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Abstract 1 

A variational method is used to estimate wave-affected parameters in a 2 

two-equation turbulence model with assimilating the temperature data into an ocean 3 

boundary layer model. Enhancement of turbulent kinetic energy dissipation due to 4 

breaking waves is considered. The Mellor-Yamada 2.5 turbulence closure scheme 5 

(MY-2.5) with the two uncertain wave-affected parameters (wave energy factor α and 6 

Charnock coefficient β) is selected as the two-equation turbulence model for this 7 

study. Two types of experiments are conducted. First, within an identical synthetic 8 

experiment framework, the upper layer temperature “observations” in summer 9 

generated by a “truth” model are assimilated into a biased simulation model to  10 

investigate if (α, β) can be successfully estimated using the variational method. 11 

Second, real temperature profiles from the Ocean Weather Station Papa are 12 

assimilated into the biased simulation model to obtain the optimal wave-affected 13 

parameters. With the optimally-estimated parameters, the upper layer temperature can 14 

be well predicted. Furthermore, the horizontal distribution of the wave-affected 15 

parameters employed in a high order turbulence closure scheme can be estimated 16 

optimally by using the four-dimensional variational method that assimilates the upper 17 

layer available temperature data into an ocean general circulation model. 18 

19 
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1. Introduction 1 

Observations (Kitaigorodskii et al. 1983; Thorpe 1984, 1992; Anis and Moum 1992; 2 

Terray el al. 1996; Drennan et al. 1996) show that the dissipation of turbulent kinetic 3 

energy (TKE) is enhanced greatly near the sea surface due to increasing shear by 4 

surface gravity waves under non-breaking (including Langmuir circulation) and 5 

breaking waves. The mixing induced by non-breaking waves directly affects or 6 

influences the upper-ocean mixing down to depths of the order of 100 m. With a wave 7 

amplitude-based Reynolds number (Re), an empirically determined critical value (Recr) 8 

is used to identify if the turbulence is generated by waves (Re > Recr) or not (Re < 9 

Recr); and to determine a depth of the upper ocean mixed layer from Re = Recr. 10 

Decrease of Re with depth confirms that within that depth the turbulence is generated 11 

by orbital movement of surface gravity waves; and below that depth there is no 12 

wave-induced turbulence (Babanin 2006; Babanin and Haus 2009).  13 

The breaking wave induced mixing has been broadly implemented into ocean 14 

circulation and mixing models (e.g., Craig 1994). On the base of the observational 15 

evidences on the surface wave breaking (Osborn et al. 1992; Agrawal et al. 1992), 16 

Terray el al. (1996) suggested a three-layer structure: The first layer (from the surface) 17 

is a wave-enhanced layer with the depth on the same order as the significant wave 18 

height, and the energy dissipation rate proportional to  3z ( z denotes the vertical 19 

distance from the sea surface), which is twice faster than the classical wall layer 20 

dissipation. The second layer is the transition layer below the breaking zone (depth 21 

about 6z0, 0z  the surface roughness length) (Craig and Banner 1994), with the 22 
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energy dissipation rate proportional to 2z . The third layer is the classic wall layer 1 

with the energy dissipation rate  proportional to depth z-1.  2 

To model the wave-breaking enhanced turbulence near the sea surface layer, 3 

Craig and Banner (1994, 1996) imposed a surface diffusion boundary condition on the 4 

turbulent kinetic energy equation (hereafter, CB boundary condition) in the 5 

Mellor-Yamada (MY) turbulence closure model (1982). Burchard (2001b) simulated a 6 

wave-enhanced layer under breaking surface waves with a two-equation turbulence 7 

model including the CB boundary condition. Mellor and Blumberg (2004) developed 8 

a wave-enhanced parameterization scheme with the CB boundary condition to 9 

overcome a weakness of the MY turbulence closure model that produces a shallower 10 

surface boundary layer and higher surface temperature during summertime warming 11 

in comparison to the observations (Martin, 1985). Zhang et al (2011, 2012) identified 12 

the effect of breaking surface waves on upper ocean boundary layer deepening in the 13 

Yellow Sea in summer utilizing the Princeton ocean model (POMgcs, Ezer et al., 14 

2004). A well-mixed temperature surface layer in the Yellow Sea can be reconstructed 15 

successfully when the breaking wave enhanced turbulent mixing are considered.  16 

In addition to the wave breaking, other wave-related processes are also important 17 

in modulating the upper mixed layer, such as the non-breaking wave (Babanin et al, 18 

2009) and the Langmuir circulation (Stephen et al, 2012). Some studies indicate that 19 

the effect of wave breaking on the upper-level turbulence is significant within the 20 

depth comparable to the wave height (Terray et al., 1996; Babanin et al, 2005). 21 

However, for a deeper mixed layer over 100 m depth, the impact of wave breaking 22 
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would be small and the effect of Langmuir circulation and non-breaking wave 1 

becomes important (Babanin, 2005).  2 

Uncertain wave-affected parameters exist in modeling wave-induced turbulence 3 

(non-breaking or breaking waves) such as critical value of the wave Renolds number 4 

(Recr) in non-breaking waves and wave energy factor (α) and Charnock coefficient (β) 5 

in breaking waves. These parameters are usually determined empirically or adjusted 6 

artificially. Studies have shown successful parameter estimation with a dynamical 7 

model using variational optimal control techniques (Derber, 1987; Le Dimet and 8 

Talagrand, 1986). For example, Yu and O'Brien (1991) used the variational method to 9 

assimilate meteorological and oceanographic observations into a one-dimensional 10 

oceanic Ekman layer model, to estimate the drag coefficient and the oceanic eddy 11 

viscosity profile, and to investigate the effect of initial condition on the variational 12 

parameter estimation. Zhang et al (2003) showed the capability of 4D-Variational 13 

method (4D-VAR) in estimating uncertain parameters in numerical models. Peng et al 14 

(2006) developed a tangent linear model and an adjoint model of three-dimensional 15 

POM to construct a 4D-VAR algorithm for coastal ocean prediction. Effective error 16 

correction was found in initial conditions and wind stress in the storm surge 17 

simulation (Peng et al, 2007), and the drag coefficient was estimated in the storm 18 

surge prediction  using the adjoint model of the three-dimensional POM [Peng et al 19 

(2012)]. Peng et al (2006) also pointed out that it is still an open issue as to whether it 20 

is meaningful to linearize the turbulence closure scheme in an atmospheric or oceanic 21 

model due to the high nonlinearity and discontinuity of the vertical turbulence. The 22 
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nonphysical noise might be produced, and thus lead to numerical instability during the 1 

process of linearizing the turbulence closure scheme. They applied a simple but 2 

efficient way of avoiding the noise problem through neglecting the variation of the 3 

vertical diffusion coefficients in the linearization of the vertical turbulence scheme.   4 

Despite earlier studies on the parameter estimation and model verification (e.g., 5 

Chu et al., 2001), the adjoint model of the turbulence closure scheme has not yet been 6 

thoroughly investigated with either non-wave breaking or wave breaking.  7 

Determination of  wave-affected parameters in the turbulent mixing due to breaking 8 

waves using the variation method is  selected as the major objective of this study. 9 

First, the upper layer temperature “observations” are produced by a “perfect” model. 10 

Second, a biased assimilation is conducted to identify the capability of the variational 11 

method to optimally estimate the wave-affected parameters in MY-2.5 turbulence 12 

closure scheme. Third, the real temperature profiles at Ocean Weather Station Papa 13 

(OWS Papa) are assimilated into the ocean model to obtain the optimal wave-affected 14 

parameters.  15 

2. Methodology 16 

2.1 Ocean boundary layer model  17 

Let (x, y) be the horizontal coordinates, z the vertical coordinate, and t be the 18 

time. Following D'Alessio et al (1998), equations governing the mean flow, 19 

temperature, salinity in a horizontally homogeneous ocean boundary layer are given 20 

by 21 
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where u , v  are the velocity components in the x , y  directions, respectively, T  is 4 

the potential temperature, S  is the salinity, f  is the Coriolis parameter, KM and HK  5 

are the vertical mixing coefficients for momentum and tracers, respectively.                        6 

The MY2.5 turbulence closure scheme,  widely used in ocean models such as 7 

POM and Regional Ocean Modeling System (ROMS), is a two-equation turbulence 8 

model,  9 
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where 2q is the turbulent kinetic energy times two, l  is the turbulent macroscale. 12 

qK  is the vertical mixing coefficient for turbulence,   and 0  are the density and 13 

reference density respectively,   14 

         2
2 )/(1 LlEW  ,  111 )()(   zHzL  ,  15 

where  (=0.41) is the von Karman constant, H  is the water depth,   is the free 16 

surface elevation, and 1E , 2E  and 1B  are empirical constants. The turbulent energy 17 

and macroscale equations are closed by  18 

M MK lqS , HH lqSK  , qq lqSK  ,              (4) 19 

where MS  and HS  are the stability functions. 20 

2.2 Wave-affected parameters 21 
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Wave-affected parameters are included into the surface boundary conditions of 1 

the two equation turbulence model. The first one is the CB boundary condition for 2 

2q  (Craig and Banner, 1994), 3 

0,2 3
2





zu
z

q
Kq                             (5) 4 

where u  is the water-side friction velocity, and   is “wave energy factor.” The 5 

second one is for  the turbulent macroscale l  (Terray et al., 1996, 1999), 6 

),κmax( zw lzl                                  (6) 7 

where zl  is the “conventional” empirical length scale, which is calculated 8 

prognostically by the MY2.5 turbulence closure scheme;  wz is the wave-related 9 

surface roughness length, which denotes the relevant scale of turbulence.  10 

     In the absence of surface waves, both   and wz  at the surface are set as zero 11 

in the MY2.5 turbulent closure scheme (Blumberg and Mellor, 1987). However, when 12 

the effect of surface waves is considered, both   and wz  appear as constants or 13 

vary with states of surface waves. Craig and Banner (1994) set   as 100 for wave 14 

ages embracing very young wind seas to fully developed situations. Terray et al (1996) 15 

indicates that 150  is an adapted value under breaking waves. In thepast, Kraus 16 

and Turner (1967), Denman and Miyake (1973), Gaspar (1988) also choose different 17 

values of  in their studies.  18 

Terray et al. (1996), Burchard (2001a), Umlauf and Burchard (2003) suggest that 19 

wz  is the same order as the significant wave height ( sH ). Further, Mellor and 20 

Blumberg (2004) summarized the work of Donelan (1990), Smith et al. (1992), and 21 

Janssen (2001), and obtained: 22 
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where g  is the gravitational acceleration, and β is the Charnock parameter (Chu and 2 

Cheng 2007), which varies from  2 (Stacey 1999),  0.32 (Jones and Monismith 3 

2008) to β = 0.56 (Carniel et al. 2009) to obtain the best performance in each 4 

numerical simulation. Mellor and Blumberg (2004) suggested that  ~O(1) is deemed 5 

correct under breaking waves. Smith et al. (1997) also indicates that  ~O(10) is too 6 

big value to describe the surface boundary condition for the turbulent kinetic energy.             7 

2.3 Boundary conditions     .  8 

    The surface boundary conditions for 2q  and l  are given by Eqs.(5) and (6). 9 

The bottom boundary conditions of 2q  and l  are given by 10 

23/2
1

2
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where 1B  = 16.6 (Blumberg and Mellor 1987), bu  is the friction velocity 13 

associated with the bottom frictional stress. The surface and bottom boundary 14 

conditions of the mean flow and tracers are represented by  15 
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where Q  is the surface net heat flux; pC  is the specific heat; obsS  is the 7 

observation of the sea surface salinity; *u  is the friction velocity associated with the 8 

wind stress; wx  and wy  are the x  and y  components of the wind stress; 10u


 is 9 

the wind speed at 10 m; xu  and yu  are x  and y  components of 10u


; bx  and 10 

by  are the x  and y  components of the bottom frictional stress; bu


 is the bottom 11 

velocity;  bxu  and byu  are the x  and y  components of bu


; wC  and dC  are 12 

drag coefficients of the wind stress and the bottom stress; and 0z  is the bottom 13 

roughness parameter, taken as 0.01 m. 14 

2.4 The variational analysis 15 

The purpose of the variational analysis is to seek the optimal control variables by 16 

minimizing a well-defined cost function, in which a dynamical model including all the 17 

control variables is regarded as the strong constraints of the cost function. Within the 18 

least-square framework, a general form of the cost function can be defined as 19 
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F is the differential operator. < > is the inner product in the Euclidean space. W is the 1 

weight matrix. obsX  is the observation, and C is the projection operator from the 2 

model space to the observational space. Let 3 

                   )min()( ppJ obs  . 4 

The optimal control variable pobs is  obtained from  5 

                      0)(  obspJ  6 

with respect to all control variables. Here,  is the gradient operator. The process for 7 

the variational analysis can be outlined as follows:  8 

(a) Define a concrete cost function that reflects the misfit between the control 9 

variables and the available observations. 10 

(b) Calculate the value of the cost function )( pJ  through integrating the 11 

dynamical model with a fixed time step. 12 

(c) Calculate the gradients of the cost function with respect to all control 13 

variables, )(pJ . 14 

(d) Minimize the cost function through a minimization algorithm according to 15 

the value of )( pJ  and )(pJ . 16 

(e) Estimate the optimal control variables pobs according to the convergence 17 

criterion of the process of the minimization. 18 

For executing the above process of the variational analysis (a)-(e), )(pJ  should be 19 

obtained in advance, and in general,it is calculated by the adjoint model of the 20 

linearized dynamical model.  To the first order the Taylor expansion of )( pJ is 21 

given by 22 

)()()( 0 pJpJpJ                          (13) 23 

where )(pJ  is the variation of the )( pJ .On the one hand, )(pJ  is given by the 24 
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definition of the variation: 1 
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With the symmetry of the inner product as well as a constant W matrix,  Eq. (15) can 5 

be rewritten as  6 
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where )( XA is called as the tangent linear operator. Eq.(17) can be transposed 10 

according to the definition of the adjoint operator: 11 
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where )(* XA is called as the adjoint operator of )( XA . Compared with  Eq. (14), 13 

)( 0pJX  can be described by: 14 
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According to Eq. (19), the gradient of the cost function with respect to the control 16 

variables can be calculated using the adjoint model. The difference obsXCX   is 17 

regarded as an external forcing of the adjoint model.  18 

2.5 The adjoint model 19 

The dynamical model composed by Eq.(1)~(11) can be summarized in a general 20 
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form as 1 
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where x is the vector of model state variables, including u , v ,T , S , 2q  and lq2 ; 3 

0x  is the model states at initial time 0t ; , and y(t) is the boundary condition on   4 
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The tangent linear model of Eq. (20) can be written by 6 
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where the prime is the perturbations of the state variables.  8 

For the two vectors w and z in the Euclidean space, the adjoint operator L* of the 9 

linear operator L can be defined as: 10 

<z, Lw>=<L* z, w>               11 

In the Euclidean space, L* is the transpose of L, namely L* = LT.  The adjoint model 12 

corresponding to (21) is given by 13 
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 14 

where x   represents the adjoint variables and Et  is the end time  in the temporal 15 

integration of Eq. (20). The negative sign in the right side of the first equation in (22) 16 
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indicates that the adjoint model integrates backward in time. When the adjoint model 1 

integrates backward to the initial time 0t , the corresponding 
0

~
tt

x


 is the gradient of 2 

the cost function with respect to the state variables. 3 

The discretized adjoint model that computes the gradient of the cost function can 4 

be developed directly from the discretized dynamical model including Eqs.(1)~(11). 5 

In practical application, the source code of the adjoint model is constructed by 6 

combining the Tangent and Adjoint Model Compiler (TAMC) developed by Giering 7 

and Kaminski (1998) and a hand-coding correction. First, the adjoint code is 8 

generated by TAMC to avoid man-made errors and negligence, which are extremely 9 

easy to happen during the direct coding. Second, hand-coding correction is conducted 10 

to correct the AMC-generated code and control the adjoint code structure. The errors 11 

in the adjoint code, which are induced from some irregular expressions of the forward 12 

numerical model such as the partial array assignment and iterative use of intermediate 13 

arrays, are corrected through the hand coding. Finally, through the hand-coding 14 

correction, values of many intermediate results in the adjoint model are recorded into 15 

memory instead of recomputation to shorten run time of the adjoint model, and some 16 

local variables and arrays are transferred to global attribute to improve the run 17 

efficiency of the adjoint model.   18 

Once the cost function and its gradient are obtained from the dynamical model 19 

and associated adjoint model, the minimization process is implemented to minimize 20 

the cost function through iterating the values of the control variables ( nT , 1nT ,   21 

and  ) with the limited memory Broyden-Fletcher-Glodfarb-Shanno (BFGS) 22 
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quasi-Newton minimization algorithm (Liu and Nocedal, 1989). During the 1 

minimization process, the maximum of   is set to 1000, and the maximum of   is 2 

set to 10 according to Mellor and Blumberg (2004) and Smith et al. (1997). The 3 

minima of the two wave-affected parameters are set to zero to keep  realistic  4 

physical conditions. The minimization process is repeated until the convergence 5 

criterion of the gradient is reached. At that time, the optimal values of the control 6 

variables are obtained.  7 

2.6 Cost function 8 

The cost function is defined by 9 
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where the first two terms in the right side represent the background error terms that 11 

measure the misfit between the model's initial field and the background field. nT  12 

and 1nT  are the initial temperature values at the nth and (n-1)th time step respectively, 13 

which will be estimated optimally via the variational method. n
bT  and 1n

bT  are the 14 

background temperature values at the nth and (n-1)th time steps respectively, which can 15 

be derived from the model run. Both temperatures at the two consecutive time steps 16 

are considered as the control variables due to the utilization of the leapfrog time 17 

differencing scheme with the Asselin-Robert time filter (Robert, 1966). Otherwise, 18 

initial shocks of the model states are likely to be produced during the variational 19 

estimation because of the inconsistence of the initial values at the two time steps. B1 20 

and B2 are the error covariance for nT  and 1nT  respectively, for simplicity, both B1 21 



 16

and B2 use diagonal matrices, whose values of the diagonal components are set to 10-4 1 

in this study. The third term denotes the observation of the temperature at certain time 2 

intervals within the assimilation window, where ijT ,  and obsT  are the simulated and 3 

observed temperature at location i and time level j. N and M are the number of grid 4 

points over the ocean and the number of time levels of observations. R is the error 5 

covariance for the observations, which also uses the same diagonal matrix as that of 6 

B1.  7 

Wave-affected parameters   and   are expressed implicitly in Eq. (23), which are 8 

regarded as the independent variables of ijT , . Therefore, the value of the cost function 9 

can be obtained when the model integrates for n time steps with the known initial 10 

values of nT , 1nT ,   and  . The cost function has the following form if the 11 

wave-affected parameters   and   have background values (αb, βb), 12 
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(24) 13 

where K  and K  are coefficients controlling the best fits for data. In this study, 14 

we use the first form of the cost function (23) for avoiding the complexity of the cost 15 

function.  16 

3.  Synthetic experiments  17 

3.1. “Truth” model simulation     18 

Table 1 lists all the assimilation experiments and model simulations within an 19 

identical synthetic experiment framework. The “truth” model consists of Eq.(1)-(3) 20 

with  = 200 and  =2. All the 6 equations from (1) to (3) are discretized using the 21 
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same implicit method as POM. The maximum depth is set to 250 m, with 60  vertical 1 

levels. The  first 20 vertical levels  are 0.0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 2 

14.0, 16.0, 18.0, 20.0, 22.0, 24.0, 26.0, 28.0, 30.0, 35.0 m. The time step is 1-hour. 3 

The model initial state is from Jan. 1, 1961, including temperature and salinity, 4 

derived from the real observation at OWS Papa. The model is forced by the 5 

observational 10-minutes momentum and heat fluxes from 6 

http://www.pmel.noaa.gov/stnp/data.html. 7 

Starting from the initial conditions (Jan. 1, 1961), the "truth" model is run for 6-yr 8 

to generate time series of the "truth" with the first 5-yr as the spin-up period. The time 9 

of the "observations" of T  is from Aug. 1, 1966 to Aug. 30, 1966. The 10 

"observations" of T are produced through sampling the "truth" states at 1-hour 11 

observational frequencies. The "observation" locations of T are consistent with those 12 

of the model vertical grids.  13 

3.2. Biased simulation  14 

The biased simulation uses the same “truth” model, but with different parameter 15 

settings. Therefore, the difference between the biased simulation and “truth” model 16 

leads to the effect of the “incorrect” parameter settings. Fig.1 shows the simulated 17 

daily temperature at OWS Papa in 1966. The sea surface temperature (SST) from the 18 

biased simulation with ( ,  ) = (100, 1) is higher than that by the “truth” model 19 

simulation with ( ,  ) = (200, 2), and the maximum difference of the SST between 20 

the two simulations occurs in summer, namely from the 200th day to the 240th day 21 

(solid line vs. dash line in Fig.1a). Obvious difference of the temperature at 10 m 22 

depth in the two simulations also remains (Fig.1b). The wave-affected parameters are 23 

half smaller in the biased simulation than in the “truth” model simulation, which 24 
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suggests that the turbulent kinetic energy is too weak to mix the surface and 1 

subsurface water well in the biased simulation. After the 240th day (fall and winter), 2 

the temperature decreases gradually due to the convective mixing induced by the 3 

surface cooling. The temperatures at the surface and 10 m depth in the biased 4 

simulation remain higher than the counterpart in the “truth” model simulation due to 5 

the insufficient wave-enhanced mixing in the biased simulation. Below 20 m, the 6 

effect of the wave-affected parameters on the temperature is not evident in summer 7 

(solid line vs. dash line in Figs.1c and 1d), which indicates that the turbulent kinetic 8 

energy generated by the breaking surface gravity waves is dissipated only near the sea 9 

surface and does not penetrate into the deeper waters. The maximum difference in 10 

temperature at 30 m from the two simulations occurs in the fall (after the 250th day) 11 

with temperature higher in the biased simulation than in the “truth” model simulation. 12 

Although the wave-affected parameters do not directly affect the temperature in the 13 

deeper layers in summer, it can affect the temperature indirectly by the SST due to the 14 

subsequent convective cooling in autumn and winter. Thus, the wave-affected 15 

parameters directly impact on the temperature near the sea surface in summer, and 16 

indirectly impact on the temperature in the deeper layers in autumn and winter.  17 

We intend to investigate if the wave-affected parameters in a two-equation 18 

turbulence model can be estimated effectively through assimilating the temperature 19 

data into an ocean boundary layer model with the variational method. In addition, we 20 

want to understand how well the model state estimation/forecast can be improved 21 

through the estimated wave-affected parameters. In the next subsection, a series of 22 
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synthetic experiments are carried out to address the issues. 1 

3.3. Parameter estimation 2 

Fig.2 shows a flowchart of the wave-affected parameter estimation with the 3 

variational method. The process for the wave-affected parameter estimation is 4 

outlined as follows: 5 

(a) Begin with the initial field on Aug. 1, 1966 and use the different values of                   6 

   wave-affected parameters from the “truth” for the biased simulation.  7 

(b) Integrate the model Eqs. (1) -(3) forward to a fixed time window wT  and   8 

   calculate the value of the cost function ),,,( 1 nn TTJ  using Eq. (23). 9 

 (c) Integrate the adjoint model backward in time and calculate the values of the  10 

   gradient of the cost function with respect to the control variables J . 11 

 (d) With the values of the cost function ),,,( 1 nn TTJ  and the gradient J , use  12 

   the BFGS algorithm to obtain the new values of the control variables,  13 

   namely, the two wave-affected parameters  ,   and initial upper layer  14 

   temperature fields nT  , 1nT .  15 

(e) With the updated control variables from process (d), repeat processes (b) - (d)  16 

   until the convergence criterion for the minimization is satisfied. The  17 

   convergence criterion is defined as 18 

                          01.0/ 0  JJ .  19 

   The solution of the control variables that satisfies the convergence criterion is 20 

regarded as the optimal  21 

   solution.  22 
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(f) Integrate the model Eqs. (1) -(3) to the fixed time window
wT  using the  1 

   optimal solution derived from process (e), and results are regarded as the new   2 

   initial fields for the next integration.  3 

(g) Use the new initial fields derived from the process (f) and the optimal   4 

   wave-affected parameters derived from process (e), iterate the processes (b)  5 

   to (f) to obtain time series of wave-affected parameters   and  .  6 

Fig.3 shows the time series of   and   during the parameter estimation (PE) 7 

described in Table 1, where both assimilation window and frequency are set to 24 8 

hours and the assimilation depth is set to 30 m. Therefore, the processes (b)~(g) are 9 

executed 30 times to obtain time series of   and   from  Aug. 1, 1966 to Aug. 10 

30, 1966. Fig.3b shows that   converges to its “truth” value (dash line) after 9 days, 11 

while   converges to its “truth” value (dash line in Fig.3a) after about 15 days. 12 

Results show the wave-affected parameters in the high order turbulent model can be 13 

estimated successfully using the upper layer temperature observations through the 14 

variational control technique. For each cycle of the parameter estimation in the 30 15 

days, the process of the minimization is iterated until the convergence criterion of the 16 

gradient is satisfied. Fig.4 shows the dependence of the cost function and the norm of 17 

the gradient on the number of iterations on Aug. 2, 1966. The value of the cost 18 

function decreases rapidly from 4.3 to 0.8 within first 5 iterations, and keeps the low 19 

value (0.8) steadily after the 5th iteration (Fig. 4a). However, the norm of the gradient 20 

oscillates dramatically to search the optimal declining direction of the gradients. The 21 

norm of the gradient goes stable after the 130th iteration (Fig. 4b). The minimization 22 
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process stops after 180th iterations, indicating the local minima of the wave-affected 1 

parameters for that day.  2 

Fig.5 is the temporal variations of the natural logarithm of the cost function at 3 

OWS Papa from Aug. 1 to Aug. 30, 1966. The cost function (red line) decreases 4 

dramatically in the first 5 days, then decreases gently in the following 25 days. Both 5 

the background term (blue line in the Fig.5) and the observation term (black line in 6 

the Fig.5) of the cost function have a similar pattern with the total cost function. The 7 

two terms almost converge to the same value after the 10th days, indicating the 8 

estimated initial temperature fields reach a balance between the background 9 

temperature and the observation. 10 

The temporally varying wave-effected parameters ( ,  ) estimated from their 11 

different initial values on Aug.1, 1966  (Fig. 6)converge to their “truth” values within 12 

one month through the parameter optimization with the variational approach. It 13 

clearly shows that the variational assimilation approach is feasible for the 14 

wave-affected parameter optimization with different initial parameter values.  15 

To evaluate the effect of the noise in the temperature observation on the 16 

wave-affected parameter estimation, based on the PE experiment, the white noises 17 

with different standard deviation are added to  the temperature observation. Table 2 18 

shows the dependence of the optimally-estimated ( ,  ) on the error standard 19 

deviation of temperature observation. The relative error of optimally-estimated   20 

decreases from 96.9% to 60%, and the relative error of optimally-estimated   21 

decreases from 99.1% to 94.3% as the error standard deviation in temperature 22 
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observation increases from 0.001 to 0.05K. It implies  that the effect of observational 1 

noise on the estimation is more severe on   is  than on  ,  which means that it is 2 

more difficult to pick up the useful signal when the noise dominates the cost function 3 

and corresponding gradients during the parameter estimation of  . When the 4 

standard deviation of temperature observation increases to 0.5K, both relative errors 5 

of the optimally-estimated   and   are below 50%, which indicates that the level 6 

of the noise is not acceptable for assimilation purposes. 7 

To explore if the wave-affected parameters can be estimated correctly only using 8 

the SST data, the second assimilation experiment, PE_SST, is conducted, in which 9 

only the SST observations are assimilated into the biased simulation model. Neither 10 

  (Fig. 7a) nor   (Fig. 7b) reaches their “truth” values (dashed curve) due to the 11 

poor constraint of the observation. When only the SST observations are assimilated, 12 

the subsurface temperature cannot be estimated accurately. Under this condition, the 13 

two parameters will be adjusted to the optimal values to fit the inaccurate temperature 14 

values to the greatest extent within a fixed time window, rather than to converge to 15 

“truth” values. Therefore, the subsurface temperature observations are essential for 16 

estimating   and   reasonably well. 17 

The dependence of the optimally-estimated   (Fig. 8a) and  (Fig. 8b) on the 18 

assimilation window and frequency is  investigated using different values  from 19 

Aug.1 to Aug. 30, 1966 (Fig. 8). When the assimilation window and frequency are 48 20 

hours and 72 hours, both parameters converge to their respective “truth” values (see 21 

black and blue lines in Figs. 8a and 8b). However, when the assimilation window and 22 
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frequency reach 96 hours and 120 hours, neither   nor   converges to their 1 

“truth” values within one month, which can be seen from the red and pink lines in 2 

Figs. 8a and 8b. It clearly shows that the parameter updating with the observation can 3 

improve the state estimation of the next cycle, and the improved state estimation 4 

further enhances the quality of parameter estimation for the next cycle of parameter 5 

correction. When the assimilation window and frequency are set to 120 hours, the 6 

state-parameter optimization is performed only in 6 cycles within one month. 7 

Although the cost function decreases gradually, which can be seen from the dash 8 

curve in Fig. 9, the control variables (the initial temperature Tand two parameters α, β) 9 

are not estimated reasonably well. In contrast, when the assimilation window and 10 

frequency are set to 24 hours, just as the PE experiment, the state-parameter 11 

optimization can be performed in 30 cycles within one month, and the cost function 12 

can reach quasi-equilibrium after 10 days (solid curve in Fig.9). 13 

    The incorrect convergence of (α, β) suggests that the initial temperature field is 14 

not adjusted well enough, which is regarded as the source of noise during parameter 15 

estimation using the variational method. Therefore, it is hard to obtain the accurate 16 

values of (α, β) before the state variables ( nT  and 1nT ) attain the adequate accuracy. 17 

For better understanding the issue, two other experiments are carried out, in which   18 

is regarded as the only control variable. The experiment PE_ _TI described in Table 19 

1 uses the “perfect” initial field that is generated by the “truth” model with the “truth” 20 

values of   and  , the other experiment, PE_  _BI, uses the “biased” initial field 21 

that is generated by the biased simulation with the “biased” values of   and  . 22 
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Table 3 shows the evolution of the cost function, norm of the projected gradient and 1 

value of   with respect to the number of iterations in PE_ _TI. The parameter   2 

reaches its “truth” value at the 3rd iteration. The convergence criterion of the gradient 3 

is satisfied at the 4th iteration. However,   estimated from PE_  _BI cannot 4 

converge to its “truth” value (Table 4). After the convergence criterion of the gradient 5 

is satisfied at the 6th iteration,   reaches 3.302335, which is different from the 6 

“truth” value 2.0. Although  from PE_  _BI cannot converge to its “truth” value, it 7 

reaches its optimal value to compensate the error derived from the “biased” initial 8 

filed during minimizing the model-observation misfit.  9 

In fact, in a 3D ocean circulation model, model biases arise from the imperfect 10 

dynamical core and empirical physical schemes even if the initial field is perfect. With 11 

a biased initial field alone, one expects that the parameter optimization can 12 

compensate both numerical and physical deficiencies of numerical model and enhance 13 

the performance of the model simulation to certain degree. Under this situation, 14 

parameters can only converge to their optimal value, instead of the “truth” values. In 15 

the next section, real temperature profiles from OWS Station Papa will be assimilated 16 

into the assimilation model to obtain the optimal wave-affected parameters (α, β).  17 

4.  Real experiment  18 

The Papa Station locates in the North Pacific at (145oW, 50oN), where the 19 

currents are relatively weak and the local mixing modulates mainly the dynamical 20 

process in the upper ocean in summer. The observed temperature profiles from  Aug 21 

1 to  Aug 31, 1966 at the site have 3h time interval and a coarser vertical resolution 22 



 25

(5 m) than the model grid points. There are 7 observational layers totally in the upper 1 

30 m, namely 0,5,10,15,20, 25,30 m. Linear interpolation is used to fill the spatial gap 2 

between the modeled and the observational data.  3 

Table 5 lists all the assimilation experiments and model simulations within the 4 

real experiment framework. First, a control run without assimilating any observational 5 

data, is called control (CTRL) to serve as the reference for the evaluation of 6 

assimilation experiments. The initial temperature and salinity are taken from those at 7 

00:00 GMT on Jan 1, 1961, and linearly interpolated to model grids. The high 8 

resolution (1/6o) surface observed data (momentum and net heat fluxes) at the site are 9 

used to force the model. Fig.10a shows the daily observed (red curve) and simulated 10 

sea surface temperature from CTRL (black dashed curve) at the OWS Papa on Aug., 11 

1966. The simulated SST is higher than the observed SST by about 3°C (black dashed 12 

curve vs. red curve). At the same time, the simulated mixed layer depth from CTRL is 13 

shallower than the observation by more than 10 m (black dashed curve vs. red curve 14 

in Fig.10b). The optimal values of (α, β) are estimated with the variational method to 15 

mitigate the bias between the model and the observation using the real summer 16 

temperature data. 17 

The real parameter estimation (RPE) is described in the second row of Table 5. 18 

The initial field is generated from the results on  Aug. 1, 1966 simulated by the 19 

“truth” model in the above synthetic experiments. The initial values of (α, β) are also 20 

consistent with those in the “truth” model simulation. The length of the assimilation 21 

window is set to 3 days (8 real observational temperature profiles in each day, totally 22 

24 profiles within 3 days) and the assimilation depth is 30 m. The process of PE is 23 
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similar to the process described in Section 3, but with the real temperature 1 

observations at OWS Papa in Aug., 1966. Table 6 shows the evolution of the cost 2 

function,   and   with respect to the number of iteration for RPE. After the 8th 3 

iteration, the normalized cost function decreases to 5% of its initial value. The optimal 4 

values of   and   reach  107.48 and 3.98 respectively. The SST from RPE has a 5 

significant improvement compared to the simulated SST from CTRL (black solid 6 

curve vs. black dashed curve in Fig. 10a), whose values are basically consistent with 7 

those of the observations (black solid curve vs. red curve in Fig. 10a). The mixed 8 

layer depth is also more accurate from RPE than from CTRL (Fig.10b). However, 9 

some discrepancy  in the mixed layer depth still exist between RPE and the 10 

observation. This is because too many factors modulate the complicated 11 

thermodynamic processes of the upper mixed layer besides the surface gravity waves, 12 

such as horizontal advection, internal waves, upwelling, and entrainment. Many 13 

physical processes are not enclosed in the simple ocean boundary layer model. The 14 

optimal values of the parameters can only compensate some model bias, but not all. 15 

However, the result from RPE indicates that the variational estimation of 16 

wave-affected parameters can indeed reduce model biases and improve the model 17 

capability in the upper ocean.  18 

To explore the impact of parameter estimation on model simulation, two 19 

validation experiments, RSE_Po and RSE_Pd, are conducted. The “optimal” 20 

parameters estimated from RPE are used in RSE_Po, and the default values of the 21 

parameters from CTRL are used in RSE_Pd. In addition, both experiments use the 22 

same initial fields on Aug 31, 1966, which are derived from RPE. Fig. 11 shows the 23 

observed (red curve) and simulated SST from RSE_Po (black solid curve) and 24 
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RSE_Pd (black dash curve) at OWS Papa from Sept. 1 to Sept 30, 1966. The 1 

simulated SST is more consistent with the observations from RSE_Po than from 2 

RSE_Pd. The simulated twice monthly-averaged turbulent kinetic energy 2q  (Fig. 3 

12a), and vertical mixing coefficient for temperature HK  (Fig. 12b) at OWS Papa in 4 

Sept 1966 are much larger for all depths in RSE_Po (solid curve) than in RSE_Pd  5 

(dashed curve).  The enhanced HK  in the upper 30m depth in RSE_Po, due to the 6 

improvement of the turbulent kinetic energy calculation , mixes the momentum from 7 

the winds downward through the water column and makes it more vertically 8 

homogeneous. It indicates that the model performance can be effectively improved 9 

using the optimal parameters. However, more accurate model simulations are needed 10 

using the optimal values of parameters via the variational methods repeatedly at the 11 

certain time intervals with more available observations.   12 

5.  Discussion and conclusion 13 

The upper layer temperature data is assimilated into an ocean surface boundary 14 

layer model to estimate the wave-affected parameters (α, β) employed in the MY2.5 15 

two-equation turbulence model using the variational method. Within an identical 16 

synthetic experiment framework, the “truth” values of the wave-affected parameters 17 

in the high order turbulence model can be retrieved successfully when the assimilation 18 

window, the assimilation frequency, and the assimilation depth are set appropriately. 19 

The observational temperature profiles at the OWS Station Papa are also assimilated 20 

to correct the model bias arisen from multiple sources. By fitting the model results to 21 

the observations using the variational method, the optimal temperature field can be 22 
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obtained in the upper 30 m through adjusting the wave-affected parameters to their 1 

optimal values. Wave-affected parameters estimation using the variational method can 2 

compensate in part the numerical and physical deficiencies of the model in the upper 3 

ocean. However, It should also be noted that the optimal values of the wave-affected 4 

parameters are not the so called “truth” values. The “optimal” values of the 5 

wave-affected parameters in  real applications are only applicable to the specific 6 

time period, location, and model. The “optimal” values should vary temporally and 7 

spatially rather than being constants, which can be obtained by using the variational 8 

methods repeatedly at the certain time intervals and available observations (Peng et al, 9 

2012). Although the optimal values of the wave-affected parameters are 10 

model-dependent (initial fields, time window of assimilation, model configuration, 11 

etc.), they can indeed mitigate the model biases from multiple sources, and obviously 12 

improve the performance of the model simulation. Besides the wave breaking 13 

parameters, other parameters in the wave-related processes can also be introduced into 14 

the model (which is compatible with those pertinent to the wave breaking ) to  15 

estimate their optimal values.  16 

In general, the complex turbulent closure models are empirical and full of 17 

uncertainty in an ocean circulation model. Due to the high nonlinearity and 18 

discontinuity of the vertical turbulence, it is more difficult to linearize the complicated 19 

turbulence closure scheme than to linearize the momentum and tracer equations. 20 

Wave-affected parameters in high order turbulence closure schemes can modulate 21 

distinctly the vertical structure in the upper ocean. Therefore, it is essential to estimate 22 
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their optimal values using observations deployed in the upper ocean through some 1 

robust data assimilation methods such as the variational method or the ensemble 2 

Kalman filter. Now, satellite remote sensed SST data and in-situ temperature data 3 

(such as the Argo floats) can provide a mass of temperature observations in upper 4 

oceans. Therefore, the optimal geographic-dependent distribution of the wave-affected 5 

parameters in a high order turbulence closure scheme can be obtained using the 4DVar 6 

that assimilates the upper layer available temperature data into ocean circulation 7 

models. 8 

Appendix A. Sensitivity of simulated temperature to parameters 9 

    It is essential to investigate model sensitivities with respect to parameters being 10 

estimated before parameter estimation. Fig. A1 shows the dependence  of the cost 11 

function on   and  . It increases with the increasing   and   in general. 12 

However, the local minimum of the cost function can be found near the region in 13 

which both   and   reach their default values (see Fig. A1b). The existence of the 14 

local minimum indicates that it is likely to estimate the optimal values of   and   15 

if the values of the gradient with respect to the parameters can be calculated correctly 16 

in all the numerical iterations by the adjoint model.  17 

The ensemble spread of T is used to evaluate the relevant sensitivities 18 

quantitatively. For   and  , 100 Gaussian random numbers are generated with the 19 

standard deviation being 5% of the default value and superimposed into the parameter 20 

being perturbed, while the other parameter remain unperturbed. All the 100 ensemble 21 

members are started from the same initial conditions (Jan. 1, 1961). The 22 

biased-simulation model is integrated up to 6 years. Sensitivities are calculated with 23 
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the model output from Aug. 1, 1966 to Aug. 31, 1966. This process is looped for the 1 

two wave-affected parameters. Fig. A2 shows the ensemble spread of T with respect 2 

to   and   at different depths. The ensemble spread of T  near the sea surface is 3 

more than 0.09 with respect to   and less than 0.02 with respect to  . The 4 

sensitivity of T  is obviously larger to   than  to   for the whole depth, 5 

especially in the upper 30m. Small sensitivity in the lower layer indicates that the 6 

noise may be stronger than the signal during the parameter estimation when the lower 7 

layer temperature observations are assimilated into the bias simulation model.  8 

The sensitivities with respect to the wave-affected parameters are also 9 

investigated through calculating the gradients of the cost function with the parameters, 10 

namely 

J

 and 

J

. Table A1 shows the dependence of the sensitivity on the initial 11 

values of the parameter   and  . When the initial parameter values (α, β) are set 12 

exactly to the “truth” values (200, 2), both sensitivities are very close to zero. In 13 

general, the sensitivity is several orders of magnitude greater on   than on  . It 14 

indicates that the parameter   is more vulnerable to be disturbed by the noises 15 

arisen from the observational errors and the biased initial state fields during the 16 

parameter estimation.  17 

Appendix B. Correctness test of the gradient  18 

The code of the adjoint model is produced directly through the Adjoint Model 19 

Compiler (AMC) developed by Giering and Kaminski (1998) (Of course, a 20 

hand-coding correction is necessary after that), which means that it is not essential to 21 

produce the code of the tangent linear model explicitly. Therefore, only the 22 

correctness of the adjoint model is tested here.  23 
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According to the Taylor expression, one has 1 
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where x0 is any control variable, the symbol <  > represents the inner product. Fig. 3 

A3 shows the correctness test of the gradient of the cost function with respect to   4 

and    using the Eq. (A1). With respect to  , )(  converges to 1 as   5 

decreases from 10-3 to 10-8, and decreases from 1 to 0.38 as   decreases from 10-8 6 

to 10-10, which indicates the dominance of the computational errors in )( . With 7 

respect to β, )(  converges to 1 as ε decreases from 10-6. Therefore, the adjoint 8 

coding is valid.  9 
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Table captions 1 

Table 1. All assimilation experiments and simulations within the identical synthetic 2 

experiment framework. 3 

Table 2. Dependence of the optimally-estimated ( ,  ) on the standard deviation of 4 

temperature observation. 5 

Table 3. Evolution of the cost function, norm of the projected gradient, and value of 6 

  with respect to the number of iterations for the direct perturbed method with the 7 

perfect initial field.  8 

Table 4. Same as Table 2 but with biased initial field. 9 

Table 5. All assimilation experiments and model simulations within the real 10 

experiment framework. 11 

Table 6. Evolution of the cost function, ( ,  ) with respect to the number of 12 

iterations for the real assimilation. 13 

Table A1. Dependence of the sensitivity on the initial values of the parameter   and 14 

 . 15 

16 
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Figure captions 1 

Figure 1. Daily temperature in 1966  at (a) 0 m, (b) 10 m, (c) 20 m and (d) 30 m at 2 

the OWS Papa with the “truth” model simulation (solid curve) and the biased 3 

simulation (dashed curve).  4 

Figure 2. Flowchart of the wave-affected parameter estimation using  the variational 5 

method. 6 

Figure 3. Time series of the estimated wave-effected parameters (a)  , and (b)   7 

for  PE from Aug.1 to Aug. 30, 1966 (solid curve), where both  assimilation 8 

window and frequency are 1 day and the depth of the assimilation is 30 m. Here, the 9 

dashes curves  show the “truth” (α, β) values.  10 

Figure 4. Dependence of (a) the cost function and (b) the norm of the gradient on the 11 

number of iterations on Aug, 2, 1966. 12 

Figure 5. Temporal variations of the natural logarithm of the cost function at OWS 13 

Papa from Aug. 1 to Aug. 30, 1966. Here, the red, blue and black curves represent the 14 

total,  background,  and observation terms of the cost function. 15 

Figure 6. Time series of the estimated wave-effected parameters (a)  , and (b)   16 

for different initial parameter values from Aug.1 to Aug. 30, 1966. Here,  both 17 

assimilation window and frequency are 1 day and the depth of the assimilation is 30 m. 18 

The black, blue, green, yellow, red, pink, purple, orange and gray solid curves in panel 19 

(a) and the corresponding dashed curves in panel (b) show values of ( ,  )  with 20 

the initial guess values of (0,0), (100,2), (100,3), (200,1), (200,3), (300,1), (300,2), 21 

(300,3) and (400,4),  respectively.  22 
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Figure 7. Same as Figure 3 but for PE_SST with only the SST observations being 1 

assimilated.   2 

Figure 8. Time series of the estimated wave-effected parameters (a)  , and (b)   3 

for different assimilation window and frequency from Aug.1 to Aug. 30, 1966  with 4 

30 m as the depth of the assimilation. Here, the black, blue, red, pink solid curves in 5 

panel (a) and panel (b) show the assimilation frequency are 48, 72, 96, and 120 hours. 6 

Figure 9. Temporal variations of the natural logarithm of the cost function at OWS 7 

Papa from Aug. 1 to Aug. 30, 1966. The solid and dashed curves represent the PE and 8 

PE_5d with black dots denoting the time that the observational data  are assimilated.  9 

Figure 10. (a) Sea surface temperature and (b) mixed layer depth from CTRL (black 10 

dashed curve) and RPE (black solid curve), and observations (red solid curve) at 11 

OWS Papa from Aug. 1 to Aug. 30, 1966. The horizontal axis represents the day 12 

relative to Aug. 1, 1966. 13 

Figure 11. Sea surface temperature from observations (red solid curve),  RSE_Po 14 

(black solid curve), and RSE_Pd (black dashed curve) at OWS Papa from Aug. 1 to 15 

Sept 30, 1966. The horizontal axis represents the day relative to Aug. 1, 1966. 16 

Figure 12. Vertical profiles of the simulated monthly-averaged (a) two times turbulent 17 

kinetic energy q2 (m2s-2), and (b) and vertical mixing coefficient for temperature KH 18 

(10-3m2s-1) from RSE_Po (solid curve) and RSE_Pd (dashed curve) at OWS Papa in 19 

Sep., 1966.  20 

Figure A1. Dependence  of the cost function on α and β for (a) 10 ≥ β≥ 0, and (b) 3 21 

≥ β ≥ 0. 22 
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Figure A2. Depth-dependence of ensemble spread of temperature with respect to the 1 

wave-effected parameters   (dashed curve) and   (solid curve). 2 

Figure A3. The correctness test of the gradient with respect to (a)  , and (b)  .  3 
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 1 

Table 1. All assimilation experiments and simulations within the identical synthetic 2 

experiment framework. 3 

 4 

Name  Description  

Control 

variables 

Assimilation 

windows 

Assimilation 

frequency 

Assimilation 

depth 

“Truth”  

model 

simulation 

 = 200  

 =2  

_ _ _ _ 

Biased 

simulation 

 = 100  

 =1  

_ _ _ _ 

PE 

Parameter 

estimation  

nT , 1nT , 

 ,  

1 day 1 day 30 m 

PE_SST 

Parameter 

estimation  

nT , 1nT , 

 ,  

1 day 1 day Sea surface 

PE_  _TI 

Parameter 

estimation with 

the“perfect” 

initial fields 

derived from 

the “truth”  

  1 day 1 day 30 m 
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model 

simulation 

PE_ _BI 

Parameter 

estimation with 

the “biased” 

initial fields 

derived from 

the biased 

simulation   

  1 day 1 day 30 m 

1 
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Table 2. dependence of the optimally-estimated ( , ) on the standard deviation of 1 

temperature observation 2 

 

Standard 

deviation of 

temperature 

observation 

 

Estimated 

value of   

 

Estimated 

value of 

 

Relative error of 

  

 

Relative error of 

  

10-3 206.125 1.982 96.9% 99.1% 

10-2 167.343 2.098 83.6% 95.1% 

0.05 120.033 2.114 60.0% 94.3% 

0.1 100.096 1.889 50.0% 94.5% 

0.5 100.068 0.866  50.0% 43.3% 

3 
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Table 3. Evolution of the cost function, norm of the projected gradient and value of 1 

  with respect to the number of iterations for the direct perturbed method with the 2 

perfect initial field. 3 

 

Iteration step 

 

Cost function 

Norm of the 

projected 

gradient 

 

 

Value of   

0 5.881 2.097 1.0 

1 1.354e-5 7.406e-2 2.000365 

2 2.631e-9 1.032e-3 2.000005 

3 7.441e-17 3.042e-7 2.000000 

4 5.056e-17 5.693e-9  1.999999 

 4 

5 
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Table 4. Same as Table 3 but with the biased initial field. 1 

 Iteration step Cost function Norm of the 

projected 

gradient 

 

Value of   

0 2.319e2 4.819 1.0 

1 1.072e2 3.351 3.350811 

2 1.071e2 1.234 3.317216 

3 1.071e2 9.003e-2 3.301275 

4 1.071e2 1.982e-3 3.302359 

5 1.071e2 6.043e-6  3.302335 

6 1.071e2 3.627e-6 3.302335 

2 
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Table 5. All assimilation experiments and model simulations within the real 1 

experiment framework. 2 

Name  Description 

Control 

variables 

Assimilation 

windows 

Assimilation 

frequency 

Assimilation 

depth 

Initial  

fields 

CTRL 

Simulation 

with 

 = 200 

 =2  

_ _ _ _ 

1 Aug. 1966 

from the “truth” 

model simulation 

RPE 

Real 

parameter 

estimation  

nT , 1nT  

 ,  

3 day 3 day 30 m Same as CTRL 

RSE_Po 

Simulation 

using the 

parameters 

estimated by 

RPE  

_ _ _ _ 

Aug. 31,1966, 

derived from 

RPE 

RSE_Pd 

Simulation 

using the 

same 

parameters 

as in CTRL 

_ _ _ _ Same as RSE_Po 

3 
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Table 6. Evolution of the cost function, ( ,  ) with respect to the number of 1 

iterations for the real assimilation. 2 

Iteration step Normalized 

cost function 

Value of   

 

Value of   

1 1.0 107.12 4.40 

2 0.52 107.45 4.44 

3 0.26 107.61 4.37 

4 0.29 107.97 4.23 

5 0.26 107.39 3.79 

6 0.14 107.48 3.86 

7 0.17 107.52 3.96 

8 0.05 107.54 3.98 

3 
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Table A1 Dependence of the sensitivity on the initial values of the parameter   and   1 

. 2 

Initial values of 

( , ) 

 

Sensitivity of   

 

Sensitivity of   

(0,0) -7.5×10-5 2.6×104 

(100,1) -4.69 -574.96 

(100,2) -42.63 -5325.69 

(100,3) 158.70 1.79×104 

(200,1) -7.41 -4427.36 

(200,2) 4.0×10-11 -3.3×10-10 

(200,3) 172.36 2.73×104 

(300,1) -23.82 -1.61×104 

(300,2) 7.76 2.50×103 

(300,3)  429.53 1.57×105 

(400,4)  471.18 1.80×105 

 3 

4 
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 1 

 2 

Figure1. Daily temperature in 1966 at (a) 0m, (b) 10m, (c) 20m and (d) 30m at the 3 

OWS Papa with the “truth” model simulation (solid curve) and the biased simulation 4 

(dashed curve).  5 

6 
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 14 
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 17 
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 19 

 20 

 21 
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 23 

 24 

 25 

Figure 2. Flowchart of the wave-affected parameter estimation with the variational 26 

method. 27 

 28 

29 

Integrate the dynamical model forward 

from the jth day to the (j+n)th day 

      Calculate  ),,,( 1 nn TTJ  

Integrate the adjoint model backward from 

the (j+n)th day to the jth day 

  The initial fields on the jth day 

            Calculate  J  

     BFGS minimization algorithm 

Satisfy stopping criterion ? 
YesObtain the optimal estimation of  , 

 , nT  and 1nT  on the jth day 

Integrate the dynamical model forward 

from the jth day to the (j+n)th day 
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 1 

Figure 3. Time series of the estimated wave-effected parameters (a)  , and (b)   2 

for PE from Aug.1 to Aug. 30, 1966 (solid curve), where both assimilation window 3 

and frequency are 1 day and the depth of the assimilation is 30m. The dashes curves  4 

show the “truth” (α, β) values.  5 

6 
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 1 

Figure 4. Dependence of (a) the cost function and (b) the norm of the gradient on the 2 

number of iterations on Aug, 2, 1966. 3 

 4 
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 1 

Figure 5. Temporal variations of the natural logarithm of the cost function at OWS 2 

Papa from Aug. 1 to Aug. 30, 1966. Red, blue and black lines are the total terms, the 3 

background term and the observation term of the cost function respectively. 4 

 5 

 6 

 7 

 8 

 9 

   10 

   11 

12 
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 1 

Figure 6. Time series of the estimated wave-effected parameters (a)  , and (b)   2 

for different initial parameter values from Aug.1 to Aug. 30, 1966, where both 3 

assimilation window and frequency are 1 day and the depth of the assimilation is 30m. 4 

Black, blue, green, yellow, red, pink, purple, orange and gray solid lines in panel (a) 5 

and the corresponding dash lines in panel (b) show values of ( ,  ) = (0,0), (100,2), 6 

(100,3), (200,1), (200,3), (300,1), (300,2), (300,3) and (400,4) respectively.  7 

8 
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 1 

Figure 7. Same as Figure 3, but for PE_SST, where only the SST observations are 2 

assimilated.  3 

4 
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 1 

Figure 8. Time series of the estimated wave-effected parameters (a)  , and (b)   2 

for different assimilation window and frequency from Aug.1 to Aug. 30, 1966, where 3 

the depth of the assimilation is 30m. Black, blue, red, pink solid lines in panel (a) and 4 

panel (b) show the assimilation frequency are 48, 72, 96 and 120 hours. 5 

.  6 

7 



 58

 1 

Figure 9. Temporal variations of the natural logarithm of the cost function at OWS 2 

Papa from Aug. 1 to Aug. 30, 1966. The solid and dashed curves represent PE and 3 

PE_5d with black dots denoting the time that observations are assimilated.  4 

5 
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 1 

 2 

Figure 10. (a) Sea surface temperature and (b) mixed layer depth from CTRL (black 3 

dashed curve) and RPE (black solid curve), and observations (red solid curve) at 4 

OWS Papa from Aug. 1 to Aug. 30, 1966. The horizontal axis represents the day 5 

relative to Aug. 1, 1966. 6 

 7 

 8 

9 
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 1 

Figure 11. Sea surface temperature from observations (red solid curve),  RSE_Po 2 

(black solid curve), and RSE_Pd (black dashed curve) at OWS Papa from Aug. 1 to 3 

Sept 30, 1966. The horizontal axis represents the day relative to Aug. 1, 1966. 4 

 5 

 6 

7 
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 1 

Figure 12. Vertical profiles of the simulated monthly-averaged (a) two times turbulent 2 

kinetic energy (m2s-2), and (b) and vertical mixing coefficient for temperature 3 

(10-3m2s-1) from RSE_Po (solid curve) and RSE_Pd (dashed curve) at OWS Papa in 4 

Sept., 1966.  5 

6 
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 1 

Figure A1. Dependence of the cost function on α and β with (a) 10 ≥ β≥ 0, and (b) 3 ≥ 2 

β ≥ 0. 3 

4 
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 1 

Figure A2. Ensemble spread of temperature with respect to the wave-effected 2 

parameters   (dashed curve) and   (solid curve) at different depths.  3 

4 
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 1 

   Figure A3. The correctness test of the gradient with respect to (a)  , and (b) .  2 

   3 


