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bÖzyeǧin University, Istanbul, TURKEY

cUniversity of Aberdeen, Aberdeen, Scotland, UK
dCarnegie Mellon University, Pittsburgh, PA, USA
eUniversity of California, Los Angeles, CA, USA

f IBM Research, T. J. Watson Research Center, Yorktown Heights, NY, USA

Abstract—This work develops alternatives to the classical sub-
jective logic deduction operator. Given antecedent and consequent
propositions, the new operators form opinions of the consequent
that match the variance of the consequent posterior distribution
given opinions on the antecedent and the conditional rules
connecting the antecedent with the consequent. As a result, the
uncertainty of the consequent actually map to the spread for the
probability projection of the opinion. Monte Carlo simulations
demonstrate this connection for the new operators. Finally, the
work uses Monte Carlo simulations to evaluate the quality of
fusing opinions from multiple agents before and after deduction.

I. INTRODUCTION

The world is not absolute and an ontological representation

of the world should account for various shades of gray. Thus,

traditional propositional logic is inadequate for general rea-

soning. Recently, probabilistic logics have emerged to account

for the fact that propositions and even the rules that connect

propositions are not always true [1]–[3]. At any given instance,

if one observes a proposition or rule, it will either be true

or false. Over the ensemble of all possible observations, a

probabilistic model states that a proposition or rule can be

observed to be true with a given ground truth probability. For

many cases, the ground truth probabilities are not known and

can only be inferred from the observations. Subjective logic

(SL) was introduced as a means to represent the belief and

uncertainty of these ground truth probabilities based upon the

evidence observed by one or multiple agents [3]. In essence,

SL is a form of evidential reasoning.

The main feature of SL is that an opinion about a proposi-

tion corresponds to a posterior distribution for the probability
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that the proposition is true given the evidence or observations

thus far. Specifically, the posterior distribution is approximated

as a Dirichlet distribution whose parameters have a one-to-

one correspondence with the subjective opinion. A number

of operators have been developed for SL that generalize the

operators that exist in propositional and probabilistic logic [3].

These operators have been designed to match the mean of the

distribution of the output proposition probabilities given that

that the distributions for the input proposition probabilities are

Dirichlet. Intuitively, the variance of the output proposition

probability distribution represents the uncertainty, but most

SL operators do not explicitly account for the variance. In

some cases, the operators simply maximize uncertainty while

matching the mean. As a result, the statistical meaning of

uncertainty can be lost after such SL operators.

This work focuses on alternatives to the SL deduction

operator [4], [5] that generalizes the notion of modus ponens

from propositional logic, where opinions (or knowledge) about

the antecedent and the implication rules leads to an opinion

about the consequent. SL deduction represents the catalyst

to formulate defeasible logics that incorporate uncertainty.

Initial efforts to this end appear in [6]–[8]. In SL deduction,

the consequent opinion does represent the mean posterior

distribution for the consequent probabilities. However, the

uncertainty does not relate to the statistics of this posterior

distribution. This work develops two alternative deduction

operators to determine more meaningful uncertainty values.

Motivated from our previous work on expanding SL for

partial observation updates [9], [10], the moment matching

(MM) deduction method forms a consequent opinion that

characterizes both the mean and variance of the consequent

posterior distribution. Similarly, the mode/variance matching

(MdVM) method characterizes the mode and variance of

the consequent posterior distribution. The performance of

these various deduction operators are evaluated using Monte

Carlo simulations over known probabilistic ground truths.

Furthermore, the simulations consider distributed agents where

opinions are fused via the SL consensus operator before or
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after deduction. Note that the consensus operator perfectly

account for uncertainty when the individual opinions are

formed from independent observations.

This paper is organized as follows. Section II reviews SL

including the deduction and consensus operators. Then, the

alternative deduction operators are introduced in Section III.

Section IV discusses some of the properties of the new

deduction operators relative to SL deduction, for both single

and multiagent scenarios, and Section V details the Monte

Carlo evaluations. Finally, Section VI concludes the paper.

II. SUBJECTIVE LOGIC

A. SL Basics

A full overview of SL is available in [3]. SL assumes a

probabilistic world such that at any given instant of time,

proposition x is true with probability px and it is false, i.e.,

its complement x̄ is true, with probability px̄ = 1 − px. In

general, SL can form beliefs over a mutually exclusive set

of propositions X , i.e., a frame of discernment. Based upon

observations that accumulate, a subjective opinion is formed

that consists of the beliefs in the proposition in X and an

uncertainty value that add to one. This opinion maps to a

Dirichlet distribution representing the posterior distribution

of the truthfulness of the propositions in X , i.e. px, given

the observations. For simplicity of presentation, this paper

focuses on a binary frame X consisting of proposition x and

its complement where the posterior distribution for px given

the observations is modeled by the beta distribution.

Specifically, SL represents the subjective1 opinion x as a

triple ωx = (bx, dx, ux) such that bx + dx + ux = 1 where

bx, dx, ux ≥ 0 are the belief, disbelief, and uncertainty in

x due to the evidence. This triple is equivalent to a beta

distribution for generating probabilities of x because there is a

bijective mapping from ωx to the beta distribution parameters

αx. This mapping assumes some base rate (prior) probability

ax that x is true along with a prior weight W that determines

the sensitivity of uncertainty to evidence.The mapping is

such that the probability projection (or mean) of the beta

distribution forms the pignistic probabilities

mx = E[px] = bx + uxax, (1)

mx̄ = E[px̄] = dx + ux(1− ax). (2)

Note that these pignistic probabilities form the estimates for

p̂x = E[px] and p̂x̄ = E[px̄] in light of the collected evidence

and the base rates. For complete uncertainty (i.e., ux = 1),

the pignistic probabilities revert to the prior, and as uncertainty

drops to zero, they are represented by the evidence in the belief

and disbelief values.

The relationship between an opinion and the corresponding

beta distribution is given by the following mapping from

opinion ωx to αx:

αx =
W

ux

bx +Wax, αx̄ =
W

ux

dx +W (1 − ax). (3)

1Subjective in the sense that the opinion is formed by an agent’s own
observations.

The reverse mapping from αx to ωx is

(bx, dx, ux) =

(

αx −Wax

sx
,
αx̄ −W (1− ax)

sx
,
W

sx

)

, (4)

where

sx = αx + αx̄ =
W

ux

(5)

is the Dirichlet strength of the distribution, which is inversely

proportional to the uncertainty.

The evidential nature of SL can be understood by realizing

that the beta distribution is the conjugate prior for the binomial

distribution. In other words, given an initial prior of αx,0 =
[

Wax, Wax̄
]

, the posterior beta distribution of αx is the

results of sx −W “coin flip” observations where αx −Wax
observations were true and αx̄ −Wax̄ were false. In essence,

the uncertainty is inversely proportional to the number of direct

observations made about x.

B. SL Consensus

The SL consensus operation forms a composite opinion

for the subjective opinion of multiple agents [11]. It assumes

that the agents make independent observations to form their

opinions. Given agents A and B having opinions ωA
x and

ωB
x , the consensus opinion ωA⋄B

x = ωA
x ⊕ ωB

x is obtained

by converting these opinions into beta parameters via (3).

Using the coin flip interpretation, it is easy see that the

fused beta parameters are obtained by simply summing up

the observations made by the individual agents and inserting

the prior, i.e.,

α
A⋄B
x = (αA

x −Wa
A
x ) + (αB

x −Wa
B
x ) +Wa

A⋄B
x , (6)

where the base rates for the various agents can be different.

Finally, the fused beta parameters are converted in the fused

opinion via (4). Clearly, the consensus operation is associative,

and independent opinions can be fused in a sequential manner,

e.g., fusing opinion A ⋄ B with C, fusing the result with D

and so forth. Alternatively, the fusion of all agents can be

accomplished by summing up all the evidences at once in the

beta parameter space. This direct consensus of multiple agents

can be expressed as ω⋄iAi
x =

⊕

i ω
Ai
x .

C. Subjective Logic Deduction

In deduction, one uses knowledge about an antecedent

proposition x and knowledge about how the antecedent implies

a consequent proposition y to formulate knowledge about

the consequent. In probabilistic terms, the states of the x

and y propositions occur via the joint probabilities pyx, pyx̄,

pȳx, and pȳx̄. Complete knowledge of x entails knowing the

marginal probability px. Likewise, complete knowledge of

how x implies y means knowing the conditional probabilities

py|x and py|x̄. Deduction is simply determining the marginal

probability py from px, py|x and py|x̄. However, knowledge is

usually not complete and is acquired through evidence such

as from coin flip observations.

Subjective logic deduction uses the opinions ωx, ωy|x, and

ωy|x̄ to determine the deduced opinion ωy||x. Note that the



conditional opinions ωy|x, and ωy|x̄ can be formed by direct

coin flip observations of the truth or not of y when x is

observed to be true or false, respectively. By the interpretation

of ωy‖x as a beta distribution, the mean of the distribution

is equal to the true mean of the distribution py given that

the distributions for px, py|x, and py|x̄ are beta distributions

parameterized according to the corresponding opinions and

py = py|xpx + py|x̄px̄. As shown in Section III, the mean of

py is

my = my|xmx +my|x̄mx̄.

The deduction operator calculates the opinion on y from the

three input opinions as

ωy‖x = bxωy|x + dxωy|x̄ + uxωy|x̂, (7)

where ωy|x̂ is the opinion of y given a vacuous opinion about

x, i.e., ux = 1. The value of ωy|x̂ has maximum uncertainty

uy|x̂ such that belief and disbelief in y is bounded below by the

conditional opinions, and the mean of the vacuous conditional

opinion is consistent with the mean of py when x is vacuous

so that mx = ax. Specifically,

by|x̂ ≥ min{by|x, by|x̄},

dy|x̂ ≥ min{dy|x, dy|x̄},

by|x̂ + uy|x̂ay = my|xax +my|x̄(1 − ax).

(8)

Geometrically, the deduction operator assumes that the opinion

of y is a point in a simplex determined by the opinion of

x relative to the simplex vertices, which are the conditional

opinions. While the geometric interpretation is appealing, it

does not capture the statistics of the distribution of py beyond

its mean. As shown later, the uncertainty uy‖x loses any

correspondence to the variance of py.

D. Interpretation of Uncertainty

Intuitively, the bias and variance of mx as an estimator

for px should decrease to zero as uncertainty goes to zero.

This subsection determines a relationship between the bias or

variance and uncertainty by using the coin flip interpretation.

First of all, mx is a biased estimate of the ground truth px
that is only unbiased asymptotically as the influence of the

base rates disappear. An unbiased estimate considers only the

observed evidence, not the prior, to estimate px. In the beta

parameter space, the unbiased estimate for px is given by

νx =
αx −Wax

sx −W
, (9)

and via (3), this unbiased estimate can be expressed as

νx =
bx

1− ux

. (10)

Unlike the regularized2 mean mx, the unbiased estimate is

undefined when uncertainty is one. When the prior weight

W = 2 and ax = 0.5, the unbiased estimate corresponds to

the mode of the beta distribution describing the posterior for

py . This observation motivates the use of the mode/variance

2The prior regularizes the mean.

matching deduction method in the next section. Estimating the

bias of mx as the difference between mx and νx leads to the

following relationship between bias and uncertainty

bias ≈
ux

1− ux

(ax −mx). (11)

Clearly, the bias goes to zero as uncertainty goes to zero.

Similarly, one can relate the uncertainty value to the vari-

ance of the estimator. Given Nx coin flip observations, it is

well known that the Cramer-Rao lower bound (CRLB) is given

by [12]

CRLB =
pxpx̄

Nx

. (12)

Since Nx = sx −W and mx ≈ px, the approximate variance

for mx or νx can be related to uncertainty via

var ≈
ux

1− ux

mxmx̄

W
. (13)

Again, as uncertainty goes to zero, so does the variance. Over-

all, the two expression for bias and variance can be computed

for any subjective opinion. These expressions approximate

the true bias and spread for estimates over the ensemble

of possible observations that could have occurred from the

ground truth.

III. DEDUCTION ALTERNATIVES

The proposed deductive methods fit a beta distribution to

the actual marginal distribution for py when given the opinions

ωx, ωy|x and ωy|x̄. Since these opinions are generated from

independent observations, the joint distribution for px, py|x
and py|x̄ is the product of the individual beta distributions so

that

fX,Y |X(px, py|x, py|x̄) =
px

αx−1(1− px)
αx̄−1

B2(αx, αx̄)
·

·
py|x

αy|x−1(1 − py|x)
αȳ|x−1

B2(αy|x, αȳ|x)

py|x̄
αy|x̄−1(1− py|x̄)

αȳ|x̄−1

B2(αy|x̄, αȳ|x̄)
,

(14)

where the parameters αx, αy|x and αy|x̄ are determined from

the corresponding opinions via (3), and B2(·, ·) is the beta

function

B2(x, y) =
Γ(x)Γ(y)

Γ(x + y)
.

By making the following substitution of variables

py = py|xpx + py|x̄(1− px),

px|y =
py|xpx

py|xpx + py|x̄(1− px)
,

px|ȳ =
(1− py|x)px

(1− py|x)px + (1− py|x̄)(1 − px)
,

(15)

the joint distribution with respect to py , px|y, and px|ȳ is

expressed as

fY,X|Y (py, px|y, px|ȳ) = gxgygx|ygx|ȳ, (16)

where

gx =
px

βx(1− px)
βx̄

B2(αx, αx̄)
,



gy = p
αy|x+αy|x̄−1
y (1− py)

αȳ|x+αȳ|x̄−1,

gx|y =
px|y

αy|x−1(1− px|y)
αy|x̄−1

B2(αy|x, αȳ|x)
,

gx|ȳ =
px|ȳ

αȳ|x−1(1− px|ȳ)
αȳ|x̄−1

B2(αy|x̄, αȳ|x̄)
,

px = px|ypy + px|ȳ(1 − py), βx = αx − αy|x − αȳ|x and

βx̄ = αx̄ − αy|x̄ − αȳ|x̄.

The marginal distribution is obtained from (16) via

fY (py) =

∫ 1

0

∫ 1

0

fY,X|Y (py, px|y, px|ȳ)dpx|ȳdpx|y (17)

In general, this marginal is not a beta distribution, and a simple

analytical expression for the distribution appears unobtainable.

It is possible to determine this distribution using numerical

integration techniques. Nevertheless, statistics of this distribu-

tions can be obtained directly from joint distribution of px,

py|x and py|x̄ in (14). The new deduction methods use these

statistics to approximate the marginal distribution fY by a beta

distribution.

A. Moment Matching

The moment matching (MM) deduction method approx-

imates fY by a beta distribution that matches the mean

and variance of fY . The idea of moment matching for SL

originated in [9] where a new method was introduced to update

subjective opinions based upon partial observations of the

coin flip (or dice roll) when only likelihoods of the possible

results are known. This notion was further expanded in [10]

to account for uncertainty in the likelihood calculations. For

the deduction operation, the first step is to determine the mean

and variance of fY . The mean is derived via

my = E[py]

= E[py|x]E[px] + E[py|x̄]E[1− px]

=

∫ 1

0

px
αxpx̄

αx̄−1

B2(αx, αx̄)
dpx

∫ 1

0

py|x
αy|xpȳ|x

αȳ|x−1

B2(αy|x, αȳ|x)
dpy|x

+

∫ 1

0

px
αx−1px̄

αx̄

B2(αx, αx̄)
dpx

∫ 1

0

py|x̄
αy|x̄pȳ|x̄

αȳ|x̄−1

B2(αy|x̄, αȳ|x̄)
dpy|x̄

=
αx

αx + αx̄

αy|x

αy|x + αȳ|x
+

αx̄

αx + αx̄

αy|x̄

αy|x̄ + αȳ|x̄
,

which leads to

my = my|xmx +my|x̄(1 −mx). (18)

The second order moment is determined via

E[p2y] =

∫ 1

0
px

αx+1px̄
αx̄−1dpx

B2(αx, αx̄)

∫ 1

0
py|x

αy|x+1pȳ|x
αȳ|x−1dpy|x

B2(αy|x, αȳ|x)

+

∫ 1

0

px
αx−1px̄

αx̄+1

B2(αx, αx̄)
dpx

∫ 1

0

py|x̄
αy|x̄+1pȳ|x̄

αȳ|x̄−1

B2(αy|x̄, αȳ|x̄)
dpy|x̄

+ 2

∫ 1

0

px
αxpx̄

αx̄

B2(αx, αx̄)
dpx

∫ 1

0

py|x
αy|xpȳ|x

αȳ|x−1

B2(αy|x, αȳ|x)
dpy|x

·

∫ 1

0

py|x̄
αy|x̄pȳ|x̄

αȳ|x̄−1

B2(αy|x̄, αȳ|x̄)
dpy|x̄.

After some simplifying steps

E[p2y] = mxmy|x
αx + 1

sx + 1

αy|x + 1

sy|x + 1

+ (1−mx)my|x̄
αx̄ + 1

sx + 1

αy|x̄ + 1

sy|x + 1

+ 2mx(1−mx)my|xmy|x̄
sx

sx + 1

Then the variance is computed as

σ2
y = E[p2y]− (E[py])

2
,

= my|xmx

(

αy|x + 1

sy|x + 1

αx + 1

sx + 1
−mxmy|x

)

+my|x̄(1−mx)

(

αy|x̄ + 1

sy|x̄ + 1

αx̄ + 1

sx + 1
− (1−mx)my|x̄

)

− 2
mx(1−mx)my|xmy|x̄

sx + 1
.

Final simplification leads to

σ2
y =

mxmy|x(1 −myx
)

sy|x + 1

mxsx + 1

sx + 1

+
(1 −mx)my|x̄(1−my|x̄)

sy|x̄ + 1

(1 −mx)sx + 1

sx + 1

+
mx(1−mx)(my|x −my|x̄)

2

sx + 1
.

(19)

The next step is to determine the parameters of the beta

distribution αy whose mean and variance are given by (18)

and (19), respectively. It is well known that the mean and

variance of the beta distribution are determined by αy via [13]

my =
αy

sy
, (20)

σ2
y =

my(1 −my)

sy + 1
. (21)

In other words, the parameters are determined from the mo-

ments via

sy =
my(1−my)

σ2
y

− 1,

αy = mysy, αȳ = (1−my)sy.

(22)

The strength parameter sy can be computed directly from

the mean and strength values from the opinions ωx, ωy|x and

ωy|x̄. By inserting (18) and (19) into (22),

sy =
A+B + C

A
sx+1 + B

sy|x+1
mxsx+1
sx+1 + C

sy|x̄+1
(1−mx)sx+1

sx+1

− 1. (23)

where

A = mx(1−mx)(my|x −my|x̄)
2, (24)

B = mxmy|x(1−my|x), (25)

C = mx̄my|x̄(1−my|x̄). (26)

Overall, MM deduction approach takes the steps given in

Algorithm 1.



Algorithm 1 Moment Matching Deduction

Input: ωx, ωy|x and ωy|x̄

Output: ωy‖x

1) Calculate the mx,my|x,my|x̄ and sx, sy|x, sy|x̄ via (1)

and (5), respectively.

2) Calculate my and s∗y using (18) and (23), respectively.

3) Let sy = max
{

s∗y,
Way

my
,
W (1−ay)
1−my

}

.

4) Set ωy‖x =
(

my −
Way

sy
, 1−my −

W (1−ay)
sy

, W
sy

)

.

Note that Step 3 is included to ensure that the belief and

disbelief value can never become negative after the deduction

update. Changing the Dirichlet strength by this step has no

effect on the mean value. In essence, it lowers the variance of

the beta fit to fY while maintaining the mean of fY so that

belief masses are not negative. Because this approach retains

the true mean of fY it fits within the framework of a subjective

logic operator. Unlike the traditional subjective logic operator

as reviewed in Section II-C, the MM deduction operator better

characterizes the spread of the posterior fY . As Section V will

show, the Dirichlet strength for the MM deduction operator

provides a better approximation for the effective number of

coin flips of y than deduction provides.

B. Mode and Variance Matching

As discussed earlier, when the beta distribution represents

the posterior for px due to the coin flip experiment, the mean

of the density represents a biased estimator for ground truth px.

On the other hand, the mode of the posterior is the unbiased

estimator of px. Asymptotically, the mean and mode are equal

and both estimators become unbiased. It can be argued that it

is as important (if not more) for the mode of the approximate

beta distribution for py to match the mode of the marginal

distribution given by (17). At this point, we do not have a

closed formed or efficient means to determine the mode of

this distribution, i.e., the marginal of (16). As a surrogate, we

use the unbiased estimator of py derived from the unbiased

estimates of px, py|x and py|x̄ (see (10)), i.e.,

νy =
by|xbx

(1 − uy|x)(1 − ux)
+

by|x̄dx

(1− uy|x̄)(1− ux)
. (27)

This surrogate is only available when neither opinions ωx,

ωy|x, ωy|x̄ are vacuous, i.e., ux, uy|x, uy|x̄ < 1. To determine

the beta parameters, we note that the mode of the beta

distribution [13] relates to the parameters via3

νy =
αy − 1

sy − 2
. (28)

Then using (20), (21), and (28), it can be shown that the

Dirichlet strength that matches the mode and variance of fY
is the largest root of the following cubic polynomial

σ2
ys

3
y +(σ2

y − νy(1− νy))s
2
y − (1− 2νy)

2sy +(1− 2νy)
2 = 0.

(29)

3The expression for the mode assumes that αy, αȳ > 1, which also implies
sy > 2.

It can also be shown that a real solution sy ≥ 2 always exist

for (29) when W = 2. Then the mean of the beta distribution

whose strength sy solves (29) and whose mode is given by

(28) has a mean given by

my =
νy(sy − 2) + 1

sy
. (30)

Overall, the mode/variance matching (MdVM) deduction

approach is described by Algorithm 2.

Algorithm 2 Mode/Variance Matching Deduction

Input: ωx, ωy|x and ωy|x̄

Output: ωy‖x

1) Calculate the mx,my|x,my|x̄ and sx, sy|x, sy|x̄ via (1)

and (5), respectively.

2) Calculate νy using (27).

3) Calculate sy as the largest root of (29).

4) Calculate my using (30).

5) Set ωY =
(

my −
Way

sy
, 1−my −

W (1−ay)
sy

, W
sy

)

.

Unlike MM Deduction, the MdVM does not include the

step that possibly increases the Dirichlet strength in order to

ensure that the belief and disbelief values are positive. As long

as W = 2 and ay = 0.5, which represent reasonable prior

values, by and dy are guaranteed to be positive due to (30).

In short, the MdVM is only designed to work for a uniform

baseline rate with a prior weight of W = 2.

IV. PROPERTIES OF DEDUCTION

The traditional SL deduction calculates the consequent

opinion as a linear combination of conditional opinions as

given by (7). As a result, the uncertainty for y is computed as

uy = bxuy|x + dxuy|x̄ + uxuy|x̂. (31)

The linear relationship does exist for the new deduction

approaches. In fact, the uncertainty given by SL deduction

appears to always be larger than that given by the two other

deduction operations. Figure 1 plots the uncertainty for y

over all possible opinions of x when ωy|x = (.8, .1, .1) and

ωy|x̄ = (.1, .6, .3) for the three deduction methods. The figure

reveals that the uncertainty for the new deductions methods

is lower than that of SL deduction. Unlike SL deduction, the

relationship between uncertainty and ωx is nonlinear for the

new methods. All three methods provide the same uncertainty

for dogmatic ωx = (1, 0, 0) or ωx = (0, 1, 0). Certainly,

SL deduction should have higher uncertainty for the vacuous

ωx = (0, 0, 1) because it maximizes uncertainty for this case.

In general, it can be shown that for the dogmatic opinion that

x is true (or false) leads to ωy‖x = ωy|x (or ωy‖x = ωy|x̄) for

all three methods.4 As a result, when the rules are known to be

true with full certainty, all three deduction methods become

equivalent to modus ponens in standard propositional logic.

For the slightly more general case that the propositions and

4Note that MdVM assumes W = 2 and ay = 0.5.
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Figure 1. Uncertainty of y as a function of ωx when ωy|x = (.8, .1, .1)
and ωy|x̄ = (.1, .6, .3): (a) SL and MM Deduction and (b) SL and MdVM
Deduction.

rules are not completely true or false, but the opinions are still

dogmatic, all three methods still provide the same results as

they simplify to probabilistic reasoning.

The observations from Figure 1 shows that the SL deduction

leads to an opinion whose uncertainty is larger than or equal to

the uncertainty of the other two deduction methods appear to

hold in general. However, aside from some special cases, we

do not have a proof to determine if indeed this trend always

holds. It should be emphasized that SL and MM deduction

lead to the same probability projection my . They only differ

in that MM provides a lower uncertainty value that relates to

a confidence interval for my to be near the ground truth py.

On the other hand, MdVM deduction provides a different my

value than SL and MM deduction, but the uncertainty value it

provides also relates to the confidence interval. Given that the

SL framework requires an accurate representation of the mean

of the posterior and only an approximation for the variance,

MM deduction can be viewed as another SL operator, but not

MdVM deduction.

In a multiagent scenario, different agents can form different

opinions about x and the conditional rules based on their

observations. In this paper, we assume each agent is able to

properly observe the coin flip experiments and each agent is

truthful. These assumptions lead to the fact that the proper

processing is to perform consensus for each of the proposi-

tions and conditional rules first followed by deduction. This

consensus before deduction (CBD) approach can be thought

of as a centralized fusion architecture where each agent sends

their opinion to a central agent who performs fusion. The

approach, while proper, can lead to heavy bandwidth usage

by sending many opinions to the central agent.

An alternative approach is for each agent to perform de-

duction using their local opinions, and send a smaller set of

inferred opinions to the central agent who simply performs

consensus. This distributed deduction before consensus (DBC)

approach is attractive from a networking perspective. However,

it must be noted that DBC can lead to vastly different

opinions than CBD. The next section will investigate how

each deduction method fares under the DBC architecture.

Nevertheless, much research is needed to understand the error

bounds associated to DBC so that fusion architectures with

guaranteed performance can be designed.

In some extreme cases, DBC can perform very poorly.

For example, consider a case where Agent A has opinions

ωA
x = (1, 0, 0), ωA

y|x = (0, 0, 1), and ωA
y|x̄ = (0, 0, 1), and

that Agent B has opinions ωB
x = (0, 0, 1), ωB

y|x = (1, 0, 0),

and ωB
y|x̄ = (0, 1, 0). Agent A has complete evidence about

x but has collected no evidence about the rules. Conversely,

Agent B has collected independent evidence to obtain full

knowledge of the rules but no evidence for x. Although the

evidences collected by Agents A and B are independent, CBD

and DBC give vastly different opinions. For any of the three

methods, the proper CBD approach leads to ωA⋄B
y‖x = (1, 0, 0),

but the DBC approach leads to ωA⋄B
y‖x = (0, 0, 1). The problem

is that opinions on x and on the rules enhance each other

in determining the inferred opinion. In this extreme case,

both agents can only deduce a vacuous opinion because they

either had no evidence for the proposition or for the rules.

Because the opinions enhance each other, we expect that for

independent observations, CBD provides opinions with lower

uncertainty. In short, deduction creates a dependency between

deduced opinions that SL consensus does not account for.

For another case, consider that the number of agents is

growing without bound, all agents use the same opinions for

the conditional rules, and the antecedent x is always true, i.e.,

px = 1. In the CBD approach the fusion of the opinions

on x by the agents will converge to the dogmatic opinion

ω⋄
x = (1, 0, 0), and the uncertainty of the deduced opinion

will converge to uy|x. On the other hand, DBC allows for

the fused uncertainty to converge to zero. Because the agents

are utilizing the same opinions about the rules, the deduced

opinions are not statistically independent, and consensus is

overly optimistic about the quality of the fused opinion.

V. SIMULATIONS

The three deduction methods were evaluated by simulating

opinions formed by actual coin flip observations. The ground

truth for proposition x varied from px = 0 up to px = 1,

and the conditional probabilities were set to py|x = 0.8 and

py|x̄ = 0.1. All agents formed opinions for the antecedent ωx

using Nx = 10 observations and formed opinions for the two



conditionals ωy|x and ωy|x̄ using Ny|x = Ny|x̄ = 100 obser-

vations. For a given value of px, the deduction methods were

evaluated over 100 Monte Carlo simulations of the formed

opinions. In all simulations, W = 2 and ax = ay = 0.5.

Figure 2 plots the error performance for the three methods

in terms of average bias, standard deviation, and root mean

squared (RMS) error average over the 100 Monte Carlo simu-

lation per a given px. The solid color curves are the computed

errors using the ground truth py = 0.8px + 0.1(1 − px) for

the three methods, and the corresponding color dashed curves

are the average predicted error derived from the uncertainty

uy via (11) and (13), which has no knowledge of the ground

truth. The actual errors for SL and MM deduction are the

same because they produce the same my value. However, the

high uncertainty for SL deduction overestimates the standard

deviation. On the other hand, the uncertainty for MM and

MdVM deduction is able to accurately portray the error

spread. The MdVM method exhibits the smallest bias, and the

uncertainty for MdVM also accurately portrays its bias. The

predicted bias for the MM is similar to that of the MdVM

despite the higher bias for the MM method.

Figure 3 provides the error performance results for 100

agents forming independent opinions, transmitting their de-

duced y to a central agents who computes a consensus opinion

for y, i.e., the DBC fusion approach. As mentioned in the pre-

vious section, DBC is not the optimal approach. Furthermore,

SL and MM deduction now provide different results. Overall,

the uncertainty value for the MM and MdVM methods can

still predict the standard deviation, but they predict much less

bias. The uncertainty for the SL method still overestimates the

standard deviation. It is interesting to note that SL deduction

usually achieves less RMS error than MM deduction when the

base rate ay = 0.5 does not match the ground truth py. On the

other hand, the MdVM method is able to predict the spread

and achieve better RMS error because of its lower bias.

Figure 4 shows the error performance results for the 100

agents that transmit their intrinsic opinions to the central

agent that performs CBD. For this case, the overall biases

are significantly smaller than the DBC case. As in the single

agent case, the error performance for the SL and MM methods

are the same, but the MM method is able to predict the

actual errors from its uncertainty value. In effect, this CBD

is equivalent to a single agent with Nx = 1, 000 and Ny|x =
Ny|x̄ = 10, 000 observations. With so many observations, the

mean and mode are almost equal, and the performances of the

MM and MdVM methods are almost identical. Interestingly,

the standard deviations due to the CBD approaches are similar

to that of the DBC approaches. This is probably due to the fact

that the agents collected independent evidences for both the

antecedent and rules, and the amount of evidence was balanced

across the agents. In other words, the simulated scenario

enables DBC to be viable unlike the conditions discussed in

previous section. Some preliminary results with unbalanced

observations over agents have shown much lower uncertainty

for DBC than CBD as one would expect from independent

agents since observations of propositions and rules enhance

each other in the deduction operation. These results also

indicate that MdVM is usually better than SL, which in turn

is usually better than MM.

VI. CONCLUSIONS

This work introduces two new deduction methods that

operate over subjective opinions referred to as moment and

mode/variance matching (MM and MdVM, respectively). Un-

like the traditional SL deduction method, the uncertainty from

the computed opinions for the consequent are able to predict

the confidence bounds for the mean projection (or estimate)

in the two new methods. However, the MM deduction method

is unable to predict its bias. We believe that this is why the

performance of the MdVM is usually better than MM for DBC

type fusion of opinions.

SL combines probabilistic logic with uncertainty. It is com-

putationally appealing by representing uncertainty for each

proposition (or rule) as a single parameter that with the belief

values map to a beta (or more generally a Dirichlet) distribu-

tion for the possible ground truth generating probabilities given

the evidence. After many logical operations such as deduction,

this representation of uncertainty is an approximation which

comes with a cost. As seen in the simulations, the uncertainty

does not necessarily predict both the bias and variance inherent

in the posterior distribution of the consequent. Furthermore,

it is unclear how to control the approximation error when

combining deduction with fusion in a distributed manner.

For instance, the bias in DBC fusion initially goes down

when combining more agents, but it eventually saturates.

Future work should investigate the conditions that causes DBC

to provide diminishing return and determine the maximum

number agents that can be fused before saturation occurs.

Furthermore, the implication on DBC for multiple agents

using common or dependent opinions as well as variations

in the amount of evidences to form opinions need to be

better understood. This understanding will hopefully lead to

principled methods to design distributed reasoning engines that

incorporate uncertainty.
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Figure 2. Quality of the deduced opinion versus ground truth for a single agent: (a) Bias, (b) standard deviation and (c) RMS error. Note that the actual
error curves for SL and MM overlap.
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Figure 3. Quality of the deduced opinion versus ground truth from 100 agents fused via DBC: (a) Bias, (b) standard deviation and (c) RMS error.
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Figure 4. Quality of the deduced opinion versus ground truth from 100 agents fused via CBD: (a) Bias, (b) standard deviation and (c) RMS error. Note that
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