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1 Summary

The inverse scattering solution of shape and/or material parameter reconstruction is of-

ten posed as a problem in nonlinear minimization of an objective function with respect

to N (usually large) number of unknown model parameters characterizing the scatterer.

The minimization procedures are usually iterative, and require the gradient of the ob-

jective function in the unknown model parameter vector in each stage of iteration. For

large N , finite-differencing becomes numerically intensive, and an efficient alternative is

domain differentiation in which the full gradient is obtained by solving a single scattering

problem of an auxiliary field using the same scattering operator as that of the forward

solution. A well-known technique in this direction is the so-called adjoint field method

which obtains the gradient by variationally minimizing an augmented objective function

that includes the reduced wave equation via a Lagrange multiplier. Results are reported

mostly for compact objects. This report presents the domain derivative calculation of the

gradient for a one-dimensional, locally perturbed, infinitely long dielectric interface. The

method is non-variational, and algebraic in nature in that it evaluates the gradient by

directly domain differentiating the scattering equations. The computations are straight-

forward, and easy to follow. The mathematical transformation of the scattering problem

into the corresponding problem for the differentiated fields can be visualized explicitly.

The formulation of and the motivation behind introducing the auxiliary field are explic-

itly demonstrated. Closed-form analytic expressions are obtained for the gradients for

electromagnetic transverse electric / transverse magnetic (TE/TM) scattering from di-

electric rough surfaces, and for scalar wave scattering from Neumann and Dirichlet rough

surfaces. Results compared with those for compact scatterers. Finally, the relationship

between our results and Lorentz reciprocity is pointed out and clarified.

1
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2 Introduction

Consider the scattering of an electromagnetic field from a one-dimensional, infinitely

long, locally perturbed, flat interface, Γ, shown in Figure 1. It is assumed that the

interface is located at x2 = 0, and is invariant along x3. The graph of the perturbation,

γ = {x1, x2 = f(x1)}, −a ≤ x1 ≤ a, is assumed to be smooth. Moreover, the profile, f(x1)

is a single-valued function of x1. The surface is thus not re-entrant. Γ separates R2 into an

upper half-plane, Ω+ = {x1, x2 > f(x1)}, and a lower half-plane, Ω− = {x1, x2 < f(x1)},

with wavenumbers, k+, k−, and dielectric constants, ε+ and ε−, respectively. It is further

assumed that the perturbed surface is illuminated at a non-grazing angle (|θinc| < π/2)

by a beam (ψinc) of finite width, e.g., a beam with a Gaussian angular spectrum [40] or a

tapered Thorsos beam [44] having negligible energy beyond |x1| ≥ A, with A� a. Finite

width beams and their properties are discussed in [23, 45, 24].

source 

  

 

  

x2 

 

x1 

f 

illumination 

+, k+ 

- , k- 

- a a 

Figure 1: A Schematic Illustration of the Scattering Geometry

The following equations [45, 37, 34, 32, 8, 38, 41, 28] describe the scattering problem.

(L+ψ+)(~x) = 0, ~x ∈ Ω+, (1)

(L−ψ−)(~x) = 0, ~x ∈ Ω−, (2)

ψ+ = ψ−, ~x ∈ Γ, (3)

α−ψ+
,n = α+ψ−

,n, ~x ∈ Γ. (4)

In Eqs. (1)-(4), L± = ∆ + (k±)2, ∆ being the Laplacian, and a time harmonicity of e−iωt

is assumed. ψ± are the total fields, and ψ±
,n their normal derivatives on the boundary.

The unit normal, n̂, is given by

n̂ =
1

√

1 + (f ′(x1))2
[f ′(x1), 1]T ,

2
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and points into Ω+. f ′ is the derivative of f in x1, and the superscript T denotes trans-

pose. Moreover, ψ+ = ψinc + ψsc is the sum of the incident (ψinc) and scattered (ψsc)

field. For the scattering geometry in Figure 1, ψsc satisfies [34, 10, 9, 2] the radiation

condition at infinity [7]. The parameters, α±, depend on the material constants in Ω±,

and the scattering process. Applications to electromagnetic TE and TM scattering from

a dielectric surface, and for scalar wave scattering from Neumann and Dirichlet surfaces,

are considered later.

For an arbitrary surface, a closed form solution of (1)-(4) is not expected. Several

approximate asymptotic techniques have been developed during the past few decades for

this kind of problems. Two classical approaches are the small perturbation method (SPM)

[39, 3, 46], and the Kirchhoff approximation (KA) [4, 3, 46]. SPM may be used when

the surface fluctuations are small and smooth. KA is applicable for problems where the

radii of fluctuations are large compared to the signal wavelength. One observes that SPM

leads to a linear relationship between the scattered field and the function describing the

surface fluctuation. Hence one can readily employ the Fourier transform technique to

invert the scattered field to reconstruct the rough interface [48], [1]. It turns out that

even when using KA, the scattered fields may be manipulated such that the the rough

interface can be reconstructed using the Fourier transform technique [47], [42], [30]. These

classical approaches to rough surface scattering, viz., SPM and KA, are single scattering

approximations and hence a linear relationship between the scattered field and the under-

lying rough surface is possible. However if the surface roughness is not small and smooth,

multiple scattering becomes important. Such processes are nonlinear in character and

hence the solution to (1)-(4) is formally expressed as: ψsc = F(f), where F is a nonlinear

operator that transforms the boundary, Γ, into scattered fields. The determination of

ψsc, given F and f, constitutes the direct or forward problem. The inverse problem is

to reconstruct the surface profile, f, where F and ψsc are known. Formally, the inverse

solution is: f = F−1{ψsc}, the result of applying the inverse scattering operator, F−1, to

the data, {ψsc}. However, because of the nonlinear nature of F , the inverse problem is

frequently solved [7, 15, 16] by transforming it into a problem in nonlinear optimization.

The solution is obtained as the minimizer of an objective function, J (f), defined as:

J (f) :=
1

2

M
∑

m=1

|∆δψ(~xm)|2

=
1

2

M
∑

m=1

(∆δψ)∗(~xm)(∆δψ)(~xm). (5)

In (5), ∆δψ(~xm) := ψpr(~xm) − ψmeas(~xm) is the data misfit function, i.e., the difference

between the measured (ψmeas) and a theoretically predicted scattered field (ψpr), both at

a detector location, ~xm. The complex conjugation is denoted by ∗, and M is the total

number of the detectors. The superscript, δ, on ∆δ indicates that ψmeas is noisy, δ being

3
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the level of the measurement noise. Furthermore, ψδ → ψexact as δ → 0 [13, 27], where

ψδ is a regularized solution.

Let ~p = {pi}
N

1
be the parametrization of γ. The inverse solution is then given by:

~p = argminXp
J (~p), Xp being the space of admissible parameters. The inverse problem

being ill-posed, regularization [13] is necessary in order to obtain a meaningful solution.

The standard procedures for the minimization of (5) are iterative in nature, and require

that the gradient of the objective function (or the scattered fields) in the unknown model

parameter vector be obtained in each stage of iteration. Let this derivative of J (f) be

denoted by dJ (f).Then:

dJ (f) = −Re

M
∑

m=1

(∆δψ)∗(~xm)ψs′(~xm). (6)

ψs′ in (6) is the domain derivative [26, 18, 19], of ψsc, that is, the derivative of the scattered

field with respect to the variation in f. Equation (6) can also be written as:

dJ (f) = −Re{JT (∆δψ)∗}, (7)

where JT is the transpose of the Jacobian, J .

The procedure most often employed in inverse problems for the computation of deriva-

tives of the cost function w.r.t. parameters of the problem is numerical [17]. For instance,

in our problem, one can use a N parameter model to represent the rough interface γ

and employ finite difference method to compute the domain derivative. This is a very

general method applicable any complex problem. However, differentiating ψsc with re-

spect to a parameter vector of length N involves solving N distinct scattering prob-

lems for N distinct scatterers. If N is large (which is often the case in practice), then

clearly, the finite-difference method becomes numerically intensive, besides accumulating

large round-off errors. It essentially involves the calculation of the large Jacobian ma-

trix, J. However, (7) shows that the evaluation of the derivative involves evaluating the

product term, JT (∆δψ)∗, and not the Jacobian explicitly. In the adjoint field method

[31, 12, 11, 35, 36, 43, 22, 14], this product is obtained as the solution of the forward

problem in Eqs. (1)-(4), but with a source term as in the R. H. S. of (6). The source

is obtained by backpropagating the data misfit functions to the scatterer space. The

boundary value problem for the adjoint field is derived by applying variational techniques

to minimize an augmented objective function, namely, J in (5) plus a constraint term in-

volving the reduced wave equation via Lagrange multiplier. The upshot of all this is that

the entire gradient is evaluated by solving only one single scattering problem in which the

same operator as that of the forward scattering problem is used. An important feature of

this method is that it is essentially independent of N . There are two different ways one

can carry out the domain derivative calculation using the adjoint method. Depending on

the numerical procedure used for solving the forward problem one can use appropriate

4
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discretization and carry out the numerical calculation of the derivatives. This is a rela-

tively more general procedure. In some problems it may be possible to obtain analytical

closed-form expression for the domain derivative. This not only offers valuable physical

insight into the problem but also gives the flexibility in the choice of algorithm used for

shape reconstruction.

In this report, we focus attention on obtaining closed-form expression for the domain

derivatives. There are several distinguishing features in the calculations of this report. In

the literature we notice that domain derivatives of the scattered fields have been calcu-

lated mostly for compact scatterers, i.e., scatterers occupying a finite volume of space. In

this report, on the other hand, an infinitely long, locally perturbed, dielectric interface is

considered. The boundary variation in this case is relatively more subtle than that for a

compact, volumetric object. Notice that we use neither variational procedures nor an aug-

mented objective function in this report. The calculations are purely algebraic in nature

in that the scattering equations are directly domain-differentiated without any interven-

ing mathematical formalism. In this manner of presentation, the calculational procedures

are found to be straightforward, physically transparent, and easy to follow. Moreover, the

details of the mathematical transformation of the scattering problem into the correspond-

ing problem for the differentiated fields can be traced explicitly. The present calculations

also invoke an auxiliary scattering problem, as in the adjoint field case. However, the

mathematical formulation of and the motivation behind the auxiliary problem are more

transparent here than in the adjoint field calculations where the problem is a result of the

mathematical manipulations. Also, the gradients are calculated for the electromagnetic

TE and TM scattering from a dielectric rough surface as also for scalar wave scattering

from a Neumann and a Dirichlet surface. Finally, the relation of the results thus obtained

with the Lorentz reciprocity is discussed and clarified.

The report is organized as follows. Some important relations from domain differential

calculus, relevant to the present calculations, are summarized in Section 3. These are then

used in Section 4 to derive the boundary value problem for the derivative fields, ψ±′, of

ψ±. The differential, dJ (f), and the gradient, ∇fJ (f), of J (f), are evaluated in Section

5. The method is next applied to electromagnetic TE and TM scattering, and Neumann

and Dirichlet boundary conditions in Section 6. Discussions are presented in Section 7,

followed by a summary in Section 8.

5
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3 Some Relevant Identities From Domain Differentiation

Let U be a piecewise smooth bounded open region in R2 with boundary Σ. A continuously

differentiable vector field, ~V , is defined in U . It is assumed that ~V or its normal derivative

vanishes on Σ. Consider the mapping, Tτ (~V (~x)) = I+τ ~V (~x)+O(τ 2), ~x ∈ U , continuously

mapping U onto itself. I is the identity operator, and the parameter, τ ∈ [0, t], t ∈ R1. Tτ

introduces a change of variable from ~x → ~xτ = ~x + τ ~V (~x) + O(τ 2). Let Ω ⊂ U be a

domain in U . Then Tτ (Ω) = Ωτ , where Ωτ = {~xτ |~xτ = ~x + τ ~V (~x), ∀~x ∈ Ω}. Moreover,

Ωτ ⊂ U , ∀τ ∈ [0, t]. τ defines the magnitude of the deformation. In fluid dynamical

problems, τ plays the role of the time variable. These are illustrated in Figure 2. It can

be shown [49] that for small τ, Tτ is a diffeomorphism in U , that is, a bijection with a

continuous inverse, with same degree of smoothness as the vector field. This inverse is

given by: T−1
τ (~V ) = I − τ ~V +O(τ 2).

 

U 

U
 
 

U
0
 

x 

x  

Figure 2: Domain Variation for a Compactly Supported Scatterer

Let φ(~x) be the solution of a boundary value problem defined on Ω, which is considered

to be the unperturbed domain, i.e., Ω = Ωτ=0. Let Tτ transform Ω to the perturbed

domain, Tτ (Ω) = Ωτ , and let φτ (~xτ ), ~xτ ∈ Ωτ , be the corresponding solution, now defined

on Ωτ . Note that τ appears twice in φτ (~xτ ), once as a subscript in φτ , and second time in

6
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~xτ , which is a running variable. It is the dependence of φ on τ that gives rise to domain

differentiation in place of the regular, partial derivatives. The Eulerian (also called total

or material) derivative of φ at ~x, denoted by φ̇(~x), is defined as:

φ̇(~x) = lim
τ→0

1

τ
[φτ (~xτ ) − φ(~x)]. (8)

The derivative in (8) can also be written as the directional derivative:

φ̇(~x) =
d

dτ
(φ · Tτ )|τ=0

=
d

dτ
φτ (τ, ~xτ )|τ=0. (9)

φ̇, as defined in (8) (or (9)), is a Gateaux differential [29], which is defined in a pointwise

sense at ~x ∈ Ω. Equation (9) can be further expressed as:

φ̇(~x) = lim
τ→0

1

τ
[φτ (~xτ ) − φ(~x)],

= lim
τ→0

1

τ
[φτ (~x) − φ(~x)] (10)

+ lim
τ→0

1

τ
[φτ (~xτ ) − φτ (~x)].

The solution is assumed to be defined in U × I ⊂ Rn+1, I = [0, t] ⊂ R1. φτ is then

considered to be the restriction of the solution defined on Ωτ . Provided that the limit on

the first term in the R. H. S. in (10) exists, the equation can be recast as:

φ̇(~x) = φ′(~x) + ~V (~x) · ∇φ(~x), (11)

where

φ′(~x) = lim
τ→0

1

τ
[φτ (~x) − φ(~x)] (12)

is the partial derivative of φ at ~x, i.e., the derivative when ~x is held fixed. The term,
~V · ∇φ, is the convective part. Furthermore, since τ and ~x are independent variables, ∂τ

and ∂x commute, yielding the following important relation:

(∇φ)′ = ∇φ′, (13)

The Eulerian derivative of a domain functional can be obtained from (12). Let

F (φτ ; Ωτ ) =

∫

Ωτ

φτ (~xτ ) d~xτ

be a domain functional of φτ over the perturbed domain, Ωτ . It can be written as:

F (φτ ; Ω) =

∫

Ω

φτ (~x+ τ ~V (~x)) |JT | d~x. (14)

7
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|JT | is the Jacobian matrix of Tτ , and (JT )ij = δij +Vi,j, Vi,j = ∂Vi/∂xj . Direct calculation

yields: |JT | = ∇ · ~V . Moreover, JT |τ=0 = I. Then differentiating Eq. (14) in τ yields the

Eulerian derivative, dF, namely

dF (φ; Ω) =

∫

Ω

φ′(~x) d~x+

∫

Γ

φ(~x)v(~x) ds. (15)

v = ~V · n̂ is the normal component of ~V on Γ. It is demonstrated (Section 5) that dF (φ; Ω)

is linear in the perturbation. The Gateaux derivative [29], therefore, exists, and F (φ; Ω)

has a gradient.

Let us further introduce the following identities.

∇φ = ∇Γφ+ n̂(n̂ · ∇φ) = ∇Γφ+ n̂φ,n, (16a)

∇Γφ · ∇Γu = ∇φ · ∇u− φ,nu,n, (16b)
∫

Γ

∇Γ · (z∇Γφ)w ds = −

∫

Γ

z(∇Γφ · ∇Γw) ds. (17)

∇Γ = ∇ − n̂∂n is the surface gradient, and the functions w and z are defined in a

neighborhood of Γ. Eq. (17) is sometime referred to as Stokes ′identity which can be

established using differential geometry [33]. Suffice it to say that the surface gradient of

a function u defined on the boundary is the restriction to the boundary of the lifting of

u defined in the tubular covering of the boundary. Finally, we introduce Green’s second

theorem [25, 7], which is:
∫

Ω

[φ∆ψ + ∇φ · ∇ψ] d~x =

∫

Γ

φψ,n ds. (18)

The unit normal, n̂, is directed in the exterior of the domain Ω. φτ (~xτ ) is a domain

functional.

The above discussions were for a closed, bounded domain (Figure 2). In the case of

the locally perturbed interface in Figure 1, the deformation is modified to that shown in

Figure 3. As earlier, the velocity field is assumed to vanish on Σ. The surface profile,

f(x1), separates U into U+ and U−. Thus U = U+ + U−. As the curve f(x1) is deformed

into fτ (x1), U
± are deformed to U±

τ , but the overall domain, U , remains unchanged. The

relations which were derived above, must now be applied to the regions, U+
τ and U−

τ . All

derivations assume C2-smoothness of the boundary function. Thus ψ± ∈ C2(Ω
±
), and

the deformation operator, Tτ is C2-diffeomorphic. Furthermore, it is known that for the

smoothness condition assumed here, the solutions can be extended to the neighborhood of

the boundaries of Ω, and Ωτ . For details, we refer to [20]. We also note that the application

of Green’s theorem to U in Figure 3 may be problematic. However, the volume integrals

involving ∆ψ±, the Laplacian appears as being multiplied by functions that are smooth

in the domain, and vanishes on the boundary. The application of Green’s theorem then

does not cause problems. Next we derive the BVP for the domain derivatives of ψ± in

Eqs. (1)-(4) using the relations that were presented in this section.

8
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4 The scattering problem for the field derivatives

In this Section, we determine how the scattering equations (1)-(4) for the unperturbed

surface are transformed as the surface is deformed by Tτ . Scattering in the transformed

domains, U±, is described by:

(L+
τ ψ

+
τ )(~xτ ) = 0, ~xτ ∈ U+

τ , (19)

(L−
τ ψ

−
τ )(~xτ ) = 0, ~xτ ∈ U−

τ , (20)

ψ+
τ = ψ−

τ , ~xτ ∈ γτ , (21)

α−ψ+
τ,n = α+ψ−

τ,n, ~xτ ∈ γτ . (22)

The Helmholtz equations (19) and (20) are transformed first. The transformation of the

boundary conditions in Eqs. (21) and (22) follows next. From the discussion at the end

of the previous Section, Γτ = γτ , and all differentiations are, therefore, with respect to γ.

Taking the derivatives of Eqs. (19) and (20), and using (11) yields:

(∆ψ±)′ + ~V · ∇(∆ψ±) + (k±)2((ψ±)′ + ~V · ∇(ψ±)) = 0.

Now, (∆ψ±)′ = ∆(ψ±)′ by Eq. (13), and L±ψ± = 0 in U± by virtue of Eqs. (1) and (2).

It then follows that:

(L+ψ+′)(~x) = 0, ~x ∈ U+, (23)

(L−ψ−′)(~x) = 0, ~x ∈ U−. (24)

Now, in the exterior of U , ψ̇± = ψ±′, since the observation point is held fixed. The

convective term then vanishes, and L±ψ±′ vanishes outside U . Therefore,

L+ψ+′(~x) = 0, ~x ∈ Ω+, (25)

L−ψ−′(~x) = 0, ~x ∈ Ω−. (26)

Exactly similar considerations are applied to the transformation of the first boundary

condition in Eq. (21). The result is:

ψ+′ − ψ−′ = −~V · ∇(ψ+ − ψ−)

= −~V · ∇γ(ψ
+ − ψ−) − v(ψ+

,n − ψ−
,n),

= (α− 1)ψ+
,nv. (27)

In Eq. (27), ∇γ is the tangential derivative on γ. Furthermore, α = α−/α+, and the

boundary conditions in Eqs. (3) and (4) were used in arriving at the result.

The Eulerian derivative of the second boundary condition in Eq. (4) is calculated as

follows. First we introduce the following notations.
∫ ±

V ±

Φ± d~x =

∫

V +

Φ+ d~x±

∫

V −

Φ− d~x

9
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Figure 3: Domain Variation for the Locally Perturbed Surface of Figure 1

for the volume, and
∫ ±

Γ

Φ± ds =

∫

Γ

(Φ+ ± Φ−) ds

for the surface integral. Also, define a regular function, u ∈ U , which vanishes on Σ, and

consider the domain functional:

F (U+
τ ,U

−
τ ) =

∫

+

U
±
τ

(α∓L±
τ ψ

±
τ )u d~xτ . (28)

Apply Green’s theorem (Eq. (18)) to Eq. (28), and obtain:

F (U+
τ ,U

−
τ ) = −

∫ −

γτ

{

α∓ψ±
τ,n

}

u dsτ−

−

∫

+

U
±
τ

∇τ

(

α∓ψ±
τ

)

· ∇τu d~xτ +

∫

+

U
±
τ

{

α∓(k±)2
}

ψ±
τ u d~xτ . (29)

∇τ is the gradient with respect to ~xτ , and the negative sign on the γτ integral is due to

the opposing signs of the n̂ on the surface. The L.H.S. in Eq. (29) vanishes because of

Eqs. (19) and (20). Moreover, since α−ψ+
τ,n = α+ψ−

τ,n from the boundary condition in Eq.

(22), the surface integral in Eq. (29) vanishes yielding:

−

∫

+

U
±
τ

∇τ

(

α∓ψ±
τ

)

· ∇τu d~xτ +

∫

+

U
±
τ

{

α∓(k±)2
}

ψ±
τ u d~xτ = 0. (30)

We now take the Eulerian derivative in Eq. (30), use Eq. (11), and simplify. The result

is:
∫

+

U±

[

∇(α∓ψ±′) · ∇u− α∓(k±)2ψ±′u
]

d~x =

10
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=

∫ −

γ

[

∇(α∓ψ±) · ∇u− α∓(k±)2ψu
]

v ds. (31)

We used the fact that γ+ = γ− = γ, and ψ+ = ψ− = ψ on γ by the boundary condition

in Eq. (3). We now replace (k±)2ψ±′ by −∆ψ±′ (cf. Eqs. (23) and (24)) in Eq. (31) to

obtain:
∫

+

U±

[

∆(α∓ψ±′)u+ ∇(α∓ψ±′) · ∇u
]

d~x =

−

∫ −

γ

[

∇(α∓ψ±) · ∇u−
{

α∓(k±)2
}

ψu
]

v ds. (32)

Applying Green’s theorem to the L.H.S. in Eq. (32) yields:

∫ +

U±

[

∆(α∓ψ±′)u+ ∇(α∓ψ±′) · ∇u
]

d~x =

∫ −

γ

(

α∓ψ±′
,n

)

u ds. (33)

The first surface integral in the R.H.S. in Eq. (32) can be evaluated as follows.

∫ −

γ

[

∇(α∓ψ±) · ∇u
]

v ds =

∫ −

γ

[

∇γ(α
∓ψ±) · ∇γu+

(

α∓ψ±
,n

)

u,n

]

v ds. (34)

As before, α−ψ+
,n = α+ψ−

,n from the boundary condition in Eq. (4). The second integral

in the R.H.S. in Eq. (34), therefore, vanishes, yielding:

∫ −

γ

[

∇(α∓ψ±) · ∇u
]

v ds =

=

∫ −

γ

[

∇γ(α
∓ψ±) · ∇γu

]

v ds

= (α− − α+)

∫

γ

{

(∇γψ
+) · (∇γu)

}

v ds

= (α+ − α−)

∫

γ

{

∇γ · (v∇γψ
+)

}

u ds, (35)

in which the identity in Eq. (17) was used. Moreover, ∇γψ
− = ∇γψ

+. Replace Eqs. (33)

and (35) in Eq. (32). This results in:

∫ −

γ

{

α∓ψ±′
,n

}

u ds = (α− − α+)

∫

γ

∇γ · (v∇γψ
+)u ds+

∫ −

γ

[

α∓(k±)2ψv
]

u ds,

from which it follows that:

α−ψ+′
,n − α+ψ−′

,n = (α− − α+)
{

∇γ · (v∇γψ
+)

}

+ (α−k+2 − α+k−2)ψv. (36)

Equation (36) establishes the boundary conditions on γ for the normal derivatives, ψ±′
,n ,

of the derivative fields, ψ±′.

11
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Collecting the results in Eqs. (25), (26), (27) and (36) together yields:

L+ψ+′(~x) = 0, ~x ∈ Ω+, (37)

L−ψ−′(~x) = 0, ~x ∈ Ω−, (38)

ψ+′ − ψ−′ = (α− 1)ψ+
,nv, ~x ∈ γ, (39)

α−ψ+′
,n − α+ψ−′

,n = (α− − α+)∇γ · (v∇γψ
+)

+(α−k+2 − α+k−2)ψ+v, ~x ∈ γ, (40)

ψ+′ = ψ−′, ~x ∈ Γ\γ, (41)

α−ψ+′
,n = α+ψ−′

,n , ~x ∈ Γ\γ. (42)

The last two boundary conditions in Eqs. (41) and (42) follow simply from the fact that on

the flat part of Γ, the observation points are held constant. Equations (37) through (42)

constitute the scattering problem for the Eulerian derivatives of the Helmholtz problem

in Eqs. (1)-(4). As can be seen from the above equations, the scattering problem for the

derivative fields is essentially the same as that for the unperturbed surface except that

the boundary conditions on γ for ψ±′ now depend upon the deformation field through the

parameter, v. The deformation, therefore, leaves it’s imprint via the boundary conditions.

The boundary value problem for the derivative fields having been obtained, the Eulerian

derivative, dJ , of the objective function is calculated next.

12
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5 The Gradient

Let F (Ω) be a real functional of the domain, Ω. Then from Eq. (8), its domain differential,

dF (Ω), is:

dF (Ω) = lim
τ→0

1

τ
[Fτ (Ωτ ) − F (Ω)]. (43)

If the mapping: ~V → dF (Ω) is linear and continuous (in ~V ), then dF (Ω) has a gradient,

GF (Ω, ~V ). In this case, dF (Ω) can be written as:

dF (Ω) =< GF , ~V >Y , (44)

where the duality relation < · > is over Y, the product space of GF and ~V . GF is a

distribution which is defined on the boundary, and can be considered to be the gradient

of F (Ω). The objective function was defined in Eq. (5) and its Eulerian derivative in Eqs.

(6) and (7). Equation (6) can be written as:

dJ (γ) = −Re

∫

Ω+

ψ+′

M
∑

m=1

(∆δψ+)∗δ(~x− ~xm) d~x. (45)

We need to eliminate the derivative field in (45). Towards that let us define an auxiliary

field, p+, that satisfies the Helmholtz equation below.

L+p+ = −
M

∑

m=1

(∆δψ+)∗δ(~x− ~xm) ~x ∈ Ω+. (46)

In terms of the field, p+, (45) for dJ (γ) becomes:

dJ (γ) = Re

∫

Ω+

ψ+′(L+p+) d~x. (47)

Note that L+ = ∆ + k+2, and apply Green’s theorem to (47). After a straightforward

algebra, and upon simplification, we obtain:
∫

Ω+

ψ+′(L+p+) d~x =

∫

γ

[

p+ψ+′
,n − ψ+′p+

,n

]

dγ. (48)

L+ψ+′ = 0 was used in the above derivation. Substituting for ψ+′ and ψ+′
,n from the

boundary conditions in Eqs. (39) and (40), respectively, we obtain:
∫

Ω+

ψ+′(L+p+) d~x =

∫

γ

(

1

α−
P,np

+ − Pp+
,n

)

dγ+

+

∫

γ

[

1

α
ψ−′

,n p
+ − ψ−′p+

,n

]

dγ, (49)

with

P = (α− 1)ψ+
,nv,
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and

P,n = (α− − α+)∇γ · (v∇γψ
+) + (α−k+2 − α+k−2)ψ+v.

In order to further eliminate the derivative terms in Eq. (49), we define an auxiliary

field, p−, in Ω−, satisfying the Helmholtz equation:

L−p− = 0, ~x ∈ Ω−, (50)

and impose the conditions

p− = p+ on γ, (51)

p−,n = αp+
,n on γ. (52)

Thus, the auxiliary problem is given by:

L+p+ = −

M
∑

m=1

(∆δψ+)∗δ(~x− ~xm), ~x ∈ Ω+, (53)

L−p− = 0, ~x ∈ Ω−, (54)

p− = p+ on γ, (55)

p−,n = αp+
,n on γ. (56)

In view of the above, we finally arrive at the following expression for dJ (γ), namely

dJ (γ) = −Re

∫

γ

(

Pp+
,n −

1

α−
P,np

+

)

dγ, (57)

Reducing the surface gradient terms by the Stokes’ identity in Eq. (17) then yields:

dJ (γ) = −Re

∫

γ

dγ

[

(α− 1)p+
,nψ

+
,n+

+

(

1 −
1

α

)

∇γp
+ · ∇γψ

+ −
1

α−
(α−k+2 − α+k−2)ψ+p+

]

v, (58)

Rewriting Eq. (58) in the form:

dJ =

∫

γ

GJ v ds,

the gradient, GJ , is obtained as:

GJ = −Re

[

(α− 1)p+
,nψ

+
,n +

(

1 −
1

α

)

∇γp
+ · ∇γψ

+ −

(

k+2 −
1

α
k−2

)

ψ+p+

]

(59)
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6 Applications

6.1 EM Scattering

Thus far, the derivations were carried out in terms of ψ± and α±, without specifically

referring to electromagnetic (EM) scattering. The EM-scattering is considered now. In

this case, ψ is the electric ( ~E) or magnetic ( ~H) field, and α± is to be replaced by ε or µ, the

dielectric and the permeability constant, respectively, depending upon the polarization

of the incident field. It is well-known [5, 34, 38] that an EM-wave propagation can be

described in terms of a TE (transverse electric) and a TM (transverse magnetic) mode

(also called perpendicular (s) and parallel (p) polarization in spectroscopy, and VV or

HH in radar work, see, e.g., Cloude [6]). Transverse implies transverse to the plane of

the incidence, that is, the plane containing the direction of the wave propagation and the

normal to the surface. The two polarizations are schematically illustrated in Figure 4. In

the TE mode, ~E is transverse, and in the TM mode, it is ~H that is transverse. Referring

to Figure 4, ~E = −x̂3E3 in TE, and ~H = −x̂3H3 in TM. The tangential components of

  

  

x2 

 

x1 

+, k+ 

- , k- 

- a a 

+ 

H 

E + 

E 

H 

TE TM 

Figure 4: Our Convention of Vector Orientations for TE and TM Polarizations

both ~E and ~H are continuous across the surface. From this and Maxwell’s equations, the

boundary conditions for the TE mode are:

E+
3 = E−

3 ,

E+
3n = E−

3n.

Similar conditions for the TM mode are:

H+
3 = H−

3 ,

ε−H+
3n = ε+H−

3n.

15

Approved for public release; distribution unlimited



In TE, α± = 1, whereas in TM, α± = ε±. The parameter, α = ε−/ε+ = εr, is the relative

dielectric constant. With these identifications, Eq. (58) for dJ and (59) for GJ can be

written down for the two polarizations. For the TE mode:

dJTE = k+2(εr − 1)Re

∫

γ

ψ+p+v ds, (60)

ḠJ ,TE = k+2(εr − 1)Re
(

ψ+p+
)

. (61)

The corresponding expressions for the TM mode are:

dJTM = Re

∫

γ

ds

[

(εr − 1)p+
,nψ

+
,n −

(

1 −
1

εr

)

(∇γp
+ · ∇γψ

+)

]

v (62)

GJ ,TM = (εr − 1)p+
,nψ

+
,n +

(

1 −
1

εr

)

(∇γp
+ · ∇γψ

+) (63)

We will next look at the limiting cases of the gradient results for Neumann and Dirichlet

problems.

6.2 Neumann Surface

Equation (59) can be used to obtain the gradient for both the Dirichlet and Neumann

surface. For the Neumann condition, the first term in the R. H. S. in Eq. (59), i.e.,

(α−1)p+
,nψ

+
,n, can be set to zero because of the Neumann boundary condition itself. Next,

letting the parameter, α→ ∞ in the R. H. S. in Eq. (59) yields:

GJ ,N = −Re(∇γp
+ · ∇γψ

+ − k+2ψ+p+).

The subscript N in GJ implies Neumann. This result can be verified by direct calculation

as follows.

For the Neumann boundary condition, the unperturbed scattering problems is given

by:

(L+ψ+)(~x) = 0, ~x ∈ Ω+, (64)

ψ−(~x) = 0, ~x ∈ Ω−, (65)

ψ+
,n = 0 on Γ. (66)

The perturbed problem, i.e., ψ+
τ , is also given by the above equations. Following the

procedures in the preceeding section, the boundary condition for the derivative field is

obtained as:

ψ+′
,n = k+2ψ+v + ∇γ · (v∇γψ) on Γ, (67)

and the auxiliary problem for p+ takes the form:

(L+p+) = −
M

∑

m=1

(∆δψ+)∗δ(~x− ~xm) ~x ∈ Ω+,

p+
,n = 0 on Γ.
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By the same reasonings as above, dJ and GJ for the Neumann surface are found to be:

dJN = −Re

∫

γ

(∇γp
+ · ∇γψ

+ − k+2ψ+p+)v ds, (68)

GJ ,N = −Re(∇γp
+ · ∇γψ

+ − k+2ψ+p+). (69)

Equations (68) and (69) are similar to those of Norton [36] for a compactly supported

sound-hard obstacle by variational formulation and an augmented objective function.

However, there is a sign change in our results from Norton’s. It is because the source

term in our auxiliary problems for p+ is opposite to Norton’s.

6.3 Dirichlet Surface

The same reasonings can be applied to the Dirichlet surface also. In the Dirichlet case,

we neglect the terms containing ∇ψ− and ψ+ in Eq. (58) since by the Dirichlet condition,

ψ+ is identically zero on the surface, Then letting α → 0 in the remaining term yields

the gradient for the Dirichlet surface, namely, GJ ,D = −Re
(

ψ+
,np

+
,n

)

. Again, this result

is also verified by direct calculation, as was done for the Neumann problem, but with

ψ+ = 0, ψ+′ = −vψ+
,n in the direct problem, and p+ = 0 in the auxiliary problem.
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7 Discussion

Our results for a locally perturbed, infinite surface are found to be similar to the results

reported in the literature for compactly supported objects. This is not surprising since the

same basic equations apply to either case. The auxiliary field is a purely mathematical

construction, and may not have a direct physical meaning. As was pointed out in the

text, the source term for the auxiliary field, p+, consists of the data misfit functions

backpropagated to the scatterer. The auxiliary fields are then the fields generated by

this source for the boundary conditions of the problem. A relation between the gradient

calculations and reciprocity of the derivative and auxiliary fields can thus be expected.

To illustrate that, let us rearrange the equations in a slightly different form.

Let L be a 2 × 2 diagonal matrix whose diagonal elements are L+ and L−, and let

Ψ = [ψ+, ψ−]T , Ψ′ = [ψ+′, ψ−′]T , and let P = [p+, p−]T . Moreover, let [q]Γ denote the

jump of the quantity, q, across the interface. In these notations, Eqs. (1)-(4) become:

LΨ = 0, ~x ∈ R2 \ Γ,

[ψ]Γ = 0,

[αψ,n]
Γ

= 0.

Similarly, Eqs. (37)-(42) take the form:

LΨ′ = 0, ~x ∈ R2 \ Γ,

[ψ′]Γ = P,

[αψ′
,n]

Γ
= P,n ,

and the adjoint field Eqs. (53) through (56) are similarly recast as:

LP = −Re

M
∑

m=1

∆δ∗(xm)δ(~r − ~xm) ~x ∈ R2 \ Γ,

[p]Γ = 0,

[αp,n]Γ = 0.

In these notations, Eq. (58) for dJ takes the form:

dJ = Re

∫

Γ

J · n dΓ, (70)

where

J =
1

α−
p+[α∇ψ′] − [ψ′]∇p+.

Equation (70) is the Lorentz reciprocity relation between p+, and ψ′ [34].
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Note that J does not vanish indicating that the fields are not truly adjoint to each

other. The non-vanishing of J is due to the fact that the forward and reciprocal incident

fields do not act on the same scatterer, but the former on the unperturbed and the other

on the perturbed scatterer. In other words, J 6= 0 indicates the variation of the reciprocal

fields. We have, therefore, used the word auxiliary instead of adjoint . It may be interest-

ing to point out that the usual picture of reciprocity is Helmholtz’s reciprocity in which

the reciprocity is between a point source and a point observer. However, Helmholtz’s

reciprocity does not always hold for sources and observers of finite extent [21]. Lorentz’s

reciprocity, on the other hand, is an integral relation over the sources.
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8 Conclusion

The inverse scattering solution for the shape and/or material parameters of a scattering

object is often posed as a problem in nonlinear optimization in which an objective function

is minimized with respect to N (usually large) number of unknown parameters character-

izing the scatterer. The minimization is often performed iteratively where the gradient of

the objective function in the parameter vector is required in every stage of iteration. The

application of the domain differentiation technique provides a highly efficient solution to

the problem. This report gives a detailed account of the domain derivative calculation of

the gradient for a one-dimensional, locally perturbed infinitely long dielectric surface. Un-

like the so-called adjoint field method which applies variational procedures to an objective

function augmented by the reduced wave equation via a Lagrange multiplier, the method

in this report is purely algebraic in nature in that it evaluates the derivative by applying

domain differentiaion directly to the scattering equations without any other intervening

mathematical formalism. The calculations presented here are straightforward and easy

to follow. Moreover, the mathematical transformation of the scattering problem into the

corresponding problem for the differentiated fields can be visualized explicitly. The so-

lution requires an auxiliary scattering problem. The formulation of and the motivation

behind the auxiliary problem are explicitly demonstrated. The gradients are calculated

for the electromagnetic TE and TM scattering from a dielectric surface as also for scale

wave scattering from a Neumann and a Dirichlet surface. Finally, the relationship of the

results thus obtained with the Lorentz reciprocity is discussed.
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List of Acronyms, Abbreviations, and Symbols 
 

 

Acronym Description 

f  rough interface 

k 
 Wave number of upper half space 

k 
 Wave number of lower half space 

dF  Domain differential of F  

TE Tranverse Electric 

TM Transverse Magnetic 
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