 

captured in the previously mentioned use cases, while implementation decisions were captured in 

software documentation.  

A noteworthy example of the tradeoff between competing software engineering design 

principles occurred during the implementation of the sifting phase. Specifically, inheritance and 

polymorphism were considered against simply modifying the existing code for the sifting process. 

Whereas the former option provides potential for future code reuse, it would require additional redesign 

of the working sifting process. As there was no planned future requirement to reuse this section of the 

code, a simple direct modification of the pertinent sections was the consensus answer from the team. 
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Thus the sections of code involved in sifting were changed to conform to the sequence described in the 

use case. 

Timing Synchronization 

One of the most critical and challenging aspects of designing and implementing the system 

model involved timing synchronization. Moreover, Alice and Bob exhibit both synchronous and 

asynchronous behaviors during the quantum exchange phase. During the measurement portion of the 

quantum exchange phase, Bob relies on both accurate and precise timing to detect weak coherent pulses 

and thus correctly measure encoded bit values. Specifically, Bob must know when to expect a pulse 

(accuracy) and his detectors must be ready, i.e., gated, within 10s of picoseconds (precision) prior to the 

pulse’s arrival. Furthermore, gating or the gating period is the time period during which Bob’s SPDs are 

ready and able to detect a weak coherent pulse. Gating is performed to reduce noise (and therefore 

errors) at Bob’s SPDs [81]. As a complementary pair of participants, Alice must ensure to carefully 

prepare and order the timing of weak coherent pulses in order for Bob make correct measurements.  

This ordering of pulses is facilitated by defining an optical pulse frame to which Alice and Bob 

agree to adhere as shown in Figure 23, which illustrates how the optical pulse frame was conceptualized 

for implementation in the model. Using this approach, the number of weak coherent pulses in a frame, 

the duration of the pulses, the down time between pulses, and the time between frames must be defined. 

The use of a timing (or bright) pulse at the beginning of each frame allows Bob to identify and gate his 

SPDs for the arrival of trailing WCPs. Thus Bob can schedule all of the gating periods for a particular 

frame by knowing this information. Moreover, by breaking up the quantum exchange phase into optical 

pulse frames, Alice and Bob are able to ensure synchronization for the duration of the quantum 

exchange. Therefore, Alice and Bob have a practical method for controlling (and securing) the timing 

synchronization which is used for preparing and measuring weak coherent pulses.  



AFIT-ENV-MS-15-M-181 

101 
 

 

Figure 23. Pulse Frame Definition. 

In the original implementation, all of the timing information was hardcoded into the model and 

thus inflexible in terms of an easily reconfigurable model or exploiting the capabilities of OMNeT++ to 

configure simulation parameters. The author seized the opportunity to increase the flexibility of the 

model, by converting these timing values into configurable parameters via OMNeT++ NED files. While 

seemingly simplistic, this change required weeks of work to understand 100s of lines of code and 

perform reverse engineering of the antiquated timing structure. This change further enables a flexible 

subsystem implementation capability. Specifically this means that configuration of the compound 

modules, such as the quantum module in Alice or Bob, can be configured using parameters that do not 

need to be fixed prior to the simulation’s compile time. Thus, multiple experiments and trials can be 

configured and executed with relative ease. This change also enables the research team to further study 

timing related issues such as SPD recovery times, gating periods, and fast gating [81, 100]. 

In order to maintain a flexible and realistic design, Alice and Bob must adhere to the optical 

pulse frame and account for their internal optical path timing delays. They should not be required to 

know any information about the other’s timing delay. However, the original implementation required 

Bob to have knowledge about the timing delays that were internal to Alice in order to correctly detect 

weak coherent pulses and measure bit values. Specifically, Bob had to know the difference between the 

arrival times of a timing pulse and a weak coherent pulse at Alice’s Output Power Monitor. This 
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condition is inconsistent with the previously mentioned goal and is an unrealistic expectation for 

practical QKD systems. In terms of system realism, it is more practical for Alice and Bob to conform to 

a standard rather than to rely on having intimate knowledge of each other’s internal delays or 

configuration.  

To illustrate the issue, Figure 24 depicts the path that optical pulses follow inside of Alice’s 

Quantum Module. The top half of the figure contains the quantum module, its compound modules and 

the connections between them. Fiber optical paths are red and electrical paths are black. The Classical 

Pulse Generator (CPG), the Pulse Modulator (PM), the Decoy State Generator (DSG), the Optical 

Security Layer (OSL), the Timing Pulse Generator (TPG), and the Output Power Monitor (OPM) are all 

modules through which pulses propagate. The lower half of the figure contains exploded views of the 

internal components and connections in the CPG (left) and the TPG (right). All optical connections are 

bi-directional, yet, in general, optical pulses travel from devices on the left through devices on the right. 

Pulses traveling from the OSL to the TPG only pass through the TPG’s wave division multiplexor 

(WDM).  

Pulses generated by the laser in the CPG propagate through multiple optical components, each 

with a unique propagation delay before reaching the OPM. Timing Pulses, on the other hand, are 

generated by the TPG’s laser and follow a considerably shorter path before reaching the OPM. In order 

for the pulses to conform to the pulse frame specifications, Alice must know the time difference of 

arrival of the timing pulse and a weak coherent pulse at the TPG’s Wave Division Multiplexor (WDM). 

That is, Alice must know the minimum amount of time that will pass from the timing pulse’s and a 

weak coherent pulse’s arrival at the OPM. This difference is proportional to the propagation delays of 

each optical component (including fiber) connect between the laser in the CPG and the TPG’s WDM.  
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Figure 24. Alice's Quantum Module and Connections. 

Similarly, Figure 25 depicts the optical path inside of Bob’s Quantum Module. The left side of 

the figure contains the quantum module, its modules and the connections between them where optical 

connections are designated in red and electrical connections in black. Optical pulses enter the quantum 

module and pass through the Input Stage and the Polarization Adjustment module, before being split by 

another WDM to the Polarization Detector (PD) or the Timing Analyzer (TA). Timing pulses are 

identified by wavelength and are routed to the TA’s classical detector. The classical detector sends a 

message to the timing analyzer controller which then schedules gating periods. Weak coherent pulses 

are routed to the polarization detector which performs passive basis selection and send the pulse to the 

appropriate SPD which enables Bob to properly decode and measure the encoded bit values. The right 

side of the figure contains an exploded view of the PD (top right) and TA (bottom right).  
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Figure 25. Bob's Quantum Module and Connections. 

In order to conform to the optical frame specifications, Bob must know the time difference of 

arrival between a pulse at the TA’s classical detector (CD) and a pulse at the spdHorizontal (or 

spdVertical). Additionally, Bob must also know the time difference of arrival between a pulse at the 

spdHorizontal (or spdVertical) and a pulse at the spdAntiDiag (or spdDiagonal). As discussed 

concerning the initial implementation, Bob was also required to have knowledge of the timing 

difference in Alice’s Quantum Module. 

Figure 26 illustrates the undesirable coupling of these timing parameters between Alice and 

Bob. Specifically it shows how timing parameters from Alice’s Quantum Module (left) were used in the 
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Bob’s Timing Analyzer (right). The parameters of interest are circumscribed by a red box, where the 

left side of the figure shows Alice’s timing parameters defined in her Quantum Module NED file. The 

arrows pointing to the right side of the figure show where these parameters are used in the Bob’s 

implementation of the Timing Analyzer. 

 

Figure 26. Alice's Quantum Module Timing Parameters in Bob's Timing Analyzer Code. 

Experimentation 

Two experiments were planned and executed through the course of the research study. In each 

case, the experiment was shaped by operational parameters extracted from the research and systems 

reviewed in Chapters II and IV. The author designed and submitted the first experiment, known as the 

Beam Splitter Experiment, as a project for a course taken at the AFIT. Refer to Appendix A. Beam 

Splitter Experiment (BSE) for details. The second experiment, known as the Decoy State Enabled QKD 

Experiment, verified the performance of the decoy state enabled QKD model and attempted to validate 
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it by comparing it to an operational system. The majority of the PNS Attack Experiment results are 

captured in Chapter V. Results from Beam Splitter Experiment that were not captured previously are 

discussed in the next section. Likewise, supplement results from the Decoy State Enabled QKD 

Experiment follow that discussion. 

Supplement Beam Splitter Experiment Results and Findings 

The process and results of the initial beam splitter experiment solidified understanding of the 

decoy state protocol for the research team, performed verification of the subsystem, validation of the 

notional architecture, and taught the author how to efficiently conduct larger experiments than had been 

accomplished using the notional architecture. The results related to V&V were captured in the modeling 

decoy state protocol journal article in Chapter IV. The results related to understanding the decoy state 

protocol are examined next and are followed by the discussion of efficiently conducting large 

experiments. 

Understanding the Decoy State Protocol 

The Beam Splitter Experiment was based on the research team’s idea to use model Eve as a 

beam splitter. This translated into to adjusting the length of the fiber optic channel between Alice and 

Bob to proportionally model the loss induced by the subject beam splitter. This experiment employed 

the use of the notional architecture with minor modifications. The experiment process was partially 

automated through the use of Perl and shell scripting and distributed among computing resources 

available at AFIT. 

The results of this experiment are partially reported in Chapter IV, in particular in the sections 

IV and V which discuss verification, validation and decoy state protocol considerations. In particular, 

the results of this experiment illustrate that a beam splitter cannot be used to accurately model a PNS 

attack. By employing a beam splitter, the photon number dependent yields of the signal and decoy 

states are, as expected, uniformly reduced between a “clean” system with no Eve and a system in which 
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Eve is represented as a beam splitter. Figure 27 and Figure 28 illustrate this result. In both figures, the 

estimated signal and decoy yields are plotted as green and black circles to represent those values in the 

absence of Eve and red and blue when Eve was considered to be present. Though the scales of the 

vertical axes are different, one can observe that loss due to Eve is approximately 50% for both the 1- 

and 2-photon yields for both the signal and decoy states. In a PNS attack, the estimated 1-photon yield 

should be nearly zero. In terms of the experiment, the results are inconclusive with respect to the null 

hypothesis because we cannot accurate model the PNS attack using a beam splitter. 

 

Figure 27. 1-Photon Signal and Decoy Yield With and Without Eve. 
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Figure 28. 2-Photon Yield and Decoy Yield With and Without Eve. 

 Additionally, we learned what it means to practically measure, or rather estimate, the photon 

number dependent yields and how a system can use this information. In a practical system which does 

not employ photon-number resolving detectors, the yield cannot be measured directly; the yield can 

only be estimated from the gain measurement. Equation Photon number dependent signal yield (12) 

captures this result and is recreated below for reference. As illustrated, yield is calculated based on the 

dark count rate, Y0, the mean photon number, �, gain, ��, and the photon number of interest, �. 

�� ≅ �� + 1 − �1 − �
− ln�1 + �� − ���

�
��

�

. 
Photon number dependent signal 

yield (12) 
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 Furthermore, the researcher recognized in this experiment that randomness in the model, i.e. 

noise in a practical system, will prevent the decoy state security condition from being true without 

adding some margin of error, i.e. tolerances. Such tolerances can be obtained from calibration of a 

known “clean” system in which Eve is not present. This notion is consistent with Lo et al.’s assertion 

that if Alice and Bob know their channel properties well, it strengthens their ability to use the decoy 

state protocol to detect the PNS attack [28]. This awareness urged our implementation to include and 

implement tolerances. 

Executing Larger Experiments 

Prior to the beam splitter experiment, the research team’s simulation runs generally consisted of 

running one simulation on a multiple processor/multi-core machine at a time. Single simulations could 

take hours or the better part of a day. Afterward, results were manually organized and derived from the 

standard output command line window or the graphical environment.  

In contrast to this approach, the beam splitter experiment was planned to execute 96 treatments 

with a minimum of 30 trials to obtain statistically significant results. If one estimates that each run 

would take 4 hours, this experiment would take 1.3 years to complete if run sequentially on a single 

computer system. Essentially, the problem consisted of two parts: 1) untimely serial processing and 2) 

inadequate data recording and collection for this type of experimentation. The researcher was driven to 

solve this problem for himself and the team. 

Initially, researcher discovered that engaging the multiple processors and cores could be 

accomplished by running multiple simulations in different command windows. However, data 

collection was still a problem. Once the experimental design defined what data was desired, the model 

was modified to output this information in a method that was more conducive to parallel simulation. 

Once this was accomplished, control scripts were created to: 

1) Read the simulation configuration variables from a text file,  
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2) Modify the simulation source code,  

3) Compile the code, 

4) Adjust the random number seed between runs, 

5) Execute the simulation, and 

6) Organize the data. 

With this process in place, execution was expanded to three high power workstations and 31 servers 

which could process 464 simulations simultaneously thereby reducing the time required to complete the 

experiment to just over 24 hours.  

 Further investigation exploited the inherent simulation capabilities of OMNeT++ and 

eliminated the need for the control scripts. However, this required the conversion of more than a dozen 

hard-coded simulation parameters into OMNeT++ NED file parameters. At completion of this research 

project, 77 QKD-specific simulation control variables are managed via a single configuration file. 

Supplemental Decoy State Enabled QKD Experiment Results 

The Decoy State Enabled QKD Experiment objectives included verification of the decoy state 

protocol’s implementation and validation of the enhanced architecture. The results related to V&V were 

captured in the application of MBSE to QKD system article in Chapter V. Additional results not 

covered in this article, trial run findings, baseline signal gain, establishment of n-photon dependent 

yield thresholds, and experimental yield estimates. 

Trial Run Findings 

Two findings were observed during the trial runs of this experiment. The first finding caused a 

change to the model which involved the calculation of gain. The second finding enabled larger 

simulation runs to be executed. 
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Gain Definition 

During analysis of experimental trial data, the researcher discovered that definition of gain 

varied in the surveyed research. As noted in Chapter II, initial decoy state research defined gain in 

terms of sifted bits, while later efforts defined it in terms of total detections because the sifting was 

extracted to a separate protocol efficiency variable “q”. In the initial implementation of the decoy state 

protocol, we calculated gain based on the number of sifted bits. However, most researcher groups now 

define gain in terms of total detections. In terms of our model, the gain equation is: 

�� =
������	��	������	����������	��	���

������	��	������	������	����	��	�����
 

Signal gain (practical measurement) 

(20) 

 

Thus, we had to make a small change to the software. This finding was documented in the Detect 

Eavesdropper use case and clarified in Chapter II as a result. 

Simulation Configuration Finding 

The second finding occurred when the research noticed unexpectedly high numbers of vacuum 

state detections at Bob during some longer simulation runs. The numbers measured exceeded the 

probability of the dark count detections configured by the simulation which suggested a problem. Upon 

running an even longer simulation, the simulation crashed with a segmentation fault which suggests a 

problem related to the program’s memory space. At this point, the researcher realized the maximum 

number of frames, which controls the memory size of a series of arrays set at compile time, had been 

grossly exceeded. By adjusting this value and recompiling the simulation, the problem was solved.  

Through some trial and error, the author found that maximum number of frames affects, i.e., 

slows, simulation performance when set above 80,000. Optimal performance can be obtained by 

selecting a value approximately 20% larger than an initial simulation run under current configuration 

conditions. Thus a trial run prior to any large set of experimental trials is highly recommended.  
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Signal Gain 

 After running the simulation 200 times, the mean value of the signal gain was 7.63E-3 and 

illustrated as a box plot in Figure 6. This value is on the same order of magnitude as the signal gain 

reported by Chen et al. [94]. This result established a means of comparison between the model and the 

previously reported results.  

 

Figure 29. Distribution of Measured Signal Gain After 200 Trials. 

Tolerances 

In addition to the main objective of the experiment, the baseline, i.e. trials that did not include 

the PNS attack, established the normal operating thresholds, i.e., tolerances, for differences between the 

signal and decoy photon number dependent yields. These tolerances are defined by: 

�������
������

− ������
�����

� = ���������� Photon number dependent yield 
tolerance (21) 

Individual tolerances were established for 1-, 2-, 3-, 4-, and 5- photon signal and decoy yield 

differences and are shown in Table 4. 

Table 4. Experimentally Obtained Tolerances 

n-Photon Signal and Decoy Difference Tolerance Value 

Tolerance1 0.00211 

Tolerance2 0.00418 

Tolerance3 0.00621 

Tolerance4 0.00819 

Tolerance5 0.01012 
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n-Photon Yield Estimates 

Similar to the Beam Splitter Experiment, the n-photon yield estimates for the results of this 

experiment were plotted as shown in Figure 30 through Figure 34. In each figure, the green and black 

points illustrate the respective signal and decoy yields for the baseline configuration in which Eve was 

not present to perform the PNS attack. In contrast, the blue and red points indicate the signal and decoy 

yields during the PNS attack. There is a noticeable difference yields measured when Eve performed the 

PNS attack. This is true all of the n-photon yields estimated in this experiment and is consistent with the 

simulation’s ability to detect the PNS attack on all occasions. In terms of the experiment, we fail to 

reject the null hypothesis based on these results. 

 

Figure 30. 1-Photon Signal and Decoy Yield With and Without Eve 
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Figure 31. 2-Photon Signal and Decoy Yield With and Without Eve 

 

Figure 32. 3-Photon Signal and Decoy Yield With and Without Eve 
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Figure 33. 4-Photon Signal and Decoy Yield With and Without Eve 

 

Figure 34. 5-Photon Signal and Decoy Yield With and Without Eve 
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Summary 

This chapter discussed products and analyses that were not provided in the journal papers 

included as Chapters IV and V. The modeling development process was discussed as outlined in 

Chapter III as well as the design decision to reuse the existing notional architecture. Additionally, 

supplemental DoDAF OV-5b artifacts and use cases were presented. Next, two implementation 

findings, related to the decoy state protocol design and timing synchronization, were described. Lastly 

unpublished results from the Beam Splitter and Decoy State Enabled QKD Experiments were disclosed. 

Ultimately, this chapter explained how the research methodology was executed and closed the gaps on 

research results not yet published. 
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VII. Conclusion 

Relevance of the Current Investigation 

The overall goal of research was to develop an improved understanding of the operation and 

performance of the QKD decoy state protocol and provide a working model. The primary objective of 

this research was the design, implementation, verification, validation, and performance analysis of a 

decoy state enabled QKD system model using Systems Engineering (SE) Processes, Methods, and 

Tools (PMTs). QKD is an emerging cryptographic technology designed to provide unconditionally 

secure key distribution in applications where high levels of secrecy are required such as those in 

banking, government, and military environments. However, inherent complexities and limitations in 

practical implementations have prevented widespread adoption. Since the Systems Engineering 

methodology was intended to be applied to complex system solutions, it was selected to guide the 

research in this study. 

This chapter summarizes the answers to all research questions presented in Chapter I. Next, the 

lessons learned while conducting the research are discussed. Finally, future research is proposed. 

Answers to Research Questions  

This study was guided by three primary research questions which evolved and expanded as the 

investigation progressed. Each question will be restated with its answer summarized in the following 

sections. 

RQ1. What is Model-Based Systems Engineering (MBSE) and why is it important? 

Model-Based Systems Engineering is an emerging methodology which integrates the use of 

models and modeling principles into various processes encompassed by the field of SE [50]. 

The SE methodology is a requirements-driven approach to developing and supporting multi-

disciplinary systems from initial concept to disposal. Among the benefits of Systems 
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Engineering are reduced risk, lowered total life cycle cost, improved quality, and increased 

productivity [101, 33, 54, 25, 36]. 

RQ1.1 What MBSE Processes, Methods, and Tools (PMTs) are useful to a modeler in defining, 

implementing, verifying and validating a QKD system model? 

A combination of the Vee and incremental development models found in the Banks et al., Law 

and Kelton, and GUIDEx simulations steps provides a set of processes and methods for 

modelers to identify, define, decomposition, verify and validate system requirements and 

behaviors [25, 41, 33, 12, 16, 42, 7]. These processes and methods can be supported by tools 

such as DoDAF viewpoints, fully dressed use cases and diagrams, and spreadsheets which can 

be created and maintained using UMLet, EA, and programs found in the suite of desktop tools 

provided by Microsoft or Open Office [27, 12, 25, 67]. Furthermore, OMNeT++ and the 

Eclipse IDE provide a highly capable network communication simulation framework in which 

a QKD simulation was built. 

RQ2. What is Quantum Key Distribution (QKD)?  

Quantum Key Distribution (QKD) is the most mature application of the quantum information 

field and is touted as a revolutionary technology which offers the capability for two 

authenticated parties, Alice and Bob, to generate a symmetric secret key which can be used in 

conjunction with a symmetric encryption algorithm to enable secure communication. The 

nature of quantum mechanics enables the unique ability of a QKD system to detect the presence 

of an eavesdropper attempting to subvert the secure distribution of key material. The origins of 

QKD technology can be traced back to Stephen Wiesner, who first developed the idea of fraud-

proof quantum money [75].  
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RQ2.1 What is the BB84 protocol?  

Charles Bennett and Gilles Brassard operationalized this concept when they proposed the first 

QKD protocol (i.e., BB84) where single photons, representing quantum bits (qubits), are used 

to securely generate shared cryptographic key [2]. BB84 is a polarization- or phase-based 

prepare and measure QKD protocol defined by of eight phases of interactions between Alice 

and Bob as illustrated by Figure 12. First, Alice and Bob must authenticate their identities to 

each other. Transactional authentication may also be employed upon completion of the protocol 

for additional security [18]. Next, they perform the quantum exchange until Bob detects enough 

qubits to begin processing a secret key. The third phase, sifting, occurs when Alice and Bob 

compare their measurement bases to enable Bob to correctly interpret qubit values. The fourth 

phase is complete after Alice and Bob estimate the number of errors in this sifted key. In the 

next phase, they correct the errors in the sifted key. In the sixth phase, Alice and Bob estimate 

entropy, i.e. the amount of information leaked during the previous phases. Phase seven is 

known as privacy amplification and attempts to mitigate the losses due to the leaked 

information. The last phase occurs when Alice and Bob confirm they have matching keys by 

comparing a hash that each calculates [76]. 

RQ2.2 What is a Photon Number Splitting (PNS) attack? 

As practical on-demand single photon sources are not available, most prepare and measure 

implementations attenuate a classical laser pulse down from millions of photons to a Mean 

Photon Number (MPN) on the order of 0.1. These sub-quantum pulses are often referred to as 

“weak coherent pulses” and are represented probabilistically by the Poisson distribution using 

MPN as the input parameter. The selection of the MPN is influenced by the losses in the optical 

channel and assumptions regarding the eavesdropper’s technology [26] . 

 A low MPN results in poor qubit throughput and thus low key generation rates. 

However, a low MPN is often desirable to reduce the likelihood of multi-photon pulses, each of 
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which exposes information about the distributed cryptographic key to an eavesdropper. This 

multi-photon security vulnerability has been subject of a number of attacks against the quantum 

channel. More specifically, the Photon Number Splitting (PNS) attack was conceived to gain 

maximum information from this vulnerability without detection. The theoretical PNS attack 

suggests that an all-powerful eavesdropper (Eve) can develop the same secret key without 

making her presence known to the authorized participants. She does so by blocking all single 

photons and stealing photons from the multi-photon pulses as they are in transit from the sender 

(Alice) to the receiver (Bob) [79, 19, 20, 21]. The decoy state protocol was introduced to 

mitigate the ability Eve to hide her presence during this attack [24]. 

RQ2.3 What is the Decoy State protocol? 

The decoy state protocol represents a significant advancement in QKD technology, as the 

protocol is relatively cheap and easy to implement against the PNS vulnerability and can be 

configured to increase throughput on the quantum channel. The protocol was introduced in 

2003 [24] and quickly improved in an initial series of works [28, 29, 82] and later [6, 83, 84, 

85, 86, 87] by a group of researchers (supplemental works of note include [88, 89, 90, 91, 92]). 

In this three state configuration, the signal state, �, facilitates higher key distribution rates and 

greater operational distances through an increased MPN, while the decoy state,	�, is used to 

increase the likelihood of detecting an attack using differential statistical analysis. Utilizing 

different MPNs for the signal and decoy states, allows the QKD system to detect photon 

number specific interference using the decoy state protocol security condition (described in the 

next section). The vacuum state is used to determine the detector error rate at Bob, where 

erroneous detections, known as “dark counts” are measured [93, 14]. 

Decoy state enabled QKD systems utilize the conventional signal state plus dedicated 

security states (decoy and vacuum). The signal states are used to transmit the qubits used for 

generating the shared secret key. The decoy states are used to increase the likelihood of 
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detecting photon number specific interference, i.e., the PNS attack, on the quantum channel 

through statistical differentiation with the signal state. The vacuum states are used to determine 

the detector dark count rate when no photons are present. Alice randomly selects the type of 

state according to pre-determined occurrence percentages [14, 94]. 

RQ3. How effective is the Decoy State Protocol at detecting the Photon Number Splitting (PNS) 

attack? 

The Decoy State Protocol was found to be effective in detecting a PNS attack in which Alice 

and Bob were able to characterize their system performance in the absence of a PNS attack. Of 

the 100+ simulations performed, using operational parameters derived from Chen et al.’s Field 

Test of a Practical Secure Communication Network with Decoy-State Quantum Cryptography, 

100% successfully detected the PNS attack. However, a generalized inference to other Decoy 

State Enable QKD systems cannot be made as the Chen et al. configuration was neither a 

randomized experiment nor comprehensively representative of the population of QKD systems. 

RQ3.1 What measurements are necessary to detect an eavesdropper performing a PNS attack? 

The decoy state security condition can be evaluated using photon number dependent yields or 

error rates [28, 14]. The method involving yield was explored in this study, due to the low 

levels of system noise, and identified in Equation Decoy State Security Condition for Yields 

(1). The experiment conducted during this research explored the practical application of the 

condition and a derivation of Equation Decoy State Security Condition for Yields (1) which 

included a tolerance as defined by Equation Photon number dependent yield tolerance (21). 

While error rates can be measured more directly, yields cannot be directly measured 

from current QKD systems. Yield estimates can be obtained from the MPN, the number of 

photons, the signal and decoy state gain measurements and the system dark count rate as shown 

by Equation Photon number dependent signal yield (12). 
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RQ3.2 What behaviors should be captured in a decoy state enabled QKD system model? 

The “To-Be” DoDAF OV-5a and use cases identify the activities and behaviors which need to 

be captured in the decoy state protocol. These behaviors include the selection and 

announcement of a pulse state type, estimation of photon number dependent yields or QBER, 

and a comparison of the yields or QBER. 

RQ3.3 How flexible is the qkdX framework for building and studying fit-for-purpose models? 

Flexibility is somewhat difficult to quantify, however the qkdX framework was very capable of 

being adapted to support the decoy state enabled QKD system model. Yet this adaptation 

required a good deal of work by much of the research team and required the team members to 

have knowledge of both QKD system and software engineering.  

The selection of OMNeT++ to support this framework strongly facilitated the ability of 

this project to produce a more configurable system model than in the past. During this project, 

the OMNeT++ simulation enabled nearly all of the configuration variables to be defined at run 

time through a single configuration file. This characteristic is more conducive to providing a 

flexible framework than one which requires a user to re-configure and re-compile the 

simulation for each change. 

Some key characteristics of the system still remain cumbersome to configure even 

though improvements have been made. For example, timing synchronization and the MPN 

output at Alice, while improved, still require much attention from the user to change. This is an 

area which will be proposed for future research.  

Overall, it is the author’s assessment that this project has increased the flexibility of the 

qkdX framework and subsequent models by providing an opportunity to develop a simulation 

that answers a specific question, i.e. is fit-for-purpose. 
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RQ3.4 What changes need to be made to the existing qkdX simulation framework for studying a decoy 

state enabled QKD system model?  

The OV-5a and use cases capture the behaviors which needed to be implemented to model the 

decoy state protocol. These changes were implemented in Alice and Bob’s Processor, 

Blackboard, and messages used during Exchange Quantum Pulses/Bit, Generate Sifted Key, 

Estimate QBER, Reconcile Errors activities. The list of files requiring modification to 

implement the decoy state enabled BB84 protocol is as follows: 

Table 5. qkdX Framework Changes for Decoy State Protocol 

Area Files 

Alice AliceBlackboard.cc 
AliceBlackboard.h 
AliceBlackboard.ned 
BasicAliceProcessor.cc 
BasicAliceProcessor.h 
BasicAliceProcessor.ned 

Bob BobBlackboard.cc 
BobBlackboard.h 
BobBlackboard.ned 
BasicBobProcessor.cc 
BasicBobProcessor.h 
BasicBobProcessor.ned 

Messages DetectionsABMsg_m.cc 
DetectionsABMsg_m.h 
DetectionsABMsg.msg 
ErrorBlocksPkt_m.cc 
ErrorBlocksPkt_m.h 
ErrorBlocksPkt.msg 
ErrorEstimationsMsg_m.cc 
ErrorEstimationsMsg_m.h 
ErrorEstimationsMsg.msg 
ErrorResultsMsg_m.cc 
ErrorResultsMsg_m.h 
ErrorResultsMsg.msg 

Other Blackboard.cc 
Blackboard.h 
Blackboard.ned 

 

Additionally, changes which remove most of the hardcoded configuration parameters is 

also highly desirable. Comparisons of both Table 9 and Table 16 and both Table 10 and Table 17 

highlight precisely where many of these changes occurred.  

 

To implement the PNS attack, all of the optical component devices and modules in 

qkdX had to be modified to handle Fock state pulses to support this capability. This 
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modification was designed and implemented primarily by another member of the research 

team, but the author did provide assistance during the late stages of implementation.  

 

This concludes the summary and review of the research questions. A discussion of lessons learned 

follows. 

Lessons Learned 

This section will communicate the lessons learned by the researcher which he believes were 

relevant, but did not directly answer a research question, or relate to a research goal or objective. The 

most significant lesson learned involved problem solving. The author was able to apply it more than 

once. 

Problem Solving 

During analysis of the timing synchronization between Alice and Bob, the researcher learned 

the importance of clearly identifying and defining a problem before attempting to craft a solution. In 

this instance, he attempted to implement a change to the system that would make Alice and Bob less 

dependent on knowledge of each other without fully understanding the nature of the dependencies or 

clearly identifying the objective. The implementation attempt cost nearly two weeks of effort which did 

not produce successful results.  

After a break, he reengaged the issue by starting with a more clear definition of the problem. 

Next he methodically collected data until he was certain that problem was well understood. Afterwards 

he developed a conceptual solution and measured timing data at points in the system to confirm his 

hypothesis. Once his hypothesis was confirmed he systematically made changes and performed 

additional tests to confirm the results. This systematic approach took him approximately two days and 

resulted in successful decoupling of timing knowledge between Alice and Bob. 
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While the latter approach might seem obvious to the reader as it is simply application of the 

scientific method. In his defense, the author warns that it is very easy to become lost in the details and 

over-confident that a particular solution will work before clearly understanding what problem needs to 

be solved. He also learned that taking a step back from the problem and its details was beneficial. It 

enabled him to assess the issue with a fresh set of eyes and to re-evaluate his assumptions. 

This approach was applied again later when another researcher was struggling with 

implementing the PNS attack. The author was able to assist by remaining focused on systematically 

collecting data, testing hypotheses and when all else failed, he encouraged re-evaluating assumptions. 

His approach proved successful and again the problem was solved fairly rapidly. 

Conclusions  

 Overall, the author found using MBSE methods, processes, and tools were invaluable to the success 

of the research project. The benefits facilitated clarification and communication of this complex system. 

For example, creating “As-Is” and “To-Be” architectures during model development versions enabled 

identification of capability gaps and focus the work effort in these areas. He also found that functional 

and activity decomposition captured during analysis and design translated directly into behavior 

modeling and algorithm implementation. Additionally, the employment of use cases increased the 

team’s understanding of the decoy state protocol and helped identify dependencies between phases. 

Furthermore, use cases provided a means to capture design decisions to answer why a particular 

approach was chosen. These artifacts improved communication of design decisions compared the 

processes and methods used in our previous work.  

Additionally, the requirements-driven approach provided traceability between early and late 

phases of the study which permitted incremental verification and shaped the experiment design to 

support both system verification and validation. Using MBSE tools to capture requirements, design 

decisions, and identify verification methods greatly streamlined this process. 
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While there were some significant benefits to using this approach, the researcher also 

encountered a few minor issues which had to be overcome. The first issue arose while decomposing the 

BB84 and decoy state protocols. As discussed, the OV-5a is an activity oriented model in which the 

activities are defined by verb phrases. This caused some concern amongst team members who were 

accustomed to referring to the activities as gerunds, e.g., Sifting (gerund) vs. Generate Sifted Key (verb 

phrase) and Quantum Exchange (gerund) vs. Exchange Quantum Bit. Additionally, we stumbled 

somewhat while defining subsystem actors due to the propensity of actors to be human. As noted, we 

settled on identifying the protocol as the actor. However, this affinity for actors to remain human is 

noted in the use cases where the Alice Protocol and Bob Protocols actor names are shortened to Alice 

and Bob. Furthermore, we discovered that balancing diagram complexity and clear communication of 

ideas was an art. For example, system level use case diagrams contain much information but are 

difficult to read. We found that breaking this diagram into smaller pieces which focused on a particular 

area was beneficial. Despite these minor issues, the benefits of the MBSE approach paid great 

dividends in our research. 

  This paper presents the first known application of MBSE methodology to define and analyze a 

decoy state enabled QKD system. In this paper, we examined the use of MBSE PMTs to perform 

requirements elicitation, activity decomposition, system design, model verification, and validation 

activities to shape our decoy state enabled QKD modeling and simulation study. This study outlines the 

progression of a QKD notional architecture into a fit-for-purpose decoy state enabled QKD simulation 

tool. 

By employing MBSE PMTs and experimental design, the author captured and performed 

verification and validation on a system model requirements. Specifically, he was able to show the decoy 

state enabled QKD system model was able to match, within acceptable limits, an empirical signal gain 

value identified in the literature. The analysis was used to develop evidence of the effectiveness of the 
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decoy state enabled BB84 protocol to detect a PNS attack and enables further parameter studies of 

decoy state enabled QKD systems.  

The results of the research highlight the value of using MBSE products, tailored for specific 

purposes, to conduct the analysis of complex systems and to facilitate communication of system 

architecture details to stakeholders. Overall, MBSE was an appropriate methodology for managing the 

overall engineering approach for a complex QKD system involving team members from multiple 

disciplines. 

Future Research 

This study has uncovered a variety of options and paths which are ripe for future research. A 

few notable opportunities are discussed in the following paragraphs. 

 This thesis focused on the yield comparisons defined by the decoy state security condition. 

However, the decoy state security condition allows for PNS detection through the comparison of signal 

and decoy state error rates as well. Thus, adding this error rate comparison to the model would be an 

opportunity for future research.   

Additionally, automatic calibration of the mean photon number and internal timing delays 

would be a reasonable behavior for practical systems. Additionally, this capability would provide for a 

more flexible QKD simulation architecture. If the architecture were configured to calibrate itself, it 

would enable users to focus on studying behaviors more pertinent to analyzing the security-

performance trade space of QKD systems. As it exists, a change in the architecture of Alice will require 

the user to make manual adjustments to re-calibrate Alice’s timing and output MPNs for signal and 

decoy states. 

 In the existing framework, pseudo-randomness is provided by various random number 

generators (RNGs) employed by multiple system components. However these RNGs all use the same 
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random number stream. Unfortunately, this induces correlation between elements which use random 

numbers, that is, the use of an RNG by one component will necessarily affect the use by another 

component. As OMNeT++ offers the capability to use multiple RNG streams, this area should be 

explored further.    

 While assessing the simulation results, one might notice the lack of variation in, for example 

the 1-photon yield as shown in Figure 30. This characteristic might be highly desirable in a practical 

implementation; it is less interesting to researchers who are attempting to study certain variations. Thus, 

future research should explore the decoy state protocol and exercise the capability of the qkdX 

framework to provide randomness in laser pulses and in the quantum channel. 

 Future research includes accomplishing sensitivity analysis by manipulating control variables 

as well as adding variability to the decoy state enabled QKD system model to further define the 

security-performance trade space. As only one configuration of a decoy state enabled QKD system was 

investigated, it was impractical to apply additional statistical methods, such as linear regression, in 

order to predict a (more) optimal system design. Varying more QKD system model input parameters 

would enable the research team to apply this method to explore and analyze more of the security-

performance trade space of these systems.  

 Another opportunity for future research and verification of sub-system resides with the Single 

Photon Detectors (SPDs) in Bob. During the implementation process, we tracked the photon number 

(for Fock state pulses) and MPN (for “classical” weak coherent pulses) up to the detectors in Bob, but 

we did not verify what happened to the pulses inside of the detectors. The process of handling 

detections at Bob is a critical step for QKD systems and this is an area which should require special 

attention. At the conclusion of this study, the verification of the SPD’s modeled behavior is beginning. 

If not planned, this endeavor should include verification that photons are handled appropriately. 
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 Furthermore, some use cases were identified during the system analysis which were not defined 

or defined with few details during this study. Examples include Authenticate Partners, Estimate 

Entropy, and Perform Privacy Amplification. These use cases should be (further) defined if these 

activities are to be studied in future research. 

 One final proposal for future study was an early secondary goal for this research project. The 

DoD High Performance Computing Modernization Program (HPCMP) has resources available at the 

Air Force Research Lab (AFRL) which are available for no cost to research users at AFIT. Exploring a 

large set of security-performance trade spaces could presumably be accomplished in relatively short 

order by employing these resources.   
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Appendix A. Beam Splitter Experiment (BSE) 

Introduction 

This section describes the methodology used to conduct an experiment involving a QKD simulation framework. 
The experiment supports research that seeks to characterize the effectiveness, in terms of performance and 
security, of a decoy state enabled QKD protocol to detect the presence of an eavesdropper. In this research, 
security will be measured in terms of the system’s ability to detect the presence of an eavesdropper during the 
quantum exchange phase of the key distribution protocol.  
 

Objective 

The ability to detect an eavesdropper using the differences of signal and decoy state yield measurements is 
purpose of the decoy state protocol and the goal of this experiment. Thus, this experiment will measure and 
compare differences between the yield of the signal and decoy states. The differences between the signal state and 
decoy state yields will be used to assess the ability of the model to detect an eavesdropper [24, 28]. In a real 
system or stochastic simulation, the difference is unlikely to be exactly zero. Thus, a pre-defined tolerance for 
each photon number specific yield estimate is used to define an acceptable interval within which the difference is 
expected to fall.  

The validity of the simulation results is an on-going area of research. Additionally, the verification of 
modeled components was also on-going at the time this experiment was conducted [15]. However, the results of 
this experiment will be compared to generalized expected results based on the work of previous research and 
educated analysis [28, 29, 14, 6, 83, 89, 90, 92, 102]. It is not the intended purpose of this experiment to validate 
either the efforts of previous research or conclusively prove the validity of the simulation and its associated 
modeled system representation. 

The hypotheses of the experiment are as follows: 

1. ��: �������
������

− ������
�����

� ≤ ��������� 

2. ��: �������
������

− ������
�����

� > ��������� 

The null hypothesis is based on the condition established by Lo et al. [28] and Equation Photon number dependent 
yield tolerance (21). This hypothesis will be based on the 1-, 2-, 3-, 4-, 5-photon yield estimates for this 
experiment. 
 

System Boundaries 

Figure 35 (OV-1) depicts a context view of a communications encryption system implementing QKD. In the 
figure, the boundary of the QKD model is illustrated by the outlined box labeled Decoy State Enabled QKD 
System. Clearly, the QKD system does not include encryption mechanisms nor is it dependent on what form of 
communication message will be encrypted.  
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Figure 35. Operational Concept Diagram (OV-1). 

Additionally, while the BB84 protocol consists of eight phases necessary for QKD, this experiment only 
needs to consider the results of the first five [15]. Particularly, the results from the quantum exchange and the 
error reconciliation phases are of most interest. From these phases many of the response variables will be recorded 
and measured.  

There are two scenarios of interest that will be simulated. The first scenario consists of Alice and Bob 
connected by their classical and quantum channels with no other party on either channel. This scenario employs a 
polarization encoding scheme for qubits. In the second scenario, Eve is connected to both channels and passively 
sniffs 100% of the communications on the classic channel and actively intercepts a percentage of data on the 
quantum channel. 
 

Experimental Limitations 

The qkdX notional architecture does not contain the effect of an eavesdropper, Eve, executing a PNS attack. Thus, 
to inject and model Eve’s actions on the quantum channel, we had to improvise. The research team theorized that 
generic Eve can be modeled using a beam splitter which splits the pulse energy into two directions. In other 
words, a beam splitter will reduce the amount of energy that reaches Bob’s detectors. Another way to reduce the 
amount of energy reaching Bob is to increase the distance between Alice and Bob. Therefore, a simple attack from 
Eve can be modeled by increasing the distance between Alice and Bob. This abstraction is anticipated to reduce 
the decoy state method’s ability to detect the presence of an eavesdropper. NOTE: The author may occasionally 
refer to the actual PNS attack as an “intelligent” attack to differentiate it from the simplified beam splitter-based, 
“non-intelligent” attack.  

Additionally, the experiment was also somewhat limited by the amount of time required to execute 
simulations. With the detector efficiency set to 100%, at a range of 15km, and an MPN of 0.1, it took over 4 hours 
of real time for the simulation to process 50,000 detections. NOTE: the simulation time just passes six seconds. In 
contrast, a practical QKD system would need to transmit and process a number of pulses that is on the order of 
billions.  
 

Assumptions 

The following assumptions are made for this experiment: 
1. General 

1.1. The laws of physics are not violated, i.e. the theory of quantum mechanics can be applied. 
2. QKD 
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2.1. There is no active eavesdropping occurring on the classic channel. 
2.1.1. Eve does not perform active attacks on the classical channel. 
2.1.2. Eve is connected to the public channel and sniffs 100% of the packets transmitted without 

changing them. 
2.2. Alice and Bob have been authenticated. 
2.3. Alice and Bob are able to establish a baseline performance level of their quantum channel in which 

performance was not affected by Eve. 
2.4. Any error in the pulse detected should be attributed to interference by Eve. 
2.5. Eve’s active interference is limited to the quantum channel. 
2.6. The quantum channel is noiseless. 
2.7. The quantum and classical channels are physically separated. 
2.8. No attacks on the system are present against the QKD system other than Eve’s active attack on the 

quantum channel and her passive listening on the public channel. 
2.9. Reported dark count probabilities may exclude results which inadvertently caused Bob to measure a 

qubit during the gating period for a non-vacuum pulse type. Thus the actual value may be higher than 
the reported result but will be considered negligible due to the low chance of occurrence. 

2.10. Reported after pulse probabilities may exclude results which inadvertently caused Bob to measure a 
qubit during the gating period for a non-vacuum pulse type. Thus the actual value may be higher than 
the reported result but will be considered negligible due to the low chance of occurrence. 

3. Models 
3.1. The Poisson distribution is an accurate model of a practical photon number distribution.  

3.1.1. Photon numbers are independent. 
3.2. Detector efficiency is uniform and invariant. 
3.3. The delay between frames is invariant. 
3.4. The number of pulses per frame is invariant. 
3.5. Laser output is uniform and invariant. 
3.6. Attenuation in the quantum channel is uniform over any length of fiber. 
3.7. Signal to Signal delay is invariant. 
3.8. Temperature is uniform and invariant throughout the QKD system. 
3.9. The timing pulse rate is invariant. 
3.10. Polarization correction in Bob was 100% effective. 
3.11. Polarization drift did not occur in the quantum channel. 
3.12. The polarization reference frame was invariant. 
3.13. Optical components perform without degradation. 
3.14. Optical components are not damaged. 

Response Variables 

The response variables listed in Table 6 will be used to calculate the yield that was obtained during the quantum 
exchange phase of the BB84 protocol. The measurement method was excluded from the table as all response 
variables intended to be recorded and or output by the simulation application. A photon detection is counted when 
Bob’s detectors are gated “open” and ready to detect a photon. A dark count is a spontaneous detection registered 
at Bob which did not result from a weak coherent pulse from Alice. 

Table 6. Response Variables. 

Response variable Normal Operating Level 
Measurement 

Precision Relationship to Objective 

# pulses sent 10e5 to 10e10 1 pulse Contributes to signal & decoy yield  

# signal states sent % of total pulses sent 1 pulse Contributes to signal yield  

# decoy states sent % of total pulses sent 1 pulse Contributes to decoy yield  

# vacuum states sent % of total pulses sent 1 pulse Contributes to dark count rate 



AFIT-ENV-MS-15-M-181 

133 
 

Response variable Normal Operating Level 
Measurement 

Precision Relationship to Objective 

# signal states detected % signals sent 1 pulse Contributes to signal yield 

# decoy states detected % decoys sent 1 pulse Contributes to decoy yield 

# vacuum states detected % vacuums sent 1 pulse Contributes to dark count rate and yield 

# sifted signals 
50% of signal states 

detected 1 pulse Contributes to signal yield  

# sifted decoys 
50% of decoy states 

detected 1 pulse Contributes to decoy yield  

# signals after error 
estimation 25% of sifted signals 1 pulse Contributes to signal yield  

# dark counts at Bob 
(5 x 10^-6)  of # gating 

periods at detector 1 pulse Noise; contributes to yield 

Control Variables 

Table 7 contains the control variables or experimental factors that will be intentionally manipulated in order to 
produce differing output responses during the experiment. The variables are separated into additional categories, 
i.e., Percentages, Mean Photon Number, and Communication Range and Interference, for clarity. All control 
factors are used to account for both the effectiveness of the decoy state enabled QKD protocol as well as 
covariance effects. NOTE: the decoy and signal attenuation values refer to the electronically variable optical 
attenuator setting required to adjust the MPN at the output of Alice to the desired values. 

In this table, the Normal Operating Level refers to the default value in the notional architecture which 
was designed to represent a generalized practical implementation. All control variables are numerical factors. The 
proposed settings for each variable were based on operational parameters to which the research team agreed. 
Refer to the Simulation Environment section and Chapter V for additional discussion. 
 

Table 7. Control Variables. 

Variable/Factor 
Normal 

Operating Level 
Measurement 

Precision 
Proposed 
Setting 

Relationship to Response 
Variables (Predicted Effect) 

Percentages 

% of decoy states 20 1 [30, 20, 10] 
Affects magnitude of decoys 

detected and sent 

% of signal states 70 1 [60, 70, 80] 
Affects magnitude of signal detected 

and sent 

Mean Photon Number 

Decoy Attenuation 
(dB) 17 0.1 [10.5, 13.5] Controls Decoy MPN 

Decoy State MPN 0.05 0.000 000 1 [0.1, 0.2] 
Larger numbers increase magnitude 

of decoys detected  

Signal Attenuation 
(dB) 14 0.1 [5.2, 6.6] Controls Signal MPN 

Signal State MPN 0.1 0.000 000 1 [0.5, 0.8] 
Larger numbers increase magnitude 

of signals detected 

Communication Range and Interference 

Distance (km) 10 0.001 [15, 50] 
Larger distance decreases ratio of 

detections to pulses sent 

Eve 
Aggressiveness [0-100] 0.1 [0, 10, 25, 50] Affects ability to detect Eve 
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Factors to hold constant are listed in Table 8 are a large subset of the total number of experimental 
factors that are held constant. These factors are somewhat independent of the particular simulation selected and 
have a non-negligible impact to a QKD system. Only the Error Correction Method and Protocol are categorical 
factors; the rest are numerical. NOTE: The error rate threshold is used by the protocol after the error rate is 
calculated. If the calculated error rate is greater than the specified threshold, the assumption is that an 
eavesdropper is interfering during quantum exchange and the protocol will terminate at this point. 

 
Table 8. Factors to Hold Constant. 

Variable/Factor Desired Level or 
Allowable Range 

Measurement Precision Anticipated Effects on 
Responses or Objective 

Dark count probability (%) 0.000 005 0.000 000 5 
Larger probability will 

increase yield 

Detector efficiency (%) 100 1 
Larger percent will increase 

yield 

Error correction method decoyPerfect N/A Simplified error rates 

Error rate threshold 0.25 0.005 Eavesdropper detection ability 

Maximum # of frames 8,192 1 Actual simulation run time 

Number of detections 50,000 1 
Terminating condition for 

simulation 

% of vacuum states 10 1 Contributes to dark count rate 

Protocol BB84 N/A High security 

Pulses per frame 1000 1 Affects simulation duration 

Signal loss in fiber (dB/km) 0.2 0.05 Lower yield over distance 

 

Nuisance Factors 

Due to the fact that experiment will be conducted via computer simulation, the nuisance factors are negligible. 
That is, many of the nuisance factors are controlled by holding them constant or excluding them from the 
simulation. 
 

Known/Suspected Interactions 

The specified percentages and MPN for signal, decoy, and vacuum states are expected to affect the efficiency of 
the yield over greater distances and thus the likelihood of detecting an eavesdropper during the quantum exchange 
phase of the BB84 protocol. 
 

Restrictions 

Due to the nature of computer simulations, the experiment has few restrictions. For example, the simulated 
phenomena are programmed to obey the laws of physics and nature. Again by using computer simulation, it is 
relatively easy to adjust the control variables.  

Two practical realities affect the results of the experiment: data and time. First, the author anticipates that 
any data required will be available, but possibly not in the most convenient format. Furthermore, he anticipates 
there will be a learning curve in how to evaluate the data the simulation produces. Second, the other large 
restriction will be proportional to the amount of time require to execute the test runs. As the control variables 
suggest, there are a large number of factors and levels that could be evaluated. Thus the experiment may take a lot 
of time to flesh out the relevant experimental regions from the irrelevant.  
 

Design Preferences 

The author anticipates that replication will be the most effective design principle to employ. Replication will 
enable the analyst to build confidence intervals and make comparisons between the observations. Blocking, in the 
sense of batch processing may be employed to conduct test runs. Randomization can be used to plan the order in 
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which to adjust the control variables. Again, due to the nature of computer simulation, some principles of blocking 
and randomization are irrelevant. 
 

Analysis & Presentation techniques 

Analysis will involve the use of box plots to perform a preliminary visual examination of the output data. If the 
data appears to be within the range of expectations, confidence intervals on the difference of the estimated signal 
and decoy state yields will be calculated. These confidence intervals will be represented in a tabular format or 
graphically as necessary. 

Coordination 

Weekly teleconferences are normally conducted with the entire team and attended by the sponsor and SMEs. 
Additionally, coordination was required between the AFIT QKD team and AFIT’s Center for Cyberspace 
Research in order to obtain additional computer hardware for simulation processing. 
 

Necessity of Trial Runs 

Trials runs are a necessity. The plan is as follows:  
1. Conduct runs to verify the author’s understanding of the configured system and BB84 protocol. 
2. Conduct additional runs to verify that control variables are adjusted correctly by comparing the observations 

to expectations. 
3. Develop control scripts to batch process the run. 
4. Conduct additional trial runs as necessary. 

Simulation Environment 

The qkdX notional architecture will be configured and simulated on 31 Dell Servers and 2 HP Workstations. 
Most, i.e., 26 of the Dell servers have 12 cores each. The five remaining servers have 16 cores and the two 
workstations have 32 cores. Thus, with each core running a single simulation, 26*12 + 5*16 + 2*32 = 456 
simulation runs can be executed simultaneously. Generally, each machine will run one treatment at a time with 
each core performing the simulation using a different random number seed.  

Looking forward to the statistical analysis, it is statistically desirable to obtain the same number of data 
sets resulting from each treatment. Thus, each core in the 12-core machines will perform 4 replications and the 16-
core machines will perform 3 replications. Therefore each machine will produce a total of 48 data sets per 
treatment.  

Another noteworthy characteristic of the notional architecture’s simulation environment is the locations 
of the configuration control variables and factors to hold constant. These variables are spread out across the 
framework in a design that is very well suited to object-oriented design but arguably less desirable for a flexible 
simulation environment. Table 9 outlines the locations of the control variables necessary to configure the notional 
architecture. Similarly, the file locations of the Factors to Hold Constant are identified in Table 10. 

 
Table 9. Control Variable File Locations. 

Simulation Variable qkdX File Location 

Percentages 

% of decoy states qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 

% of signal states qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 

Mean Photon Number  

Decoy Attenuation (dB) 
qkdX/examples/qkdXDemo_v2014/src/alice/quantum_module/aliceQuantumModuleCtrl/models
/BasicAliceQuantumModuleCtrl.cc 

Decoy State MPN 
qkdX/examples/qkdXDemo_v2014/src/alice/quantum_module/aliceQuantumModuleCtrl/models
/BasicAliceQuantumModuleCtrl.cc 

Signal Attenuation (dB) 
qkdX/examples/qkdXDemo_v2014/src/alice/quantum_module/aliceQuantumModuleCtrl/models
/BasicAliceQuantumModuleCtrl.cc 
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Signal State MPN 
qkdX/examples/qkdXDemo_v2014/src/alice/quantum_module/aliceQuantumModuleCtrl/models
/BasicAliceQuantumModuleCtrl.cc 

Communication Range and Interference 

Distance (km) qkdX/examples/qkdXDemo_v2014/simulations/Network_QKD.ned 

Eve Aggressiveness qkdX/examples/qkdXDemo_v2014/simulations/Network_QKD.ned 

 
Table 10. File Locations for Factors to Hold Constant. 

Variable/Factor qkdX Location 
Dark count probability 
(%) qkdX/examples/qkdXDemo_v2014/src/bob/quantum_module/TimingAnalyzer.ned 

Detector efficiency (%) qkdX/examples/qkdXDemo_v2014/src/bob/quantum_module/TimingAnalyzer.ned 

Error Correction Method qkdX/examples/qkdXDemo_v2014/omnetpp.ini 

Error rate threshold qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 

Maximum # of frames qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 

Number of detections qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 

% of vacuum states qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 

Protocol qkdX/examples/qkdXDemo_v2014/omnetpp.ini 

Pulses per frame qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 
Signal loss in fiber 
(dB/km) qkdX/framework/qkdX/channels/FiberChannel.ned 

Pulse duration qkdX/framework/qkdX/models/pulse/PulseFactory.cc 

SPD Gate Duration (ns) qkdX/examples/qkdXDemo_v2014/src/bob/quantum_module/TimingAnalyzer.ned 

Temperature (degrees C) qkdX/framework/qkdX/channels/FiberChannel.ned 

Timing pulse wavelength qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 
Weak coherent pulse 
wavelength qkdX/examples/qkdXDemo_v2014/src/common/demo-config.h 

 

The maximum number of frames will be set after trial runs of the experiment. This value affects the amount of 
memory consumed by the simulation for various internal variables. It has already been observed that increases in 
the order of magnitude for this variable translate to additional processing time. Once the trials runs have been 
completed, this variable will likely be set to a constant value and will probably not vary with treatments.  
 

Simulation Control Variables 

The mean photon number is achieved by attenuating a classical laser pulse down to the desired mean number of 
photons [15]. Hence both MPN and attenuation are listed, but only attenuation is directly set in the simulation. 

As discussed in the limitations section, Eve’s Aggressiveness is based upon the relationship between 
beam splitters and fiber channel length. Therefore, rather than indicating an actual control variable, Eve’s 
Aggressiveness is converted to an additional length of fiber optic cable with a fixed attenuation of 0.2 dB per km. 
Using the optical power definition of dB, 10 * log10 (Powerout/Powerin ), 3dB is equivalent to a 50% loss [103]. 
Thus to model Eve’s aggressiveness at 50%, an additional 15 km of fiber is added to the quantum channel to 
simulate the interference due to Eve. 

 
Treatments 

Another way to view the control variables is shown in Table 11. Here the control variables are separated into 
levels and one can more easily see there are 4*2*2*2*3 = 96 combinations of interest in a practical full factorial 
design. The only configurations that have been eliminated were those that were nonsensical to perform, e.g. signal 
percent = 80, decoy percent = 30, vacuum percent = 10. 
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The Eve Aggressiveness level of 100/0 (passive/aggressive) defines a scenario in which Eve is not 
present. Additionally, this set of 24 treatments characterizes the baselines of response variables for comparison 
against response variables from other treatments where all other controls are held at the same level. For example, 
the treatment such that Eve Aggressiveness = 100/0, distance = 15km, MPN Signal = 0.5, MPN Decoy = 0.2, and 
Signal/Decoy/ Vacuum Percentages = 60/30/10 is a baseline for treatments where Eve Aggressiveness is 90/10, 
75/25, and 50/50 and distance = 15km, MPN Signal = 0.5, MPN Decoy = 0.2, and Signal/Decoy/Vacuum 
Percentages = 60/30/10. Thus three comparisons can be made using this baseline. Figure 36 illustrates the 
relationships between the baselines and the other treatments. 
 

Table 11. BSE Control Variable Summary. 

Eve Aggressiveness Distance MPN Signal MPN Decoy Signal/Decoy/Vacuum Percentage 

90/10 15km 0.5 0.1 60/30/10 

75/25 50km 0.8 0.2 70/20/10 

50/50 80/10/10 

100/0   

 
 

 

Figure 36. BSE Baseline Comparisons. 

The treatments are enumerated in Table 12. As discussed, the Eve Aggressiveness column identifies the 
percentage of the pulse energy lost across the quantum channel that is used to model Eve. Thus the Effective 
Distance reflects the original distance plus the additional length of fiber used to model Eve’s aggressiveness.  
 

Table 12. Test Matrix (List of Treatments). 

Test # Distance 

Eve 
Aggress-
iveness 

Effective 
Distance 

Signal 
State 
MPN 

Decoy 
State 
MPN 

Signal 
Atten-
uation 

Decoy 
Atten-
uation 

% Signal 
States 

% 
Decoy 
States 

1 15000 0 15000 0.5 0.1 6.6 13.5 60 30 

2 15000 0 15000 0.5 0.2 6.6 10.5 60 30 

3 15000 0 15000 0.8 0.1 5.2 13.5 60 30 

4 15000 0 15000 0.8 0.2 5.2 10.5 60 30 
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Test # Distance 

Eve 
Aggress-
iveness 

Effective 
Distance 

Signal 
State 
MPN 

Decoy 
State 
MPN 

Signal 
Atten-
uation 

Decoy 
Atten-
uation 

% Signal 
States 

% 
Decoy 
States 

5 15000 0 15000 0.5 0.1 6.6 13.5 70 20 

6 15000 0 15000 0.5 0.2 6.6 10.5 70 20 

7 15000 0 15000 0.8 0.1 5.2 13.5 70 20 

8 15000 0 15000 0.8 0.2 5.2 10.5 70 20 

9 15000 0 15000 0.5 0.1 6.6 13.5 80 10 

10 15000 0 15000 0.5 0.2 6.6 10.5 80 10 

11 15000 0 15000 0.8 0.1 5.2 13.5 80 10 

12 15000 0 15000 0.8 0.2 5.2 10.5 80 10 

13 50000 0 50000 0.5 0.1 6.6 13.5 60 30 

14 50000 0 50000 0.5 0.2 6.6 10.5 60 30 

15 50000 0 50000 0.8 0.1 5.2 13.5 60 30 

16 50000 0 50000 0.8 0.2 5.2 10.5 60 30 

17 50000 0 50000 0.5 0.1 6.6 13.5 70 20 

18 50000 0 50000 0.5 0.2 6.6 10.5 70 20 

19 50000 0 50000 0.8 0.1 5.2 13.5 70 20 

20 50000 0 50000 0.8 0.2 5.2 10.5 70 20 

21 50000 0 50000 0.5 0.1 6.6 13.5 80 10 

22 50000 0 50000 0.5 0.2 6.6 10.5 80 10 

23 50000 0 50000 0.8 0.1 5.2 13.5 80 10 

24 50000 0 50000 0.8 0.2 5.2 10.5 80 10 

25 15000 5050 30000 0.5 0.1 6.6 13.5 60 30 

26 15000 5050 30000 0.5 0.2 6.6 10.5 60 30 

27 15000 5050 30000 0.8 0.1 5.2 13.5 60 30 

28 15000 5050 30000 0.8 0.2 5.2 10.5 60 30 

29 15000 5050 30000 0.5 0.1 6.6 13.5 70 20 

30 15000 5050 30000 0.5 0.2 6.6 10.5 70 20 

31 15000 5050 30000 0.8 0.1 5.2 13.5 70 20 

32 15000 5050 30000 0.8 0.2 5.2 10.5 70 20 

33 15000 5050 30000 0.5 0.1 6.6 13.5 80 10 

34 15000 5050 30000 0.5 0.2 6.6 10.5 80 10 

35 15000 5050 30000 0.8 0.1 5.2 13.5 80 10 

36 15000 5050 30000 0.8 0.2 5.2 10.5 80 10 

37 50000 5050 65000 0.5 0.1 6.6 13.5 60 30 

38 50000 5050 65000 0.5 0.2 6.6 10.5 60 30 

39 50000 5050 65000 0.8 0.1 5.2 13.5 60 30 

40 50000 5050 65000 0.8 0.2 5.2 10.5 60 30 

41 50000 5050 65000 0.5 0.1 6.6 13.5 70 20 

42 50000 5050 65000 0.5 0.2 6.6 10.5 70 20 

43 50000 5050 65000 0.8 0.1 5.2 13.5 70 20 
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Test # Distance 

Eve 
Aggress-
iveness 

Effective 
Distance 

Signal 
State 
MPN 

Decoy 
State 
MPN 

Signal 
Atten-
uation 

Decoy 
Atten-
uation 

% Signal 
States 

% 
Decoy 
States 

44 50000 5050 65000 0.8 0.2 5.2 10.5 70 20 

45 50000 5050 65000 0.5 0.1 6.6 13.5 80 10 

46 50000 5050 65000 0.5 0.2 6.6 10.5 80 10 

47 50000 5050 65000 0.8 0.1 5.2 13.5 80 10 

48 50000 5050 65000 0.8 0.2 5.2 10.5 80 10 

49 15000 7525 21200 0.5 0.1 6.6 13.5 60 30 

50 15000 7525 21200 0.5 0.2 6.6 10.5 60 30 

51 15000 7525 21200 0.8 0.1 5.2 13.5 60 30 

52 15000 7525 21200 0.8 0.2 5.2 10.5 60 30 

53 15000 7525 21200 0.5 0.1 6.6 13.5 70 20 

54 15000 7525 21200 0.5 0.2 6.6 10.5 70 20 

55 15000 7525 21200 0.8 0.1 5.2 13.5 70 20 

56 15000 7525 21200 0.8 0.2 5.2 10.5 70 20 

57 15000 7525 21200 0.5 0.1 6.6 13.5 80 10 

58 15000 7525 21200 0.5 0.2 6.6 10.5 80 10 

59 15000 7525 21200 0.8 0.1 5.2 13.5 80 10 

60 15000 7525 21200 0.8 0.2 5.2 10.5 80 10 

61 50000 7525 56200 0.5 0.1 6.6 13.5 60 30 

62 50000 7525 56200 0.5 0.2 6.6 10.5 60 30 

63 50000 7525 56200 0.8 0.1 5.2 13.5 60 30 

64 50000 7525 56200 0.8 0.2 5.2 10.5 60 30 

65 50000 7525 56200 0.5 0.1 6.6 13.5 70 20 

66 50000 7525 56200 0.5 0.2 6.6 10.5 70 20 

67 50000 7525 56200 0.8 0.1 5.2 13.5 70 20 

68 50000 7525 56200 0.8 0.2 5.2 10.5 70 20 

69 50000 7525 56200 0.5 0.1 6.6 13.5 80 10 

70 50000 7525 56200 0.5 0.2 6.6 10.5 80 10 

71 50000 7525 56200 0.8 0.1 5.2 13.5 80 10 

72 50000 7525 56200 0.8 0.2 5.2 10.5 80 10 

73 15000 9010 17300 0.5 0.1 6.6 13.5 60 30 

74 15000 9010 17300 0.5 0.2 6.6 10.5 60 30 

75 15000 9010 17300 0.8 0.1 5.2 13.5 60 30 

76 15000 9010 17300 0.8 0.2 5.2 10.5 60 30 

77 15000 9010 17300 0.5 0.1 6.6 13.5 70 20 

78 15000 9010 17300 0.5 0.2 6.6 10.5 70 20 

79 15000 9010 17300 0.8 0.1 5.2 13.5 70 20 

80 15000 9010 17300 0.8 0.2 5.2 10.5 70 20 

81 15000 9010 17300 0.5 0.1 6.6 13.5 80 10 

82 15000 9010 17300 0.5 0.2 6.6 10.5 80 10 
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Test # Distance 

Eve 
Aggress-
iveness 

Effective 
Distance 

Signal 
State 
MPN 

Decoy 
State 
MPN 

Signal 
Atten-
uation 

Decoy 
Atten-
uation 

% Signal 
States 

% 
Decoy 
States 

83 15000 9010 17300 0.8 0.1 5.2 13.5 80 10 

84 15000 9010 17300 0.8 0.2 5.2 10.5 80 10 

85 50000 9010 52300 0.5 0.1 6.6 13.5 60 30 

86 50000 9010 52300 0.5 0.2 6.6 10.5 60 30 

87 50000 9010 52300 0.8 0.1 5.2 13.5 60 30 

88 50000 9010 52300 0.8 0.2 5.2 10.5 60 30 

89 50000 9010 52300 0.5 0.1 6.6 13.5 70 20 

90 50000 9010 52300 0.5 0.2 6.6 10.5 70 20 

91 50000 9010 52300 0.8 0.1 5.2 13.5 70 20 

92 50000 9010 52300 0.8 0.2 5.2 10.5 70 20 

93 50000 9010 52300 0.5 0.1 6.6 13.5 80 10 

94 50000 9010 52300 0.5 0.2 6.6 10.5 80 10 

95 50000 9010 52300 0.8 0.1 5.2 13.5 80 10 

96 50000 9010 52300 0.8 0.2 5.2 10.5 80 10 
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Appendix B. Decoy State Enabled QKD Experiment 

Introduction 

This section describes the methodology used to conduct an experiment involving the qkdX simulation framework. 
The experiment supports research that seeks to characterize the effectiveness, in terms of performance and 
security, of a decoy state enabled QKD protocol to detect the presence of an eavesdropper. In this research, 
security will be measured in terms of the system’s ability to detect the presence of an eavesdropper during the 
quantum exchange phase of the key distribution protocol.  
 

Objective 

The ability to detect an eavesdropper using the differences of signal and decoy state yield measurements is the 
purpose of the decoy state protocol and the goal of this experiment. Thus, this experiment will measure and 
compare differences between the yield of the signal and decoy states in the presence of a PNS attack. The 
differences between the signal state and decoy state yields will be used to assess the ability of the model to detect 
an eavesdropper [24, 28]. In a real system or stochastic simulation, the difference is unlikely to be exactly zero. 
Thus, a pre-defined tolerance for each photon number specific yield estimate is used to define an acceptable 
interval within which the difference is expected to fall.  

The validity of the simulation results is an on-going area of research. Additionally, the verification of 
modeled components was also on-going at the time this experiment was conducted [15]. It is not the intended 
purpose of this experiment to validate either the efforts of previous research. However, the results of this 
experiment will be compared to generalized expected results based on the work of previous research and educated 
analysis. Furthermore, this experiment is intended to validate the simulation by comparing its results to those of 
other research [28, 29, 14, 6, 83, 89, 90, 92, 102].  

The hypotheses of the experiment are as follows: 

1. ��: �������
������

− ������
�����

� ≤ ��������� 

2. ��: �������
������

− ������
�����

� > ��������� 

The null hypothesis is based on the condition established by Lo et al. [28] and Equation Photon number dependent 
yield tolerance (21). This hypothesis will be based on the 1-, 2-, 3-, 4-, 5-photon yield estimates for this 
experiment. 
 

System Boundaries 

Figure 37 (OV-1) depicts a context view of a communications encryption system implementing QKD. In the 
figure, the boundary of the QKD model is illustrated by the outlined box labeled Decoy State Enabled QKD 
System. Clearly, the QKD system does not include encryption mechanisms nor is it dependent on what form of 
communication message will be encrypted.  
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Figure 37. Operational Concept Diagram (OV-1). 

Additionally, while the BB84 protocol consists of eight phases necessary for QKD, this experiment only 
needs to consider the results of the first five [15]. Particularly, the results from the quantum exchange and the 
error reconciliation phases are of most interest. From these phases many of the response variables will be recorded 
and measured.  

There are two scenarios of interest that will be simulated. The first scenario consists of Alice and Bob 
connected by their classical and quantum channels with no other party on either channel. This scenario employs a 
polarization encoding scheme for qubits. In the second scenario, Eve is connected to both channels and passively 
sniffs 100% of the communications on the classic channel and actively intercepts a percentage of data on the 
quantum channel. 
 

Experimental Limitations 

This experiment will involve the research team’s preliminary attempt to model a PNS attack. The employed PNS 
model will be limited to the behaviors the research team believes will affect measureable results by the decoy state 
protocol. Other PNS attack behaviors, which would be necessary for an eavesdropper to gain practical knowledge 
about the key exchange and for the eavesdropper to hide her presence, were excluded from the model. 

Additionally, the experiment was also somewhat limited by the amount of time required to execute 
simulations. With the detector efficiency set to 100%, at a range of 15km, and an MPN of 0.1, it took over 4 hours 
of real time for the simulation to process 50,000 detections. NOTE: the simulation time just passes six seconds. In 
contrast, a practical QKD system would need to transmit and process a number of pulses that is on the order of 
billions.  
 

Assumptions 

The following assumptions are made for this experiment: 
1. General 

1.1. The laws of physics are not violated, i.e. the theory of quantum mechanics can be applied. 
2. QKD 

2.1. There is no active eavesdropping occurring on the classic channel. 
2.1.1. Eve does not perform active attacks on the classical channel. 
2.1.2. Eve is connected to the public channel and sniffs 100% of the packets transmitted without 

changing them. 
2.2. Alice and Bob have been authenticated. 
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2.3. Alice and Bob are able to establish a baseline performance level of their quantum channel in which 
performance was not affected by Eve. 

2.4. Any error in the pulse detected should be attributed to interference by Eve. 
2.5. Eve’s active interference is limited to the quantum channel. 
2.6. The quantum channel is noiseless. 
2.7. The quantum and classical channels are physically separated. 
2.8. No attacks on the system are present against the QKD system other than Eve’s active attack on the 

quantum channel and her passive listening on the public channel. 
2.9. Eve does not attempt to hide her presence on the quantum channel. 
2.10. Reported dark count probabilities may exclude results which inadvertently caused Bob to measure a 

qubit during the gating period for a non-vacuum pulse type. Thus the actual value may be higher than 
the reported result but will be considered negligible due to the low chance of occurrence. 

2.11. Reported after pulse probabilities may exclude results which inadvertently caused Bob to measure a 
qubit during the gating period for a non-vacuum pulse type. Thus the actual value may be higher than 
the reported result but will be considered negligible due to the low chance of occurrence. 

3. Models 
3.1. The Poisson distribution is an accurate model of a practical photon number distribution.  

3.1.1. Photon numbers are independent. 
3.2. Detector efficiency is uniform and invariant. 
3.3. The delay between frames is invariant. 
3.4. The number of pulses per frame is invariant. 
3.5. Laser output is uniform and invariant. 
3.6. Attenuation in the quantum channel is uniform over any length of fiber. 
3.7. Signal to Signal delay is invariant. 
3.8. Temperature is uniform and invariant throughout the QKD system. 
3.9. The timing pulse rate is invariant. 
3.10. Polarization correction in Bob was 100% effective. 
3.11. Polarization drift did not occur in the quantum channel. 
3.12. The polarization reference frame was invariant. 
3.13. Optical components perform without degradation. 
3.14. Optical components are not damaged. 

Response Variables 

The response variables listed in Table 13 will be used to calculate the yield that was obtained during the quantum 
exchange phase of the BB84 protocol. The measurement method was excluded from the table as all response 
variables intended to be recorded and or output by the simulation application.  
 

Table 13. Response Variables. 

Response variable Normal Operating Level Measurement Precision Relationship to Objective 

signalY1 �� + �1 − �1 − ���
�
� 0.000 1 1-Photon Signal Yield 

signalY2 �� + �1 − �1 − ���
�
� 0.000 1 2-Photon Signal Yield 

signalY3 �� + �1 − �1 − ���
�
� 0.000 1 3-Photon Signal Yield 

signalY4 �� + �1 − �1 − ���
�
� 0.000 1 4-Photon Signal Yield 

signalY5 �� + �1 − �1 − ���
�
� 0.000 1 5-Photon Signal Yield 
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Response variable Normal Operating Level Measurement Precision Relationship to Objective 

decoyY1 �� + [1 − (1 − ��)
�] 0.000 1 1-Photon Decoy Yield 

decoyY2 �� + [1 − (1 − ��)
�] 0.000 1 2-Photon Decoy Yield 

decoyY3 �� + [1 − (1 − ��)
�] 0.000 1 3-Photon Decoy Yield 

decoyY4 �� + [1 − (1 − ��)
�] 0.000 1 4-Photon Decoy Yield 

decoyY5 �� + [1 − (1 − ��)
�] 0.000 1 5-Photon Decoy Yield 

 

Control Variables 

Table 14 contains the control variables or experimental factors that will be intentionally manipulated in order to 
produce differing output responses during the experiment. The variables are separated into additional categories, 
i.e., Percentages, Mean Photon Number, and Communication Range and Interference, for clarity. All control 
factors are used to account for both the effectiveness of the decoy state enabled QKD protocol as well as 
covariance effects.  
In this table, the Normal Operating Level refers the range of values reported in the survey of decoy state research 
reported in Chapters II and IV. Eve’s Presence is a categorical factor whereas the others are numerical. With the 
exception of the Eve’s Presence factor, the proposed settings of the control variables are coupled together.  

The proposed settings for each variable were based on parameters from the Chen et al. study [94]. Refer 
to the Simulation Environment section and Chapter V for additional discussion. 
 

Table 14. Control Variables. 

Variable/Factor 
Normal 

Operating Level 
Configured 

Setting Predicted Effect 
Signal State MPN 
(photons/pulse) [0.1-1+] [0.65] 

Larger numbers increase magnitude of 
signals detected 

Decoy State MPN 
(photons/pulse) [0.05-1+] [0.08] 

Larger numbers increase magnitude of 
decoys detected  

% of signal states [50-100] [75] 
Affects magnitude of signal detected and 

sent 

% of decoy states [0-40] [12.5] 
Affects magnitude of decoys detected and 

sent 

% of vacuum states [0-20] [12.5] 
Affects magnitude of vacuum signals 

detected & dark count rate 

Distance (km) [15-75] [20] 
Larger distance decreases ratio of detections 

to pulses sent 

Quantum Channel Signal 
Loss [Varies by distance] [5.6] 

Larger distance decreases ratio of detections 
to pulses sent 

Eve’s Presence No [No, Yes] 
Affects ability to detect Eve (Affects gain 

and yield) 

Signal loss in Bob (dB) [3.5-7.8] [7.5] Affects gain and yield 

Detector Efficiency (%) [6.5-16.5] [10] Affects gain and yield 

Detector Dark Count 
Probability  [1E-5-3E-5] [2.5E-5] Affects gain and yield 

Detector After Pulse 
Probability  [0.001-0.0235] [0.008] Affects gain and yield 
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Factors to hold constant are listed in Table 15 are a large subset of the total number of experimental 
factors that are held constant. These factors are somewhat independent of the particular simulation selected and 
have a non-negligible impact to a QKD system. Only the Error Correction Method and Protocol are categorical 
factors; the rest are numerical. NOTE: The error rate threshold is used by the protocol after the error rate is 
calculated. If the calculated error rate is greater than the specified threshold, the assumption is that an 
eavesdropper is interfering during quantum exchange and the protocol will terminate at this point. 

 
Table 15. Factors to Hold Constant 

Variable/Factor Desired Level or 
Allowable Range 

Measurement Precision Anticipated Effects on 
Responses or Objective 

Error correction method decoyPerfect N/A Simplified error rates 

Error rate threshold 0.25 0.01 Eavesdropper detection ability 

Maximum # of frames 12000 1 Actual simulation run time 

Number of detections 50,000 1 
Terminating condition for 

simulation 

Protocol BB84 N/A High security 

Pulses per frame 1000 1 Affects simulation duration 

Signal loss in fiber (dB/km) 0.2 0.05 Lower yield over distance 

 

Nuisance Factors 

Due to the fact that experiment will be conducted via computer simulation, the nuisance factors are negligible. 
That is, many of the nuisance factors are controlled by holding them constant or excluding them from the 
simulation. 
 

Known/Suspected Interactions 

The specified percentages and MPN for signal, decoy, and vacuum states are expected to affect the efficiency of 
the yield over greater distances and thus the likelihood of detecting an eavesdropper during the quantum exchange 
phase of the BB84 protocol. 
 

Restrictions 

Due to the nature of computer simulations, the experiment has few restrictions. For example, the simulated 
phenomena are programmed to obey the laws of physics and nature. Again by using computer simulation, it is 
relatively easy to adjust the control variables.  

Two practical realities affect the results of the experiment: data and time. First, the author anticipates that 
any data required will be available, but possibly not in the most convenient format. Furthermore, he anticipates 
there will be a learning curve in how to evaluate the data the simulation produces. Second, the other large 
restriction will be proportional to the amount of time require to execute the test runs. As the control variables 
suggest, there are a large number of factors and levels that could be evaluated. Thus the experiment may take a lot 
of time to flesh out the relevant experimental regions from the irrelevant.  
 

Design Preferences 

The author anticipates that replication will be the most effective design principle to employ. Replication will 
enable the analyst to build confidence intervals and make comparisons between the observations. Blocking, in the 
sense of batch processing may be employed to conduct test runs. Randomization can be used to plan the order in 
which to adjust the control variables. Again, due to the nature of computer simulation, some principles of blocking 
and randomization are irrelevant. 
 

Analysis & Presentation techniques 
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Analysis will involve the use of box plots to perform a preliminary visual examination of the output data. If the 
data appears to be within the range of expectations, confidence intervals on the difference of the estimated signal 
and decoy state yields will be calculated. These confidence intervals will be represented in a tabular format or 
graphically as necessary. 
 

Coordination 

Weekly teleconferences are normally conducted with the entire team and attended by the sponsor and SMEs. 
Additionally, coordination was required between the AFIT QKD team and AFIT’s Center for Cyberspace 
Research in order to obtain additional computer hardware for simulation processing. 
 

Necessity of Trial Runs 

Trials runs are a necessity. The plan is as follows:  
1. Conduct runs to verify the author’s understanding of the configured system and BB84 protocol. 
2. Conduct additional runs to verify that control variables are adjusted correctly by comparing the observations 

to expectations. 
3. Conduct additional trial runs as necessary. 

Simulation Environment 

The decoy state qkdX architecture will be configured and simulated on 1 HP Workstation which has 32 cores. 
Thus, with each core running a single simulation, 32 simulation runs can be executed simultaneously. This set of 
runs will be split across two virtual machines. Generally, each machine will run one treatment per core at a time 
performing the simulation using a different random number seed.  

The decoy state enabled qkdX architecture was organized to minimize the number of locations in which 
simulation configuration modifications would be made. Table 16 outlines the locations of the control variables 
necessary to configure the notional architecture. Similarly, the file locations of the Factors to Hold Constant are 
identified in Table 17. 

 
Table 16. Control Variable File Locations. 

Simulation Variable qkdX File Location 

Signal State MPN qkdX/examples/MainDse1/omnetpp.ini 

Decoy State MPN qkdX/examples/MainDse1/omnetpp.ini 

% of signal states qkdX/examples/MainDse1/omnetpp.ini 

% of decoy states qkdX/examples/MainDse1/omnetpp.ini 

% of vacuum states qkdX/examples/MainDse1/omnetpp.ini 

Distance qkdX/examples/MainDse1/omnetpp.ini 
Quantum Channel 
Signal Loss (controlled 
by distance) qkdX/examples/MainDse1/omnetpp.ini  

Signal loss in Bob qkdX/examples/MainDse1/omnetpp.ini  

Eve’s Presence qkdX/examples/MainDse1/omnetpp.ini 

Detector efficiency (%) qkdX/examples/MainDse1/omnetpp.ini 
Dark count probability 
(%) qkdX/examples/MainDse1/omnetpp.ini 
Detector After Pulse 
Probability qkdX/examples/MainDse1/omnetpp.ini 
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Table 17. File Locations for Factors to Hold Constant. 

Variable/Factor qkdX Location 

Error Correction Method qkdX/examples/MainDse1/omnetpp.ini 

Error rate threshold qkdX/examples/MainDse1/omnetpp.ini 

Maximum # of frames qkdX/lib/sys/src/sys/config-sys.h 

Number of detections qkdX/examples/MainDse1/omnetpp.ini 

% of vacuum states qkdX/examples/MainDse1/omnetpp.ini 

Protocol qkdX/examples/MainDse1/omnetpp.ini 

Pulses per frame qkdX/lib/sys/src/sys/config-sys.h 
Signal loss in fiber 
(dB/km) qkdX/examples/MainDse1/omnetpp.ini 

 

The maximum number of frames will be set after trial runs of the experiment. This value affects the amount of 
memory consumed by the simulation for various internal variables. It has already been observed that increases in 
the order of magnitude for this variable translate to additional processing time. Once the trials runs have been 
completed, this variable will be set to a constant value and will not vary with treatments.  
 

Simulation Control Variables 

The mean photon number is achieved by attenuating a classical laser pulse down to the desired mean number of 
photons. Hence both MPN and attenuation are listed, but only attenuation is directly set in the simulation. 
 

Treatments 

Another way to view the control variables is shown in Table 18. Here the control variables are separated into 
levels and one can easily see there are 2 combinations of interest in a full factorial design of this experiment. Thus 
one comparison can be made using this baseline.  

 
Table 18. Control Variable Summary 

Eve’s 
Presence Distance 

Channel 
Loss 

Detector 
Efficiency 

Loss in 
Bob 

Dark Count 
Probability 

(Rate) 
After Pulse 
Probability 

MPN 
Signal 

MPN 
Decoy 

Signal/Decoy/Vacuum 
Percentage 

No 20km 5.6 dB 10% 7.5 dB 2.5e-5 0.008 0.65 0.08 75/12.5/12.5 

Yes      
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Appendix C. Decoy State Enabled QKD System Use Cases 

Request Secret Key 

Summary:  A pair of human secret key users, e.g. human Alice (H.Alice) and 
human Bob (H.Bob), request a secret key from the Quantum Key Distribution 
(QKD) system. This use case initiates the process in which the QKD system 
grows a symmetric secret key for the secret key user pair. 

Dependency: Extended by Perform BB84 and Perform Decoy State Enabled BB84 

Actor(s): Human Secret Key Users, e.g., H.Alice and H.Bob 

Resources: QKD System 

Pre-conditions: QKD System is powered on. Each secret key user has the 
necessary QKD system components available to him/her. The QKD system is able 
to perform communication actions between components available to each user. 
The QKD system has a well-characterized quantum communications channel. 

Post-condition: QKD System provided a symmetric secret key to the secret key 
users. 

Main sequence: 

1. H.Alice requests a secret key from the QKD system using the decoy state 
enabled BB84 protocol. 

2. Perform Decoy State Enabled BB84. 
3. The QKD system provides a symmetric secret key to H.Alice and H.Bob. 

Alternative sequence: 

1. Human secret key user Alice (H.Alice) requests a secret key from the QKD 
system using the standard BB84 protocol. 
1.1. Perform BB84. 

Design Decisions: 

Outstanding questions/issues: 
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Perform Decoy State Enabled BB84 

Summary: QKD System components, Alice and Bob, grow a secret key by 
executing an implementation of a decoy state enabled BB84 protocol. This 
protocol enables the system to detect an eavesdropper performing a photon 
number splitting attack during the exchange of quantum bits. 

Dependency: 
 Extends Request Secret Key 
 Includes:   

Authenticate Partners (Authentication) 
Exchange Quantum Bits Using Decoy Protocol (Quantum Exchange) 
Generate Sifted Key Using Decoy Protocol (Raw Key Sifting) 
Detect Eavesdropper 

Estimate Signal QBER (Error Estimation) 
Reconcile Signal Errors (Error Reconciliation) 

Estimate Entropy (Entropy Estimation) 
Perform Privacy Amplification (Privacy Amplification) 
Generate Secret Key (Key Generation) 

Actor(s): Human Secret key users 

Resources:  QKD System and System of interest 

Pre-condition: QKD System is powered on. Each secret key user has the 
necessary QKD system components available to him/her. The QKD system is able 
to perform communication actions between components available to each user. 
The systems have been primed with initial key (from manual keying or from a 
key store from a previous session). The QKD system has a well-characterized 
quantum communications channel (thresholds are known). The decoy state 
enabled BB84 protocol has been selected for use. 

Post-condition: The quantum subsystem has grown a symmetric secret key that 
will be provided to the human secret key users. 

Main sequence: 

1. <<Authenticate Partners (Authentication)>> 
2. <<Exchange Quantum Bits Using Decoy Protocol (Quantum Exchange)>> 
3. <<Generate Sifted Key Using Decoy Protocol (Raw Key Sifting)>> 
4. <<Detect Eavesdropper>> 

4.1. <<Estimate QBER Using Decoy Protocol (Error Estimation)>> 
4.2. <<Reconcile Errors Using Decoy Protocol (Error Reconciliation)>> 

5. <<Estimate Entropy (Entropy Estimation)>> 
6. <<Perform Privacy Amplification (Privacy Amplification)>> 
7. <<Generate Secret Key (Key Generation)>> 

Alternative sequence: 

- TODO Error rate is too high 
- TODO Secret key cannot be generated 

- TODO An eavesdropper is detected while performing a PNS attack 

Design Decisions: 

 

Outstanding questions/issues:  



AFIT-ENV-MS-15-M-181 

150 
 

Authenticate Partners (BB84 – Step 1: Authentication) 

Summary: Alice and Bob are identified and proven to be who they claim to be. 
This is the first step in the BB84 protocol and is commonly known as 
Authentication. This step enables the secret key partners to be certain of 
each other’s identity across the classic communications channel. 

Dependency: Included by Standard BB84 and Decoy State Enabled BB84. 

Actor(s): Secret key users (partners) 

Resources: System of interest 

Precondition: BB84 protocol has been initiated. QKD System is powered on. 
Each secret key user has the necessary QKD system components available to 
him/her. The QKD system is able to perform communication actions between 
components available to each user. Alice and Bob are using an information 
theoretically secure classical authentication algorithm. 

Post-Condition: Partners (including subsystems) have been authenticated. 

Main Sequence: 

1. Establish communication 
2. Initiate authentication. 
3. Identify partners.  
4. Authenticate identities. 
5. Each partner’s identity is authenticated. 

Alternative Sequence(s): 

Design Decisions: 

- During the modeling process, this phase is assumed to occur 
successfully. It is not the primary behavior being studied.  

Outstanding questions/issues: 
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Exchange Quantum Bits Using Decoy State Protocol (BB84 – Step 2: Quantum Exchange) 

Summary: Alice and Bob prepare and measure pulses, using a polarization-
encoding scheme and decoy states, until they have enough raw key to perform 
the next step of the BB84 protocol. This is the second step in the BB84 
protocol and is commonly known as Quantum Exchange. This phase is where a 
PNS attack could occur and produces much of the data that will be used by 
the remaining phases. 

Dependency: Included by Perform Decoy State Enabled BB84. Extended by 
<<Calibrate System>> 

Actor(s): Alice Protocol (Alice) and Bob Protocol (Bob) 

Resources: System of interest 

Pre-condition:  Partner’s identities have been authenticated. Classical 
communication channel is established and authenticated. Calibration has 
occurred. Polarization and timing synchronization are assumed to remain 
constant.  

Post-condition: Enough raw key exists to perform sifting and obtain the 
desired block size.  

Table 19. Alice and Bob Knowledge at End of Exchange Quantum Bits Using Decoy State Protocol 

Alice Knows: 
- Prepared pulse bit values 
- Prepared pulse bases 
- Prepared pulse type 
- Pulse timing information 
- Total number of each type of 

pulse sent  

Bob Knows: 
- Measured pulse bit values 
- Measured pulse bases 
- Pulse timing information 
- Total number of detections 

 

Main sequence: 

1. Alice and Bob agree to start quantum exchange. 
2. Alice and Bob set their frame counters to zero. 
3. Alice and Bob establish quantum exchange and frame parameters. 

3.1. Timing pulse (shared information between Alice and Bob; also 
used for polarization control) 

3.2. Pulse duration 
3.3. Pulses per frame 
3.4. Frame to frame delay 
3.5. Block size (e.g. 10K signal states) 
3.6. Number of detections before sifting (Bob’s detection limit) 
3.7. Signal, decoy, and vacuum state MPNs 
3.8. Signal, decoy, and vacuum state percentages 
3.9. Maximum number of frames before sifting must occur (related to 

Alice’s memory limit) 
4. Alice chooses a random sequence of polarization bases in which to encode 

photons. 
5. Alice chooses a random bit string. 
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6. Alice randomly determines the state type (based on pre-configured 
percentages of signal, decoy, and vacuum) for each qubit in the random 
bit string and stores the decisions. 

7. Alice stores the frame number, basis, value, and state type for each 
pulse in the frame. 

8. Alice transmits a frame to Bob 
8.1. Alice transmits a timing pulse.  
8.2. Alice produces pulses and encodes qubits according to the bit 

values, basis sequence, and state type. 
9. Alice increments the frame number. 
10. Alice verifies that frame number is less than the maximum number of 

frames before sifting.  
11. Alice waits for the frame to frame delay before sending the next 

frame. 
12. Bob receives the frame from Alice.  

12.1. Bob receives the timing pulse. 
12.2. Bob receives the weak coherent pulses (WCPs). 

13. For each WCP in the frame, Bob, randomly and independently from Alice, 
selects and stores a basis in which to measure the qubit. 

14. Bob attempts to detect photons and measure the bit values for each WCP 
in the frame. 

15. Bob stores the bit values from the detected photons using the bases he 
selected. 

16. Beginning with step 3, this sequence repeats until the Bob’s 
detections the number of photons before sifting. 

17. Bob stops detecting pulses. 
18. Bob stops recording bit values. 
19. Bob records the timing information of the last pulse he detected. 
20. Bob transmits a message requesting Alice to stop sending frames.  
21. Alice receives Bob’s message. 
22. Alice finishes sending the frame. 
23. Alice acknowledges Bob’s request to stop and stops sending frames. 
24. Alice and Bob agree to proceed to the next phase. 

Alternative sequence: 

8. The maximum number of frames has been reached (i.e., Alice runs out of 
memory)  

9. Alice and Bob agree to proceed to the next phase (raw key sifting).  

Design Decisions: 

Outstanding questions/issues: 

- To be implemented in the future: Alarm/error condition is set if no 
detections are achieved after 2 attempts 
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Generate Sifted Key Using Decoy State Protocol (BB84 – Step 3: Raw Key Sifting) 

Summary: Alice and Bob compare the measurement bases and drop the bases that 
do not match. Alice calculates statistics related to quantum exchange. Alice 
sends the decoy bit values to Bob for use later. This is the third step in 
the BB84 protocol and is more commonly known as Sifting. 

Dependency: Included by Perform Decoy State Enabled BB84. 

Actor(s): Alice Protocol (Alice) and Bob Protocol (Bob) 

Resources: System of interest 

Pre-condition: Partner’s identities have been authenticated. Classical 
communication channel is established and authenticated. Calibration has 
occurred. No error conditions have occurred. 
 
Post-condition:  Alice and Bob have raw secret keys of equal length and 
matching bases.  
 

Table 20. Alice and Bob Knowledge at End of Generate Sifted Key Using Decoy State Protocol 

Alice has/knows: 
- Which of her frames/slots for 

which Bob measured a matching 
basis 

- Number of signal, decoy, and 
vacuum detections 

- Number of pulses sent before 
Bob’s detection limit was 
reached 

- Number of signal, decoy, and 
vacuum pulses sent before the 
detection limit was reached 

- Number of signal, decoy, and 
vacuum pulses sent 

- Dark count rate 
 

Bob has/knows: 
- Which measured frames/slots 

matched the basis prepared by 
Alice 

- Which frames and slots 
contained a signal, decoy, or 
vacuum pulse 

- Number of signal, decoy, and 
vacuum detections 

- Dark count rate 
- Decoy bit values 

 

 
 
Main sequence: 

1. Alice and Bob exchange messages to initiate sifting. 
2. Bob announces to Alice the measurement bases and the timing information, 

e.g. frame number and slot, he used for measuring qubits. 
3. Alice receives the information from Bob. 
4. Alice identifies and stores the signal detections where the basis 

matched. 
5. Alice identifies and stores the decoy detections where the basis matched. 
6. Alice discards the bits where the Bob’s measurement basis did not match 

Alice’s prepared basis. 
7. Alice determines or calculates: 

7.1. Alice determines and counts the total number of signal, decoy, 
and vacuum detections. 

7.2. Alice calculates and stores the total number of pulses sent 
before the detection limit was reached. 
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7.3. Alice calculates and stores the total number of signal, decoy, 
and vacuum pulses sent before the detection limit was reached. 

7.4. Alice calculates and stores the total number of signal, decoy, 
and vacuum pulses sent. 

8. Alice calculates (but does not store) the signal, decoy, and rates. 
9. Alice calculates and stores the vacuum detection (i.e., dark count ) rate 
10. Alice prepares a message to Bob that: 

10.1. identifies the bases he correctly matched,  
10.2. identifies which bits were signal and decoy,  
10.3. contains the dark count rate, and 
10.4. contains decoy bit values. 

11. Bob receives the message from Alice. 
12. Bob identifies and stores  

12.1. the signal bits with which his basis measurement matched Alice’s 
and 

12.2. the decoy bits with which his basis measurement matched Alice’s. 
13. Bob stores: 

13.1. the decoy bit values from Alice and 
13.2. the dark count rate from Alice. 

14. Alice and Bob exchange messages to terminate sifting. 

Alternative sequence: 

Design Decisions: 

- Alice announces decoy bits to Bob in this phase. Though it may make 
sense for clarity to perform this action in another phase, we chose to 
implement it here to make mitigate use of the classic communications 
channel which is a large source of practical system delays. 

- Alice provides Bob with the dark count rate. This was implemented here 
in an attempt to make the protocol more efficient. 

Outstanding questions/issues: 

- If Alice is the “master” in this process, why does she send the dark 
count to Bob?   

o I don’t think she needs to do this. 
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Detect Eavesdropper 

Summary: Alice and Bob calculate signal and decoy error rates, reconcile 
signal errors and attempt to detect an eavesdropper as well as detect a PNS 
attack. This step is unique to the decoy state enabled BB84 protocol and 
includes the Error Estimation and Error Reconciliation phases of BB84. 

Dependency: Includes <<Estimate QBER (BB84 – Step 4: Error Estimation)>> and 
<<Reconciliation Signal Errors (BB84 – Step 5: Error Reconciliation)>>. 

Actor(s):  Alice Protocol (Alice) and Bob Protocol (Bob) 

Resources: System of interest. 

Pre-condition: Partner’s identities have been authenticated. Classical 
communication channel is established and authenticated. Calibration has 
occurred. Pre-established tolerances for the signal and decoy photon number 
dependent yield differences and a pre-established threshold for the 
estimated and actual signal and decoy QBERs are known. 

Post-condition: No eavesdropper has been detected performing a PNS attack 
and the protocol is ready to continue.  

Table 21. Alice and Bob Knowledge at End of Detect Eavesdropper 

Alice Knows: 
- Actual signal and decoy QBERs 
- Estimated signal QBER 
- Signal and decoy gains 
- End to end efficiencies, ��, ��	 

- 1-, 2-, 3-, 4-, 5-photon signal 
and decoy yield estimates 

- Whether or not tolerance was 
exceeded 

Bob Knows: 
- Actual signal and decoy QBERs 

 

Main sequence: 

1. <<Estimate Signal QBER>>. 
2. <<Reconcile Signal Errors>>. 
3. Alice checks whether the actual decoy QBER exceeds the actual decoy QBER 

threshold. 
4. Alice calculates and stores the measured gain by dividing the total 

number of signal and decoy detections by the total number of signal and 
decoy pulses she sent to Bob. 
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�!
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���
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Signal gain (use case) 

(22) 
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Decoy gain (use case) 
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(23) 

 
 
 

5. Alice uses the measured signal and decoy gains to calculate and store the 
end to end efficiencies. 

�� =
− ln�1 + �� − ���

�
 

 

End-to-end efficiency (use 
case; signal) (24) 

�� =
− ln|1 + �� − ��|

�
 

End-to-end efficiency (use 
case; decoy) (25) 
 

6. Alice uses the efficiency to calculate and store the estimated 1-, 2-, 3-
, 4-, and 5-photon yield estimates for the signal and decoy states. The 
calculations for single (1-) photon yield estimates, Y1, are shown below: 

 

������	�� ≅ �� + �1 − �1 − ���
�
� = 	�� + �1 − �1 −

− ln�1 + �� − ���

�
�

�

� 

 

Single photon signal 
yield estimate (use 
case) (26) 

�����	�� ≅ �� + [1 − (1 − ��)
�] = �� + �1 − �1 −

− ln|1 + �� − ��|

�
�

�

� 
Single photon decoy 
yield estimate (use 
case) (27) 

 
 

7. Alice compares the 1-, 2-, 3-, 4-, and 5-photon yield of the signal 
states to the 1-, 2-, 3-, 4-, and 5-photon yield decoy states and stores 
the results. The difference is within a pre-established tolerance. The 
calculation for single (1-) photon yield estimate difference is:  
 

|������	�� − �����	��| ≤ ���������� Single photon yield 
difference comparison 
to tolerance (use case) 
(28) 

 
8. Alice does not detect a photon number splitting attack. 

Alternative sequence: 

7. Alice compares the single photon yield of the signal to the single photon 
yield decoy states. The difference is not within a pre-established 
tolerance. 

8. Alice detects a photon number splitting attack, records the deviation and 
displays a warning. 

Design Decisions: 

- Definitions [14]: 
o Yield =  the conditional probability of a detection event at 

Bob’s side given that Alice sends out a pulse 
o Gain = product of the probability of Alice sending out a pulse 

(following a Poisson distribution) and the conditional 
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probability that Alice’s pulse (and background) will cause a 
detection at Bob 

- Integrated Decoy State Error Test into this use case because it became 
a trivial (one line) use case. 

- * That is, the number of pulses sent in the time frame during which 
Bob is ready to detect photons. 

- For simulation and certain analytical studies it is better to warn a 
user of a difference exceeding a tolerance rather than terminating the 
simulation. Strict termination would prevent data capture. 

Outstanding questions/issues: 

- NOTE: End to end efficiency is related to, protocol (e.g., 80% of 
signal states), channel (0.2 dB/km), Bob’s internal loss (2-5dB), and 
detector efficiency (10%) and dark counts. 

- When 2-photon, 3-photon, 4-photon, or n-photon yields are desired for 
comparison, the tolerance and difference for the n-photon yield must 
be calculated. For example: 

������	�� ≅ �� + �1 − �1 − ���
�
� = �� + �1 − �1 −

− ln�1 + �� − ���

�
�

�

� 
Photon number 
dependent signal yield 
estimate (use case) (29) 
 

|������	�� − �����	��| ≤ ���������� Photon number 
dependent yield 
difference comparison to 
tolerance (use case) (30) 

 
- The idea of tolerance is consistent with the notion that Alice and Bob 

must know their channel well [28]. 

- How could calibrated end-to-end efficiencies be employed in Step 5? 
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Estimate Signal Quantum Bit Error Rate (BB84 – Step 4: Error Estimation) 

Summary:  Alice and Bob estimate the number of signal bit errors or quantum 
bit error rate (QBER) that occurred during quantum exchange. If the number 
of errors exceeds a pre-determined threshold (percentage), they decide to 
terminate the protocol. This is the fourth step in the BB84 protocol and is 
commonly known as Error Estimation. This step provides a quick test to 
detect the presence of an eavesdropper and provides error reconciliation 
methods with the error estimate. 

Dependency: 

Actor(s): Alice Protocol (Alice) and Bob Protocol (Bob) 

Resources: System of interest 

Pre-condition:  Partner’s identities have been authenticated. Classical 
communication channel is established and authenticated. Calibration has 
occurred. Alice and Bob have raw sifted keys. A predetermined percentage of 
signal bits (to be used for error estimation) is known by Alice. An 
estimated signal QBER threshold is known by Bob. 

Post-condition: Alice and Bob have calculated a QBER estimate.  

Table 22. Alice and Bob Knowledge at End of Estimate Signal QBER 

Alice Knows: 
- Which signal bits were selected 

for error estimation 
- Which signal bits were not 

selected for error estimation 
- Bob’s estimated signal QBER 

 

Bob Knows: 
- Actual bit values for error 

estimation bits 
- Estimated signal QBER 

 

Main sequence: 

1. Alice and Bob exchange messages to initiate error estimation. 
2. Alice uses a predetermined percentage to randomly select a sequence of 

sifted signal bits. These bits will be used for estimating the number of 
errors that occurred during the quantum exchange.  

3. Alice separates the random sequence of bits from the sifted signal bits. 
The remaining sifted bits are identified as the post error estimation 
sifted signal bits.  

4. Alice tallies the number of post error estimation sifted signal bits. 
5. Alice transmits this sequence of bit values to Bob on the classic 

channel. 
6. Bob receives the sequence of bits values from Alice. 
7. Bob compares each bit value from Alice to each bit value he measured. 
8. Bob calculates the percentage of errors measured in this comparison. This 

value is the estimated signal quantum bit error rate (QBER). 
9. Bob checks whether the estimated signal QBER exceeds the estimated signal 

QBER threshold. 
10. Bob announces the estimated signal QBER to Alice on the public 

channel. 
11. Alice receives the message from Bob. 
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12. Alice stores the estimated signal QBER. 
13. Alice checks whether the estimated signal QBER exceeds the estimated 

signal QBER threshold. 
14. Alice and Bob terminate error estimation. 

Alternative sequence: 

9. If the QBER estimate exceeds a threshold, Alice and Bob terminate the 
protocol.  

13. If the signal QBER estimate exceeds a threshold, Alice and Bob 
terminate the protocol. 
 

Design decisions: 

- This use case is shared between the decoy state enabled BB84 and 
standard BB84. The estimated signal error rate is a parameter to some 
error reconciliation methods. Additionally it provides an opportunity 
to test for an eavesdropper on the quantum channel by comparing the 
estimated signal QBER to a predefined threshold. 

- In a meeting at the research sponsor’s location during the week of 17 
November 2014, it was established that using the decoy states for 
error estimation is unnecessary for (at least) two reasons. The error 
reconciliation methods that depend on the estimated signal QBER; an 
estimated decoy state QBER, which uses a different MPN is not an 
appropriate substitute for the estimated signal QBER. Additionally, 
the decoy state error count can be calculated in another phase or use 
cases. This practice would be consistent with the desired software 
engineering practices of loose coupling and high cohesion. Thus no 
decoy states are used in this phase. 

Outstanding questions/issues: 
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Reconcile Signal Errors (BB84 – Step 5: Error Reconciliation) 

Summary:  Alice and Bob compare qubit measurements and reconcile 
discrepancies between using a two-way error correction method. Bob also 
calculates the quantum bit error rate (QBER). This is the fifth step in the 
BB84 protocol and is commonly known as Error Reconciliation. 

Dependency: Extended by Execute Perfect ER, Execute LDPC ER, Execute Cascade 
ER, or Execute Winnow ER. 

Actor(s): Alice Protocol (Alice) and Bob Protocol (Bob) 

Resources: System of interest 

Pre-condition:  Partner’s identities have been authenticated. Classical 
communication channel is established and authenticated. Calibration has 
occurred. Alice and Bob estimated the number of errors that occurred during 
quantum exchange. Alice and Bob agreed upon a particular error 
reconciliation method. A predetermined actual signal QBER threshold has been 
defined and known by Bob. 

Post-condition:  Alice and Bob have reconciled the erroneous bits in their 
sifted keys.  

Table 23. Alice and Bob Knowledge at End of Reconcile Signal Errors 

Alice knows: 
- Error reconciled signal bit 

values 

Bob knows: 
- Error reconciled signal bit 

values 
 

Main sequence: 

1. Alice and Bob exchange messages to initiate this phase. 
2. Alice and Bob <<Execute [Error Reconciliation Name]>> method. 
3. Alice and Bob terminate this phase. 

Alternative sequence: 

Design Decisions: 

- The selected Error Reconciliation method should perform any QBER-
related checks. This decision was made to keep the protocol efficient. 
Refer to Execute Decoy Perfect ER as an example. 

- The bulk of this use case exists in the specific error reconciliation 
method. 

Outstanding questions/issues: 
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Execute Decoy Perfect ER 

Summary: Alice provides Bob with the bit values she selected for the secret 
key. This is a simple method of error reconciliation that is used for 
modeling purposes only. 

Dependency:  Extends Signal Reconcile Errors  

Actor(s): Alice Protocol (Alice) and Bob Protocol (Bob) 

Resources: System of interest 

Pre-condition: Partner’s identities have been authenticated. Classical 
communication channel is established and authenticated. Calibration has 
occurred. Alice and Bob agreed to use the Decoy Perfect Error Reconciliation 
method.  

Post-condition:  Alice and Bob have reconciled the erroneous bits in their 
sifted signal and decoy keys.  

Table 24. Alice and Bob Knowledge at End of Execute Decoy Perfect ER 

Alice Knows: 
- Actual signal and decoy QBERs 

Bob Knows: 
- Actual signal and decoy bit 

values 
- Actual signal and decoy QBERs 

 

Main sequence: 

1. Alice and Bob exchange messages to initiate this phase. 
2. Alice updates her reconciled key using the values from the post error 

estimated sifted signal bits. 
3. Alice transmits the values of the signal and decoy bits to Bob on the 

classical communication channel. 
4. Bob receives the bits values from Alice. 
5. Bob adjusts his measured signal bit values to match the bit values he 

received from Alice.  
6. Bob counts the number of mismatched bits, i.e. actual number of signal 

bit errors and actual number of decoy bit errors. 
7. Bob stores the actual number of signal bit errors. 
8. Bob calculates the actual signal and decoy QBERs. 
9. Bob checks whether the actual signal QBER exceeds the actual signal QBER 

threshold. 
10. Bob announces the actual signal and decoy QBERs to Alice. 
11. Alice receives the actual signal and decoy QBERs from Bob. 
12. Alice stores actual signal and decoy QBERs. 
13. Alice and Bob terminate this phase. 

Alternative sequence: 

9. If the QBER does exceed the actual signal QBER threshold, Alice and Bob 
terminate the protocol. 

Design Decisions: 
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- The calculation of the actual signal QBER may not be explicitly part 
of any error reconciliation method. Thus Alice or Bob must calculate 
it. Using the theoretical perfect error reconciliation method, in 
which Alice sends all of the signal bit values to Bob across the 
classical channel, it makes the most sense for Bob to calculate the 
actual signal QBER. Alternatively, an additional sequence of messages 
transfers on the classic communication channel would be performed at 
the time the QBER would need to be calculated.  

- Bob announces the number of signal and decoy errors to Alice. Alice 
has been assumed to be the leader in the protocol. Thus it makes sense 
for her to track and store the information. 

Outstanding questions/issues: 

- Bob probably doesn’t need to store the actual number of signal bit 
errors. 

- Alice probably doesn’t need to send the decoy bit values during 
sifting. 
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Execute Decoy State Error Test (Integrated into Detect Eavesdropper Use Case) 

Summary: Alice provides Bob with the decoy bit values she selected for the 
decoy states key.  

Dependency:  Extends Reconcile Errors  

Actor(s): Alice Protocol (Alice) and Bob Protocol (Bob) 

Resources: System of interest 

Pre-condition: Partner’s identities have been authenticated. Classical 
communication channel is established and authenticated. Calibration has 
occurred. An Error Reconciliation method has been performed. Alice knows the 
actual decoy QBER. 

Post-condition:  The actual decoy QBER is at or below a predefined actual 
decoy QBER threshold.  

Main sequence: 

1. Alice initiates this phase. 
2. Alice checks whether the actual decoy QBER exceeds the actual decoy QBER 

threshold. 
3. Alice terminates this phase. 

Alternative sequence: 

2. If the actual decoy QBER exceeds the actual decoy QBER threshold, Alice 
and Bob terminate the protocol. 

Design Decisions: 

- After analyzing this use case, it was integrated into the Detect 
Eavesdropper use case because the value added by this use was a single 
check performed by main sequence step #2. 

 

- The bulk of this use case is handled via the precondition that Alice 
knows the value of the actual decoy QBER. The decoy perfect ER method 
was designed to calculate the decoy QBER as a matter of efficiency 
since Bob already had all of the information needed. Alternatively, an 
unnecessary sequence of messages transfers on the classic 
communication channel would be performed at this time. 

Outstanding questions/issues: 
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Appendix D. Other BB84 Use Cases 

Perform BB84 

Summary: QKD System components, Alice and Bob, grow a secret key by 
executing the BB84 protocol. 

Dependency: 
 Extends Request Secret Key 
 Includes:   

Authenticate Partners (Authentication) 
Exchange Quantum Bits (Quantum Exchange) 
Generate Sifted Key (Raw Key Sifting) 
Estimate Signal Quantum Bit Error Rate (Error Estimation) 
Reconcile Signal Errors (Error Reconciliation) 
Estimate Entropy (Entropy Estimation) 
Perform Privacy Amplification (Privacy Amplification) 
Generate Secret Key (Key Generation) 

Actor(s): Human Secret key users 

Resources:  QKD System and System of interest 

Pre-condition: QKD System is powered on. Each secret key user has the 
necessary QKD system components available to him/her. The QKD system is able 
to perform communication actions between components available to each user. 
The QKD system has a well-characterized quantum communications channel. The 
(standard) BB84 protocol has been selected for use. 

Post-condition: The quantum subsystem has grown a symmetric secret key that 
will be provided to the human secret key users. 

Main sequence: 

1. <<Authenticate Partners (Authentication) >> 
2. <<Exchange Quantum Bits (Quantum Exchange) >> 
3. <<Generate Sifted Key (Raw Key Sifting) >> 
4. <<Estimate Signal Quantum Bit Error Rate (Error Estimation)>> 
5. <<Reconcile Signal Errors (Error Reconciliation)>> 
6. <<Estimate Entropy (Entropy Estimation)>> 
7. <<Perform Privacy Amplification (Privacy Amplification)>> 
8. <<Generate Secret Key (Key Generation) >> 

Alternative sequence: 

Design Decisions: 

Outstanding questions/issues: 

  



AFIT-ENV-MS-15-M-181 

165 
 

Exchange Quantum Bits (BB84 – Step 2: Quantum Exchange) 

Summary: Alice and Bob prepare and measure pulses, using a polarization-
encoding scheme, until they have enough raw key to perform the next step of 
the BB84 protocol. This is the second step in the BB84 protocol and is 
commonly known as Quantum Exchange. 

Dependency: Included by Perform BB84 Protocol. Includes Calibrate System. 

Actor(s): Alice Protocol and Bob Protocol 

Resources: System of interest 

Pre-condition:  Partners have been authenticated. Classical communication 
channel is established. 

Post-condition: Enough raw key exists to perform sifting. Quantum systems 
are calibrated. 

Main sequence: 

1. <<Calibrate System>> 
2. Alice and Bob establish quantum exchange and frame parameters. 

2.1. Timing pulse 
2.2. Pulse duration 
2.3. Pulses per frame 
2.4. Block size (e.g. 10K signal states) 
2.5. Maximum number of detections (detection limit) 

3. Alice chooses a random sequence of polarization bases in which to encode 
photons and stores the sequence. 

4. Alice chooses a random bit string and stores it. 
5. All state types are signal states. 
6. Alice produces pulses and encodes qubits according to the bit values, 

basis sequence, state type, and frame parameters. 
7. Alice transmits the frame to Bob. 
8. Bob receives the frame from Alice.  
9. For each pulse in the frame, Bob, randomly and independently from Alice, 

selects and stores a basis in which to measure the qubit. 
10. Bob attempts to detect photons and measure the bit values for each 

pulse in the frame. 
11. Bob stores the bit values from the detected photons using the bases he 

selected. 
12. Steps 1-10 repeat until the two participants decide enough bits have 

been detected to proceed. 

Alternative sequence: 

Design Decisions: 

Outstanding questions/issues: 

- Describe the relationship between Alice and Bob. 

- Frames are used to facilitate timing 
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Generate Sifted Key (BB84 – Step 3: Raw Key Sifting) 

Summary: Alice and Bob compare the measurement bases and drop the bases that 
do not match. This is the third step in the BB84 protocol and is commonly 
known as Sifting. 

Dependency: Included by Perform BB84. 

Actor(s): Secret key users, Alice and Bob 

Resources: Quantum Subsystem 

Pre-condition:  Partners have been authenticated. Classical communication 
channel is established. A predetermined number of quantum pulses were 
exchanged between Alice and Bob, i.e. detection limit was met. 

Post-condition:  Alice and Bob have raw secret keys of equal length and 
matching bases. 

Main sequence: 

1. Bob announces to Alice the measurement bases and the timing information, 
e.g. frame number and slot, he used for measuring qubits. 

2. Alice compares Bob’s bases to the ones she prepared and transmitted. 
3. Alice discards the bits for which Bob did not select the correct basis. 
4. Alice announces to Bob the bases he correctly matched. 
5. Bob discards the bits for which he did not select the correct basis. 
6. If decoy states are enabled, Bob stores the state types announced by 

Alice.  

Alternative sequence: 

Design Decisions: 

Outstanding questions/issues: 
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Estimate Entropy (BB84 – Step 6: Entropy Estimation) 

Summary:  Alice and Bob estimate the amount of information that was exposed 
to potential eavesdroppers on the classical and quantum channels. This is 
the sixth step in the BB84 protocol and is commonly known as Entropy 
Estimation. 

Dependency: 

Actor(s): Secret key users 

Resources: Quantum Subsystem 

Pre-condition: The QBER has been calculated. 

Post-condition: Entropy has been estimated. 

Main sequence: 

1. TODO in future research 

Alternative sequence: 

Design Decisions: 

Outstanding questions/issues: 

- This use case should be defined in future research which focuses on 
this set of behaviors. 
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Perform Privacy Amplification (BB84 – Step 7: Privacy Amplification) 

Summary: Alice and Bob attempt to mitigate the impact of the amount of 
information that was exposed to potential eavesdroppers. This is the seventh 
step in the BB84 protocol and is commonly known as Privacy Amplification. 

Dependency: 

Actor(s): Secret key users 

Resources: Quantum Subsystem 

Pre-condition: 

Post-condition: 

Main sequence: 

1. TODO in future research 

Alternative sequence: 

Design Decisions: 

Outstanding questions/issues: 

- This use case should be defined in future research which focuses on 
this set of behaviors. 
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Generate Secret Key (BB84 – Step 8: Key Generation) 

Summary: Alice and Bob verify they have matching secret keys and distribute 
the keys for use with the bulk encryptors. This is the last (eighth) step in 
the BB84 protocol and is commonly known as Key Generation. 

Dependency: 

Actor(s): Secret key users 

Resources: Quantum Subsystem 

Pre-condition: 

Post-condition: 

Main sequence: 

1. TODO in future research 

Alternative sequence: 

Design Decisions: 

Outstanding questions/issues: 

- This use case should be defined in future research which focuses on 
this set of behaviors. 
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Appendix E. Initial Requirements 

Table 25. Initial Requirements Notation.  

Requirement Types: 
 
OR – operational requirement 
UR – user-specified requirement 
DR – derived requirement 
SS – system specification 

Verification methods: 
 
I – Inspection 
D – Demonstration 
T – Testing 
A – Analysis 
 

 
 
1. The model shall employ the Bennett and Brassard (BB84) protocol (OR, D). 

1.1. The model shall transfer encoded bits on a “quantum” channel (DR, I). 
1.2. The model shall encode bit values on quantum particles (OR, I). 
1.3. The model shall decode bit values from quantum particles (OR/DR, I). 

2. The model shall extend the BB84 protocol with the decoy state protocol (OR, I). 
2.1. The decoy state protocol shall use three states: signal, decoy, and vacuum (DR, I). 

3. The model shall detect an eavesdropper performing a photon number splitting attack on the quantum channel 
(OR, T or A). 
3.1. The model shall use the decoy state protocol to detect a PNS attack (DR, I). 

4. The model shall use commercially-available components when available (UR, I). 
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Appendix F: Requirements 

Table 26. Requirements Notation. 
Requirement Types: 
 
OR – operational requirement 
UR – user-specified requirement 
DR – derived requirement 
SS – system specification 

Verification methods: 
 
I – Inspection 
D – Demonstration 
T – Testing 
A – Analysis 
 

 
Table 27. Requirements. 

 
Requirement 

Number 
Definition Requirement 

Type 
Primary 

Verification 
Method 

1 The model shall employ the Bennett and Brassard (BB84) 
protocol. 

OR D 

1.1 The model shall transfer encoded bits on a “quantum” 
channel. 

DR I 

1.1.1 The model shall adhere to a predefined timing scheme. DR T 

1.1.1.1 The model shall synchronize timing between Alice and Bob so 
that weak coherent pulses (WCPs) can be detected every 1.5 
nanoseconds. 

DR D 

1.1.1.2 Alice shall generate laser pulses according to a predefined 
timing scheme. 

DR T 

1.1.1.2.1 The timing scheme shall be defined by an optical pulse frame 
which consists of a timing pulse and at least one weak coherent 
pulse. 

DR I 

1.1.1.2.2 Alice shall transmit optical pulse frames on the quantum channel.  D 

1.1.1.2.3 Alice shall be capable of generating laser pulses with a 400 
picosecond duration at least every 1.5 nanoseconds 

DR I 

1.1.1.2.4 Alice shall indicate the beginning of a pulse frame by 
transmitting a timing pulse with an MPN of at least 6,000,000. 

DR I 

1.1.1.2.5 The timing pulse shall have a duration of at least 400 
picoseconds and less than 600 picoseconds. 

DR D 

1.1.1.2.6 The number of weak coherent pulses in a pulse frame shall be 
configurable between 1 and at least 10,000. 

DR D 

1.1.1.2.7 Weak coherent pulses shall have a duration of 400 picoseconds 
and less than 600 picoseconds. 

DR D 

1.1.1.2.8 Alice shall transmit optical pulse frames until Bob announces he 
has detected a predefined number of qubits or Alice reaches her 
memory limit. 

DR D 

1.1.1.3 Bob shall announce to Alice when he has detected a predefined 
number of qubits. 

DR D 

1.1.1.4 Bob shall be ready to detect pulses according to a predefined 
timing scheme. 

DR T 

1.1.2 Alice shall encode bit values on quantum particles. OR I 
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Requirement 
Number 

Definition Requirement 
Type 

Primary 
Verification 

Method 

1.1.2.1 Alice shall use photon polarization to encode bit values onto 
quantum particles. 

UR, OR I 

1.1.2.2 Alice shall randomly select either rectilinear or diagonal 
polarization as the qubit encoding basis. 

DR I 

1.1.2.3 Alice shall store the bases she selects to prepare qubits. DR I 

1.1.2.4 Alice shall randomly select bit values to encode onto quantum 
particles 

DR I 

1.1.2.5 Alice shall store the bit values she selects to prepare qubits. DR I 

1.1.3 The model shall decode bit values from quantum particles. OR I 

1.2 Alice and Bob shall perform sifting. OR D 

1.2.1 Bob shall announce to Alice when he detected each photon. DR D 

1.2.2 Bob shall announce to Alice the sequence of bases he selected to 
measure qubits. 

DR D 

1.2.3 Bob shall announce to Alice when he measured a qubit detection. DR D 

1.2.4 Alice shall announce to Bob the sequence of bases she selected 
to encode qubits. 

DR D 

1.2.5 Alice shall discard qubits for which her prepared bases do not 
match Bob's measured bases. 

DR D 

1.2.6 Bob shall discard qubits for which his measured bases do not 
match Alice's prepared bases. 

DR D 

1.2.7 Alice shall calculate and store the dark count rate. DR I 

1.3 Alice and Bob shall reconcile errors in their respective sifted 
keys. 

DR D 

2 The model shall extend the BB84 protocol with the decoy 
state protocol. 

DR I, D 

2.1 The decoy state protocol shall use three states: signal, decoy, 
and vacuum 

DR I 

2.1.1 Alice shall encode signal states using the signal state MPN 
specification that ranges between 0.00 and 15.00. 

DR I 

2.1.1.1 Alice shall transmit signal states according to a prescribed 
occurrence percentage that ranges between 0 and 100%. 

DR I 

2.1.1.2 Alice shall store the number of signal states she transmitted. DR I 

2.1.2 Alice shall encode decoy states using the decoy state MPN 
specification that ranges between 0.00 and 15.00. 

DR I 

2.1.2.1 Alice shall randomly transmit decoy states according to a 
prescribed occurrence percentage that ranges between 0 and 
100%. 

DR I 

2.1.2.2 Alice shall store the number of decoy states she transmitted. DR I 

2.1.3 Alice shall encode vacuum states using the vacuum state 
MPN specification of 0.00 

DR I 

2.1.3.1 Alice shall randomly transmit vacuum states according to a 
prescribed occurrence percentage that ranges between 0 and 
100%. 

DR I 
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Requirement 
Number 

Definition Requirement 
Type 

Primary 
Verification 

Method 

2.1.3.2 Alice shall store the number of vacuum states she transmitted. DR I 

2.1.4 Alice shall announce to Bob the sequence of state types she 
transmitted. 

DR I 

2.1.5 Alice shall calculate and store the gain of the signal state qubits. DR D 

2.1.6 Alice shall calculate and store the gain of the decoy state qubits. DR D 

2.1.7 Alice shall calculate and store the end-to-end signal efficiency DR D 

2.1.8 Alice shall calculate and store the end-to-end decoy efficiency DR D 

2.1.9 Alice shall calculate and store the yield of the 1-photon signal 
pulses, i.e., the 1-photon signal yield. 

DR D 

2.1.10 Alice shall calculate and store the yield of the 2-photon signal 
pulses, i.e., the 2-photon signal yield. 

DR D 

2.1.11 Alice shall calculate and store the yield of the 3-photon signal 
pulses, i.e., the 3-photon signal yield. 

DR D 

2.1.12 Alice shall calculate and store the yield of the 4-photon signal 
pulses, i.e., the 4-photon signal yield. 

DR D 

2.1.13 Alice shall calculate and store the yield of the 5-photon signal 
pulses, i.e., the 5-photon signal yield. 

DR D 

2.1.14 Alice shall calculate and store the yield of the 1-photon decoy 
pulses, i.e., the 1-photon decoy yield. 

DR D 

2.1.15 Alice shall calculate and store the yield of the 2-photon decoy 
pulses, i.e., the 2-photon decoy yield. 

DR D 

2.1.16 Alice shall calculate and store the yield of the 3-photon decoy 
pulses, i.e., the 3-photon decoy yield. 

DR D 

2.1.17 Alice shall calculate and store the yield of the 4-photon decoy 
pulses, i.e., the 4-photon decoy yield. 

DR D 

2.1.18 Alice shall calculate and store the yield of the 5-photon decoy 
pulses, i.e., the 5-photon decoy yield. 

DR D 

2.1.19 Alice shall calculate and store the difference of the 1-photon 
signal yield and the 1-photon decoy yield. 

DR D 

2.1.20 Alice shall calculate and store the difference of the 2-photon 
signal yield and the 2-photon decoy yield. 

DR D 

2.1.21 Alice shall calculate and store the difference of the 3-photon 
signal yield and the 3-photon decoy yield. 

DR D 

2.1.22 Alice shall calculate and store the difference of the 4-photon 
signal yield and the 4-photon decoy yield. 

DR D 

2.1.23 Alice shall calculate and store the difference of the 5-photon 
signal yield and the 5-photon decoy yield. 

DR D 

3 The model shall detect an eavesdropper performing a photon 
number splitting attack on the quantum channel. 

OR T or A 

3.1 The model shall use the decoy state protocol to detect a PNS 
attack. 

DR I 
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Requirement 
Number 

Definition Requirement 
Type 

Primary 
Verification 

Method 

3.1.1 The model shall detect an eavesdropper performing a photon 
number splitting (PNS) attack on the quantum channel by 
verifying that the difference of the 1-photon signal and decoy 
yield estimates is less than 0.00202 photons/pulse sent. 

DR T 

3.1.2 The model shall detect an eavesdropper performing a photon 
number splitting (PNS) attack on the quantum channel by 
verifying that the difference of the 2-photon signal and decoy 
yield estimates is less than 0.00399 photons/pulse sent. 

DR T 

3.1.3 The model shall detect an eavesdropper performing a photon 
number splitting (PNS) attack on the quantum channel by 
verifying that the difference of the 3-photon signal and decoy 
yield estimates is less than 0.00592 photons/pulse sent. 

DR T 

3.1.4 The model shall detect an eavesdropper performing a photon 
number splitting (PNS) attack on the quantum channel by 
verifying that the difference of the 4-photon signal and decoy 
yield estimates is less than 0.00780 photons/pulse sent 

DR T 

3.1.5 The model shall detect an eavesdropper performing a photon 
number splitting (PNS) attack on the quantum channel by 
verifying that the difference of the 5-photon signal and decoy 
yield estimates is less than 0.00965 photons/pulse sent 

DR T 

4 The model shall imitate behavior of commercially-available 
components when available. 

UR I 

4.1 The model shall use one or more lasers to produce signal, 
decoy, and vacuum state pulses. 

DR I 

4.1.1 The laser(s) shall produce pulses with wavelengths in its 
operating range between 1290 nm and 1600 nm. 

DR I 

4.1.2 The laser(s) shall be capable of producing pulses at a specified 
wavelength within the operating range +/-5nm. 

DR I 

4.1.3 Bob shall correct for polarization drift with 99% accuracy. DR D 

4.1.4 Bob shall detect at least one in ten weak coherent pulses 
which are 400 picoseconds in duration. 

DR D 

4.1.4.1 Bob shall be capable of detecting a weak coherent pulse every 
1.5 nanoseconds. 

DR D 

4.1.4.2 The detector dark count rate shall be configurable to interfere 
with Bob's ability to detect a weak coherent pulse. 

DR D 

4.1.4.3 The detector after pulse rate shall be configurable to interfere 
with Bob's ability to detect a weak coherent pulse. 

DR D 

5 The QKD model shall be accurate, flexible, usable, extensible 
and low cost. 

UR D 

5.1 The QKD model shall be able to be reconfigured without re-
compiling the code for the following parameters. 

DR D 

5.1.1 The mean photon number of the signal states shall be 
configurable between 0.000 and 15.000 without recompiling the 

DR D 
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Requirement 
Number 

Definition Requirement 
Type 

Primary 
Verification 

Method 

simulation. 

5.1.2 The mean photon number of the decoy states shall be 
configurable between 0.000 and 15.000 without recompiling the 
simulation. 

DR D 

5.1.3 The mean photon number of the vacuum states shall be 
configurable between 0.0 and 0.01. 

OR D 

5.1.4 The percentage of signal states shall be configurable between 
0.00 and 100.00 without recompiling the simulation. 

OR D 

5.1.5 The percentage of decoy states shall be configurable between 
0.00 and 100.00 without recompiling the simulation. 

OR D 

5.1.6 The percentage of vacuum states shall be configurable between 
0.00 and 100.00 without recompiling the simulation. 

OR D 

5.1.7 The percentage of bits used for error estimation shall be 
configurable between 0.00 and 100.00 without recompiling the 
simulation. 

DR D 

5.1.8 The percentage of estimated errors that result in restarting the 
protocol shall be configurable between 0.00 and 100.00 without 
recompiling the simulation. 

DR D 

5.1.9 The number of laser pulses per second shall be configurable 
between 1,000,000 and 1,000,000,000 without recompiling the 
simulation. 

DR D 

5.1.10 The length of the quantum channel, in meters, shall be 
configurable with 0.001 precision without recompiling the 
simulation. 

DR D 

5.1.11 The amount of attenuation in quantum channel, in optical dB per 
kilometer, shall be configurable with 0.001 precision without 
recompiling the simulation. 

DR D 

5.1.12 The dark count rate, in percent, shall be configurable with 0.000 
000 001 precision without recompiling the simulation. 

DR D 

5.1.13 The after pulse rate, in percent, shall be configurable with 0.000 
000 001 precision without recompiling the simulation. 

DR D 

5.1.14 The random number generator seed shall be configurable 
between 1 and 100,000,000 without recompiling the simulation. 

DR D 

5.2 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for MPN (Signal). 

DR D 

5.3 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for MPN (Decoy). 

DR D 

5.4 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of pulses sent from Alice to Bob. 

DR D 

5.5 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of signal pulses sent from Alice to Bob. 

DR D 

5.6 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of decoy pulses sent from Alice to Bob. 

DR D 
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Requirement 
Number 

Definition Requirement 
Type 

Primary 
Verification 

Method 

5.7 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of vacuum pulses sent from Alice to 
Bob. 

DR D 

5.8 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of signal pulses detected by Bob. 

DR D 

5.9 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of decoy pulses detected by Bob. 

DR D 

5.10 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of vacuum pulses detected by Bob. 

DR D 

5.11 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of sifted signal pulses. 

DR D 

5.12 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Total number of sifted decoy pulses. 

DR D 

5.13 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Gain (signal). 

DR D 

5.14 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Gain (decoy). 

DR D 

5.15 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Dark count rate. 

DR D 

5.16 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Signal efficiency. 

DR D 

5.17 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Decoy efficiency. 

DR D 

5.18 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (1-photon signal yield). 

DR D 

5.19 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (2-photon signal yield). 

DR D 

5.20 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (3-photon signal yield). 

DR D 

5.21 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (4-photon signal yield). 

DR D 

5.22 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (5-photon signal yield). 

DR D 

5.23 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (1-photon decoy yield). 

DR D 

5.24 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (2-photon decoy yield). 

DR D 

5.25 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (3-photon decoy yield). 

DR D 

5.26 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (4-photon decoy yield). 

DR D 
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Requirement 
Number 

Definition Requirement 
Type 

Primary 
Verification 

Method 

5.27 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Yield estimate (5-photon decoy yield). 

DR D 

5.28 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Number of signal errors. 

DR D 

5.29 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Number of decoy errors. 

DR D 

5.30 The QKD model shall produce output in OMNeT++ scalar (.sca) 
format for Number of error-reconciled key bits. 

DR D 

6 The QKD model shall be able to run on at least one high 
performance computer available to the AFIT QKD research 
team. 

UR D 
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