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Abstract—A nonlinear model predictive control algorithm
is developed for obstacle avoidance in high-speed, large-size
autonomous ground vehicles (AGVs) that perceive the
environment only through information provided by on-board
sensors. The mission of the AGV is to move from its initial
configuration to the goal configuration safely. The resulting
trajectory should be collision-free and the AGV should be
dynamically safe. As a starting point, the scenario where the
vehicle moves on a flat surface at a constant speed is considered.
The nonlinear MPC algorithm generates steering commands
for completing the mission while enforcing safety constraints.
The first safety constraint is avoiding obstacles. This is fulfilled
by constraining the position of the AGV inside a safe region
established from sensor data. The second safety constraint is
ensuring dynamical safety. This is translated into avoiding single
tire lift-off, which is implemented by limiting the steering angle
within a range obtained using a 14 DoF vehicle dynamics
model. At each sampling time, at least one multi-phase optimal
control problem (OCP) is formulated and solved on-line. The
safe region is partitioned into multiple sub-regions, which can
then be specified without using piecewise functions. The fact
that the optimal trajectory traverses the sub-regions sequentially
and hence the position constraints are different from phase to
phase makes the OCP multi-phase. The multi-phase OCP is
transcribed into a nonlinear programming problem using the
hp-pseudospectral method, and solved using the interior-point
method. Simulations of an AGV approaching multiple obstacles
show the effectiveness of the proposed algorithm.

Index Terms—Collision avoidance, vehicle dynamics, model
predictive control, autonomous ground vehicles.

I. INTRODUCTION

AUTONOMOUS ground vehicles (AGVs) are gaining

importance and finding increased utility in both military

and commercial applications. Although earlier AGV platforms

were typically exclusively small ground robots, recent efforts

have targeted passenger vehicles and larger size platforms, as

well. For this size of vehicles, it becomes especially important

to take the dynamical limitations of the vehicle into account
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to guarantee its dynamical safety during obstacle avoidance

maneuvers [1]. Therefore, obstacle avoidance algorithms are

needed that can ensure vehicle safety even if the vehicle is

operating at its dynamic limits.

Many obstacle avoidance algorithms have been developed

in the literature that allow for fast, continuous, and smooth

motion of AGVs among unexpected obstacles. They can be

classified into four categories: graph-search based methods

[2], [3], virtual potential field and navigation function based

methods [4], [5], meta-heuristic based methods [6], and

mathematical optimization based methods [7], [8]. Among

these categories, mathematical optimization based methods

are particularly attractive, because they offer a rigorous and

systematic approach to take vehicle dynamics and safety

constraints into account.

A mathematical optimization approach can be used either

in open-loop, if the environment is fully known a priori, or

in closed-loop with a feedback controller for a more robust

solution. Regarding the latter, the model predictive control

(MPC) approach is one of the most widely adopted techniques

[9]. Prior research has demonstrated successful applications of

MPC to obstacle avoidance in AGVs [10], [11], [12], [13],

[14], [15]. Some active safety methods leverage the MPC

framework, as well, to ensure, for example, safe lane keeping

or vehicle stability [16], [17], [18], [1].

The first applications of MPC to obstacle avoidance in

AGVs assumed that the controller has full knowledge about

the environment. They also were not concerned with the level

of fidelity that the model used by the controller needs to

possess for satisfactory performance, where the performance

criteria in some cases also include the dynamical safety of the

vehicle, such as no tire lift-off. Previous work by the authors

aimed to address this gap by developing an MPC formulation

that takes into account the information about the environment

as provided by the on-board Light Detection and Ranging

(LIDAR) sensor [19]. They also investigated the role of model

fidelity and showed that the vehicle’s dynamical safety can

be guaranteed by limiting the steering angle using a high

fidelity model, which then allows the MPC to work with a low

fidelity model for trajectory optimization [19]. However, this

investigation was done using an exhaustive search approach

on a coarse mesh of the control input.

In this paper, we extend the work presented in [19] and

[20], and develop a novel nonlinear MPC algorithm for

obstacle avoidance of AGVs that can achieve an optimal and

smooth operation of the vehicle through the obstacle field
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while ensuring vehicle safety. Optimality here refers to the

optimality of the solution within the prediction horizon, taking

into account all the information available at that moment

in time, and not to the optimal solution that would have

resulted if all environmental information was available for

all times. Optimality is achieved by formulating the obstacle

avoidance problem into an optimal control problem (OCP),

which is then converted into a nonlinear programming (NLP)

problem using the hp-pseudospectral method, and solved using

the interior-point method. Two types of safety constraints are

included in the formulation. The first type of safety constraint

is avoiding obstacles. This is fulfilled by constraining the

position of the AGV inside a safe region established from

sensor data. The safe region is partitioned into multiple

sub-regions, which can be specified without using piecewise

functions. These specifications can then be used in the OCP

formulation. The second type of safety constraint is ensuring

dynamical safety. This is translated into avoiding single tire

lift-off, which is implemented by limiting the steering angle

within a range obtained using a 14 DoF vehicle dynamics

model. Simulations of an AGV approaching multiple obstacles

show the effectiveness of the proposed algorithm.

Throughout the paper, the following assumptions are made:

(a) All obstacles of interest are at least the height of where

the LIDAR is mounted on the vehicle, which is in front

of the vehicle.

(b) The vehicle longitudinal speed is maintained to be

constant.

(c) The vehicle travels on a constant-friction flat surface.

Because the formulated OCP is nonconvex, it is not

guaranteed that the solution from the OCP solver is the unique

global optimal solution over the prediction horizon. Thus,

the terms “optimal trajectory”, “optimal states”, and “optimal

control” in this paper refer to the local optimal solution

generated by the OCP solver, which is the first minimum it

finds.

The rest of the paper is organized as follows. Section II

introduces the basic principle of MPC briefly. Section III

presents the formulation of the multi-phase optimal control

problem for obstacle avoidance, including safe region

partition approach, details of the vehicle dynamics model

used, maximum steering angle establishment, and solution

techniques. Section IV presents and discusses the simulation

results. Conclusions are drawn in Section V.

II. BASIC PRINCIPLE OF MPC

The idea of model predictive control is to utilize a model

of the system to be controlled to predict and optimize

future system behavior. MPC is an optimal control based

state-feedback controller. The feedback law is obtained by an

iterative on-line optimization over a moving finite prediction

horizon. One advantage of using a moving time horizon is the

ability to perform real-time optimization with hard constraints

on plant variables [9].

The basic principle of MPC is illustrated in Fig. 1. At time

t0, starting from the state measurements, an optimal control

sequence ζ∗(t), t ∈ [t0, t0 + Tp] is computed by solving an

t0+Tpt0

Past Future

t0+Te

Control

State

t0- Te

Execution Horizon

Prediction Horizon

max

min

max

min

Planned

Predicted

Executed

Actual

Fig. 1. Basic principle of MPC

open-loop, constrained, finite-time optimal control problem

over the prediction horizon Tp. The control calculations are

based on both future predictions and current measurements.

The optimal control sequence ζ∗(t) is bounded by the input

saturations, and the resulting estimated optimal states ξ∗(t)
satisfy the pre-defined constraints and minimize the cost

function. Although the optimal control sequence is calculated

over the horizon t ∈ [t0, t0 + Tp], only a portion of the

computed control sequence ζ∗(t), t ∈ [t0, t0 + Te] is sent

to the plant and executed, where Te is called the execution

horizon and represents the portion of the computed optimal

sequence that is implemented. Due to model simplifications,

model parameter uncertainties, and / or other types of noises

and uncertainties, the actual states of the system ξ̃∗(t), t ∈
[t0, t0+Te] are highly likely to be different from the predicted

value ξ∗(t), t ∈ [t0, t0 + Te]. In the next step, the optimal

control problem is solved again over a shifted horizon based

on the new state measurements. The feedback of measurement

information to the optimization endows the whole procedure

with a robustness typical of closed-loop systems. This process

is thus repeated at each step until terminal requirements are

satisfied.

III. NONLINEAR MPC ALGORITHM

FOR OBSTACLE AVOIDANCE

In this section, details of the nonlinear MPC algorithm

for obstacle avoidance are presented. The nonlinear MPC

algorithm consists of two parts: the LIDAR data processor

and the control commands generator. Fig. 2 shows the block

diagram with the nonlinear MPC algorithm and the AGV in

the loop.

The LIDAR data processor simplifies the obstacle shape,

adds safety margin, and partitions the safe region. The outputs

of LIDAR data processor, the task information, and the

estimated vehicle states are used in the formulation of the

OCPs. The formulated OCPs are then solved and the control

commands associated with the lowest cost solution is executed

by the AGV. These steps are discussed in detail in the

following sub-sections.

Three external inputs to the nonlinear MPC algorithm are

required: task information, obstacle information, and estimated

states. Within the scope of this paper, the task information is

the specified target location and the desired vehicle speed,
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Fig. 2. Schematic of the nonlinear MPC algorithm
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Fig. 3. (a) A sample obstacle field and the LIDAR detection data plotted in
the 3D space; (b) the top view of the LIDAR data and the safe area

which is directly specified by the user. The task information

could also be generated by a high-level global path planning

algorithm.

The obstacle information is obtained from a LIDAR sensor,

which provides information about range and geometrical

characteristics of the closest objects to the vehicle. A 2D

LIDAR sensor that is mounted in front of the vehicle is

used. The LIDAR returns the distance to the closest obstacle

boundary in each radial direction at an angular resolution of

ε. The angular range is [0◦, 180◦], with the vehicle heading

direction being the 90◦ direction. For a direction without

obstacles within the detection range, the LIDAR returns the

maximum detection range RLIDAR . Fig. 3 shows an obstacle

field with three obstacles and the output of the LIDAR for

the particular vehicle pose. It is assumed that all obstacles of

interest are at least the height of where the LIDAR is mounted.

The vehicle states are required to properly initialize the

vehicle model used in the algorithm. In a real application,

a state estimator is needed to estimate the states, since not all

states can be directly measured. However, in this paper, the

AGV is simulated and the state estimator is ignored.

A. LIDAR Data Processor

In this section, the procedures included in the LIDAR data

processor are described. The LIDAR data processor processes

a sequence of points defining the safe region into specifications

that can be used in the OCP formulation. In this paper, a 2D

LIDAR is used and the set of points defining the safe region

is simply the detected points by the LIDAR. If a 3D LIDAR

or a camera is used to sense the environment, an algorithm is

required to find the points that specify the safe region first.

1) Line Simplification: The first step of the data processing

is to reduce the number of points that defines the obstacle

boundaries for further processing. However, the points

obtained directly from the LIDAR can be noisy because

the obstacle boundaries are not smooth and the detection

results are not exact. An algorithm is required to identify the

minimum number of lines for approximating the sequence of

points considering these noises. The Ramer-Douglas-Peucker

algorithm is an algorithm for reducing the number of points

in a curve that is approximated by a series of points, which

is widely used to perform simplification and denoising of

range data acquired by a LIDAR [21]. As illustrated in Fig. 4,

the numerous detected points, which are generated using a

simulated LIDAR with added noise, can be simplified into

two line segments represented by three points, which are a

good approximation to the boundaries of the obstacle.

LIDAR Points
Simplified Obstacle Boundaries

Actual Obstacle Boundaries

Fig. 4. An illustration of the line simplification algorithm.

2) Safety Margin: A safety margin, lSM, is added to the safe

region to account for the size of the vehicle, detection noises,

and differences between the predicted trajectory and the actual

trajectory. Adding a safety margin allows for ignoring the

vehicle size in the OCP formulation. The safe area is a polygon

in general and it is a simple polygon when the safe region

boundary is from a 2D LIDAR sensor. Thus, algorithms for

performing polygon offsetting (inflating/deflating) in computer

graphics can be adopted. Specifically, the Vatti’s clipping

algorithm [22] implemented in the Clipper library developed

by Angus Johnson [23] is used.

As shown in Fig. 5a, the boundary of the safe region consists

of three types of segments:

• LIDAR data segments, which specify the boundaries of

the obstacles.

• Maximum LIDAR detection range segments, which are

directions free from obstacles and are called “openings”.

• Obstacle’s laser shadow lines, which are along the rays

from the LIDAR and are called “hypothetical openings”.

The are called “hypothetical openings,” because in its

current position and orientation the vehicle cannot know

whether it is an actual opening or not due to the obstacle

blocking its view.

To add the safety margin, the openings are expanded by

the amount of specified safety margin first. Then, the entire

region is shrunk by the amount of specified safety margin. This

is to add safety margin only on the obstacle boundaries and
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Fig. 5. (a) Three types of segments bounding the safe region; (b) an example
of safe region with safety margin included

hypothetical openings. Fig. 5b is an example of safe region

with safety margin included.

3) Region Partitioning: The safe region exemplified in

Fig. 5b is very difficult, if not impossible, to be defined

using a single function. Even if the function exists, it is not

differentiable at some points, which would cause problems

in the OCP solver that requires all functions to be twice

continuously differentiable. To address this challenge, the

safe region is partitioned into several sub-regions and a

multi-phase optimal control problem formulation is used. After

partitioning, each sub-region can be specified by a set of

inequalities. The functions involved in these inequalities are

not piecewise functions and are differentiable.

There are many approaches for partitioning the safe region

to meet the specified requirements. Two of them are introduced

in this paper. One approach is named the “polar partitioning”.

The safe area is divided into sectors and triangles, where

sectors are regions including an opening and triangles are

regions including an obstacle boundary. Fig. 6a is the

partitioning of the safe region shown in Fig. 5 using this

approach. As an example, Region “OB4” is a triangle, which

can be specified using three linear inequalities, whereas Region

“OP3” is a sector, which is bounded by two lines. The third

boundary of Region “OP3” is an arc; however, because of the

limits on prediction horizon, this arc constraint will never be

active and thus is ignored. This is an intuitive approach for

partitioning the region from a 2D LIDAR sensor.

Another approach is named the “optimal convex

partitioning” or simply “convex partitioning”. The interior

of this safe area is decomposed into a minimum number of

convex regions without introducing additional points inside

the polygon. Several algorithms exist in the literature for

performing this task. The dynamic programming algorithm

by Keil and Soneyink is incorporated [24], which is efficient

in decomposing simple polygons. Fig. 6b is an exemplified

partitioning. Similarly, all the regions can be specified using

OP1

OP2OP3

OP4

OB4

OB6

OB5

OB1

OB2OB3

(a) Polar partitioning

OP1

OP2OP3

OP4

OB1

OB2

OB3

(b) Convex partitioning

Fig. 6. Exemplified partitions using two approaches

a set of linear inequalities after partitioning. This approach is

capable of partitioning a safe region in a more general form.

In either approach, a sub-region can be defined by

⎡
⎢⎢⎣

...
...

aj bj
...

...

⎤
⎥⎥⎦
(i) [

x(i)

y(i)

]
≤

⎡
⎢⎢⎣

...

cj
...

⎤
⎥⎥⎦
(i)

, j = 1, . . . , L (1)

where i is the sub-region index and L is the total number

of line segments bounding that sub-region; aj , bj and cj are

coefficients calculated based on the two end points of the

corresponding line segments; (x, y) is a position in Cartesian

coordinates.

Eq. (1) can be compacted in the following form:

A
(i)
L×1x

(i)(t) +B
(i)
L×1y

(i)(t) ≤ C
(i)
L×1, t ∈ [T i−1, T i] (2)

where A
(i)
L×1 is a vector with the jth entry being aj . The

definitions of B
(i)
L×1 and C

(i)
L×1 are similar.

After partitioning, the entire safe region can be specified by

a structure variable SafeRegion. The definition of the structure

variable SafeRegion is given by the following pseudo-code.

i n t N; / / number o f sub−r e g i o n s
i n t L [N ] ; / / v e c t o r o f number o f l i n e s e g m e n t s

s t r u c t SafeReg ion {
double AM[N] [N ] ; / / a d j a c e n c y m a t r i x
SubRegion SR [N ] ; / / s u b r e g i o n s p e c i f i c a t i o n s

} ;

s t r u c t SubRegion {
char Type ; / / t y p e o f t h e s u b r e g i o n : ‘ ‘OP” , ‘ ‘OB”
i n t Index ; / / i n d e x o f t h e s u b r e g i o n
i n t HPNum; / / number o f h y p o t h e t i c a l o p e n i n g s
/ / end p o i n t s o f l i n e s e g m e n t s ( xs , ys , xe , ye )
double E n d P o i n t s [ L ( Index ) ] [ 4 ] ;
/ / i n d e x o f l i n e s e g m e n t s r e p r e s e n t i n g
/ / h y p o t h e t i c a l o p e n i n g s
double HPIndex [HPNum ] ;

} ;

The adjacency matrix for the partitioning shown in Fig. 6b

is given below. When two sub-regions have a common edge,

UNCLASSIFIED: Distribution Statement A. Approved for public release. #26161



the corresponding entry in the matrix is set to 1; otherwise, it

is set to 0.

AM=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

OP1 OP2 OP3 OP4 OB1 OB2 OB3

OP1 1 0 0 0 1 0 0

OP2 0 1 0 0 0 0 1

OP3 0 0 1 0 0 0 1

OP4 0 0 0 1 0 1 0

OB1 1 0 0 0 1 1 0

OB2 0 0 0 1 1 1 1

OB3 0 1 1 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

To avoid the obstacles and move towards the target, the

trajectory should stay within the safe region and the last part of

the predicted trajectory should lie within the sub-region of type

“OP”. The following list presents the procedures of using the

structure variable SafeRegion in the OCP formulation to meet

the above requirement. The safe region partitioning shown in

Fig. 6b is used as an example to elaborate.

(a) Identify the first region to traverse (“SR”). Region “OB1”

is the “SR” in this example, because the vehicle heading

at the current position is pointing upwards.

(b) Identify all regions with a feasible opening (“TRs”). A

feasible opening is an arc segment, which can have an

intersection with a feasible trajectory over a slightly longer

period than the prediction horizon. They can be identified

using the two extreme trajectories, which are shown in

Fig. 7. They are obtained by simulating the 2 DoF vehicle

model using steering controls that are at the limits of

handling at each step at the measured initial states. In

the example, the arc segments in “OP2” and “OP3” are

feasible openings and hence “OP2” and “OP3” are “TRs”,

whereas, “OP1” and “OP4” are not “TRs”, because the

vehicle cannot make a sharp enough turn to move into

those partitions.

(c) Find the sequence of regions from the “SR” to a “TR”

for all “TRs”. This can be achieved by using Dijkstra’s

algorithm and the adjacency matrix [25]. For example,

with “OP3” being the ”TR”, the region sequence is

identified as “OB1 → OB2 → OB3 → OP3”. The

illustration of the region sequence is shown in Fig. 7. With

“OP2” being the “TR”, the region sequence is identified

as “OB1 → OB2 → OB3 → OP2”.

OP3

OB1

OB2

OB3

Optimal
Trajectory

Extreme
Right
Trajectory

Extreme
Left
Trajectory

Fig. 7. An example of extreme trajectories and region sequence

For a region sequence from the “polar partitioning” as

exemplified in Fig. 8a, a different region partition as shown

in Fig. 8b can be obtained easily. This alternative partition

approach is preferred when one of the boundaries separating

two regions is almost along the vehicle heading direction.

The specifications of the regions in this partition are given

OP3
OB4

Optimal
Trajectory

(a) Basic polar partitioning

Optimal
Trajectory

(b) Modified polar partitioning

Fig. 8. Regions from polar partition approach and its variance

by

R
(i)
min ≤

√
[x(i)(t)− x(0)]2 + [y(i)(t)− y(0)]2 ≤ R(i)

max

Φ
(i)
min ≤ atan2(y(i)(t)− y(0), x(i)(t)− x(0)) ≤ Φ(i)

max

t ∈ [T i−1, T i]

(3)

where R
(i)
min, R

(i)
max, Φ

(i)
min, and Φ

(i)
max are bounds calculated from

the coordinates of end points specifying a region.

B. Control Command Generator

At each step of the MPC, a multi-phase optimal control

problem is formulated for each of the “TRs”. The number of

phases is the number of regions from “SR” to the “TR”. So,

one or more OCPs is formulated and solved at each step. The

formulation in general form is given by Eq. (4) - Eq. (10)

minimize
ξ,ζ,T 1,...,TN

J = T
[
ξ(N)

(
TN

)
, ζ(N)

(
TN

)
, TN

]

+
N∑
i=1

⎧⎪⎨
⎪⎩

T i∫
T i−1

I
[
ξ(i) (t) , ζ(i) (t)

]
dt

⎫⎪⎬
⎪⎭

(4)

subject to
∀i=1,...,N

ξ̇
(i)
(t) = V

(
ξ(i)(t), ζ(i)(t)

)
(5)

ξ(i)(T i−1) = ξ(i−1)(T i−1)

ξ(0)(T 0) = ξ0
(6)

S(i)(x(i)(t), y(i)(t)) ≤ 0 (7)

δf,min(U0) ≤ δ
(i)
f (t) ≤ δf,max(U0) (8)

ςf,min ≤ ς
(i)
f (t) ≤ ςf,max (9)

t ∈ [T i−1, T i], T i−1 < T i

T 0 = 0, TN = Tp, Tp,min < Tp ≤ Tp,max

(10)

By minimizing the cost function specified in Eq. (4), subject

to constraints defined in Eq. (5) - Eq. (10) for all phases, the

optimal state trajectories ξ(i)(t), t ∈ [T i−1, T i], the optimal

control trajectories ζ(i)(t), t ∈ [T i−1, T i], and the times T i−1,

T i, i = 1, . . . , N are obtained, where N is the total number

of phases.
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Before we define the variables and explain the problem

formulation in detail, let us go through the formulation

at a high level. Eq. (5) is the dynamic model of the

vehicle represented as a set of first order ordinary differential

equations (ODEs). Eq. (6) sets the initial states of each phase

as the final states of the previous phase. For the first phase,

the initial states are the measured states. Eq. (7) defines the

position constraints due to the obstacles perceived by the

LIDAR sensor. A general form is given here. Eq. (8) and

Eq. (9) represent the bounds on the steering angle and the

steering rate, respectively. Eq. (10) specifies the time horizon

for each phase. The overall prediction horizon is given by

t ∈ [0, Tp]. There is a lower bound and an upper bound on the

prediction time, which are described in Section IV.

1) Cost Function: The cost function defines the soft

requirement, i.e., in what sense the trajectory is optimal. In

this work, if the task is only to pass a target location without

direction requirement, the trajectory is optimal when the end

point of the predicted trajectory is close to the target, and the

final heading angle is pointing to the target because a shorter

distance-to-go is preferred. The cost function is defined as

J =
sT
s0

+ wψψ
2
diff + wdd (11)

where

s0 =
√
[xg − x(0)]2 + [yg − y(0)]2 (12)

sT =
√

[xg − x(Tp)]2 + [yg − y(Tp)]2 (13)

ψfrg = atan2 (yg − y(Tp), xg − x(Tp)) (14)

ψdiff = atan2 (sin(ψ(Tp)− ψfrg), cos(ψ(Tp)− ψfrg)) (15)

d =

∫ Tp

0

[
ς2f (t) + wδδ

2
f (t)

]
dt (16)

Specifically, the cost function formulation includes three terms

that are linearly combined using relative weights, wψ and wd.

The first term is a ratio between distance sT and distance

s0, where s0 is the distance between the initial position

[x(0), y(0)] and the goal [xg, yg] as defined in Eq. (12), and

sT is the distance between the end point of the predicted

trajectory [x(Tp), y(Tp)] and the goal as defined in Eq. (13).

Visual representations of all variables are shown in Fig. 3b.

The second term is the difference between the final heading

angle ψ(TP ) and the angle of the goal relative to the end point

of the predicted trajectory ψfrg as defined in Eq. (15). The third

term is a regulation term minimizing the control effort d as

defined in Eq. (16), where ςf is the steering rate, which is

the control command to be optimized, δf is the front wheel

steering angle, and wδ is a weight.

If a particular direction of passing the target location in

global coordinates is also required, the following cost function

is used

J =
sT
s0

+ wψψ
2
diff + wss+ wdd (17)

where

s =

∫ Tp

0

[lax(t) + lby(t) + lc]
2
dt (18)

la = sin(ψg)

lb = − cos(ψg)

lc = − sin(ψg)xg + cos(ψg)yg

(19)

The cost function specified by Eq. (17) has one more

term than Eq. (11). This term is to minimize the integral of

the distance to the line given by lax + lby + lc = 0 over

the prediction horizon. This line is passing through the goal

[xg, yg] along the desired direction ψg .

When the target position is within the sensor’s detection

range, the term sT
s0

and wψψ
2
diff are removed from the cost

functions given in Eq. (11) and Eq. (17). Instead the following

constraints are added to the OCP formulation.

xg − σ ≤ x(Tp) ≤ xg + σ

yg − σ ≤ y(Tp) ≤ yg + σ
(20)

where σ is a small margin. If the vehicle is within this margin

from the target position, then the target is considered to be

reached.

2) Vehicle Models: Two different vehicle dynamics models

are used in this work: a 14 DoF model to represent the plant

and to generate offline the dynamic-safety-related look-up

tables used in the MPC, and a 2 DoF model used in the MPC to

predict trajectories. The schematics of the two representations

are given in Fig. 9. The 14 DoF model consists of a

single sprung mass connected to four unsprung masses. The

suspensions between the sprung mass and unsprung masses

are modeled as spring-damper systems. In the 2 DoF model,

the left and right tires on each axle are lumped together. The

equations for the 14 DoF model are omitted here for space

limitations, but can be found in the literature [26].
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Fig. 9. Schematic of the vehicle models
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Fig. 10. Lateral tire force described by the Pacejka tire model.

The 2 DoF model is described by the following ODEs

V̇ = (Fy,f + Fy,r)/M − U0r (21)

ṙ = (Fy,fLf − Fy,rLr)/Izz (22)

ψ̇ = r (23)

ẋ = U0 cosψ − (V + Lfr) sinψ (24)

ẏ = U0 sinψ + (V + Lfr) cosψ (25)

where Fy,f and Fy,r are tire lateral forces generated at the

front axle and the rear axle, respectively. U0 and V are the

longitudinal speed and lateral speed in the vehicle’s coordinate

frame, respectively. r is the yaw rate, ψ is the yaw angle, (x, y)
is the vehicle’s front center location in global coordinates, M
is the vehicle mass, Izz is the moment of inertia, Lf is the

distance between the front axle and the vehicle’s CoG location,

and Lr is the distance between the rear axle and the vehicle’s

CoG location.

By using the Pacejka Magic Formula (MF) tire model with

pure slip, the lateral tire forces are presented as

Fy,f = MFy(Fz,f , αf ) (26)

Fy,r = MFy(Fz,r, αr) (27)

The exact form of the Pacejka tire model can be found

in [27]. Fig. 10 shows the relationship between the tire lateral

forces and the slip angle at different vertical loads described by

the Pacejka tire model. In the 14 DoF vehicle model, Pacejka

Magic Formula tire model with combined slip is used.

As concluded in [20], it is important to account for the

longitudinal load transfer in the 2 DoF vehicle model when the

vehicle travels at high speed. Thus, the following relationships

are used with the 2DoF model to calculate the vertical loads

on the front and rear axles taking into account the longitudinal

load transfer effects:

Fz,f =
MgLr +MV rhCG

Lf + Lr
(28)

Fz,r =
MgLf −MV rhCG

Lf + Lr
(29)

where hCG is the height of the vehicle CoG location above the

ground.

In addition, the slip angles of front and rear tires are

obtained from

αf = tan−1

(
V + Lfr

U0
− δf

)
(30)

αr = tan−1

(
V − Lrr

U0

)
(31)

The steering rate ςf is used as the control command to be

optimized and the steering angle δf is set as an additional state

variable of the system. The reason is to make it possible to

obtain a smooth steering angle sequence and impose a limit

on the steering rate.

By setting the state vector as ξ = [ x y ψ V r δf ]
and the control vector as ζ = ςf , the state-space equation for

the 2 DoF nonlinear vehicle model can be written as

ξ̇ = f(ξ) +Bζ (32)

where

f(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

U0 cosψ − (V + Lfr) sinψ
U0 sinψ + (V + Lfr) cosψ

r
(Fy,f + Fy,r)/M − U0r
(Fy,fLf − Fy,rLr)/Izz

0

⎤
⎥⎥⎥⎥⎥⎥⎦

BT =
[
0 0 0 0 0 1

]
The steering profile in Fig. 11a is used as the input and a

vehicle speed of 20 m/s is considered for a model comparison.

As shown by the comparison of trajectories in Fig. 11b,

yaw rates in Fig. 11c, and lateral accelerations in Fig. 11d,

the 2 DoF vehicle model with longitudinal load transfer and

nonlinear tire model is a very good approximation to the 14

DoF vehicle model.
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Fig. 11. Comparison between the 2 DoF vehicle model and the 14 DoF
vehicle model

3) Obstacle Avoidance: Obstacle avoidance is enforced

through the constraint that the vehicle trajectory must lie

within the safe region. For each of the phases in the multiphase

OCP, the vectors A
(i)
L×1, B

(i)
L×1, and C

(i)
L×1 or the bounds R

(i)
min,

R
(i)
max, Φ

(i)
min, and Φ

(i)
max can be calculated using the values stored
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in the structure variable SafeRegion. The specific form of Eq.

(7) is either given by Eq. (2) or Eq. (3) depending on the

scenario.

Regarding the safe region partitioning, there are still some

questions, such as, what are the characteristics of a good

partition, how to evaluate the goodness of the partition,

and how to generate a good partition systematically and

efficiently. Addressing these questions requires future work. In

the simulations for this paper, the convex partition approach

is used primarily, and the polar partition approach is used

secondarily, if needed.

4) Dynamical Safety: In this study, ensuring the vehicle’s

dynamical safety is translated to avoiding single tire lift-off.

This is a conservative criterion used to prevent rollover

[28]. This requirement could be taken into account directly

to enforce a positive vertical load on all four tires at

all times. However, vehicle models that could predict

the vertical tire loads on all four tires would require a

level of complexity whose computational load would be

prohibitively high for the purpose of MPC. Therefore,

another conservative approximation of the dynamical safety

requirement is considered; namely, an upper bound on the

steering angle magnitude as expressed by the following

inequality constraint

|δf (t)| ≤ δf,max(U0) (33)

where the maximum steering angle δf,max is a function of only

the vehicle speed when the vehicle is assumed to move on a

flat surface.

For all combinations of longitudinal speed ranging from

10 m/s to 30 m/s and maximum steering angle ranging from

0◦ to 14◦, the corresponding minimum tire vertical loads are

obtained using the 14 DoF vehicle model. The relationship

is shown in Fig. 12a. If a minimum vertical load threshold

is set, the relationship between the maximum steering angle

and longitudinal speed can be extracted. Fig. 12b shows the

relationship when Fz,min is set as 500 N.

5) Solution Techniques: The formulated nonlinear

multi-phase optimal control problems are solved using

a two-step procedure. First, the continuous-time OCP is

transcribed into to a nonlinear programming (NLP) problem

using a direct method called hp-pseudospectral method [29],

[30], [31]. Second, the resulting NLP problem is solved using

the interior point method [32].

The hp-pseudospectral method discretizes a continuous-time

OCP into an NLP problem by approximating the state and

control using a variable number of approximating intervals

and variable-degree polynomial approximations of them within

each interval. The differential-algebraic constraints of the

OCP are enforced at a finite set of collocation points, where

the collocation points are Legendre-Gauss-Radau (LGR)

quadrature points. This method has been shown to be

able to accurately approximate the solution to a general

continuous-time OCP in a computationally efficient manner

[31].

0
5

10
10 15 20 25 30

0

5
 

0

2

4

6

14 U0 (m/s)

f,max (°)

F z,m
in
 (k

N
)

(a)

10 15 20 25 300
2
4
6
8

10

U0 (m/s)

f,m
ax

 (°
)

(b)

Fig. 12. (a) Minimum tire vertical load at different combinations of vehicle
speed and maximum steering angle; (b) maximum steering angle as a function
of vehicle longitudinal speed when the minimum vertical load threshold is 500
N.

After transforming from the time interval t ∈ [0, Tp] to

the time interval τ ∈ [−1, 1] via the following variable

transformation

t =
Tp

2
τ +

Tp

2
(34)

the state ξ is approximated by a polynomial of degree at most

n as follows

ξ(τ) ≈
n+1∑
i=1

ξiLi(τ), Li(τ) =

n+1∏
j=1,j �=i

τ − τj
τi − τj

(35)

where τi(i = 1, . . . , n) is the LGR collocation points,

Li(τ)(i = 1, . . . , n) is a basis of Lagrange polynomials, and

ξi is the state approximation at τi.

To solve the NLP problem, a primal-dual interior-point

algorithm with a filter line search method implemented

in IPOPT is used [32]. The basic idea of the interior

point method is to decompose the NLP problem with both

equality and inequality constraints into a sequence of equality

constrained problems by introducing a barrier function and

barrier parameter. The NLP problem with only equality

constraints can then be solved iteratively. The search direction

is determined using the Newton-Raphson method and the step

size is obtained using the backtracking line search.

The interior point method converts the general NLP problem

given by Eq. (36) to a series of NLPs with only equality

constraints given by Eq. (37).

minimize
Z∈Nn

f(Z) (36)

subject to C(Z) = 0

Z ≥ 0

minimize
Z∈Nn

f(Z) + μkB(Z) (37)

subject to C(Z) = 0
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where μ is a small positive scalar called “barrier parameter”.

As μ converges to zero, the solution to Eq. (37) should

converge to a solution to Eq. (36). B(�) is a barrier function.

As an example, Fig. 13a shows the trajectory iterations in

solving the problem given in Fig. 7. This is a four-phase

problem. The initial guess is a straight line assuming equal

length at each phase, which is not a feasible solution.

Nevertheless, after 77 iterations, the solution converges to the

optimal solution. Fig. 13b shows the corresponding objective

value and maximum constraint violation at all steps.
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Fig. 13. (a) The trajectory iterations from the initial guess to the optimal
solution; (b) the objective and constraint violation at all steps

IV. SIMULATION RESULTS AND DISCUSSION

In this section, numerical simulations of the developed

nonlinear MPC obstacle avoidance algorithm with a 14 DoF

vehicle model as the plant are presented. Table I gives part of

the vehicle parameters used by the 14 DoF vehicle model and

all the parameters used by the 2 DoF vehicle model.

TABLE I
VEHICLE PARAMETERS

Parameter Value

M (kg) 2252

m (kg) 110

Izz (kg-m2) 4110

Lf (m) 1.58

Lr (m) 1.72

Lt (m) 1.82

hCG(m) 1.00

Three scenarios are considered in this section. In the first

scenario, the vehicle is required to move from its initial

location to a target location with the final heading angle

required to be the same as its initial heading angle. Two

obstacles are between the two locations. Vehicle speed ranging

from 10 m/s to 30 m/s are considered.

In the second scenario, the vehicle has to traverse a dense

obstacle field to reach the target location. There are 50

obstacles and each of them is 10 m × 10 m in size. The

vehicle longitudinal speed is maintained at 20 m/s and there

is no constraint on the final heading angle.

In the third scenario, the vehicle performs a double lane

change maneuver at 15 m/s using the obstacle avoidance

algorithm.

A. Scenario 1: Various Speeds

Table II summarizes the parameters of the nonlinear MPC

algorithm, including weights in the cost function, safety

margin, LIDAR detection range, length of prediction horizon,

length of execution horizon, and maximum steering angle. The

cost function given by Eq. 17 is used because the angle of

passing the goal is specified. In the settings, the following

relationship, which is used to ensure that all the predicted

trajectories lie within the LIDAR detection range, is used

Tp,max =
RLIDAR

U0
(38)

TABLE II
SIMULATION PARAMETERS

U0 (m/s) 10 15 20 25 30 30

wφ (-) 1 1

wd (-) 10 10

wδ (-) 0.1 0.1

ws (-) 10−4 10−4

lSM (m) 3 3

RLIDAR (m) 100 140

Tp,max (s) 10.0 6.7 5.0 4.0 3.3 4.7

Te (s) 0.67 0.44 0.33 0.27 0.22 0.31

ςf,max (◦/s) 10 10

δf,max (◦) 10.5 5.14 3.18 2.24 1.72 1.72

The first set of simulations uses a LIDAR with detection

range of 100 m. The results of the simulations are presented

in Fig. 14.

These results show that the developed algorithm can

successfully navigate the vehicle through the specified obstacle

field at 10 m/s, 15 m/s, 20 m/s, and 25 m/s. At these

speeds, the vehicle avoids all obstacles, passes the target

from the desired direction, and is dynamically safe as shown

in Fig. 14c. However, the vehicle hits the second obstacle

when the longitudinal speed is maintained at 30 m/s. This

is because at this speed, the vehicle is not capable of making

a turn at a smaller radius safely. A threshold of 500 N is

set on the minimum tire vertical load and the corresponding

maximum steering angle is set as a hard constraint in the OCP

formulation. This constraint is active at most of the time during

the maneuver as shown in Fig. 14b.

The navigation at 30 m/s fails because the LIDAR detection

range is not long enough and hence the prediction horizon
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Fig. 14. Results of simulations with various longitudinal speed
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Fig. 15. Results of simulations with different LIDAR detection ranges at 30
m/s

is too short to prepare the vehicle to avoid the obstacles

sufficiently early. Fig. 15 shows the results of simulations with

different LIDAR detection ranges. When a longer detection

range of 140 m and a longer prediction horizon are used, the

vehicle travels through the field safely.

Because the on-board sensors provide information about the

environment only within the close proximity of the vehicle, the

obstacle avoidance algorithm is not capable of determining the

maximum speed that can be used to safely navigate through

an obstacle field. The maximum speed should come from a

high-level planner. Alternatively, a conservative lower bound

on the prediction horizon or a conservative lower bound on

the sensor detection range can be imposed to ensure that the

obstacle avoidance maneuver is performed early enough.

These limits could be obtained from the trajectory for

making a 90◦ turn when the initial steering angle is at the

minimum bound, which is considered as the most extreme

maneuver. The trajectories from speeds ranging from 10 m/s

to 30 m/s are shown in Fig. 16. The time of completing
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this maneuver is considered as the minimum prediction time,

which is summarized in Fig. 17a. According to Eq. (38), the

minimum detection range is given by Fig. 17b. As shown in

the figure, the speed should be limited below 17 m/s when the

LIDAR detection range is 100 m if this conservative bound is

used.

B. Scenario 2: Dense Obstacle Field

This simulation is to test the capability of the algorithm

within a dense obstacle field. In this simulation, the vehicle

speed is maintained at 20 m/s and there is no constraint on

the final heading angle. Hence, Eq. (11) is used as the cost

function and the simulation parameters as the same as the

one corresponding to 20 m/s in Table II except that ws is not

used. Fig. 18 shows the simulation results. The vehicle clears

the obstacle field and reaches the target successfully using the

algorithm.

In this scenario, at most of the steps, there are multiple

feasible openings as exemplified by Fig. 19. For each of the

feasible openings, an OCP is formulated and solved. After

all of them are solved, their objective function values are

compared and the one with the smallest value is considered

the best solution. In this example, the objective values of

the calculated trajectories from right to left are 0.76, 0.74,

0.92, respectively. The smallest one is 0.74 and the control

commands corresponding to the trajectory in the middle is

sent to the plant.

C. Scenario 3: Double Lane Change

The last simulation is to test the capability of the algorithm

in an on-road scenario. The vehicle performs a double

lane change maneuver at 15 m/s using the nonlinear MPC
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Fig. 18. Simulation results of navigation within dense obstacle field
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TABLE III
SIMULATION PARAMETERS FOR DOUBLE LANE CHANGE TEST

Parameter Value

wφ (-) 10

wd (-) 10

wδ (-) 0.1

ws (-) 10−2

lSM (m) 1.6

RLIDAR (m) 50

Tp,max (s) 3.0

Te (s) 0.3

ςf,max (◦/s) 10

δf,max (◦) 5.14

algorithm. Table III summarizes the parameters used. In this

simulation, the weights wd and ws are increased to increase

the vehicle’s tendency of following the original lane.

Fig. 20 shows the generated trajectory and the

corresponding steering angle. Fig. 20a shows the trajectory

of the CoG of the plant and the corresponding trajectories

of the four corners of the vehicle. It can be seen that all the

trajectories are within the white space, which means that the

vehicle is free from collision. Fig. 20b is the corresponding

steering sequence.

In this scenario, in most of the steps, there are no “openings”

as defined in Fig. 5a. But there are “hypothetical openings”,

which are lines connecting an obstacle and an opening that

are long enough. The “TRs” are then defined as all regions

with a feasible hypothetical opening. Fig. 21 shows the use of

a hypothetical opening.

V. CONCLUSION

This paper presents the development of a novel nonlinear

MPC algorithm for obstacle avoidance in autonomous ground

vehicles using real-time sensor for environment detection. A

multi-phase optimal control problem formulation is used to

incorporate data from the on-board LIDAR sensor and the

dynamic limitations of the vehicle to find an optimal solution.

The resulting problem is solved using the pseudo-spectral

method and the interior point method. Simulation results show

that the developed method can yield a satisfactory performance

under various scenarios.

The limitations of this work can be summarized as follows.

The vehicle is assumed to travel on a flat terrain at a constant
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speed. It is of interest to consider 3D terrains and include the

vehicle speed as a second controlled variable. Furthermore,

uncertainties in the model or sensor measurements are not

yet considered, nor are moving obstacles. Addressing these

questions is subject to future work. In addition, further

investigations are required to study the impact of the objective

function on the algorithm’s performance systematically and

develop an approach for adapting the weights in the objective

function based on sensor measurements.
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